ADIS16486BMLZ-P [ADI]

Six Degrees of Freedom Inertial Sensor;
ADIS16486BMLZ-P
型号: ADIS16486BMLZ-P
厂家: ADI    ADI
描述:

Six Degrees of Freedom Inertial Sensor

文件: 总38页 (文件大小:1048K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Six Degrees of Freedom Inertial Sensor  
Data Sheet  
ADIS16486  
FEATURES  
GENERAL DESCRIPTION  
Triaxial digital gyroscope, 450°/sec dynamic range  
(minimum)  
The ADIS16486 is a complete inertial system that includes a triaxis  
gyroscope and a triaxis accelerometer. Each inertial sensor in the  
ADIS16486 combines industry leading iMEMS® technology with  
signal conditioning that optimizes dynamic performance. The  
factory calibration characterizes each sensor for sensitivity, bias,  
alignment, and linear acceleration (gyroscope bias). Therefore,  
each sensor has dynamic compensation formulas that provide  
accurate sensor measurements.  
0.018° axis to axis misalignment error (typical)  
5.3°/hr in-run bias stability (typical)  
0.25°/√hr angular random walk (typical)  
0.01% FS nonlinearity  
Triaxial digital accelerometer, 18 g dynamic range  
(minimum)  
Triaxial, delta angle, and delta velocity outputs  
The ADIS16486 provides a simple, cost effective method for  
Factory calibrated sensitivity, bias, and axial alignment  
Calibration temperature range: −40°C to +85°C  
SPI compatible  
Programmable operation and control  
Automatic and manual bias correction controls  
4 FIR filter banks, 120 configurable taps  
Digital input and output: data ready alarm indicator,  
external clock  
integrating accurate, multiaxis inertial sensing into industrial  
systems, especially when compared with the complexity and  
investment associated with discrete designs. All necessary motion  
testing and calibration are part of the production process at the  
factory, which reduces system integration time. Tight orthogonal  
alignment simplifies inertial frame alignment in navigation  
systems. The serial peripheral interface (SPI) and register structure  
provide a simple interface for data collection and configuration  
control. Parylene coating of all internal circuitry provides a  
protective barrier against moisture exposure.  
Alarms for condition monitoring  
Power-down and sleep mode for power management  
Optional external sync input clock: 2.4 kHz (maximum)  
Continuous self test of inertial sensors  
On demand self test of inertial sensors  
Continuous CRC-based memory testing  
Single VDD power supply operation: 3.0 V to 3.6 V  
2000 g mechanical shock survivability  
Operating temperature range: −40°C to +105°C  
The ADIS16486 uses the same footprint and connector system as  
the ADIS16480, ADIS16485, ADIS16487, and ADIS16488A, which  
greatly simplifies the upgrade process. The ADIS16486 is packaged  
in a module that is approximately 47 mm × 44 mm × 14 mm with  
a 24-lead standard connector interface.  
APPLICATIONS  
Attitude and heading reference systems  
Platform stabilization and control  
Unmanned vehicle navigation  
Robotics and instrumentation  
FUNCTIONAL BLOCK DIAGRAM  
DIO1 DIO2 DIO3 DIO4 RST  
VDD  
POWER  
MANAGEMENT  
GND  
SELF TEST  
I/O  
ALARMS  
TRIAXIAL  
OUTPUT  
DATA  
CS  
GYROSCOPE  
REGISTERS  
SCLK  
DIN  
TRIAXIAL  
ACCELEROMETER  
CALIBRATION  
AND  
FILTERS  
SPI  
CONTROLLER  
USER  
CONTROL  
REGISTERS  
TEMPERATURE  
VDD  
DOUT  
CLOCK  
ADIS16486  
VDDRTC  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADIS16486  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
User Register Memory Map.......................................................... 12  
User Register Definitions .............................................................. 15  
Gyroscope Data .......................................................................... 16  
Acceleration Data....................................................................... 17  
Delta Angles................................................................................ 18  
Delta Velocity ............................................................................. 20  
Real-Time Clock (RTC) ............................................................ 21  
Calibration .................................................................................. 23  
FIR Filters.................................................................................... 34  
Applications Information ............................................................. 36  
Mounting Best Practices ........................................................... 36  
Evaluation Tools......................................................................... 37  
Power Supply Considerations .................................................. 37  
X-Ray Sensitivity ........................................................................ 37  
Packaging and Ordering Information......................................... 38  
Outline Dimensions................................................................... 38  
Ordering Guide .......................................................................... 38  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings....................................................... 7  
Thermal Resistance...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics............................................. 9  
Theory of Operation ...................................................................... 10  
Introduction................................................................................ 10  
Register Structure....................................................................... 10  
SPI Communication .................................................................. 11  
Device Configuration ................................................................ 11  
Reading Sensor Data.................................................................. 11  
REVISION HISTORY  
1/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 38  
 
