ADIS16470 [ADI]

Wide Dynamic Range, Miniature MEMs IMU;
ADIS16470
型号: ADIS16470
厂家: ADI    ADI
描述:

Wide Dynamic Range, Miniature MEMs IMU

文件: 总36页 (文件大小:1325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Dynamic Range, Miniature MEMs IMU  
Data Sheet  
ADIS16470  
FEATURES  
GENERAL DESCRIPTION  
Triaxial, digital gyroscope, 2000ꢀ°sec dynamic range  
8ꢀ°hr in run bias stability  
0.008ꢀ°sec°√Hz rms rate noise density  
Triaxial, digital accelerometer dynamic range: 40 g  
13 μg in run bias stability  
Triaxial, delta angle and delta velocity outputs  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −10ꢀC to +75ꢀC  
SPI compatible data communications  
The ADIS16470 is a miniature MEMS inertial measurement  
unit (IMU) that includes a triaxial gyroscope and a triaxial  
accelerometer. Each inertial sensor in the ADIS16470 combines  
with signal conditioning that optimizes dynamic performance.  
The factory calibration characterizes each sensor for sensitivity,  
bias, alignment, linear acceleration (gyroscope bias), and point  
of percussion (accelerometer location). As a result, each sensor  
has dynamic compensation formulas that provide accurate  
sensor measurements over a broad set of conditions.  
Programmable operation and control  
The ADIS16470 provides a simple, cost effective method for  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared with the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at the  
factory, greatly reducing system integration time. Tight orthogonal  
alignment simplifies inertial frame alignment in navigation  
systems. The serial peripheral interface (SPI) and register  
structure provide a simple interface for data collection and  
configuration control.  
Automatic and manual bias correction controls  
Data ready indicator for synchronous data acquisition  
External sync modes: direct, pulse, scaled, and output  
On demand self test of inertial sensors  
On demand self test of flash memory  
Single-supply operation (VDD): 3.0 V to 3.6 V  
2000 g mechanical shock survivability  
Operating temperature range: −25ꢀC to +85ꢀC  
APPLICATIONS  
Navigation, stabilization, and instrumentation  
Unmanned and autonomous vehicles  
Smart agriculture°construction machinery  
Factory°industrial automation, robotics  
Virtual°augmented reality  
The ADIS16470 is in a 44-ball, ball grid array (BGA) package  
that is approximately 11 mm × 15 mm × 11 mm.  
Internet of Moving Things  
FUNCTIONAL BLOCK DIAGRAM  
DR  
RST  
VDD  
POWER  
MANAGEMENT  
GND  
SELF TEST  
INPUT/OUTPUT  
OUTPUT  
DATA  
CS  
TRIAXIAL  
GYROSCOPE  
REGISTERS  
SCLK  
DIN  
CALIBRATION  
AND  
FILTERS  
TRIAXIAL  
ACCELEROMETER  
SPI  
CONTROLLER  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
DOUT  
CLOCK  
ADIS16470  
SYNC  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16470  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Device Configuration ................................................................ 15  
User Register Memory Map.......................................................... 16  
User Register Defintions................................................................ 18  
Gyroscope Data .......................................................................... 18  
Delta Angles................................................................................ 21  
Delta Velocity.............................................................................. 22  
Calibration................................................................................... 24  
Applications Information.............................................................. 31  
Assembly and Handling Tips.................................................... 31  
Power Supply Considerations................................................... 32  
Serial Port Operation................................................................. 32  
Digital Resolution of Gyroscopes and Accelerometers......... 32  
Evaluation Tools ......................................................................... 33  
Tray Drawing .............................................................................. 35  
Packaging and Ordering Information ......................................... 36  
Outline Dimensions................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings ....................................................... 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 11  
Introduction................................................................................ 11  
Inertial Sensor Signal Chain ..................................................... 11  
Register Structure....................................................................... 12  
Serial Peripheral Interface (SPI)............................................... 13  
Data Ready (DR) ........................................................................ 13  
Reading Sensor Data.................................................................. 14  
REVISION HISTORY  
4/2019—Rev. B to Rev. C  
Changes to Figure 9, Figure 10, Figure 11, Figure 12, and  
Changes to Serial Peripheral Interface (SPI) Section................. 13  
Changes to Figure 28...................................................................... 14  
Changes to Table 10 and Gyroscope Data Section..................... 18  
Changes to Acceleration Data Section......................................... 19  
Added Accelerometer Data Formatting Section ........................ 20  
Deleted Accelerometer Resolution Section Header................... 20  
Added Serial Port Operation Section, Maximum Throughput  
Section, Serial Port SCLK Underrun/Overrun Conditions, and  
Digital Resolution of Gyroscopes and Accelerometers Section..... 32  
Moved Gyroscope Data Width (Digital Resolution) Section and  
Accelerometer Data Width (Digital Resolution) Section.......... 32  
Added Tray Drawing Section........................................................ 35  
Added Figure 50.............................................................................. 35  
Figure 13 .......................................................................................... 10  
Changes to Figure 14, Figure 15, and Figure 16......................... 11  
Changes to Figure 18 and Figure 19............................................. 12  
Added Gyroscope Data Width (Digital Resolution) Section ... 18  
Added Accelerometer Data Width (Digital Resolution) Section.. 20  
Change to Calibration, Accelerometer Bias (XA_BIAS_LOW  
and XA_BIAS_HIGH) Section..................................................... 25  
Change to Filter Control Register (FILT_CTRL) Section......... 26  
Changes to Direct Sync Mode Section and Pulse Sync Mode  
Section.............................................................................................. 27  
Changed Self Test Section to Sensor Self Test Section .............. 28  
Changes to Sensor Self Test Section............................................. 28  
11/2017—Rev. 0 to Rev. A  
Changes to Table 1.............................................................................3  
2/2019—Rev. A to Rev. B  
Changes to Table 2............................................................................ 5  
Changes to Figure 5.......................................................................... 6  
10/2017—Rev. 0: Initial Version  
Rev. C | Page 2 of 36  
 
Data Sheet  
ADIS16470  
SPECIFICATIONS  
TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = 2000°/sec 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions°Comments  
Min  
Typ  
Max Unit  
GYROSCOPES  
Dynamic Range  
Sensitivity  
±±222  
°/sec  
16-bit format  
3±-bit format  
−12°C ≤ TC ≤ +75°C  
Axis to axis  
Full scale (FS) = ±222°/sec  
12  
LSB/°/sec  
LSB/°/sec  
%
Degrees  
%FS  
655,362  
±2.±5  
±2.1  
Error over Temperature  
Misalignment  
Nonlinearity1  
±2.±5  
Bias  
In Run Stability  
1 σ  
8
°/hr  
Angular Random Walk  
Error over Temperature  
Linear Acceleration Effect  
Vibration Rectification Error  
Output Noise  
1 σ  
2.34  
2.±  
°/√hr  
°/sec  
−12°C ≤ TC ≤ +75°C, 1 σ  
Any direction, 1 σ  
2.215  
2.2225  
2.17  
2.228  
552  
66  
°/sec/g  
°/sec/g±  
°/sec rms  
°/sec/√Hz rms  
Hz  
1 σ, no filtering  
1 σ, f = 12 Hz to 42 Hz  
Rate Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
ACCELEROMETERS±  
Dynamic Range  
kHz  
Each axis  
±42  
g
Sensitivity  
16-bit format  
3±-bit format  
−12°C ≤ TC ≤ +75°C  
Axis to axis  
Best fit straight line, FS = ±12 g  
Best fit straight line, FS = ±±2 g  
Best fit straight line, FS = ±42 g  
822  
LSB/g  
LSB/g  
%
Degrees  
% FS  
% FS  
% FS  
5±,4±8,822  
±2.1  
±2.1  
2.2±  
2.4  
1.5  
Error over temperature  
Misalignment  
Nonlinearity  
Bias  
In Run Stability  
1 σ  
13  
μg  
Velocity Random Walk  
Error over Temperature  
Output Noise  
Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
1 σ  
2.237  
±4  
±.3  
122  
622  
5.65  
5.±5  
m/sec/√Hr  
mg  
mg rms  
μg/√Hz rms  
Hz  
−12°C ≤ TC ≤ +75°C, 1 σ  
No filtering  
f = 12 Hz to 42 Hz, no filtering  
Y-axis, z-axis  
X-axis  
kHz  
kHz  
TEMPERATURE SENSOR  
Scale Factor  
2.1  
°C/LSB  
LOGIC INPUTS3  
Input Voltage  
High, VIH  
±.2  
V
Low, VIL  
2.8  
V
RST Pulse Width  
CS Wake-Up Pulse Width  
1
μs  
μs  
±2  
Rev. C | Page 3 of 36  
 
 
ADIS16470  
Data Sheet  
Parameter  
Input Current  
Logic 1, IIH  
Test Conditions°Comments  
Min  
Typ  
Max Unit  
VIH = 3.3 V  
VIL = 2 V  
12  
12  
μA  
Logic 2, IIL  
All Pins Except RST  
μA  
mA  
pF  
RST Pin  
2.33  
12  
Input Capacitance, CIN  
DIGITAL OUTPUTS  
Output Voltage  
High, VOH  
ISOURCE = 2.5 mA  
±.4  
V
Low, VOL  
ISINK = ±.2 mA  
Endurance4  
TJ = 85°C  
2.4  
V
FLASH MEMORY  
Data Retention5  
12222  
±2  
Cycles  
Years  
FUNCTIONAL TIMES6  
Power-On Start-Up Time  
Hardware Reset Recovery Time7  
Software Reset Recovery Time  
Flash Memory Update Time  
Flash Memory Test Time  
Factory Calibration Restore Time  
Sensor Self Test Time8  
CONVERSION RATE  
Initial Clock Accuracy  
Sync Input Clock  
Time until data is available  
VDD > 3.2 V to DR pulsing (see Figure ±3)  
RST > VOH to DR pulsing (see Figure ±5)  
Register GLOB_CMD, Bit 7 = 1 (see Table 129)  
Register GLOB_CMD, Bit 3 = 1 (see Table 129  
Register GLOB_CMD, Bit 4 = 1 (see Table 129  
Register GLOB_CMD, Bit 1 = 1 (see Table 129)  
Register GLOB_CMD, Bit ± = 1 (see Table 129)  
±5±  
193  
193  
7±  
3±  
14±  
14  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
SPS  
%
±222  
3
1.9  
3.2  
±.1  
3.6  
52  
kHz  
V
mA  
POWER SUPPLY, VDD  
Power Supply Current9  
Operating voltage range  
Normal mode, VDD = 3.3 V  
4±  
1 Linearity is based on the deviation from a best fit linear model.  
± All specifications associated with the accelerometers relate to the full-scale range of ±42 g, unless otherwise noted.  
3 The digital input/output signals use a 3.3 V system.  
4 Endurance is qualified as per JEDEC Standard ±±, Method A117, measured at −42°C, +±5°C, +85°C, and +1±5°C.  
5 The data retention specification assumes a junction temperature (TJ) of 85°C per JEDEC Standard ±±, Method A117. Data retention lifetime decreases with TJ.  
6 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.  
7
RST  
The  
line must be in a low state for at least 12 μs to ensure a proper reset initiation and recovery.  
8 Sensor self test time can extend when using external clock rates that are lower than ±222 Hz.  
9 Supply current transients can reach ±52 mA during initial startup or reset recovery.  
Rev. C | Page 4 of 36  
Data Sheet  
ADIS16470  
TIMING SPECIFICATIONS  
TA = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Normal Mode  
Burst Read  
Parameter  
fSCLK  
tSTALL  
Description  
Min1  
Typ  
Max  
Min1, 2  
Typ  
Max  
Unit  
MHz  
μs  
Serial clock  
Stall period3 between data  
2.1  
16  
±.2  
2.1  
N/A  
1.2  
tREADRATE  
tCS  
Read rate  
Chip select to SCLK edge  
±4  
±22  
μs  
ns  
±22  
tDAV  
tDSU  
tDHD  
tSCLKR, tSCLKF  
tDR, tDF  
tSFS  
DOUT valid after SCLK edge  
±5  
±5  
ns  
ns  
ns  
ns  
ns  
ns  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
SCLK rise/fall times  
DOUT rise/fall times  
CS high after SCLK edge  
±5  
52  
±5  
52  
5
5
1±.5  
1±.5  
5
5
1±.5  
1±.5  
2
5
2
5
t1  
Input sync positive pulse width  
Pulse sync mode, MSC_CTRL = 121 (binary, see Table 121)  
Input sync to data ready valid transition  
Direct sync mode, MSC_CTRL = 221 (binary, see Table 121)  
Pulse sync mode, MSC_CTRL = 121 (binary, see Table 121)  
Data invalid time  
μs  
tSTDR  
±56  
±56  
±2  
±56  
±56  
±2  
μs  
μs  
μs  
μs  
tNV  
t±  
Input sync period4  
477  
477  
1 Guaranteed by design and characterization, but not tested in production.  
± N/A means not applicable.  
3 When using the burst read mode, the stall period is not applicable.  
4 This specification is rounded up from the cycle time that comes from the maximum input clock frequency (±122 Hz).  
Timing Diagrams  
tSCLKR  
tSCLKF  
CS  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDAV  
D14  
tDR  
MSB  
D13  
A5  
D12  
D11  
D10  
tDF  
D2  
D1  
LSB  
LSB  
tDSU  
tDHD  
DIN  
R/W  
A6  
A4  
A3  
A2  
DC2  
DC1  
Figure 2. SPI Timing and Sequence  
tREADRATE  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate  
Rev. C | Page 5 of 36  
 
 
 