Data Sheet  
ADIS16486  
SPECIFICATIONS  
TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, and dynamic range = 450°/sec 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
450  
Typ  
Max  
480  
1
Unit  
GYROSCOPES  
Dynamic Range  
Sensitivity  
°/sec  
°/sec/LSB  
%
32-bit data format (see Table 41)  
−40°C ≤ TC ≤ +85°C  
3.052 × 10−7  
Repeatability1  
Sensitivity Temperature Coefficient −40°C ≤ TC ≤ +85°C, 1 σ  
25  
0.018  
1.0  
ppm/°C  
Degrees  
Degrees  
% FS  
Misalignment Error  
Axis to axis  
Axis to frame (package)  
Nonlinearity  
Best fit straight line, full scale (FS) = 450°/sec  
0.01  
Bias  
Repeatability1, 2  
−40°C ≤ TC ≤ +85°C, 1 σ  
1 σ  
1 σ  
−40°C ≤ TC ≤ +85°C, 1 σ  
−15°C ≤ TC ≤ +65°C, 10°C range  
Any axis, 1 σ (CONFIG, Bit 7 = 1)  
Any axis, 1 σ (CONFIG, Bit 7 = 0)  
0.2  
5.3  
0.25  
0.0025  
0.0611  
0.009  
0.015  
°/sec  
°/hr  
°/√hr  
°/sec/°C  
°/sec  
In-Run Bias Stability  
Angular Random Walk  
Temperature Coefficient  
Error over Temperature  
Linear Acceleration Effect  
°/sec/g  
°/sec/g  
Noise  
Output Noise  
No filtering  
Frequency (f) = 10 Hz to 40 Hz, no filtering  
0.16  
0.0068  
330  
°/sec rms  
°/sec/√Hz rms  
Hz  
Rate Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
ACCELEROMETERS3  
Dynamic Range  
Sensitivity  
18  
kHz  
Each axis  
18  
g
32-bit data format (see Table 55)  
−40°C ≤ TC ≤ +85°C  
1.221 × 10−8  
g/LSB  
%
Repeatability1  
0.5  
Sensitivity Temperature Coefficient −40°C ≤ TC ≤ +85°C, 1 σ  
25  
0.035  
1.0  
10  
90  
ppm/°C  
Degrees  
Degrees  
mg  
Misalignment  
Nonlinearity  
Axis to axis  
Axis to frame (package)  
Best fit straight line, 10 g  
Best fit straight line, 18 g  
mg  
Bias  
Repeatability1, 2, 4  
In-Run Bias Stability  
Velocity Random Walk  
Temperature Coefficient  
Noise  
−40°C ≤ TC ≤ +85°C, 1 σ  
1 σ  
1 σ  
16  
70  
0.029  
0.1  
mg  
μg  
m/sec/√hr  
mg/°C  
−40°C ≤ TC ≤ +85°C, 1 σ  
Output Noise  
Noise Density  
3 dB Bandwidth  
Sensor Resonant Frequency  
TEMPERATURE SENSOR  
Scale Factor  
No filtering  
f = 10 Hz to 40 Hz, no filtering  
1.29  
0.063  
330  
mg rms  
mg/√Hz rms  
Hz  
5.5  
kHz  
Output = 0x0000 at 25°C ( 5°C)  
0.00565  
°C/LSB  
LOGIC INPUTS5  
Input Voltage  
High (VIH)  
2.0  
V
Low (VIL)  
0.8  
V
RST Pulse Width  
CS Wake-Up Pulse Width  
1
µs  
µs  
20  
Rev. 0 | Page 3 of 38  
 
 
ADIS16486  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
10  
Unit  
Input Current  
Logic 1, High (IIH)  
Logic 0, Low (IIL)  
All Pins Except RST  
RST Pin  
VIH = 3.3 V  
VIL = 0 V  
µA  
10  
µA  
mA  
pF  
0.33  
10  
Input Capacitance (CIN)  
DIGITAL OUTPUTS  
Output Voltage  
High (VOH  
)
Source current (ISOURCE) = 0.5 mA  
Sink current (ISINK) = 2.0 mA  
Endurance6  
2.4  
V
V
Low (VOL  
)
0.4  
FLASH MEMORY  
Data Retention7  
100,000  
20  
Cycles  
Years  
TJ = 85°C  
FUNCTIONAL TIMES8  
Power-On Start-Up Time  
Backup  
Reset Recovery Time9  
Sleep Mode Recovery Time  
Flash Memory  
Time until data is available  
600  
1500  
600  
ms  
ms  
ms  
µs  
1370  
390  
730  
1000  
Update Time10  
Test Time  
1.05  
50  
6.8  
sec  
ms  
On Demand Self Test (ODST) Time  
CONVERSION RATE  
Initial Clock Accuracy  
Temperature Coefficient  
Sync Input Clock  
Using internal clock (2460 Hz)  
12  
ms  
2.46  
0.02  
40  
kSPS  
%
ppm/°C  
kHz  
0.711  
3.0  
2.4  
3.6  
POWER SUPPLY  
VDD  
Operating voltage range  
Normal mode, µ + 1 σ  
Sleep mode  
Power-down mode  
Operating voltage range  
Normal mode, VDDRTC = 3.3 V  
V
Power Supply Current12  
186  
12.2  
37  
3.3  
13  
mA  
mA  
µA  
V
VDDRTC13  
Real-Time Clock (RTC) Supply  
Current  
3.0  
3.6  
µA  
1 The repeatability specifications represent analytical projections based on the following drift contributions and conditions: temperature hysteresis (−40°C to +85°C),  
electronics drift (high temperature operating life test: +110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles, −55°C to +85°C), rate  
random walk (10-year projection), and broadband noise.  
2 Bias repeatability describes a long-term behavior over a variety of conditions. Short-term repeatability relates to the in-run bias stability and noise density specifications.  
3 All specifications associated with the accelerometers relate to the full-scale range of 18 g.  
4 X-ray exposure can degrade this performance metric.  
5 The digital input and output signals use a 3.3 V system.  
6 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.  
7 The data retention specification assumes a TJ of 85°C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.  
8 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.  
9
RST  
The  
line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery.  
10 Monitoring the data ready signal (see Table 143 for the FNCTIO_CTRL register configuration) for the return of regular pulsing can help minimize system wait times.  
11 The device functions at clock rates below 0.7 kHz, but at reduced performance levels.  
12 Supply current transients can reach 600 mA during initial startup or reset recovery.  
13 Connecting the VDDRTC supply is a requirement, even if the application does not use the RTC function.  
Rev. 0 | Page 4 of 38  
 
Data Sheet  
ADIS16486  
TIMING SPECIFICATIONS  
TC = 25°C and VDD = 3.3 V, unless otherwise noted. See Figure 2 to Figure 4 for the timing diagrams.  
Table 2.  
Parameter Description  
Min1  
0.01  
2
Typ  
Max1  
Unit  
MHz  
µs  
fSCLK  
tSTALL  
tCLS  
SCLK frequency  
Stall period between data  
SCLK low period  
15  
2
31  
ns  
tCHS  
tCS  
SCLK high period  
CS to SCLK edge  
31  
32  
ns  
ns  
tDAV  
tDSU  
tDHD  
tDR, tDF  
tDSOE  
tHD  
DOUT valid after SCLK edge  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
DOUT rise and fall times, ≤100 pF loading  
CS assertion to DOUT active  
2
2
3
8
11  
0
SCLK falling edge to DOUT invalid  
Last SCLK rising edge to CS deassertion  
CS deassertion to DOUT high impedance  
Data ready pulse width  
Input sync pulse width  
Input sync to data invalid  
0
32  
0
tSFS  
tDSHI  
9
11  
15  
t1  
t2  
t3  
5
560  
570  
Input sync period  
417  
1 Guaranteed by design and characterization, but not tested in production.  
2 See Table 3 for exceptions to the stall time rating.  
Register Write Processing Times  
Table 3.  
Parameter  
Description  
Min1  
Typ  
Max  
Unit  
STALL TIME  
FNCTIO_CTRL, Bits[7:4]  
Enabling input sync mode  
Disabling input sync mode  
Configure data ready  
Enable and/or select finite impulse response (FIR)  
filter banks  
75  
147  
3
µs  
µs  
µs  
µs  
FNCTIO_CTRL, Bits[3:0]  
FILTR_BNK_0  
101  
FILTR_BNK_1  
NULL_CNFG  
Enable and/or select FIR filter banks  
Configure autonull bias function  
101  
116  
µs  
µs  
1 Monitor the data ready signal (see Table 143 for the FNCTIO_CTRL register configuration) for the return of regular pulsing to help minimize system wait times.  
Rev. 0 | Page 5 of 38  
 
 
 
ADIS16486  
Data Sheet  
Timing Diagrams  
CS  
tCHS  
tCLS  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
DOUT  
tDSOE  
tDAV  
tHD  
tDR  
tDSHI  
MSB  
DB14  
tDSU  
DB13  
DB12  
DB11  
DB10  
DB2  
DB1  
tDF  
LSB  
LSB  
tDHD  
DIN  
R/W  
A6  
A5  
A4  
A3  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence  
tSTALL  
CS  
SCLK  
Figure 3. Stall Time and Data Rate  
t2  
t3  
t1  
DIO4  
(SYNC CLOCK)  
DATA  
READY  
OUTPUT  
REGISTERS  
DATA VALID  
DATA VALID  
Figure 4. Input Clock Timing Diagram, FNCTIO_CTRL, Bits[7:4] = 0xFD  
Rev. 0 | Page 6 of 38  
 
 
Data Sheet  
ADIS16486  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
the PCB thermal design is required.  
Parameter  
Rating  
Mechanical Shock Survivability  
Any Axis, Unpowered  
Any Axis, Powered  
VDD to GND  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Temperature Range  
Calibration  
2000 g  
2000 g  
−0.3 V to +3.6 V  
−0.3 V to VDD + 0.2 V  
−0.3 V to VDD + 0.2 V  
θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure. θJC is the junction  
to case thermal resistance.  
Table 5. Package Characteristics  
Package Type  
θJA  
θJC  
Device Weight  
−40°C to +85°C  
−40°C to +105°C  
−65°C to +150°C  
Operating  
Storage1  
ML-24-6  
22.8°C/W  
10.1°C/W  
48 g  
ESD CAUTION  
1 Extended exposure to temperatures that are lower than −55°C or higher  
than +105°C can adversely affect the accuracy of the factory calibration.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Rev. 0 | Page 7 of 38  
 
 
 
ADIS16486  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16486  
TOP VIEW  
(Not to Scale)  
24 22 20 18 16 14 12 10  
8
7
6
5
4
3
2
1
PIN 23  
PIN 1  
23 21 19 17 15 13 11  
9
NOTES  
1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT  
FOR THE MATING SOCKET CONNECTOR.  
2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM  
THE TOP VIEW.  
3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.  
4. DNC = DO NOT CONNECT. DO NOT CONNECT TO THESE PINS.  
PIN 1 PIN 2  
Figure 5. Pin Configuration  
Figure 6. Axial Orientation (Top Side Facing Up)  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
DIO3  
DIO4  
SCLK  
DOUT  
DIN  
Type  
Description  
1
2
3
4
5
6
Input and output  
Input and output  
Input  
Output  
Input  
Configurable Digital Input and Output 3.  
Configurable Digital Input and Output 4.  
SPI Serial Clock.  
SPI Data Output. Clocks output on the SCLK falling edge.  
SPI Data Input. Clocks input on the SCLK rising edge.  
SPI Chip Select.  
CS  
Input  
7
8
DIO1  
RST  
Input and output  
Input  
Configurable Digital Input and Output 1.  
Reset.  
9
DIO2  
VDD  
GND  
DNC  
VDDRTC  
Input and output  
Supply  
Supply  
Not applicable  
Supply  
Configurable Digital Input and Output 2.  
Power Supply.  
Power Ground.  
Do Not Connect. Do not connect to these pins.  
RTC Power Supply. The VDDRTC power supply must be connected even if  
the RTC feature is not used.  
10, 11, 12  
13, 14, 15  
16 to 22, 24  
23  
Rev. 0 | Page 8 of 38  
 