ADIS16470  
Data Sheet  
t2  
tSTDR  
t1  
SYNC  
DR  
tNV  
Figure 4. Input Clock Timing Diagram, Pulse Sync Mode, Register MSC_CTRL, Bits[4:2] = 101 (Binary)  
t2  
t1  
SYNC  
DR  
tNV  
tSTDR  
Figure 5. Input Clock Timing Diagram, Direct Sync Mode, Register MSC_CTRL, Bits[4:2] = 001 (Binary)  
Rev. C | Page 6 of 36  
Data Sheet  
ADIS16470  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered  
Any Axis, Powered  
±222 g  
±222 g  
The ADIS16470 is a multichip module that includes many  
active components. The values in Table 4 identify the thermal  
response of the hottest component inside of the ADIS16470,  
with respect to the overall power dissipation of the module.  
This approach enables a simple method for predicting the  
temperature of the hottest junction, based on either ambient or  
case temperature.  
VDD to GND  
−2.3 V to +3.6 V  
−2.3 V to VDD + 2.± V  
−2.3 V to VDD + 2.± V  
−±5°C to +85°C  
−65°C to +152°C  
± bar  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Operating Temperature Range  
Storage Temperature Range1  
Barometric Pressure  
1 Extended exposure to temperatures that are lower than −±2°C or higher  
than +85°C can adversely affect the accuracy of the factory calibration.  
For example, when the ambient temperature is 70°C, the hottest  
junction temperature (TJ) inside of the ADIS16470 is 93°C.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = θJA × VDD × IDD + 70°C  
TJ = 158.2°C/W × 3.3 V × 0.044 A + 70°C  
TJ = 93°C  
Table 4. Package Characteristics  
1
2
Package Type  
θJA  
θJC  
Device Weight  
ML-44-13  
158.±°C/W  
126.1°C/W  
1.3 grams  
1 θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure.  
± θJC is the junction to case thermal resistance.  
3 Thermal impedance values come from direct observation of the hottest  
temperature inside of the ADIS16472, when it is attached to a FR4-28 PCB  
that has two metal layers and has a thickness of 2.263”.  
ESD CAUTION  
Rev. C | Page 7 of 36  
 
 
 
 
 
ADIS16470  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16470  
A
B
C
D
E
F
G
H
J
K
1
2
3
4
5
6
7
8
A1 PIN  
INDICATOR  
A1 PIN  
INDICATOR  
PIN A1  
PIN A8  
BOTTOM VIEW OF PACKAGE  
PIN K8  
Figure 6. Pin Assignments, Bottom View  
Figure 7. Pin Assignments, Package Level View  
Table 5. Pin Function Descriptions  
Pin No.  
A1  
A±  
A3  
A4  
A5  
A6  
A7  
A8  
B3  
B4  
B5  
B6  
C±  
C3  
C6  
C7  
D3  
D6  
E±  
Mnemonic  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DNC  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
GND  
RST  
Type  
Description  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Not applicable  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Input  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Power Ground  
Do Not Connect  
Power Ground  
Power Supply  
Power Ground  
Power Supply  
Power Ground  
Power Supply  
Power Ground  
Power Ground  
Power Ground  
Reset  
E3  
E6  
E7  
F1  
F3  
F6  
F8  
GND  
GND  
GND  
CS  
Supply  
Supply  
Supply  
Input  
Power Ground  
Power Ground  
Power Ground  
SPI, Chip Select  
SPI, Data Input  
Power Supply  
Power Supply  
SPI, Data Output  
SPI, Serial Clock  
Power Ground  
G±  
G3  
G6  
G7  
H1  
H3  
H6  
H8  
DIN  
Input  
GND  
VDD  
DOUT  
SCLK  
GND  
Supply  
Supply  
Output  
Input  
Supply  
Rev. C | Page 8 of 36  
 
 
Data Sheet  
ADIS16470  
Pin No.  
J±  
J3  
J4  
J5  
J6  
J7  
K1  
K3  
K6  
K8  
Mnemonic  
GND  
SYNC  
VDD  
VDD  
DR  
GND  
GND  
GND  
VDD  
Type  
Description  
Supply  
Input  
Power Ground  
Sync (External Clock)  
Power Supply  
Power Supply  
Data Ready  
Power Ground  
Power Ground  
Power Ground  
Power Supply  
Power Ground  
Supply  
Supply  
Output  
Supply  
Supply  
Supply  
Supply  
Supply  
GND  
Rev. C | Page 9 of 36  
ADIS16470  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1k  
1k  
100  
10  
100  
10  
1
µ + 1σ  
µ
µ – 1σ  
1
0.01  
0.01  
0.1  
1
10  
100  
1k  
10k  
0.1  
1
10  
100  
1k  
10k  
Tau (Seconds)  
Tau (Seconds)  
Figure 11. Accelerometer Root Allan Variance, TC = 25°C  
Figure 8. Gyroscope Root Allan Variance, TC = 25°C  
5
4
3
1.0  
0.8  
0.6  
2
0.4  
µ + 1σ  
1
µ + 1σ  
µ
0.2  
µ
0
0
µ – 1σ  
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
µ – 1σ  
–10  
0
10  
20  
30  
40  
50  
60  
70  
–10  
0
10  
20  
30  
40  
50  
60  
70  
CASE TEMPERATURE (°C)  
CASE TEMPERATURE (°C)  
Figure 9. Gyroscope Bias Error vs. Case Temperature  
Figure 12. Accelerometer Bias Error vs. Case Temperature  
2.0  
1.5  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.5  
µ + 1σ  
µ
µ
0
µ + 1σ  
–0.5  
–1.0  
–1.5  
–2.0  
–0.05  
–0.10  
–0.15  
–0.20  
µ – 1σ  
µ – 1σ  
–10  
0
10  
20  
30  
40  
50  
60  
70  
–10  
0
10  
20  
30  
40  
50  
60  
70  
CASE TEMPERATURE (°C)  
CASE TEMPERATURE (°C)  
Figure 10. Gyroscope Scale (Sensitivity) Error vs. Case Temperature  
Figure 13. Accelerometer Scale (Sensitivity) Error vs. Case Temperature  
Rev. C | Page 12 of 36  
 
Data Sheet  
ADIS16470  
THEORY OF OPERATION  
Inertial Sensor Calibration  
INTRODUCTION  
The inertial sensor calibration function for the gyroscopes and the  
accelerometers has two components: factory calibration and user  
calibration (see Figure 17).  
When using the factory default configuration for all user  
configurable control registers, the ADIS16470 initializes itself  
and automatically starts a continuous process of sampling,  
processing, and loading calibrated sensor data into its output  
registers at a rate of 2000 SPS.  
FROM  
MEMS  
TO  
DIGITAL  
FILTERS  
FACTORY  
CALIBRATION  
USER  
CALIBRATION  
SENSOR  
INERTIAL SENSOR SIGNAL CHAIN  
Figure 17. Inertial Sensor Calibration Processing  
Figure 14 provides the basic signal chain for the inertial sensors  
in the ADIS16470. This signal chain produces an update rate  
of 2000 SPS in the output data registers when it operates in  
internal clock mode (default, see Register MSC_CTRL,  
Bits [4:2] in Table 101).  
The factory calibration of the gyroscope applies the following  
correction formulas to the data of each gyroscope:  
bX  
ω
m11 m12  
ωYC m21 m22 m23  
m
ω
XC   
13   
X   
ωY bY  
BARTLETT  
AVERAGING  
DECIMATING  
FILTER  
OUTPUT  
DATA  
REGISTERS  
MEMS  
SENSORS  
WINDOW  
FIR  
ωZC  
m31 m32 m33  
ωZ  
bZ  
CALIBRATION  
FILTER  
l
l12  
l
a
11  
13   
XC   
Figure 14. Signal Processing Diagram, Inertial Sensors  
l21 l22 l23 aYC  
Gyroscope Data Sampling  
l31 l32 l33  
aZC  
The three gyroscopes produce angular rate measurements around  
three orthogonal axes (x, y, and z). Figure 15 shows the sampling  
plan for each gyroscope when the ADIS16470 operates in the  
internal clock mode (default, see Register MSC_CTRL, Bits[4:2]  
in Table 101). Each gyroscope has an analog-to-digital converter  
(ADC) and sample clock (fSG) that drives data sampling at a rate of  
4100 Hz ( 5ꢀ). The internal processor reads and processes this  
data from each gyroscope at a rate of 2000 Hz (fSM).  
where:  
ωXC, ωYC, and ωZC are the gyroscope outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
ωX, ωY, and ωZ are the gyroscope outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
l11, l12, l13, l21, l22, l23, l31, l32, and l33 provide linear g correction  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
TO  
INTERNAL  
All of the correction factors in this relationship come from  
direct observation of the response of each gyroscope at multiple  
temperatures over the calibration temperature range (−10°C ≤  
TC ≤ +75°C). These correction factors are stored in the flash  
memory bank, but they are not available for observation or  
configuration. Register MSC_CTRL, Bit 7 (see Table 101)  
provides the only user configuration option for the factory  
calibration of the gyroscopes: an on/off control for the linear g  
compensation. See Figure 40 for more details on the user  
calibration options that are available for the gyroscopes.  
MEMS  
GYROSCOPE  
BARTLETT  
WINDOW  
DATA  
ADC  
REGISTER  
FIR FILTER  
fSG = 4100Hz  
fSM = 2000Hz  
Figure 15. Gyroscope Data Sampling  
Accelerometer Data Sampling  
The three accelerometers produce linear acceleration measurements  
along the same orthogonal axes (x, y, and z) as the gyroscopes.  
Figure 16 provides the sampling plan for each accelerometer  
when the ADIS16470 operates in the internal clock mode  
(default, see Register MSC_CTRL, Bits[4:2] in Table 101).  
TO  
2
1
2
BARTLETT  
WINDOW  
MEMS  
ACCELEROMETER  
ADC  
Σ a(n)  
n = 1  
÷2  
FIR FILTER  
2 × fSM = 4000Hz  
Figure 16. Accelerometer Data Sampling  
External Clock Options  
The ADIS16470 provides three different modes of operation  
that support the device using an external clock to control the  
internal processing rate (fSM in Figure 15 and Figure 16) through  
the SYNC pin. The MSC_CTRL register (see Table 101)  
provides the configuration options for these external clock  
modes in Bits[4:2].  
Rev. C | Page 11 of 36  
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
The factory calibration of the accelerometer applies the following  
correction formulas to the data of each accelerometer:  
Bartlett Window FIR Filter  
The Bartlett window finite impulse response (FIR) filter (see  
Figure 18) contains two averaging filter stages, in a cascade  
configuration. The FILT_CTRL register (see Table 99) provides  
the configuration controls for this filter.  
bX  
a
m11 m12  
m
a
XC   
13   
X   
aYC m21 m22 m23  
aY bY  
aZC  
m31 m32 m33  
aZ  
bZ  
2
FROM  
MEMS  
SENSOR  
N
N
TO  
1
N
1
N
ω(n)  
ω(n)  
   
FACTORY  
CALIBRATION  
0
p12  
p
Σ
Σ
13   XC   
n = 1  
n = 1  
p21  
0
p23  Y2C  
   
2
Figure 18. Bartlett Window FIR Filter Signal Path  
   
p31 p32  
0
ZC  
   
Averaging/Decimating Filter  
where:  
The second digital filter averages multiple samples together to  
produce each register update. In this type of filter structure, the  
number of samples in the average is equal to the reduction in  
the update rate for the output data registers. The DEC_RATE  
register (see Table 105) provides the configuration controls for  
this filter.  
aXC, aYC, and aZC are the accelerometer outputs (post calibration).  
m11, m12, m13, m21, m22, m23, m31, m32, and m33 provide scale and  
alignment correction.  
aX, aY, and aZ are the accelerometer outputs (precalibration).  
bX, bY, and bZ provide bias correction.  
p12, p13, p21, p23, p31 and p32 provide point of percussion alignment  
correction to (see Figure 43).  
FROM  
USER  
N
ω2XC, ω2YC, and ω2ZC are the square of the gyroscope outputs  
(post calibration).  
1
N
TO OUTPUT  
REGISTERS  
ω(n)  
Σ
CALIBRATION  
n = 1  
÷N  
All of the correction factors in this relationship come from  
direct observation of the response of each accelerometer at  
multiple temperatures, over the calibration temperature range  
(−10°C ≤ TC ≤ +75°C). These correction factors are stored  
in the flash memory bank; but they are not available for  
observation or configuration. MSC_CTRL, Bit 6 (see Table 101)  
provides the only user configuration option for the factory  
calibration of the accelerometers: an on/off control for the point of  
percussion, alignment function. See Figure 41 for more details  
on the user calibration options that are available for the  
accelerometers.  
Figure 19. Averaging/Decimating Filter Diagram  
REGISTER STRUCTURE  
All communication between the ADIS16470 and an external  
processor involves either reading the contents of an output  
register or writing configuration/command information to a  
control register. The output data registers include the latest  
sensor data, error flags, and identification information. The  
control registers include sample rate, filtering, calibration, and  
diagnostic options. Each user accessible register has two bytes  
(upper and lower), each of which have their own unique  
address. See Table 8 for a detailed list of all user registers, along  
with their addresses.  
TRIAXIAL  
SENSOR  
OUTPUT  
REGISTERS  
GYROSCOPE  
SIGNAL  
PROCESSING  
TRIAXIAL  
ACCELEROMETER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
CONTROLLER  
Figure 20. Basic Operation of the ADIS16470  
Rev. C | Page 12 of 36  
 
 
Data Sheet  
ADIS16470  
SERIAL PERIPHERAL INTERFACE (SPI)  
DATA READY (DR)  
The SPI provides access to the user registers (see Table 8). Figure 21  
provides the most common connections between the ADIS16470  
and a SPI master, which is often an embedded processor that  
has a SPI-compatible interface. In this example, the SPI master  
uses an interrupt service routine to collect data every time the  
data ready (DR) signal pulses.  
The factory default configuration provides users with a DR  
signal on the DR pin (see Table 5), which pulses when the  
output data registers are updating. Connect this with a pin on  
the embedded processor, which triggers data collection, on the  
second edge of this pulse. The MSC_CTRL register, Bit 0 (see  
Table 101), controls the polarity of this signal. In Figure 22,  
Register MSC_CTRL, Bit 0 = 1, which means that data  
collection must start on the rising edges of the DR pulses.  
Additional information on the ADIS16470 SPI can be found in  
the Applications Information section of this data sheet.  
INPUT/OUTPUT LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
DR  
INACTIVE  
ACTIVE  
+3.3V  
VDD  
Figure 22. Data Ready When Register MSC_CTRL, Bit 0 = 1 (Default)  
SYSTEM  
ADIS16470  
PROCESSOR  
During the startup and reset recovery processes, the DR signal  
may exhibit some transient behavior before data production  
begins. Figure 23 provides an example of the DR behavior  
during startup, and Figure 24 and Figure 25 provide examples  
of the DR behavior during recovery from reset commands.  
SS  
SCLK  
MOSI  
MISO  
IRQ  
CS  
SPI MASTER  
SCLK  
DIN  
DOUT  
DR  
TIME THAT VDD > 3V  
VDD  
Figure 21. Electrical Connection Diagram  
PULSING INDICATES  
DATA PRODUCTION  
Table 6. Generic SPI Master Pin Names and Functions  
Mnemonic  
Function  
DR  
SS  
Slave select  
SCLK  
MOSI  
MISO  
IRQ  
Serial clock  
START-UP TIME  
Master output, slave input  
Master input, slave output  
Interrupt request  
Figure 23. Data Ready Response During Startup  
SOFTWARE RESET COMMAND  
GLOB_CMD[7] = 1  
Embedded processors typically use control registers to configure  
their serial ports for communicating with SPI slave devices such  
as the ADIS16470. Table 7 provides a list of settings that describe  
the SPI protocol of the ADIS16470. The initialization routine  
of the master processor typically establishes these settings using  
firmware commands to write them into its control registers.  
DR PULSING  
RESUMES  
DR  
RESET RECOVERY TIME  
Figure 24. Data Ready Response During Reset  
(Register GLOB_CMD, Bit 7 = 1) Recovery  
Table 7. Generic Master Processor SPI Settings  
RST PIN  
RELEASED  
Processor Setting Description  
Master  
ADIS16470 operates as slave  
SCLK ≤ 2 MHz1  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
Maximum serial clock rate  
RST  
DR PULSING  
RESUMES  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence, see Figure 26 for coding  
Shift register and data length  
DR  
1 Burst mode read requires this to be ≤1 MHz (see Table 2 for more  
information).  
RESET RECOVERY TIME  
RST  
Figure 25. Data Ready Response During Reset (  
= 0) Recovery  
Rev. C | Page 13 of 36  
 
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
D9  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 26. SPI Communication Bit Sequence  
CS  
1
2
3
11  
SCLK  
DIN  
0x6800  
DOUT  
DIAG_STAT  
X_GYRO_OUT  
CHECKSUM  
Figure 27. Burst Read Sequence  
CS  
SCLK  
DIN  
DIN = 0x7200 = 0111 0010 0000 0000  
DOUT  
HIGH-Z  
HIGH-Z  
DOUT = 0100 0000 0101 0110 = 0x4056 = 16470 (PROD_ID)  
Figure 28. SPI Signal Pattern Showing a Read of the PROD_ID Register  
Burst Read Function  
READING SENSOR DATA  
The burst read function provides a way to read a batch of  
output data registers, using a continuous stream of bits, at a rate  
of up to 1 MHz (SCLK). This method does not require a stall  
time between each 16-bit segment (see Figure 3). As shown in  
Figure 27, start this mode by setting DIN = 0x6800, and then  
read each of the registers in the sequence out of DOUT while  
Reading a single register requires two 16-bit cycles on the SPI:  
one to request the contents of a register and another to receive  
those contents. The 16-bit command code (see Figure 26) for a  
R
read request on the SPI has three parts: the read bit ( /W = 0),  
either address of the register, [A6:A0], and eight don’t care bits,  
[DC7:DC0]. Figure 29 provides an example that includes two  
register reads in succession. This example starts with DIN =  
0x0C00, to request the contents of the Z_GYRO_LOW  
register, and follows with 0x0E00, to request the contents of  
the Z_GYRO_OUT register. The sequence in Figure 29 also  
illustrates full duplex mode of operation, which means that the  
ADIS16470 can receive requests on DIN while also transmitting  
data out on DOUT within the same 16-bit SPI cycle.  
CS  
keeping  
low for the entire 176-bit sequence.  
The sequence of registers (and checksum value) in the burst read  
response depends on which sample clock mode that the ADIS16470  
is operating in (Register MSC_CTRL, Bits[4:2], see Table 101).  
In all clock modes, except when operating in scaled sync mode  
(Register MSC_CTRL, Bits[4:2] = 010), the burst read response  
includes the following registers and checksum value: DIAG_STAT,  
X_GYRO_OUT, Y_GYRO_OUT, Z_GYRO_OUT, X_ACCL_  
OUT, Y_ACCL_OUT, Z_ACCL_OUT, TEMP_OUT, DATA_  
CNTR, and checksum. In these cases, use the following formula  
to verify the checksum value, treating each byte in the formula as  
an independent, unsigned, 8-bit number:  
NEXT  
ADDRESS  
DIN  
0x0C00  
0x0E00  
DOUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
Figure 29. SPI Read Example  
Figure 28 provides an example of the four SPI signals when reading  
the PROD_ID register (see Table 117) in a repeating pattern.  
This pattern can be helpful when troubleshooting the SPI  
interface setup and communications because the signals are  
the same for each 16-bit sequence, except during the first cycle.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits[7:0] +  
DATA_CNTR, Bits[15:8] + DATA_CNTR, Bits[7:0]  
Rev. C | Page 14 of 36  
 
 
 
 
 
Data Sheet  
ADIS16470  
When operating in scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010), the burst read response includes the following  
registers and value: DIAG_STAT, X_GYRO_OUT, Y_GYRO_OUT,  
Z_GYRO_OUT, X_ACCL_OUT, Y_ACCL_OUT, Z_ACCL_OUT,  
TEMP_OUT, TIME_STMP, and the checksum value. In this  
case, use the following formula to verify the checksum value,  
treating each byte in the formula as an independent, unsigned,  
8-bit number.  
Memory Structure  
Figure 31 provides a functional diagram for the memory  
structure of the ADIS16470. The flash memory bank contains  
the operational code, unit specific calibration coefficients and  
user configuration settings. During initialization (power  
application or reset recover), this information loads from the  
flash memory into the SRAM, which supports all normal  
operation, including register access through the SPI port.  
Writing to a configuration register (using the SPI) updates its  
SRAM location but does not automatically update its settings  
in the flash memory bank. The manual flash memory update  
command (Register GLOB_CMD, Bit 3, see Table 109) provides  
a convenient method for saving all of these settings to the flash  
memory bank at one time. A Yes in the flash back-up column of  
Table 8 identifies the registers that have storage support in the  
flash memory bank.  
Checksum = DIAG_STAT, Bits[15:8] + DIAG_STAT, Bits[7:0] +  
X_GYRO_OUT, Bits[15:8] + X_GYRO_OUT, Bits[7:0] +  
Y_GYRO_OUT, Bits[15:8] + Y_GYRO_OUT, Bits[7:0] +  
Z_GYRO_OUT, Bits[15:8] + Z_GYRO_OUT, Bits[7:0] +  
X_ACCL_OUT, Bits[15:8] + X_ACCL_OUT, Bits[7:0] +  
Y_ACCL_OUT, Bits[15:8] + Y_ACCL_OUT, Bits[7:0] +  
Z_ACCL_OUT, Bits[15:8] + Z_ACCL_OUT, Bits[7:0] +  
TEMP_OUT, Bits[15:8] + TEMP_OUT, Bits 7:0] +  
TIME_STMP, Bits[15:8] + TIME_STMP, Bits[7:0]  
MANUAL  
FLASH  
BACKUP  
DEVICE CONFIGURATION  
Each configuration register contains 16 bits (two bytes). Bits[7:0]  
contain the low byte, and Bits[15:8] contain the high byte of  
each register. Each byte has its own unique address in the user  
register map (see Table 8). Updating the contents of a register  
requires writing to both of its bytes in the following sequence:  
low byte first, high byte second. There are three parts to coding  
a SPI command (see Figure 26) that write a new byte of data to  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
Figure 31. SRAM and Flash Memory Diagram  
R
a register: the write bit ( /W = 1), the address of the byte, [A6:A0],  
and the new data for that location, [DC7:DC0]. Figure 30  
provides a coding example for writing 0x0004 to the  
FILT_CTRL register (see Table 99). In Figure 30, the 0xDC04  
command writes 0x04 to Address 0x5C (lower byte) and the  
0xDD00 command writes 0x00 to Address 0x5D (upper byte).  
CS  
SCLK  
DIN  
0xDC04  
0xDD00  
Figure 30. SPI Sequence for Writing 0x0004 to FILT_CTRL  
Rev. C | Page 15 of 36  
 
 
 
ADIS16470  
Data Sheet  
USER REGISTER MEMORY MAP  
Table 8. User Register Memory Map (N/A Means Not Applicable)  
Name  
R/W  
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N/A  
R
R
R
R
R
R
R
R
R
R
R
R
Flash Backup  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Address  
Default  
Register Description  
Reserved  
DIAG_STAT  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x34, 0x35  
0x36, 0x37  
0x38, 0x39  
0x3A, 0x3B  
0x3C to 0x3F  
0x40, 0x41  
0x42, 0x43  
0x44, 0x45  
0x46, 0x47  
0x48, 0x49  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
0x58 to 0x5B  
0x5C, 0x5D  
0x5E, 0x5F  
0x60, 0x61  
0x62, 0x63  
N/A  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
Reserved  
Output, system error flags  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
TEMP_OUT  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Output, temperature  
TIME_STAMP  
Reserved  
DATA_CNTR  
Output, time stamp  
Reserved  
New data counter  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
XG_BIAS_LOW  
XG_BIAS_HIGH  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
Calibration, offset, gyroscope, x-axis, low word  
Calibration, offset, gyroscope, x-axis, high word  
Calibration, offset, gyroscope, y-axis, low word  
Calibration, offset, gyroscope, y-axis, high word  
Calibration, offset, gyroscope, z-axis, low word  
Calibration, offset, gyroscope, z-axis, high word  
Calibration, offset, accelerometer, x-axis, low word  
Calibration, offset, accelerometer, x-axis, high word  
Calibration, offset, accelerometer, y-axis, low word  
Calibration, offset, accelerometer, y-axis, high word  
Calibration, offset, accelerometer, z-axis, low word  
Calibration, offset, accelerometer, z-axis, high word  
Reserved  
R
No  
N/A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N/A  
R/W  
N/A  
R/W  
R/W  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
N/A  
Yes  
Yes  
FILT_CTRL  
Reserved  
MSC_CTRL  
UP_SCALE  
0x0000  
N/A  
0x00C1  
0x07D0  
Control, Bartlett window FIR filter  
Reserved  
Control, input/output and other miscellaneous options  
Control, scale factor for input clock, pulse per second (PPS)  
mode  
DEC_RATE  
R/W  
Yes  
0x64, 0x65  
0x0000  
Control, decimation filter (output data rate)  
Rev. C | Page 16 of 36  
 