 
Data Sheet  
ADIS16486  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
0.001  
AVERAGE  
AVERAGE  
+1σ  
+1σ  
10  
0.0001  
–1σ  
–1σ  
1
0.01  
0.00001  
0.1  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
1000  
10000  
INTEGRATION PERIOD (Seconds)  
INTEGRATION PERIOD (Seconds)  
Figure 7. Gyroscope Allan Variance, 25°C  
Figure 8. Accelerometer Allan Variance, 25°C  
Rev. 0 | Page 9 of 38  
 
ADIS16486  
Data Sheet  
THEORY OF OPERATION  
sensor data, an RTC, error flags, alarm flags, and identification  
data. The control registers include sample rate, filtering, input  
and output, alarms, calibration, and diagnostic configuration  
options. All communication between the ADIS16486 and an  
external processor involves either reading or writing to one of  
the user registers.  
INTRODUCTION  
The ADIS16486 is an autonomous sensor system that starts up  
on its own when it has a valid power supply. After completing its  
initialization process, the ADIS16486 begins sampling, processing,  
and loading calibrated sensor data into the output registers, which  
are accessible using the SPI port. The SPI port typically connects to  
a compatible port on an embedded processor (see Figure 9). See  
Table 7 for a list of the master processor pin names and functions.  
The four SPI signals facilitate synchronous serial data  
communication. The factory default configuration provides users  
with a data ready signal on the DIO2 pin to trigger consistent  
data acquisition (see Figure 28).  
TRIAXIAL  
GYROSCOPE  
OUTPUT  
REGISTERS  
ADC  
DSP  
TRIAXIAL  
ACCELEROMETER  
CONTROL  
REGISTERS  
TEMPERATURE  
SENSOR  
CONTROLLER  
I/O LINES ARE COMPATIBLE WITH  
3.3V LOGIC LEVELS  
+3.3V  
Figure 10. Basic Operation  
VDD  
The register structure uses a paged addressing scheme that  
contains 13 pages, with each page containing 64 register locations.  
Each register is 16 bits wide, and each byte has a unique address  
within the memory map of that page. The SPI port accesses one  
page at a time using the bit sequence in Figure 11. The user  
selects the desired page by writing the corresponding page ID to  
the PAGE_ID register. Read the PAGE_ID register to  
determine which page is currently active. Table 9 displays the  
PAGE_ID register contents for each page along with their basic  
functions. The PAGE_ID register is located at Address 0x00 on  
every page.  
10  
11  
12  
23  
SYSTEM  
PROCESSOR  
SPI MASTER  
ADIS16486  
6
3
SS  
CS  
SCLK  
DIN  
SCLK  
MOSI  
5
4
9
MISO  
IRQ  
DOUT  
DIO2  
13  
14  
15  
Figure 9. Electrical Connection Diagram  
Table 7. Generic Master Processor Pin Names and Functions  
Table 9. User Accessible Page Register Assignments  
Page PAGE_ID Value Function  
Mnemonic  
Function  
SS  
Slave select  
0
1
2
3
0x00  
0x01  
0x02  
0x03  
Output data, clock, identification  
Reserved  
Calibration  
Control: sample rate, filtering, input  
and output, alarms  
SCLK  
MOSI  
MISO  
IRQ  
Serial clock  
Master output, slave input  
Master input, slave output  
Interrupt request  
4
5
0x04  
0x05  
Serial number  
FIR Filter Bank A, Coefficient 0 to  
Coefficient 59  
FIR Filter Bank A, Coefficient 60 to  
Coefficient 119  
FIR Filter Bank B, Coefficient 0 to  
Coefficient 59  
FIR Filter Bank B, Coefficient 60 to  
Coefficient 119  
FIR Filter Bank C, Coefficient 0 to  
Coefficient 59  
FIR Filter Bank C, Coefficient 60 to  
Coefficient 119  
FIR Filter Bank D, Coefficient 0 to  
Coefficient 59  
Table 8 provides a list of settings that describe the SPI protocol of  
the ADIS16486. The initialization routine of the master processor  
typically establishes these settings using firmware commands to  
write them into its serial control registers.  
6
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
7
Table 8. Generic Master Processor SPI Settings  
Processor Setting Description  
8
Master  
The ADIS16486 operates as a slave  
Maximum serial clock rate  
CPOL = 1 (polarity), CPHA = 1 (phase)  
Bit sequence  
SCLK ≤ 15 MHz  
SPI Mode 3  
MSB First Mode  
16-Bit Mode  
9
10  
11  
12  
Shift register and data length  
REGISTER STRUCTURE  
The register structure and SPI port support a simple connection  
between the ADIS16486 and an embedded processor platform.  
The register structure contains both output data registers and  
control registers. The output data registers include the latest  
FIR Filter Bank D, Coefficient 60 to  
Coefficient 119  
Rev. 0 | Page 10 of 38  
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
CS  
SCLK  
DIN  
R/W A6  
A5  
R/W A6  
A5  
A4  
A3  
A2  
A1  
D9  
A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
D15 D14 D13 D12 D11 D10  
D15 D14 D13  
NOTES  
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.  
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE  
FOR OTHER DEVICES.  
Figure 11. SPI Communication Bit Sequence  
boot stream. When in operation, the ADIS16486 continually  
monitors critical portions of the SRAM using CRC verification and  
reports the errors in SYS_E_FLAG, Bit 2.  
SPI COMMUNICATION  
Each SPI command and response is 16 bits long and uses the  
digital coding shown in Figure 11.  
MANUAL  
FLASH  
BACKUP  
DEVICE CONFIGURATION  
Each register contains 16 bits (two bytes). Bits[7:0] contain the  
low byte and Bits[15:8] contain the high byte of each register.  
Each byte has its own unique address in the user register map  
(see Table 10). Update the contents of a register by writing to  
its low byte first and its high byte second. There are three parts  
to coding an SPI command (see Figure 11) to write a new byte of  
NONVOLATILE  
FLASH MEMORY  
VOLATILE  
SRAM  
SPI ACCESS  
(NO SPI ACCESS)  
START-UP  
RESET  
R
data to a register: the write bit ( /W = 1), the address of the byte,  
Figure 13. SRAM and Flash Memory Diagram  
[A6:A0], and the new data for that location, [DC7:DC0]. Figure 12  
provides a coding example for writing 0xFEDC to the  
XG_BIAS_LOW register (see Table 105), assuming the  
PAGE_ID register already equals 0x0002.  
READING SENSOR DATA  
The 16-bit command code (see Figure 11) for a read request on  
the SPI has three parts: the read bit ( /W = 0), the address of  