 
Data Sheet  
ADIS16470  
Name  
R/W  
R/W  
W
N/A  
R
R
R
R
R
R/W  
R/W  
R/W  
R
Flash Backup  
Yes  
No  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Address  
Default  
0x070A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4056  
N/A  
N/A  
Register Description  
NULL_CNFG  
GLOB_CMD  
Reserved  
FIRM_REV  
FIRM_DM  
0x66, 0x67  
0x68, 0x69  
0x6A to 0x6B  
0x6C, 0x6D  
0x6E, 0x6F  
0x70, 0x71  
0x72, 0x73  
0x74, 0x75  
0x76, 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7E  
Control, bias estimation period  
Control, global commands  
Reserved  
Identification, firmware revision  
Identification, date code, day and month  
Identification, date code, year  
Identification, part number  
Identification, serial number  
User Scratch Register 1  
User Scratch Register 2  
User Scratch Register 3  
Output, flash memory write cycle counter, lower word  
Output, flash memory write cycle counter, upper word  
FIRM_Y  
PROD_ID  
SERIAL_NUM  
USER_SCR1  
USER_SCR2  
USER_SCR3  
FLSHCNT_LOW  
FLSHCNT_HIGH  
N/A  
N/A  
N/A  
N/A  
R
N/A  
Rev. C | Page 17 of 36  
ADIS16470  
Data Sheet  
USER REGISTER DEFINTIONS  
Status/Error Flag Indicators (DIAG_STAT)  
GYROSCOPE DATA  
The gyroscopes in the ADIS16470 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 32  
illustrates the orientation of each gyroscope axis, along with the  
direction of rotation that produces a positive response in each  
of their measurements.  
Table 9. DIAG_STAT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x02, 0x03  
0x0000  
R
No  
Table 10. DIAG_STAT Bit Assignments  
Bits Description  
[15:8] Reserved.  
Z
ω
Z
7
6
Clock error. A 1 indicates that the internal data sampling  
clock (fSM, see Figure 15 and Figure 16) does not  
synchronize with the external clock, which only applies  
when using scale sync mode (Register MSC_CTRL,  
Bits[4:2] = 010, see Table 101). When this occurs, adjust  
the frequency of the clock signal on the SYNC pin to  
operate within the appropriate range.  
X
Y
ω
ω
X
Y
PIN K1  
PIN A8  
Memory failure. A 1 indicates a failure in the flash memory  
test (Register GLOB_CMD, Bit 4, see Table 109), which  
involves a comparison between a cyclic redundancy  
check (CRC) computation of the present flash memory  
and a CRC computation from the same memory  
locations at the time of initial programming (during  
production process). If this occurs, repeat the same test.  
If this error persists, replace the ADIS16470 device.  
Figure 32. Gyroscope Axis and Polarity Assignments  
Each gyroscope has two output data registers. Figure 33 illustrates  
how these two registers combine to support a 32-bit, twos  
complement data format for the x-axis gyroscope measurements.  
This format also applies to the y- and z-axes.  
Additional information on the precision and resolution of the  
accelerometers can be found in the Digital Resolution of  
Gyroscopes and Accelerometers section of this data sheet.  
5
Sensor failure. A 1 indicates failure of at least one sensor,  
at the conclusion of the self test (Register GLOB_CMD,  
Bit 2, see Table 109). If this occurs, repeat the same test.  
If this error persists, replace the ADIS16470. Motion, during  
the execution of this test, can cause a false failure.  
X_GYRO_OUT  
X_GYRO_LOW  
15  
0 15  
0
4
3
Standby mode. A 1 indicates that the voltage across  
VDD and GND is <2.8 V, which causes data processing to  
stop. When VDD ≥ 2.8 V for 250 ms, the ADIS16470  
reinitializes itself and starts producing data again.  
X-AXIS GYROSCOPE DATA  
Figure 33. Gyroscope Output Data Structure  
Gyroscope Data Formatting  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer multiple of  
16. When this occurs, repeat the previous communication  
sequence. Persistence in this error may indicate a weakness  
in the SPI service that the ADIS16470 is receiving from  
the system it is supporting.  
Table 11 and Table 12 offer various numerical examples that  
demonstrate the format of the rotation rate data in both 16-bit  
and 32-bit formats.  
Table 11. 16-Bit Gyroscope Data Format Examples  
2
1
Flash memory update failure. A 1 indicates that the most  
recent flash memory update (Register GLOB_CMD, Bit 3,  
see Table 109) failed. If this occurs, ensure that VDD ≥ 3 V  
and repeat the update attempt. If this error persists,  
replace the ADIS16470.  
Rotation Rate  
+2000°/sec  
+0.2°/sec  
+0.1°/sec  
0°/sec  
−0.1°/sec  
−0.2°/sec  
−2000°/sec  
Decimal  
+20,000  
+2  
+1  
0
−1  
−2  
−20,000  
Hex  
Binary  
0x4E20  
0100 1110 0010 0000  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF  
0xFFFE  
Data path overrun. A 1 indicates that one of the data  
paths have experienced an overrun condition. If this  
occurs, initiate a reset, using the RST pin (see Table 5,  
Pin F3) or Register GLOB_CMD, Bit 7 (see Table 109). See  
the Serial Port Operation section for more details on  
conditions that may cause this bit to be set to 1.  
1111 1111 1111 1111  
1111 1111 1111 1110  
0xB1E0 1011 0001 1110 0000  
Table 12. 32-Bit Gyroscope Data Format Examples  
0
Reserved  
Rotation Rate  
+2000°/sec  
+0.1°/sec/215  
+0.1°/sec/216  
0°/sec  
−0.1°/sec/216  
−0.1°/sec/215  
−2000°/sec  
Decimal  
Hex  
The DIAG_STAT register (see Table 9 and Table 10) provides  
error flags for monitoring the integrity and operation of the  
ADIS16470. Reading this register causes all of its bits to return  
to 0. The error flags in DIAG_STAT are sticky, meaning that  
when they raise to a 1 value that they remain there until a read  
request clears them. If an error condition persists, its flag (bit)  
automatically returns to an alarm value of 1.  
+1,310,720,000  
+2  
+1  
0
−1  
−2  
0x4E200000  
0x00000002  
0x00000001  
0x0000000  
0xFFFFFFFF  
0xFFFFFFFE  
0xB1E00000  
−1,310,720,000  
Rev. C | Page 18 of 36  
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16470  
Table 23. Z_GYRO_OUT Register Definition  
X-Axis Gyroscope (X_GYRO_LOW and X_GYRO_OUT)  
Addresses  
Default  
Access  
Flash Backup  
Table 13. X_GYRO_LOW Register Definition  
0x0E, 0x0F  
Not applicable  
R
No  
Addresses  
Default  
Access  
Flash Backup  
0x04, 0x05  
Not applicable  
R
No  
Table 24. Z_GYRO_OUT Bit Definitions  
Bits  
Description  
Table 14. X_GYRO_LOW Bit Definitions  
[15:0]  
Z-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 0.1°/sec  
Bits  
Description  
[15:0]  
X-axis gyroscope data; additional resolution bits  
The Z_GYRO_LOW (see Table 21 and Table 22) and Z_GYRO_  
OUT (see Table 23 and Table 24) registers contain the gyroscope  
data for the z-axis.  
Table 15. X_GYRO_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x06, 0x07  
Not applicable  
R
No  
Acceleration Data  
The accelerometers in the ADIS16470 measure both dynamic  
and static (response to gravity) acceleration along the same three  
orthogonal axes that define the axes of rotation for the gyroscopes  
(x, y, and z). Figure 34 illustrates the orientation of each  
accelerometer axis, along with the direction of acceleration  
that produces a positive response in each of their measurements.  
Z
Table 16. X_GYRO_OUT Bit Definitions  
Bits  
Description  
[15:0]  
X-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 0.1°/sec  
The X_GYRO_LOW (see Table 13 and Table 14) and X_GYRO_  
OUT (see Table 15 and Table 16) registers contain the gyroscope  
data for the x-axis.  
a
z
Y-Axis Gyroscope (Y_GYRO_LOW and Y_GYRO_OUT)  
Table 17. Y_GYRO_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x08, 0x09  
Not applicable  
R
No  
PIN K1  
PIN A8  
Table 18. Y_GYRO_LOW Bit Definitions  
Bits  
Description  
X
a
x
a
y
Y
[15:0]  
Y-axis gyroscope data; additional resolution bits  
Figure 34. Accelerometer Axis and Polarity Assignments  
Table 19. Y_GYRO_OUT Register Definition  
Each accelerometer has two output data registers. Figure 35  
shows how these two registers combine to support a 32-bit,  
twos complement data format for the x-axis accelerometer  
measurements. This format also applies to the y- and z-axes.  
Addresses  
Default  
Access  
Flash Backup  
0x0A, 0x0B  
Not applicable  
R
No  
Table 20. Y_GYRO_OUT Bit Definitions  
Additional information on the precision and resolution of the  
accelerometers can be found in the Digital Resolution of  
Gyroscopes and Accelerometers section of this data sheet.  
Bits  
Description  
[15:0]  
Y-axis gyroscope data; high word; twos complement,  
0°/sec = 0x0000, 1 LSB = 0.1°/sec  
The Y_GYRO_LOW (see Table 17 and Table 18) and Y_GYRO_  
OUT (see Table 19 and Table 20) registers contain the gyroscope  
data for the y-axis.  
X_ACCL_OUT  
X_ACCL_LOW  
15  
0 15  
0
X-AXIS ACCELEROMETER DATA  
Figure 35. Accelerometer Output Data Structure  
Z-Axis Gyroscope (Z_GYRO_LOW and Z_GYRO_OUT)  
Table 21. Z_GYRO_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x0C, 0x0D  
Not applicable  
R
No  
Table 22. Z_GYRO_LOW Bit Definitions  
Bits  
Description  
[15:0]  
Z-axis gyroscope data; additional resolution bits  
Rev. C | Page 19 of 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
Table 33. Y_ACCL_OUT Register Definition  
Accelerometer Data Formatting  
Addresses Default  
Access  
Flash Backup  
Table 25 and Table 26 offer various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
0x16, 0x17 Not applicable  
R
No  
Table 34. Y_ACCL_OUT Bit Definitions  
Bits Description  
Table 25. 16-Bit Accelerometer Data Format Examples  
[15:0] Y-axis accelerometer data, high word; twos  
Acceleration  
Decimal  
+32,000  
+2  
+1  
0
−1  
−2  
−32,000  
Hex  
Binary  
complement, 40g range; 0 g = 0x0000, 1 LSB = 1.25 mg  
+40 g  
0x7D00 0111 1101 0000 0000  
+2.5 mg  
+1.25 mg  
0 mg  
−1.25 mg  
−2.5 mg  
−40 g  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0x8300  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1000 0011 0000 0000  
The Y_ACCL_LOW (see Table 31 and Table 32) and Y_ACCL_  
OUT (see Table 33 and Table 34) registers contain the  
accelerometer data for the y-axis.  
Z-Axis Accelerometer (Z_ACCL_LOW and Z_ACCL_OUT)  
Table 35. Z_ACCL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 26. 32-Bit Accelerometer Data Format Examples  
0x18, 0x19  
Not applicable  
R
No  
Acceleration (g)  
Decimal  
Hex  
Table 36. Z_ACCL_LOW Bit Definitions  
Bits Description  
+40 g  
+2,097,152,000  
+2  
+1  
0
−1  
−2  
0x7D000000  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x83000000  
+1.25/215 mg  
+1.25/216 mg  
0
[15:0] Z-axis accelerometer data; additional resolution bits  
−1.25/216 mg  
−1.25/215 mg  
−40 g  
Table 37. Z_ACCL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x1A, 0x1B  
Not applicable  
R
No  
−2,097,152,000  
X-Axis Accelerometer (X_ACCL_LOW and X_ACCL_OUT)  
Table 38. Z_ACCL_OUT Bit Definitions  
Bits Description  
Table 27. X_ACCL_LOW Register Definition  
[15:0] Z-axis accelerometer data, high word; twos  
Addresses  
Default  
Access  
Flash Backup  
complement, 40g range; 0 g = 0x0000, 1 LSB = 1.25 mg  
0x10, 0x11  
Not applicable  
R
No  
The Z_ACCL_LOW (see Table 35 and Table 36) and Z_ACCL_  
OUT (see Table 37 and Table 38) registers contain the  
accelerometer data for the z-axis.  
Table 28. X_ACCL_LOW Bit Definitions  
Bits Description  
[15:0] X-axis accelerometer data; additional resolution bits  
Internal Temperature (TEMP_OUT)  
Table 29. X_ACCL_OUT Register Definition  
Table 39. TEMP_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x12, 0x13  
Not applicable  
R
No  
0x1C, 0x1D  
Not applicable  
R
No  
Table 30. X_ACCL_OUT Bit Definitions  
Bits Description  
Table 40. TEMP_OUT Bit Definitions  
Bits  
Description  
[15:0] X-axis accelerometer data, high word; twos  
[15:0]  
Temperature data; twos complement,  
1 LSB = 0.1°C, 0°C = 0x0000  
complement, 40g range; 0 g = 0x0000, 1 LSB = 1.25 mg  
The X_ACCL_LOW (see Table 27 and Table 28) and X_ACCL_  
OUT (see Table 29 and Table 30) registers contain the  
accelerometer data for the x-axis.  
The TEMP_OUT register (see Table 39 and Table 40) provides a  
coarse measurement of the temperature inside of the ADIS16470.  
This data is most useful for monitoring relative changes in the  
thermal environment.  
Y-Axis Accelerometer (Y_ACCL_LOW and Y_ACCL_OUT)  
Table 41. TEMP_OUT Data Format Examples  
Table 31. Y_ACCL_LOW Register Definition  
Temperature (°C)  
Decimal Hex  
Binary  
Addresses  
Default  
Access  
Flash Backup  
+85  
+70  
+25  
+0.2  
+0.1  
+0  
+850  
+700  
+250  
+2  
+1  
0
0x0352 0000 0011 0101 0010  
0x02BC 0000 0010 1011 1100  
0x00FA 0000 0000 1111 1010  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0x14, 0x15  
Not applicable  
R
No  
Table 32. Y_ACCL_LOW Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer data; additional resolution bits  
Rev. C | Page 20 of 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16470  
Z
Temperature (°C)  
Decimal Hex  
Binary  
+0.1  
+0.2  
−25  
−1  
−2  
−250  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0xFF06 1111 1111 0000 0110  
Δθ  
Z
X
Y
Time Stamp (TIME_STAMP)  
Table 42. TIME_STAMP Register Definition  
Δθ  
Δθ  
X
Y
PIN K1  
PIN A8  
Addresses  
Default  
Access  
Flash Backup  
Figure 36. Delta Angle Axis and Polarity Assignments  
0x1E, 0x1F  
Not applicable  
R
No  
The delta angle outputs represent an integration of the gyroscope  
measurements and use the following formula for all three axes  
(x-axis displayed):  
Table 43. TIME_STAMP Bit Definitions  
Bits  
Description  
[15:0]  
Time from the last pulse on the SYNC pin; offset binary  
format, 1 LSB = 49.02 μs  
D 1  
1
  
x, nD  
x, nDd  x, nDd 1  
2fS  
d 0  
The TIME_STAMP (see Table 42 and Table 43) register works  
in conjunction with scaled sync mode (Register MSC_CTRL,  
Bits[4:2] = 010, see Table 101). The 16-bit number in  
where:  
x is the x-axis.  
TIME_STAMP contains the time associated with the last  
sample in each data update relative to the most recent edge  
of the clock signal in the SYNC pin. For example, when the  
value in the UP_SCALE register (see Table 103) represents a  
scale factor of 20, DEC_RATE = 0, and the external SYNC rate  
of 100 Hz results in the following time stamp sequence: 0 LSB,  
10 LSB, 21 LSB, 31 LSB, 41 LSB, 51 LSB, 61 LSB, 72 LSB, …,  
194 LSB for the 20th sample, which translates to 0 μs, 490 μs, …,  
9510 μs which is the time from the first SYNC edge.  
n is the sample time, prior to the decimation filter.  
D is the decimation rate = DEC_RATE + 1 (see Table 105).  
fs is the sample rate.  
d is the incremental variable in the summation formula.  
ωX is the x-axis rate of rotation (gyroscope).  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 104), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency and multiply it by 2000. Each axis of  
the delta angle measurements has two output data registers.  
Figure 37 illustrates how these two registers combine to support  
a 32-bit, twos complement data format for the x-axis delta angle  
measurements. This format also applies to the y- and z-axes.  
Data Update Counter (DATA_CNTR)  
Table 44. DATA_CNTR Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x22, 0x23  
Not applicable  
R
No  
Table 45. DATA_CNTR Bit Definitions  
Bits  
Description  
X_DELTANG_OUT  
X_DELTANG_LOW  
15  
0 15  
0
[15:0]  
Data update counter, offset binary format  
X-AXIS DELTA ANGLE DATA  
When the ADIS16470 goes through its power-on sequence or  
when it recovers from a reset command, DATA_CNTR (see  
Table 44 and Table 45) starts with a value of 0x0000 and  
increments every time new data loads into the output registers.  
When it reaches 0xFFFF, the next data update causes it to wrap  
back around to 0x0000, where it continues to increment every  
time new data loads into the output registers.  
Figure 37. Delta Angle Output Data Structure  
X-Axis Delta Angle (X_DELTANG_LOW and  
X_DELTANG_OUT)  
Table 46. X_DELTANG_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x24, 0x25  
Not applicable  
R
No  
DELTA ANGLES  
Table 47. X_DELTANG_LOW Bit Definitions  
In addition to the angular rate of rotation (gyroscope)  
measurements around each axis (x, y, and z), the ADIS16470 also  
provides delta angle measurements that represent a computation of  
angular displacement between each sample update.  
Bits  
Description  
[15:0]  
X-axis delta angle data; additional resolution bits  
Table 48. X_DELTANG_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x26, 0x27  
Not applicable  
R
No  
Rev. C | Page 21 of 36  
 
 
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
Delta Angle Resolution  
Table 49. X_DELTANG_OUT Bit Definitions  
Table 58 and Table 59 offers various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Bits  
Description  
[15:0] X-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = 2160°/215  
Table 58. 16-Bit Delta Angle Data Format Examples  
The X_DELTANG_LOW (see Table 46 and Table 47) and  
X_DELTANG_OUT (see Table 48 and Table 49) registers  
contain the delta angle data for the x-axis.  
Delta Angle (°)  
2160° × (215−1)/215 +32,767  
Decimal Hex  
Binary  
0x7FFF 0111 1111 1111 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+2160°/214  
+2160°/215  
0
+2  
+1  
0
Y-Axis Delta Angle (Y_DELTANG_LOW and  
Y_DELTANG_OUT)  
−2160°/215  
−2160°/214  
−2160°  
−1  
−2  
−32,768  
Table 50. Y_DELTANG_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x28, 0x29  
Not applicable  
R
No  
Table 51. Y_DELTANG_LOW Bit Definitions  
Table 59. 32-Bit Delta Angle Data Format Examples  
Bits  
Description  
Delta Angle (°)  
+2160° × (231 − 1)/231  
+2160°/230  
+2160°/231  
0
−2160°/231  
−2160°/230  
−2160°  
Decimal  
Hex  
[15:0]  
Y-axis delta angle data; additional resolution bits  
+2,147,483,647 0x7FFFFFFF  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
Table 52. Y_DELTANG_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x2A, 0x2B  
Not applicable  
R
No  
Table 53. Y_DELTANG_OUT Bit Definitions  
Bits Description  
−2,147,483,648 0x80000000  
[15:0] Y-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = 2160°/215  
DELTA VELOCITY  
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16470 also provides delta velocity  
measurements that represent a computation of linear velocity  
change between each sample update.  
The Y_DELTANG_LOW (see Table 50 and Table 51) and  
Y_DELTANG_OUT (see Table 52 and Table 53) registers  
contain the delta angle data for the y-axis.  
Z-Axis Delta Angle (Z_DELTANG_LOW and  
Z_DELTANG_OUT)  
Z
ΔV  
Z
Table 54. Z_DELTANG_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x2C, 0x2D  
Not applicable  
R
No  
PIN K1  
PIN A8  
Table 55. Z_DELTANG_LOW Bit Definitions  
Bits  
Description  
ΔV  
ΔV  
Y
X
X
[15:0]  
Z-axis delta angle data; additional resolution bits  
Y
Figure 38. Delta Velocity Axis and Polarity Assignments  
Table 56. Z_DELTANG_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
The delta velocity outputs represent an integration of the  
acceleration measurements and use the following formula for all  
three axes (x-axis displayed):  
0x2E, 0x2F  
Not applicable  
R
No  
Table 57. Z_DELTANG_OUT Bit Definitions  
Bits Description  
D1  
1
  