R
the register, [A6:A0], and eight don’t care bits, [DC7:DC0]. A  
read command produces the contents of the desired register on  
the DOUT pin during the following 16-bit communication  
cycle. Figure 14 provides an example that includes two register  
reads in succession. This example starts with DIN = 0x1A00 to  
request the contents of the Z_GYRO_OUT register and follows  
with 0x1800 to request the contents of the Z_GYRO_LOW register  
(assuming the PROD_ID register already equals 0x0000).  
Figure 14 shows an example of a full duplex mode of operation  
in which the ADIS16486 receives a new request while  
CS  
SCLK  
DIN  
0x90DC  
0x91FE  
Figure 12. SPI Sequence for Writing 0xFEDC to XG_BIAS_LOW  
See Table 11 for a list of the processing times for each register  
write. The processing time represents the time between the  
completion of the write command and the time that the command  
takes full effect on the operation of the ADIS16486.  
transmitting the data response from the prior request.  
Dual Memory Structure  
NEXT  
The ADIS16486 uses a dual memory structure (see Figure 13)  
in which the static random access memory (SRAM) supports  
real-time operation and the flash memory provides nonvolatile  
storage. During the start-up process, the operating code,  
calibration coefficients, and user register settings load from the  
flash memory into the SRAM to support normal operation. The  
manual flash update command, GLOB_CMD, Bit 3 (see  
Table 141), provides a simple method for saving user register  
values to the flash memory. Registers with the flash backup feature  
are indicated by a yes in the flash backup column of Table 10.  
This flash backup preserves these settings for automatic recall  
during the next power-on or reset recovery process. The flash  
memory has two independent banks that operate in a ping pong  
manner, alternating with each manual flash update. During startup  
or reset recovery, the ADIS16486 performs a cyclic redundancy  
check (CRC) on the boot stream data in the flash memory. If an  
error is found, the ADIS16486 sets the error flag, SYS_E_FLAG,  
Bit 1, and restarts the boot process using the backup copy of the  
DIN  
0x1A00  
0x1800  
ADDRESS  
DOUT  
Z_GYRO_OUT  
Z_GYRO_LOW  
Figure 14. SPI Read Example  
Figure 15 provides an example of the four SPI signals when reading  
the PROD_ID register (see Table 91) in a repeating pattern. This  
pattern can be helpful when troubleshooting the SPI setup and  
communications because this pattern provides a clear expectation  
for all signals (the PROD_ID register contents never change).  
CS  
SCLK  
DIN  
DIN = 0111 1110 0000 0000 = 0x7E00  
DOUT HIGH-Z  
HIGH-Z  
DOUT = 0100 0000 0110 0110 = 0x4066 = 16,486 (PROD_ID)  
Figure 15. SPI Read Example, Second 16-Bit Sequence  
Rev. 0 | Page 11 of 38  
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
USER REGISTER MEMORY MAP  
Table 10. User Register Memory Map (N/A Means Not Applicable)  
Name  
R/W Flash Backup Page ID Address  
Default Register Description  
PAGE_ID  
Reserved  
DATA_CNT  
SENS_PWR  
SYS_E_FLAG  
DIAG_STS  
ALM_STS  
R/W No  
N/A N/A  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x0000  
N/A  
N/A  
Page identifier  
Reserved  
Data and sample counter  
Internal power supply monitor  
Output, status and error flag indicators  
Output, self test error flags  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
0x0000  
0x0000  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Output, alarm error flags  
Output, internal temperature  
TEMP_OUT  
X_GYRO_LOW  
X_GYRO_OUT  
Y_GYRO_LOW  
Y_GYRO_OUT  
Z_GYRO_LOW  
Z_GYRO_OUT  
X_ACCL_LOW  
X_ACCL_OUT  
Y_ACCL_LOW  
Y_ACCL_OUT  
Z_ACCL_LOW  
Z_ACCL_OUT  
Reserved  
X_DELTANG_LOW  
X_DELTANG_OUT  
Y_DELTANG_LOW  
Y_DELTANG_OUT  
Z_DELTANG_LOW  
Z_DELTANG_OUT  
X_DELTVEL_LOW  
X_DELTVEL_OUT  
Y_DELTVEL_LOW  
Y_DELTVEL_OUT  
Z_DELTVEL_LOW  
Z_DELTVEL_OUT  
Reserved  
Output, x-axis gyroscope, low word  
Output, x-axis gyroscope, high word  
Output, y-axis gyroscope, low word  
Output, y-axis gyroscope, high word  
Output, z-axis gyroscope, low word  
Output, z-axis gyroscope, high word  
Output, x-axis accelerometer, low word  
Output, x-axis accelerometer, high word  
Output, y-axis accelerometer, low word  
Output, y-axis accelerometer, high word  
Output, z-axis accelerometer, low word  
Output, z-axis accelerometer, high word  
Reserved  
Output, x-axis delta angle, low word  
Output, x-axis delta angle, high word  
Output, y-axis delta angle, low word  
Output, y-axis delta angle, high word  
Output, z-axis delta angle, low word  
Output, z-axis delta angle, high word  
Output, x-axis delta velocity, low word  
Output, x-axis delta velocity, high word  
Output, y-axis delta velocity, low word  
Output, y-axis delta velocity, high word  
Output, z-axis delta velocity, low word  
Output, z-axis delta velocity, high word  
Reserved  
N/A N/A  
0x28 to 0x3F N/A  
R
R
R
R
R
R
R
R
R
R
R
R
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
0x40, 0x41  
0x42, 0x43  
0x44, 0x45  
0x46, 0x47  
0x48, 0x49  
0x4A, 0x4B  
0x4C, 0x4D  
0x4E, 0x4F  
0x50, 0x51  
0x52, 0x53  
0x54, 0x55  
0x56, 0x57  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A N/A  
R/W No  
R/W No  
R/W No  
0x58 to 0x77 N/A  
TIME_MS_OUT  
TIME_DH_OUT  
TIME_YM_OUT  
PROD_ID  
Reserved  
PAGE_ID  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7F  
N/A  
N/A  
N/A  
0x4066  
RTC: minutes and seconds  
RTC: day and hour  
RTC: year and month  
Output, product identification (16,486)  
Reserved  
R
Yes  
N/A N/A  
R/W No  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
0x00 to 0x7F N/A  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x0000  
N/A  
Page identifier  
Reserved  
Reserved  
X_GYRO_SCALE  
Y_GYRO_SCALE  
Z_GYRO_SCALE  
X_ACCL_SCALE  
Y_ACCL_SCALE  
Z_ACCL_SCALE  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Calibration, gyroscope scale, x-axis  
Calibration, gyroscope scale, y-axis  
Calibration, gyroscope scale, z-axis  
Calibration, accelerometer scale, x-axis  
Calibration, accelerometer scale, y-axis  
Calibration, accelerometer scale, z-axis  
Rev. 0 | Page 12 of 38  
 