Vx, nD  
a
x, nDd ax, nD d 1  
2fS  
d 0  
[15:0] Z-axis delta angle data; twos complement, 0° = 0x0000,  
1 LSB = 2160°/215  
where:  
x is the x-axis.  
The Z_DELTANG_LOW (see Table 54 and Table 55) and  
Z_DELTANG_OUT (see Table 56 and Table 57) registers  
contain the delta angle data for the z-axis.  
n is the sample time, prior to the decimation filter.  
D is the decimation rate = DEC_RATE + 1 (see Table 105).  
fs is the sample rate.  
d is the incremental variable in the summation formula.  
aX is the x-axis acceleration.  
Rev. C | Page 22 of 36  
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16470  
When using the internal sample clock, fS is equal to a nominal  
rate of 2000 SPS. For better precision in this measurement,  
measure the internal sample rate (fS) using the data ready signal  
on the DR pin (DEC_RATE = 0x0000, see Table 104), divide  
each delta angle result (from the delta angle output registers) by  
the data ready frequency and multiply it by 2000. Each axis of  
the delta velocity measurements has two output data registers.  
Figure 39 illustrates how these two registers combine to support  
32-bit, twos complement data format for the delta velocity  
measurements along the x-axis. This format also applies to the  
y-axis and z-axis.  
Table 67. Y_DELTVEL_OUT Bit Definitions  
Bits Description  
[15:0] Y-axis delta velocity data; twos complement,  
400 m/sec range, 0 m/sec = 0x0000;  
1 LSB = 400 m/sec ÷ 215 = ~0.01221 m/sec  
The Y_DELTVEL_LOW (see Table 64 and Table 65) and  
Y_DELTVEL_OUT (see Table 66 and Table 67) registers  
contain the delta velocity data for the y-axis.  
Z-Axis Delta Velocity (Z_DELTVEL_LOW and  
Z_DELTVEL_OUT)  
Table 68. Z_DELTVEL_LOW Register Definition  
X_ DELTVEL_OUT  
X_ DELTVEL_LOW  
Addresses  
Default  
Access  
Flash Backup  
15  
0 15  
0
0x38, 0x39  
Not applicable  
R
No  
X-AXIS DELTA VELOCITY DATA  
Table 69. Z_DELTVEL_LOW Bit Definitions  
Figure 39. Delta Angle Output Data Structure  
Bits  
Description  
X-Axis Delta Velocity (X_DELTVEL_LOW and  
X_DELTVEL_OUT)  
[15:0]  
Z-axis delta velocity data; additional resolution bits  
Table 70. Z_DELTVEL_OUT Register Definition  
Table 60. X_DELTVEL_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x3A, 0x3B  
Not applicable  
R
No  
0x30, 0x31  
Not applicable  
R
No  
Table 71. Z_DELTVEL_OUT Bit Definitions  
Bits Description  
Table 61. X_DELTVEL_LOW Bit Definitions  
Bits  
Description  
[15:0] Z-axis delta velocity data; twos complement,  
400 m/sec range, 0 m/sec = 0x0000;  
[15:0]  
X-axis delta velocity data; additional resolution bits  
1 LSB = 400 m/sec ÷ 215 = ~0.01221 m/sec  
Table 62. X_DELTVEL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
The Z_DELTVEL_LOW (see Table 68 and Table 69) and  
Z_DELTVEL_OUT (see Table 70 and Table 71) registers  
contain the delta velocity data for the z-axis.  
0x32, 0x33  
Not applicable  
R
No  
Table 63. X_DELTVEL_OUT Bit Definitions  
Delta Velocity Resolution  
Bits  
Description  
Table 72 and Table 73 offer various numerical examples that  
demonstrate the format of the delta velocity data in both 16-bit  
and 32-bit formats.  
[15:0]  
X-axis delta velocity data; twos complement,  
400 m/sec range, 0 m/sec = 0x0000;  
1 LSB = 400 m/sec ÷ 215 = ~0.01221 m/sec  
The X_DELTVEL_LOW (see Table 60 and Table 61) and  
X_DELTVEL_OUT (see Table 62 and Table 63) registers  
contain the delta velocity data for the x-axis.  
Table 72. 16-Bit Delta Velocity Data Format Examples  
Velocity (m/sec)  
Decimal Hex  
Binary  
+400 × (215 − 1)/215 +32,767  
0x7FFF 0111 1111 1111 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
Y-Axis Delta Velocity (Y_DELTVEL_LOW and  
Y_DELTVEL_OUT)  
+400/214  
+400/215  
0
+2  
+1  
0
Table 64. Y_DELTVEL_LOW Register Definition  
−400/215  
−400/214  
−400  
−1  
−2  
−32,768  
Addresses  
Default  
Access  
Flash Backup  
0x34, 0x35  
Not applicable  
R
No  
Table 65. Y_DELTVEL_LOW Bit Definitions  
Table 73. 32-Bit Delta Velocity Data Format Examples  
Bits  
Description  
Velocity (m/sec)  
+400 × (231 − 1)/231  
+400/230  
+400/231  
0
Decimal  
Hex  
[15:0]  
Y-axis delta velocity data; additional resolution bits  
+2,147,483,647  
+2  
+1  
0
0x7FFFFFFF  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x80000000  
Table 66. Y_DELTVEL_OUT Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x36, 0x37  
Not applicable  
R
No  
−400/231  
−400/230  
−400  
−1  
−2  
+2,147,483,648  
Rev. C | Page 23 of 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
Table 79. YG_BIAS_LOW Bit Definitions  
Bits Description  
CALIBRATION  
The signal chain of each inertial sensor (accelerometers and  
gyroscopes) includes application of unique correction formulas,  
which come from extensive characterization of bias, sensitivity,  
alignment, response to linear acceleration (gyroscopes), and  
point of percussion (accelerometer location) over a temperature  
range of −10°C to +75°C, for every ADIS16470. These correction  
formulas are not accessible, but users do have the opportunity  
to adjust the bias for each sensor (individually) through user  
accessible registers. These correction factors follow immediately  
after the factory derived correction formulas in the signal chain,  
which processes at a rate of 2000 Hz when using the internal  
sample clock.  
[15:0] Y-axis gyroscope offset correction; lower word  
Table 80. YG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x46, 0x47  
0x0000  
R/W  
Yes  
Table 81. YG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis gyroscope offset correction factor, upper word  
The YG_BIAS_LOW (see Table 78 and Table 79) and YG_BIAS_  
HIGH (see Table 80 and Table 81) registers combine to allow  
users to adjust the bias of the y-axis gyroscopes. The digital format  
examples in Table 11 also apply to the YG_BIAS_HIGH register  
and the digital format examples in Table 12 apply to the 32-bit  
combination of the YG_BIAS_LOW and YG_BIAS_HIGH  
registers. These registers influence the y-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 40).  
Calibration, Gyroscope Bias (XG_BIAS_LOW and  
XG_BIAS_HIGH)  
Table 74. XG_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x40, 0x41  
0x0000  
R/W  
Yes  
Table 75. XG_BIAS_LOW Bit Definitions  
Calibration, Gyroscope Bias (ZG_BIAS_LOW and  
ZG_BIAS_HIGH)  
Bits  
Description  
[15:0]  
X-axis gyroscope offset correction; lower word  
Table 82. ZG_BIAS_LOW Register Definition  
Table 76. XG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x48, 0x49  
0x0000  
R/W  
Yes  
0x42, 0x43  
0x0000  
R/W  
Yes  
Table 83. ZG_BIAS_LOW Bit Definitions  
Bits Description  
Table 77. XG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis gyroscope offset correction; lower word  
[15:0] X-axis gyroscope offset correction factor, upper word  
Table 84. ZG_BIAS_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
The XG_BIAS_LOW (see Table 74 and Table 75) and XG_BIAS_  
HIGH (see Table 76 and Table 77) registers combine to allow  
users to adjust the bias of the x-axis gyroscopes. The digital format  
examples in Table 11 also apply to the XG_BIAS_HIGH register  
and the digital format examples in Table 12 apply to the 32-bit  
combination of the XG_BIAS_LOW and XG_BIAS_HIGH  
registers. See Figure 40 for an illustration of how these two  
registers combine and influence the x-axis gyroscope  
measurements.  
0x4A, 0x4B  
0x0000  
R/W  
Yes  
Table 85. ZG_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis gyroscope offset correction factor, upper word  
The ZG_BIAS_LOW (see Table 82 and Table 83) and ZG_BIAS_  
HIGH (see Table 84 and Table 85) registers combine to allow  
users to adjust the bias of the z-axis gyroscopes. The digital  
format examples in Table 11 also apply to the ZG_BIAS_HIGH  
register and the digital format examples in Table 12 apply to the  
32-bit combination of the ZG_BIAS_LOW and ZG_BIAS_HIGH  
registers. These registers influence the z-axis gyroscope  
measurements in the same manner that the XG_BIAS_LOW  
and XG_BIAS_HIGH registers influence the x-axis gyroscope  
measurements (see Figure 40).  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
X_GYRO_OUT X_GYRO_LOW  
FILTERING  
XG_BIAS_HIGH XG_BIAS_LOW  
Figure 40. User Calibration Signal Path, Gyroscopes  
Calibration, Gyroscope Bias (YG_BIAS_LOW and  
YG_BIAS_HIGH)  
Calibration, Accelerometer Bias (XA_BIAS_LOW and  
XA_BIAS_HIGH)  
Table 78. YG_BIAS_LOW Register Definition  
Table 86. XA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Addresses  
Default  
Access  
Flash Backup  
0x44, 0x45  
0x0000  
R/W  
Yes  
0x4C, 0x4D  
0x0000  
R/W  
Yes  
Rev. C | Page 24 of 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16470  
Table 87. XA_BIAS_LOW Bit Definitions  
Calibration, Accelerometer Bias (ZA_BIAS_LOW and  
ZA_BIAS_HIGH)  
Bits  
Description  
[15:0]  
X-axis accelerometer offset correction; lower word  
Table 94. ZA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 88. XA_BIAS_HIGH Register Definition  
0x54, 0x55  
0x0000  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
0x4E, 0x4F  
0x0000  
R/W  
Yes  
Table 95. ZA_BIAS_LOW Bit Definitions  
Bits Description  
Table 89. XA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction; lower word  
[15:0] X-axis accelerometer offset correction, upper word  
Table 96. ZA_BIAS_HIGH Register Definition  
The XA_BIAS_LOW (see Table 86 and Table 87) and XA_BIAS_  
HIGH (see Table 88 and Table 89) registers combine to allow  
users to adjust the bias of the x-axis accelerometers. The digital  
format examples in Table 25 also apply to the XA_BIAS_ HIGH  
register and the digital format examples in Table 26 apply to the  
32-bit combination of the XA_BIAS_LOW and XA_BIAS_HIGH  
registers. See Figure 41 for an illustration of how these two registers  
combine and influence the x-axis accelerometer measurements.  
Addresses  
Default  
Access  
Flash Backup  
0x56, 0x57  
0x0000  
R/W  
Yes  
Table 97. ZA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Z-axis accelerometer offset correction, upper word  
The ZA_BIAS_LOW (see Table 94 and Table 95) and ZA_BIAS_  
HIGH (see Table 96 and Table 97) registers combine to allow  
users to adjust the bias of the z-axis accelerometers. The digital  
format examples in Table 25 also apply to the ZA_BIAS_HIGH  
register and the digital format examples in Table 26 apply to the  
32-bit combination of the ZA_BIAS_LOW and ZA_BIAS_HIGH  
registers. These registers influence the z-axis accelerometer  
measurements in the same manner that the XA_BIAS_LOW  
and XA_BIAS_HIGH registers influence the x-axis accelerometer  
measurements (see Figure 41).  
FACTORY  
X-AXIS  
ACCL  
CALIBRATION  
AND  
X_ACCL_OUT X_ACCL_LOW  
FILTERING  
XA_BIAS_HIGH XA_BIAS_LOW  
Figure 41. User Calibration Signal Path, Accelerometers  
Calibration, Accelerometer Bias (YA_BIAS_LOW and  
YA_BIAS_HIGH)  
Filter Control Register (FILT_CTRL)  
Table 90. YA_BIAS_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
Table 98. FILT_CTRL Register Definition  
0x50, 0x51  
0x0000  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
0x5C, 0x5D  
0x0000  
R/W  
Yes  
Table 91. YA_BIAS_LOW Bit Definitions  
Bits  
Description  
Table 99. FILT_CTRL Bit Definitions  
[15:0]  
Y-axis accelerometer offset correction; lower word  
Bits  
Description  
[15:3]  
[2:0]  
Not used  
Table 92. YA_BIAS_HIGH Register Definition  
Filter Size Variable B  
Number of taps in each stage; NB = 2B  
Addresses  
Default  
Access  
Flash Backup  
0x52, 0x53  
0x0000  
R/W  
Yes  
The FILT_CTRL register (see Table 98 and Table 99) provides  
user controls for the Bartlett window FIR filter (see Figure 18),  
which contains two cascaded averaging filters. For example, use  
the following sequence to set Register FILT_CTRL, Bits[2:0] =  
100, which sets each stage to have 16 taps: 0xCC04, 0xCD00.  
Figure 42 provides the frequency response for several settings in  
the FILT_CTRL register.  
Table 93. YA_BIAS_HIGH Bit Definitions  
Bits Description  
[15:0] Y-axis accelerometer offset correction, upper word  
The YA_BIAS_LOW (see Table 90 and Table 91) and  
YA_BIAS_HIGH (see Table 92 and Table 93) registers combine  
to allow users to adjust the bias of the y-axis accelerometers. The  
digital format examples in Table 25 also apply to the  
YA_BIAS_HIGH register, and the digital format examples in  
Table 26 apply to the 32-bit combination of the YA_BIAS_LOW  
and YA_BIAS_HIGH registers. These registers influence the y-  
axis accelerometer measurements in the same manner that the  
XA_BIAS_LOW and XA_BIAS_HIGH registers influence the x-  
axis accelerometer measurements (see Figure 41).  
Rev. C | Page 25 of 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
0
–20  
–40  
PIN A8  
PIN A1  
POINT OF  
PERCUSSION  
–60  
Figure 43. Point of Percussion Reference Point  
–80  
Linear Acceleration Effect on Gyroscope Bias  
–100  
–120  
N = 2  
Register MSC_CTRL, Bit 7 (see Table 101) provides an on/off  
control for the linear g compensation in the signal calibration  
routines of the gyroscope. The factory default contents in the  
MSC_CTRL register enable this compensation. To turn it off,  
set Register MSC_CTRL, Bit 7 = 0, using the following sequence  
on the DIN pin: 0xE041, 0xEF00.  
N = 4  
N = 16  
N = 64  
–140  
0.001  
0.01  
0.1  
1
FREQUENCY (f/fSM)  
Figure 42. Bartlett Window, FIR Filter Frequency Response  
(Phase Delay = N Samples)  
Internal Clock Mode  
Miscellaneous Control Register (MSC_CTRL)  
Register MSC_CTRL, Bits[4:2] (see Table 101), provide five  
different configuration options for controlling the clock (fSM;  
see Figure 15 and Figure 16), which controls data acquisition  
and processing for the inertial sensors. The default setting for  
Register MSC_CTRL, Bits[4:2] is 000 (binary), which places the  
ADIS16470 in the internal clock mode. In this mode, an internal  
clock controls inertial sensor data acquisition and processing at a  
nominal rate of 2000 Hz. In this mode, each accelerometer data  
update comes from an average of two data samples (sample rate  
= 4000 Hz).  
Table 100. MSC_CTRL Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x60, 0x61  
0x00C1  
R/W  
Yes  
Table 101. MSC_CTRL Bit Definitions  
Bits Description  
[15:8] Not used  
7
Linear g compensation for gyroscopes (1 = enabled)  
Point of percussion alignment (1 = enabled)  
Not used, always set to zero  
SYNC function setting  
111 = reserved (do not use)  
110 = reserved (do not use)  
101 = pulse sync mode  
100 = reserved (do not use)  
011 = output sync mode  
010 = scaled sync mode  
6
5
Output Sync Mode  
[4:2]  
When Register MSC_CTRL, Bits[4:2] = 011, the ADIS16470  
operates in output sync mode, which is the same as internal  
clock mode with one exception, the SYNC pin pulses when  
the internal processor collects data from the inertial sensors.  
Figure 44 provides an example of this signal.  
GYROSCOPE AND  
ACCELEROMETER  
DATA ACQUISITION  
ACCELEROMETER  
DATA ACQUISITION  
001 = direct sync mode  
000 = internal clock mode (default)  
SYNC polarity (input or output)  
1 = rising edge triggers sampling  
0 = falling edge triggers sampling  
DR polarity  
SYNC  
1
0
250µs  
500µs  
Figure 44. Sync Output Signal, Register MSC_CTRL, Bits[4:2] = 011  
1 = active high when data is valid  
0 = active low when data is valid  
Direct Sync Mode  
When Register MSC_CTRL, Bits[4:2] = 001, the ADIS16470  
operates in direct sync mode. The signal on the SYNC pin  
directly controls the sample clock. In this mode, the internal  
processor collects gyroscope data samples on the rising edge of  
the clock signal (SYNC pin) and collects accelerometer data  
samples on both rising and falling edges of the clock signal. The  
internal processor averages both accelerometer samples (from  
rising and falling edges of the clock signal) together to produce  
a single data sample. Therefore, when operating the ADIS16470  
in this mode, the clock signal (SYNC pin) must have a duty  
cycle of 50% and a frequency that is within the range of 1900 Hz  
to 2100 Hz. The ADIS16470 is capable of operating when the  
Point of Percussion  
Register MSC_CTRL, Bit 6 (see Table 101) offers an on/off control  
for the point of percussion alignment function, which maps the  
accelerometer sensors to the corner of the package that is  
closest to Pin A1 (see Figure 43). The factory default setting in  
the MSC_CTRL register activates this function. To turn this  
function off while retaining the rest of the factory default  
settings in the MSC_CTRL register, set Register MSC_CTRL,  
Bit 6 = 0, using the following command sequence on the DIN  
pin: 0xE081, 0xE100.  
Rev. C | Page 26 of 36  
 
 
 
 
Data Sheet  
ADIS16470  
clock frequency (SYNC pin) is less than 1900 Hz, but with risk  
of performance degradation, especially when tracking dynamic  
inertial conditions (including vibration).  
Table 105. DEC_RATE Bit Definitions  
Bits  
Description  
[15:11]  
[10:0]  
Don’t care  
Pulse Sync Mode  
Decimation rate, binary format, maximum = 1999  
When operating in pulse sync mode (Register MSC_CTRL,  
Bits[4:2] = 101), the internal processor only collects accelerometers  
samples on the leading edge of the clock signal, which enables  
use of a narrow pulse width (see Table 2) in the clock signal on  
the SYNC pin. Using pulse sync mode also lowers the bandwidth  
on the inertial sensors to 370 Hz. When operating in the pulse  
sync mode, the ADIS16470 provides the best performance  
when the frequency of the clock signal (SYNC pin) is within the  
range of 1000 Hz to 2100 Hz. The ADIS16470 is capable of  
operating when the clock frequency (SYNC pin) is less than  
1000 Hz, but with risk of performance degradation, especially  
when tracking dynamic inertial conditions (including  
vibration).  
The DEC_RATE register (see Table 104 and Table 105) provides  
user control for the averaging decimating filter, which averages and  
decimates the gyroscope and accelerometer data; it also extends  
the time that the delta angle and the delta velocity track between  
each update. When the ADIS16470 operates in internal clock  
mode (see Register MSC_CTRL, Bits [4:2], in Table 101), the  
nominal output data rate is equal to 2000/(DEC_RATE + 1).  
For example, set DEC_RATE = 0x0013 to reduce the output  
sample rate to 100 SPS (2000 ÷ 20), using the following the  
DIN pin sequence: 0xE413, 0xE500.  
Data Update Rate in External Sync Modes  
When using the input sync option, in scaled sync mode  
(Register MSC_CTRL, Bits[4:2] = 010, see Table 101), the  
output data rate is equal to (fSYNC × KECSF)/(DEC_RATE + 1),  
where fSYNC represents the frequency of the clock signal on the  
SYNC pin, and KESCF represents the value from the UP_SCALE  
register (see Table 103). When using direct sync mode and  
pulse sync mode, KESCF equals 1.  
Scaled Sync Mode  
When Register MSC_CTRL, Bits[4:2] = 010, the ADIS16470  
operates in scaled sync mode that supports a frequency range of  
1 Hz to 128 Hz for the clock signal on the SYNC pin. This mode  
of operation is particularly useful when synchronizing the data  
processing with a PPS signal from a global positioning system  
(GPS) receiver or with a synchronization signal from a video  
processing system. When operating in scaled sync mode, the  
frequency of the sample clock is equal to the product of the  
external clock scale factor, KECSF, (from the UP_SCALE register,  
see Table 102 and Table 103) and the frequency of the clock  
signal on the SYNC pin.  
Continuous Bias Estimation (NULL_CNFG)  
Table 106. NULL_CNFG Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x66, 0x67  
0x070A  
R/W  
Yes  
Table 107. NULL_CNFG Bit Definitions  
Bits Description  
[15:14] Not used  
For example, when using a 1 Hz input signal, set UP_SCALE =  
0x07D0 (KECSF = 2000 (decimal)) to establish a sample rate of  
2000 SPS for the inertial sensors and their signal processing.  
Use the following sequence on the DIN pin to configure  
UP_SCALE for this scenario: 0xE2D0, 0xE307.  
13  
12  
11  
10  
9
Z-axis accelerometer bias correction enable (1 = enabled)  
Y-axis accelerometer bias correction enable (1 = enabled)  
X-axis accelerometer bias correction enable (1 = enabled)  
Z-axis gyroscope bias correction enable (1 = enabled)  
Y-axis gyroscope bias correction enable (1 = enabled)  
X-axis gyroscope bias correction enable (1 = enabled)  
Not used  
Table 102. UP_SCALE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
8
0x62, 0x63  
0x07D0  
R/W  
Yes  
[7:4]  
[3:0]  
Table 103. UP_SCALE Bit Definitions  
Time base control (TBC), range: 0 to 12 (default = 10);  
tB = 2TBC/2000, time base; tA = 64 × tB, average time  
Bits  
Description  
[15:0]  
KECSF; binary format  
The NULL_CNFG register (see Table 106 and Table 107)  
provides the configuration controls for the continuous bias  
estimator (CBE), which associates with the bias correction  
update command in Register GLOB_CMD, Bit 0 (see Table 109).  
Register NULL_ CNFG, Bits[3:0] establishes the total average  
time (tA) for the bias estimates and Register NULL_CNFG,  
Bits[13:8] provide on/off controls for each sensor. The factory  
default configuration for the NULL_CNFG register enables the  
bias null command for the gyroscopes, disables the bias null  
command for the accelerometers, and sets the average time  
to ~32 sec.  
Decimation Filter (DEC_RATE)  
Table 104. DEC_RATE Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x64, 0x65  
0x0000  
R/W  
Yes  
Rev. C | Page 27 of 36  
 