 
Data Sheet  
ADIS16486  
Name  
R/W Flash Backup Page ID Address  
Default Register Description  
XG_BIAS_LOW  
XG_BIAS_HIGH  
YG_BIAS_LOW  
YG_BIAS_HIGH  
ZG_BIAS_LOW  
ZG_BIAS_HIGH  
XA_BIAS_LOW  
XA_BIAS_HIGH  
YA_BIAS_LOW  
YA_BIAS_HIGH  
ZA_BIAS_LOW  
ZA_BIAS_HIGH  
Reserved  
USER_SCR_1  
USER_SCR_2  
USER_SCR_3  
USER_SCR_4  
FLSHCNT_LOW  
FLSHCNT_HIGH  
PAGE_ID  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W No  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x10, 0x11  
0x12, 0x13  
0x14, 0x15  
0x16, 0x17  
0x18, 0x19  
0x1A, 0x1B  
0x1C, 0x1D  
0x1E, 0x1F  
0x20, 0x21  
0x22, 0x23  
0x24, 0x25  
0x26, 0x27  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Calibration, offset, gyroscope bias, x-axis, low word  
Calibration, offset, gyroscope bias, x-axis, high word  
Calibration, offset, gyroscope bias, y-axis, low word  
Calibration, offset, gyroscope bias, y-axis, high word  
Calibration, offset, gyroscope bias, z-axis, low word  
Calibration, offset, gyroscope bias, z-axis, high word  
Calibration, offset, accelerometer bias, x-axis, low word  
Calibration, offset, accelerometer bias, x-axis, high word  
Calibration, offset, accelerometer bias, y-axis, low word  
Calibration, offset, accelerometer bias, y-axis, high word  
Calibration, offset, accelerometer bias, z-axis, low word  
Calibration, offset, accelerometer bias, z-axis, high word  
Reserved  
User Scratch Register 1  
User Scratch Register 2  
User Scratch Register 3  
User Scratch Register 4  
Diagnostic, flash memory endurance counter, low word  
Diagnostic, flash memory endurance counter, high word  
Page identifier  
Control, global commands  
Reserved  
0x28 to 0x73 0x0000  
0x74, 0x75  
0x76, 0x77  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 07F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
0x0E, 0x0F  
0x10, 0x11  
0x0000  
0x0000  
0x0000  
0x0000  
N/A  
N/A  
0x0000  
0x0000  
N/A  
GLOB_CMD  
Reserved  
FNCTIO_CTRL  
GPIO_CTRL  
CONFIG  
DEC_RATE  
NULL_CNFG  
SLP_CNT  
W
No  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes  
N/A N/A  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
R/W Yes  
N/A N/A  
0x000D Auxiliary input and output line configuration  
0x00X01 General-purpose input and output control  
0x00C0  
0x0000  
0x070A Control, continuous bias estimation  
N/A  
Control, clock, miscellaneous configuration  
Control, output, decimation filter  
Control, power management  
Reserved  
FIR filter control  
FIR filter control  
Reserved  
Alarm configuration  
Alarm configuration  
Reserved  
Alarm configuration, x-axis gyroscope alarm  
Alarm configuration, y-axis gyroscope alarm  
Alarm configuration, z-axis gyroscope alarm  
Alarm configuration, x-axis accelerometer alarm  
Alarm configuration, y-axis accelerometer alarm  
Alarm configuration, z-axis accelerometer alarm  
Reserved  
Firmware revision  
Firmware revision day and month  
Firmware revision year  
Boot revision number  
Page identifier  
Reserved  
Signature CRC, calibration values, low word  
Signature CRC, calibration values, high word  
Derived CRC, calibration values, low word  
Derived CRC, calibration values, high word  
Signature CRC, program code, low word  
Reserved  
0x12 to 0x15 N/A  
0x16, 0x17  
0x18, 0x19  
0x1A to 0x1F N/A  
0x20, 0x21  
0x22, 0x23  
FILTR_BNK_0  
FILTR_BNK_1  
Reserved  
ALM_CNFG_0  
ALM_CNFG_1  
Reserved  
XG_ALM_MAGN  
YG_ALM_MAGN  
ZG_ALM_MAGN  
XA_ALM_MAGN  
YA_ALM_MAGN  
ZA_ALM_MAGN  
Reserved  
FIRM_REV  
FIRM_DM  
FIRM_Y  
BOOT_REV  
PAGE_ID  
Reserved  
0x0000  
0x0000  
0x0000  
0x0000  
0x24 to 0x27 N/A  
0x28, 0x29  
0x2A, 0x2B  
0x2C, 0x2D  
0x2E, 0x2F  
0x30, 0x31  
0x32, 0x33  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x34 to 0x77 N/A  
R
R
R
R
Yes  
Yes  
Yes  
Yes  
0x78, 0x79  
0x7A, 0x7B  
0x7C, 0x7D  
0x7E, 0x7F  
0x00, 0x01  
0x02, 0x03  
0x04, 0x05  
0x06, 0x07  
0x08, 0x09  
0x0A, 0x0B  
0x0C, 0x0D  
N/A  
N/A  
N/A  
N/A  
0x0000  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
R/W No  
N/A N/A  
CAL_SIGTR_LWR  
CAL_SIGTR_UPR  
CAL_DRVTN_LWR  
CAL_DRVTN_UPR  
CODE_SIGTR_LWR  
R
R
R
R
R
Yes  
Yes  
No  
No  
Yes  
Rev. 0 | Page 13 of 38  
ADIS16486  
Data Sheet  
Name  
R/W Flash Backup Page ID Address  
Default Register Description  
CODE_SIGTR_UPR  
CODE_DRVTN_LWR  
CODE_DRVTN_UPR  
Reserved  
SERIAL_NUM  
Reserved  
PAGE_ID  
Reserved  
FIR_COEF_Axxx  
PAGE_ID  
Reserved  
FIR_COEF_Axxx  
PAGE_ID  
Reserved  
FIR_COEF_Bxxx  
PAGE_ID  
Reserved  
FIR_COEF_Bxxx  
PAGE_ID  
Reserved  
FIR_COEF_Cxxx  
PAGE_ID  
Reserved  
R
R
R
Yes  
No  
No  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x05  
0x05  
0x05  
0x06  
0x06  
0x06  
0x07  
0x07  
0x07  
0x08  
0x08  
0x08  
0x09  
0x09  
0x09  
0x0A  
0x0A  
0x0A  
0x0B  
0x0B  
0x0B  
0x0C  
0x0C  
0x0C  
0x0E, 0x0F  
0x10, 0x11  
0x12, 0x13  
0x1C to 0x1F N/A  
0x20, 0x21 N/A  
0x22 to 0x7F N/A  
0x00, 0x01  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
N/A  
N/A  
N/A  
Signature CRC, program code, high word  
Derived CRC, program code, low word  
Derived CRC, program code, high word  
Reserved  
Lot specific serial number  
Reserved  
Page identifier  
Reserved  
FIR Filter Bank A, Coefficient 0 through Coefficient 59  
Page identifier  
Reserved  
FIR Filter Bank A, Coefficient 60 through Coefficient 119  
Page identifier  
Reserved  
FIR Filter Bank B, Coefficient 0 through Coefficient 59  
Page identifier  
Reserved  
FIR Filter Bank B, Coefficient 60 through Coefficient 119  
Page identifier  
Reserved  
FIR Filter Bank C, Coefficient 0 through Coefficient 59  
Page identifier  
Reserved  
FIR Filter Bank C, Coefficient 60 through Coefficient 119  
Page identifier  
Reserved  
N/A N/A  
Yes  
R
N/A N/A  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
R/W No  
N/A N/A  
R/W Yes  
0x0000  
0x00  
0x0000  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
0x00  
0x02 to 0x07 N/A  
0x02 to 0x7E N/A  
0x00  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
0x00  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
0x00  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
0x00  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
0x00  
0x0000  
0x0000  
0x0000  
0x0000  
FIR_COEF_Cxxx  
PAGE_ID  
Reserved  
FIR_COEF_Dxxx  
PAGE_ID  
Reserved  
0x0000  
FIR Filter Bank D, Coefficient 0 through Coefficient 59  
Page identifier  
Reserved  
0x0000  
0x02 to 0x07 N/A  
0x08 to 0x7F N/A  
FIR_COEF_Dxxx  
FIR Filter Bank D, Coefficient 60 through Coefficient 119  
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx pins and do not have a default setting.  
Table 11. Processing Times for Register Writes  
Registers  
Processing Time (µs)  
821  
TIME_MS_OUT, TIME_DH_OUT, TIME_YM_OUT  
X_GYRO_SCALE, Y_GYRO_SCALE, Z_GYRO_SCALE, X_ACCL_SCALE, Y_ACCL_SCALE, Z_ACCL_SCALE  
XG_BIAS_LOW, XG_BIAS_HIGH, YG_BIAS_LOW, YG_BIAS_HIGH, ZG_BIAS_LOW, ZG_BIAS_HIGH  
XA_BIAS_LOW, XA_BIAS_HIGH, YA_BIAS_LOW, YA_BIAS_HIGH, ZA_BIAS_LOW, ZA_BIAS_HIGH  
XG_ALM_MAGN, YG_ALM_MAGN, ZG_ALM_MAGN, XA_ALM_MAGN, YA_ALM_MAGN, ZA_ALM_MAGN  
USER_SCR_1, USER_SCR_2, USER_SCR_3, USER_SCR_4  
GLOB_CMD  
406.5  
406.5  
406.5  
406.5  
0
822  
GPIO_CTRL, DEC_RATE, CONFIG, ALM_CNFG_0, ALM_CNFG_1, SLP_CNT  
82  
FNCTIO_CTRL  
NULL_CNFG  
FILTR_BNK_0, FILTR_BNK_1  
FIR_COEF_xxxx  
147  
116  
101  
03  
1 The processing time for the TIME_xx_xxxx registers does not include the time it takes for these values to synchronize (≤1 sec).  
2 The processing time for the GLOB_CMD register does not include the time it takes to execute each command in this register.  
3 The processing time for the FIR_COEF_xxxx registers does not include the time it takes for the FIR filters to settle.  
Rev. 0 | Page 14 of 38  
 