 
 
 
 
 
ADIS16470  
Data Sheet  
Global Commands (GLOB_CMD)  
2. Activate an internal stimulus on the mechanical elements of  
each sensor to move them in a predictable manner and  
create an observable response in the sensors.  
3. Measure the output response on each sensor.  
4. Deactivate the internal stimulus on each sensor.  
5. Calculate the difference between the sensor measurements  
from Step 1 (stimulus is off) and from Step 3 (stimulus is on).  
6. Compare the difference with internal pass and fail criteria.  
7. Report the pass and fail result to Register DIAG_STAT, Bit 5  
(see Table 10).  
Table 108. GLOB_CMD Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x68, 0x69  
Not applicable  
W
No  
Table 109. GLOB_CMD Bit Definitions  
Bits  
Description  
[15:8]  
Not used  
7
Software reset  
[6:5]  
4
Not used  
Motion, during the execution of this test, can indicate a false  
failure.  
Flash memory test  
Flash memory update  
Sensor self test  
3
2
Factory Calibration Restore  
1
Factory calibration restore  
Bias correction update  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 1 = 1 to restore the factory default settings for the  
0
MSC_CTRL, DEC_RATE, and FILT_CTRL registers and to  
clear all user configurable bias correction settings: 0xE802,  
0xE900. Executing this command results in writing 0x0000 to  
the following registers: XG_BIAS_LOW, XG_BIAS_HIGH,  
YG_BIAS_LOW, YG_BIAS_HIGH, ZG_BIAS_LOW, ZG_BIAS_  
HIGH, XA_BIAS_LOW, XA_BIAS_HIGH, YA_BIAS_LOW,  
YA_BIAS_HIGH, ZA_BIAS_LOW, and ZA_BIAS_HIGH.  
The GLOB_CMD register (see Table 108 and Table 109)  
provides trigger bits for several operations. Write a 1 to the  
appropriate bit in GLOB_CMD to start a particular function.  
During the execution of these commands, data production  
stops, pulsing stops on the DR pin, and the SPI interface does  
not respond to requests. Table 1 provides the execution time for  
each GLOB_CMD command.  
Bias Correction Update  
Software Reset  
Use the following DIN pin sequence to set Register GLOB_CMD,  
Bit 0 = 1 to trigger a bias correction, using the correction factors  
from the CBE (see Table 107): 0xE801, 0xE900.  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 7 = 1, which triggers a reset: 0xE880, 0xE900. This reset  
clears all data, and then restarts data sampling and processing.  
This function provides a firmware alternative to toggling the  
Firmware Revision (FIRM_REV)  
RST  
pin (see Table 5, Pin F3).  
Table 110. FIRM_REV Register Definition  
Flash Memory Test  
Addresses  
Default  
Access  
Flash Backup  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 4 = 1, which tests the flash memory: 0xE810, 0xE900. The  
command performs a CRC computation on the flash memory  
(excluding user register locations) and compares it with the  
original CRC value, which comes from the factory configuration  
process. If the current CRC value does not match the original  
CRC value, Register DIAG_STAT, Bit 6 (see Table 10) rises to 1,  
indicating a failing result.  
0x6C, 0x6D  
Not applicable  
R
Yes  
Table 111. FIRM_REV Bit Definitions  
Bits  
Description  
[15:0]  
Firmware revision, binary coded decimal (BCD) format  
The FIRM_REV register (see Table 110 and Table 111) provides  
the firmware revision for the internal firmware. This register  
uses a BCD format, where each nibble represents a digit. For  
example, if FIRM_REV = 0x0104, the firmware revision is 1.04.  
Flash Memory Update  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 3 = 1, which triggers a back up of all user configurable registers  
in the flash memory: 0xE808, 0xE900. Register DIAG_STAT,  
Bit 2 (see Table 10) identifies success (0) or failure (1) in  
completing this process.  
Firmware Revision Day and Month (FIRM_DM)  
Table 112. FIRM_DM Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x6E, 0x6F  
Not applicable  
R
Yes  
Sensor Self Test  
Table 113. FIRM_DM Bit Definitions  
Use the following DIN sequence to set Register GLOB_CMD,  
Bit 2 = 1, which triggers the self test routine for the inertial sensors:  
0xE804 and 0xE900. The self test routine uses the following steps  
to validate the integrity of each inertial sensor:  
Bits  
Description  
[15:8]  
[7:0]  
Factory configuration month, BCD format  
Factory configuration day, BCD format  
The FIRM_DM register (see Table 112 and Table 113)  
contains the month and day of the factory configuration date.  
Register FIRM_DM, Bits[15:8] contains digits that represent the  
1. Measure the output on each sensor.  
Rev. C | Page 28 of 36  
 
 
 
 
 
 
Data Sheet  
ADIS16470  
month of the factory configuration. For example, November is the  
11th month in a year and is represented by Register FIRM_DM,  
Bits[15:8] = 0x11. Register FIRM_DM, Bits[7:0] contains the  
day of factory configuration. For example, the 27th day of the  
month is represented by Register FIRM_DM, Bits[7:0] = 0x27.  
Scratch Registers (USER_SCR_1 to USER_SER_3)  
Table 120. USER_SCR_1 Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x76, 0x77  
Not applicable  
R/W  
Yes  
Firmware Revision Year (FIRM_Y)  
Table 121. USER_SCR_1 Bit Definitions  
Bits Description  
Table 114. FIRM_Y Register Definition  
Addresses  
Default  
Access  
Flash Backup  
[15:0] User defined  
0x70, 0x71  
Not applicable  
R
Yes  
Table 122. USER_SCR_2 Register Definition  
Table 115. FIRM_Y Bit Definitions  
Addresses  
Default  
Access  
Flash Backup  
Bits  
Description  
0x78, 0x79  
Not applicable  
R/W  
Yes  
[15:0]  
Factory configuration year, BCD format  
Table 123. USER_SCR_2 Bit Definitions  
Bits Description  
The FIRM_Y register (see Table 114 and Table 115) contains the  
year of the factory configuration date. For example, the year,  
2017, is represented by FIRM_Y = 0x2017.  
[15:0] User defined  
Table 124. USER_SCR_3 Register Definition  
Product Identification (PROD_ID)  
Addresses  
Default  
Access  
Flash Backup  
Table 116. PROD_ID Register Definition  
0x7A, 0x7B  
Not applicable  
R/W  
Yes  
Addresses  
Default  
Access  
Flash Backup  
Table 125. USER_SCR_3 Bit Definitions  
Bits Description  
[15:0] User defined  
0x72, 0x73  
0x4056  
R
No  
Table 117. PROD_ID Bit Definitions  
Bits  
Description  
The USER_SCR_1 (see Table 120 and Table 121), USER_SCR_2  
(see Table 122 and Table 123), and USER_SCR_3 (see Table 124  
and Table 125) registers provide three locations for users to  
store information. For nonvolatile storage, use the manual flash  
memory update command (Register GLOB_CMD, Bit 3, see  
Table 109), after writing information to these registers.  
[15:0]  
Product identification = 0x4056  
The PROD_ID register (see Table 116 and Table 117) contains  
the numerical portion of the device number (16,470). See Figure 28  
for an example of how to use a looping read of this register to  
validate the integrity of the communication.  
Serial Number (SERIAL_NUM)  
Table 118. SERIAL_NUM Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x74, 0x75  
Not applicable  
R
Yes  
Table 119. SERIAL_NUM Bit Definitions  
Bits Description  
[15:0] Lot specific serial number  
Rev. C | Page 29 of 36  
 
 
 
 
 
 
 
 
 
 
ADIS16470  
Data Sheet  
Flash Memory Endurance Counter (FLSHCNT_LOW and  
FLSHCNT_HIGH)  
number of write cycles, the flash memory has a finite service  
lifetime, which depends on the junction temperature. Figure 45  
provides guidance for estimating the retention life for the flash  
memory at specific junction temperatures. The junction  
temperature is approximately 7°C above the case temperature.  
Table 126. FLSHCNT_LOW Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x7C, 0x7D  
Not applicable  
R
Yes  
Table 127. FLSHCNT_LOW Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, low word  
600  
450  
300  
Table 128. FLSHCNT_HIGH Register Definition  
Addresses  
Default  
Access  
Flash Backup  
0x7E, 0x7F  
Not applicable  
R
Yes  
Table 129. FLSHCNT_HIGH Bit Definitions  
Bits Description  
[15:0] Flash memory write counter, high word  
150  
0
The FLSHCNT_LOW (see Table 126 and Table 127) and  
FLSHCNT_HIGH (see Table 128 and Table 129) registers  
combine to provide a 32-bit, binary counter that tracks the  
number of flash memory write cycles. In addition to the  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 45. Flash Memory Retention  
Rev. C | Page 30 of 36  
 
 
 
 
 
Data Sheet  
ADIS16470  
APPLICATIONS INFORMATION  
ASSEMBLY AND HANDLING TIPS  
Package Attributes  
PCB Layout Suggestions  
Figure 47 provides an example of the pad design and layout for  
the ADIS16470 on a PCB. This example uses a solder mask  
opening, with a diameter of 0.73 mm, around a metal pad that  
has a diameter of 0.56 mm. When using a material for the system  
PCB, which has similar thermal expansion properties as the  
substrate material of the ADIS16470, the system PCB can also  
use the solder mask to define the pads that support attachment  
to the balls of the ADIS16470. The coefficient of thermal  
expansion (CTE) in the substrate of the ADIS16470 is  
approximately 14 ppm/°C.  
The ADIS16470 is a multichip module package that has a  
44-ball BGA interface. This package has three basic attributes  
that influence its handling and assembly to the PCB of the  
system: the lid, the substrate, and the BGA pattern. The  
material of the lid is a liquid crystal polymer (LCP), and  
its nominal thickness is 0.5 mm. The substrate is a laminate  
composition that has a nominal thickness of 1.57 mm. The  
solder ball material is SAC305, and each ball has a nominal  
diameter of 0.75 mm ( 0.15 mm). The BGA pattern follows an  
8 × 10 array, with 36 unpopulated positions, which simplifies  
the escape pattern for the power, ground, and signal traces on  
the system PCB.  
0.73  
(MASK OPENING)  
0.56  
(COPPER PAD)  
Assembly Tips  
When developing a process to attach the ADIS16470 to a PCB,  
consider the following tips and insights:  
The ADIS16470 packaging has passed numerous qualification  
tests that have exposed it to solder reflow profiles and are  
compliant with J-STD-020E, having a peak temperature  
of 260°C.  
1.27  
1.27  
Limit device exposure to one pass through the solder  
reflow process (no rework).  
The hole in the top of the lid (see Figure 46) provides  
venting and pressure relief during the assembly process of  
the ADIS16470. Keep this hole clear of obstruction while  
attaching the ADIS16470 to a PCB.  
ALL DIMENSIONS IN MILLIMETERS  
Figure 47. Recommend PCB Pattern, Solder Mask Defined Pads  
Underfill  
Underfill can be a useful technique in managing certain threats  
to the integrity of the solder joints of the ADIS16470, including  
peeling stress and extended exposure to vibration. When selecting  
underfill material and developing an application and curing  
process, ensure that the material fills the gap between each  
surface (ADIS16470 substrate and system PCB) and adheres  
to both surfaces. The ADIS16470 does not require the use of  
underfill materials in applications that do not anticipate  
exposure to these types of mechanical stresses and when the  
CTE of the system PCB is close to the same value as the CTE  
of the substrate of the ADIS16470 (~14 ppm/°C).  
OPENING IN  
PACKAGE LID  
Figure 46. Pressure Relief Hole  
Use no clean flux to avoid exposing the device to cleaning  
solvents, which can penetrate the inside of the ADIS16470  
through the hole in the lid and be difficult to remove.  
When the assembly process requires the use of liquids that  
can reach the hole in the lid, use a temporary seal to  
prevent entrapment of those liquids inside of the cavity.  
Manage moisture exposure prior to the solder reflow  
processing, in accordance with J-STD-033, MSL5.  
Avoid exposing the ADIS16470 to mechanical shock  
survivability that exceeds the maximum rating of 2000 g  
(see Table 3). In standard PCB processing, high speed  
handling equipment and panel separation processes often  
present the most risk of introducing harmful levels of  
mechanical shock survivability.  
Process Validation and Control  
These tips and guidelines provide a starting point for  
developing a process for attaching the ADIS16470 to a system  
PCB. Because each system and situation may present unique  
requirements for this attachment process, ensure that the  
process supports optimal solder joint integrity, verify that the  
final system meets all environmental test requirements, and  
establish observation and control strategies for all key process  
attributes (peak temperatures, dwell times, ramp rates, and so on).  
Rev. C | Page 31 of 36  
 
 
 
 
ADIS16470  
Data Sheet  
Accelerometer Data Width (Digital Resolution) section for  
more information.  
POWER SUPPLY CONSIDERATIONS  
The ADIS16470 contains 6 μF of decoupling capacitance across  
its VDD and GND pins. When the VDD voltage raises from 0 V  
to 3.3 V, the charging current for this capacitor bank imposes  
the following current profile (in amperes):  
Serial Port SCLK Underrun/Overrun Conditions  
The serial port operates in 16-bit segments, and it is critical that  
the number of SCLK cycles be equal to an integer multiple of 16  
CS  
when the  
pin is low. Failure to meet this condition causes the  
dVDD  
dt  
dVDD  
dt  
t
   
IDD  
t
C  
6106   
serial port controller inside of the ADIS16470 to be unable to  
correctly receive and respond to new requests.  
where:  
CS  
pin is  
IDD(t)is the current demand on the VDD pin during the initial  
power supply ramp, with respect to time.  
If too many SCLK cycles are received before the  
CS  
deasserted, the user can recover serial operation by asserting  
,
C is the internal capacitance across the VDD and GND pins (6 μF).  
VDD(t) is the voltage on the VDD pin, with respect to time.  
CS  
providing 17 rising edges on the SCLK line, deasserting , and  
then attempting to correctly read the PROD_ID (or other read-  
only) register on the ADIS16470. The user should repeat these  
steps up to a maximum of 15 times until the correct data is read.  
For example, if VDD follows a linear ramp from 0 V to 3.3 V, in  
66 μs, the charging current is 300 mA for that timeframe. The  
ADIS16470 also contains embedded processing functions that  
present transient current demands during initialization or reset  
recovery operations. During these processes, the peak current  
demand reaches 250 mA and occurs at a time that is approximately  
40 ms after VDD reaches 3.0 V (or ~40 ms after initiating a  
reset sequence).  
CS  
If  
user must either power cycle or issue a hard reset (using the  
RST  
is deasserted before enough SCLK cycles are received, the  
pin) to regain SPI port access.  
DIGITAL RESOLUTION OF GYROSCOPES AND  
ACCELEROMETERS  
Gyroscope Data Width (Digital Resolution)  
SERIAL PORT OPERATION  
The decimation filter (DEC_RATE register, see Table 105) and  
Bartlett window filter (FILT_CTRL register, see Table 99) have  
direct influence over the total number of bits in the output data  
registers, which contain relevant information. When using the  
factory default settings (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) for these filters, the gyroscope data width is 16 bits,  
which means that application processors can acquire all relevant  
information through the X_GYRO_OUT, Y_GYRO_OUT, and  
Z_GYRO_OUT registers.  
Maximum Throughput  
When operating with the maximum output data (DEC_RATE =  
0x0000, as described in Table 105), the maximum SCLK rate  
(defined in Table 2) and minimum stall time, the SPI port can  
support up to 12, 16-bit register reads in between each pulse of  
the data ready signal. Attempting to read more than 12 registers  
can result in a datapath overrun error in the DIAG_STAT  
register (see Table 10). The serial port stall time (tSTALL) to meet  
these requirements must be no more than 10ꢀ greater than the  
minimum specification for tSTALL shown in Table 2.  
The X_GYRO_LOW, Y_GYRO_LOW, and Z_GYRO_LOW  
registers capture the bit growth that comes from each  
The number of allowable registers reads between each pulse on  
the data ready line increases proportionally with the decimation  
rate (set by the DEC_RATE register, see Table 105). For example,  
when the decimation rate equals 3 (DEC_RATE = 0x0002), the  
SPI is able to support up to 36 register reads, assuming  
maximum SCLK rate and minimum stall times in the protocol.  
Decreasing the SCLK rate and increasing the stall time lowers  
the total number of register reads supported by the ADIS16470  
before a datapath overrun error occurs.  
accumulation operation in the decimation and Bartlett window  
filters. When using these filters (DEC_RATE ≠ 0x0000 and/or  
FILT_CTRL ≠ 0x0000), the data width increases by one bit  
every time the number of summations (in a filter stage)  
increases by a factor of two. For example, when DEC_RATE =  
0x0007, the decimation filter adds eight (7 + 1 = 8, see Table 105)  
successive samples together, which causes the data width to  
increase by 3 bits (log28 = 3). When FILT_CTRL = 0x0002, both  
stages in the Bartlett window filter use four (22 = 4, see  
Table 99) summation operations, which increases the data  
width by 2 bits (log24 = 2). When using both DEC_RATE =  
0x0007 and FILT_CTRL = 0x0002, the total bit growth is 7 bits,  
which increases the overall data width to 23 bits.  
This limitation of reading 12, 16-bit registers does not impact  
the ability of the user to access the full precision of the  
gyroscopes and accelerometers if the factory default settings of  
DEC_RATE = 0x0000 and FILT_CTRL = 0x0000 are used. In  
this case, the data width for the gyroscope and accelerometer  
data is 16 bits, and application processors can acquire all relevant  
information through the X_GYRO_OUT, Y_GYRO_OUT,  
Z_GYRO_OUT, X_ACCEL_OUT, Y_ACCEL_OUT, and  
Z_ACCEL_OUT registers. Thirty-two bit reads of the sensor  
data do not provide additional precision in this case. See the  
Gyroscope Data Width (Digital Resolution) section and the  
Accelerometer Data Width (Digital Resolution)  
The decimation filter (DEC_RATE register, see Table 105) and  
Bartlett window filter (FILT_CTRL register, see Table 99) have  
direct influence over the total number of bits in the output data  
registers, which contain relevant information. When using the  
factory default settings (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) for these filters, the accelerometer data width is 20 bits.  
Rev. C | Page 32 of 36  
 
 
 
 
 
Data Sheet  
ADIS16470  
The X_ACCL_OUT, Y_ACCL_OUT, and Z_ACCL_OUT  
registers contain the most significant 16 bits of this data, while  
the remaining (least significant) bits are in the upper 4 bits of  
the X_ACCL_LOW, Y_ACCL_LOW, and Z_ACCL_LOW  
registers. Since the total noise (0.6 mg rms, see Table 1) in the  
accelerometer data (DEC_RATE = 0x0000, FILT_CTRL =  
0x0000) is greater than the 16-bit quantization noise (0.25 mg ÷  
120.5 = 0.072 mg), application processors can acquire all relevant  
information through the X_ACCL_OUT, Y_ACCL_OUT, and  
Z_ACCL_OUT registers. This enables applications to preserve  
optimal performance, while using the burst read (see Figure 27),  
which only provides 16-bit data for the accelerometers.  
This breakout board already contains an ADIS16470AMLZ and  
a dual row, 2 mm pitch, 16-pin header (J1). Table 130 provides  
the J1 pin assignments, which support direction connection  
with an embedded processor board, using standard ribbon  
cables. As a general guideline, the ADIS16470/PCBZ supports  
reliable communications over ribbon cables that are up to 20 cm  
in length. Local electromagnetic interference (EMI) conditions  
can influence signal integrity, which may require some signal  
level observation with an oscilloscope, to assure reliable  
communications.  
Table 130. J1 Pin Assignments, Breakout Board  
J1 Pin Number  
Signal  
Function  
The X_ACCL_LOW, Y_ACCL_LOW, and Z_ACCL_LOW  
registers also capture the bit growth that comes from each  
accumulation operation in the decimation and Bartlett window  
filters. When using these filters (DEC_RATE ≠ 0x0000 and/or  
FILT_CTRL ≠ 0x0000), the data width increases by one bit  
every time the number of summations (in a filter stage)  
increases by a factor of two. For example, when DEC_RATE =  
0x0001, the decimation filter adds two (1 + 1 = 2, see Table 105)  
successive samples together, which causes the data width to  
increase by 1 bit (log22 = 1). When FILT_CTRL = 0x0001, both  
stages in the Bartlett window filter add two (21 = 2, see Table 99)  
successive samples together, which increases the data width by 1  
bit (log22 = 1) as well. When using both DEC_RATE = 0x0001  
and FILT_CTRL = 0x0001, the total bit growth is 3 bits, which  
increases the overall data width to 23 bits.  
1
RST  
Reset  
2
3
SCLK  
CS  
SPI  
SPI  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DOUT  
NC  
DIN  
GND  
GND  
GND  
VDD  
VDD  
VDD  
DR  
SPI  
Not connect  
SPI  
Ground  
Ground  
Ground  
Power, 3.3 V  
Power, 3.3 V  
Power, 3.3 V  
Data ready  
Input clock  
Not connect  
Not connect  
SYNC  
NC  
NC  
EVALUATION TOOLS  
Breakout Board  
Figure 48 provides a top level view of the breakout board, including  
dimensional locations for all the key mechanical features, such  
as the mounting holes and the 16-pin header. Figure 49 provides  
an electrical schematic for this breakout board.  
The ADIS16470/PCBZ is a breakout board that provides a  
simple way to develop a prototype connection between the  
ADIS16470 and an existing embedded processor platform.  
30.07mm  
ADIS1647X/PCB  
BREAKOUT BOARD  
08-045113rA  
5.125mm  
J1  
16.99mm  
*
33.25mm  
16.26mm  
5.125mm  
6.03mm  
3.625mm  
Figure 48. Top Level View of the Breakout Board  
Rev. C | Page 33 of 36  
 
 
 
ADIS16470  
Data Sheet  
VDD  
DUT1  
C7  
D6  
H1  
K6  
J5  
J4  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
D3  
F3  
C3  
E3  
GND  
GND  
GND  
RST  
GND  
DIN  
DNC  
VDD  
RST  
DIN  
VDD  
VDD  
F6  
H6  
H3  
SCLK  
SCLK  
DR  
J1  
1
2
RST  
CS  
G6  
DOUT  
DOUT  
SYNC  
SCLK  
DOUT  
3
4
5
G3  
J6  
J3  
CS  
CS  
DR  
SYNC  
6
7
DIN  
ADIS16470AMLZ  
K8  
K3  
K1  
J7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
8
9
GND  
VDD  
GND  
10  
11  
12  
13  
14  
15  
16  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
B3  
B4  
B5  
B6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J2  
H8  
G7  
G2  
F8  
F1  
E7  
E6  
E2  
C6  
C2  
DR  
SYNC  
DNC  
HIROSE  
A3-16-PA-2SV(71)  
GND  
GND  
Figure 49. Breakout Board Schematic  
PC-Based Evaluation, EVAL-ADIS2  
In addition to supporting quick prototype connections between  
the ADIS16470 and an embedded processing system, J1 on the  
ADIS16470/PCBZ also connects directly to J1 on the EVAL-  
ADIS2 evaluation system. When used in conjunction with the  
IMU Evaluation Software for the EVAL-ADISX Platforms, the  
EVAL-ADIS2 provides a simple, functional test platform that  
provides users with configuration control and the ability to  
collect data from the output data registers of the ADIS16470.  
Rev. C | Page 34 of 36  
 
Data Sheet  
ADIS16470  
TRAY DRAWING  
The ADIS16470 parts are shipped in the tray shown in Figure 50.  
322.60 REF  
315.00  
112.25  
112.00  
111.75  
92.10  
135.90  
16.00  
BSC  
TOP VIEW  
12.70  
DETAIL A  
11.95 BSC  
22.00 BSC  
14.50 BSC  
DETAIL C  
272.05  
271.80  
271.55  
0.76  
R 4.75  
DETAIL C  
DETAIL B  
SIDE VIEW  
21.40  
3.80  
1.30  
2.54  
2.50  
17.90  
34.30  
25.40  
2.00  
255.30  
30°  
±1°  
3.50  
B
A
DETAIL B  
15.43  
15.35  
15.27  
11.43  
11.35  
11.27  
A
11.10  
NOTES:  
1. MATERIAL IS MPPO.  
2. TOLERANCES ARE x.x = ± 0.25  
7.90  
x.xx = ± 0.13  
UNLESS OTHERWISE SPECITIED.  
3. ESD  
SURFACE RESISTIVITY  
SECTION A-A  
SECTION B-B  
105 TO 1011 Ω/SQ.  
C 3.00 × 0.45°  
DETAIL A  
B
Figure 50. Drawing of Shipping Tray  
Rev. C | Page 35 of 36  
 
ADIS16470  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
11.25  
11.00  
10.75  
1.055  
BSC  
1.270  
BSC  
A1 BALL  
CORNER INDICATOR  
1.785  
BSC  
1.270  
BSC  
15.25  
15.00  
14.75  
0.900  
Ø 0.750  
0.600  
TOP VIEW  
END VIEW  
BOTTOM VIEW  
11.350  
11.000  
*10.475  
0.90  
MAX  
*Including Lable  
Thickness  
SEATING  
PLANE  
Figure 51. 44-Ball Ball Grid Array Module [BGA]  
(ML-44-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Description  
Package Option  
ADIS16470AMLZ  
ADIS16470/PCBZ  
−25°C to +85°C  
44-Ball Ball Grid Array Module [BGA]  
Breakout Board (Evaluation Board)  
ML-44-1  
1 Z = RoHS Compliant Part.  
©2017–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15343-0-4/19(C)  
www.analog.com/ADIS16470  
Rev. C | Page 36 of 36  
 
 
 

相关型号:

ADIS16470AMLZ

Wide Dynamic Range, Miniature MEMs IMU
ADI

ADIS16470PCBZ

Wide Dynamic Range, Miniature MEMs IMU
ADI

ADIS16475

Precision, Miniature MEMs IMU
ADI

ADIS16475-1

Precision, Miniature MEMs IMU
ADI

ADIS16475-1BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-1PCBZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-2

Precision, Miniature MEMs IMU
ADI

ADIS16475-2BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-2PCBZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-3

Precision, Miniature MEMs IMU
ADI

ADIS16475-3BMLZ

Precision, Miniature MEMs IMU
ADI

ADIS16475-3PCBZ

Precision, Miniature MEMs IMU
ADI