 
Data Sheet  
ADIS16486  
USER REGISTER DEFINITIONS  
Page Number (PAGE_ID)  
Status and Error Flag Indicators (SYS_E_FLAG)  
The contents in the PAGE_ID register (see Table 12 and Table 13)  
contain the current page setting and provide a control for selecting  
another page for SPI access. For example, set DIN = 0x8002 to  
select Page 2 for SPI-based user access. See Table 10 for the page  
assignments associated with each user accessible register.  
The SYS_E_FLAG register (see Table 19 and Table 20) provides  
various error flags. Reading this register causes its bits to return  
to 0, except for Bit 7. If an error condition persists, the flag (bit)  
automatically returns an alarm value of 1.  
Table 19. SYS_E_FLAG Register Definition  
Table 12. PAGE_ID Register Definition  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x00  
0x08, 0x09  
0x0000  
R
No  
0x00  
0x00, 0x01  
0x0000  
R/W  
No  
Table 20. SYS_E_FLAG Bit Definitions  
Table 13. PAGE_ID Bit Definition  
Bits  
Description (Default = 0x0000)  
Bits  
Description (Default = 0x0000)  
15  
Watch dog timer flag. A 1 indicates that the ADIS16486  
automatically resets itself to clear an issue.  
[15:0]  
Page number, binary numerical format  
[14:9] Not used.  
Data and Sample Counter (DATA_CNT)  
8
Internal power supply monitor. A 1 indicates an issue  
The DATA_CNT register (see Table 14 and Table 15) is a  
continuous, real-time, sample counter. The counter starts at  
0x0000, increments every time that the sensor output data  
registers update, and wraps around from 0xFFFF to 0x0000.  
with the power supply for the sensors. Initiate a reset to  
recover. Replace the ADIS16486 if this error persists.  
7
Processing overrun. A 1 indicates the occurrence of a  
processing overrun. Initiate a reset to recover. Replace  
the ADIS16486 if this error persists. One potential source  
of this error is not providing power to the VDDRTC pin.  
Table 14. DATA_CNT Register Definition  
Page ID Addresses Default  
Access Flash Backup  
6
5
Flash memory update failure. A 1 indicates that the  
most recent flash memory update (GLOB_CMD, Bit 3, see  
Table 141) failed. Repeat the test and replace the  
ADIS16486 if this error persists.  
0x00 0x04, 0x05 Not applicable  
R
No  
Table 15. DATA_CNT Bit Definition  
Bits Description (No Default)  
[15:0] Data counter, binary format  
Sensor failure. A 1 indicates the failure of at least one of  
the self test processes: continuous or on demand. Run  
the ODST (GLOB_CMD, Bit 1, see Table 141) when the  
unit is in not in motion. Replace the ADIS16486 if the  
error persists.  
Internal Power Supply Monitor (SENS_PWR)  
The SENS_PWR register (see Table 16 and Table 17) is a read  
only register that provides a measurement of the internal power  
supply. Table 18 provides some examples of the data format.  
4
3
Overrange. A 1 indicates that the digital magnitude of at  
least one sensor has reached 99% of its maximum value.  
Initiate a reset to recover and replace the ADIS16486 if  
this error persists.  
Table 16. SENS_PWR Register Definition  
Page ID Addresses Default  
SPI communication error. A 1 indicates that the total  
number of SCLK cycles is not equal to an integer multiple  
of 16. Repeat the previous communication sequence to  
recover. Persistence in this error can indicate a weakness in  
the SPI service from the master processor.  
Access Flash Backup  
0x00 0x06, 0x07 Not applicable  
R
No  
Table 17. SENS_PWR Bit Definition  
Bits Description (No Default)  
2
1
SRAM error condition. A 1 indicates a failure in the CRC  
(period = 20 ms) between the SRAM and flash memory.  
Initiate a reset to recover. Replace the ADIS16486 if this  
error persists.  
[15:0] Relative power supply measurement, twos complement  
(see Equation 1)  
2.5 V  
Supply  
Boot memory failure. A 1 indicates that the CRC on the  
primary flash memory bank did not match the reference  
CRC value, and that the device automatically rebooted  
using the backup memory bank in flash. Replace the  
ADIS16486 if this error persists.  
SENS _ PWRLSB  
=
×216 215  
(1)  
Table 18. SENS_PWR Data Format Examples  
Supply Level (V) Decimal Hex Binary  
0x029D 0000 0010 1001 1101  
0
Alarm status flag. A 1 indicates that one of the user-  
programmable alarms is active. See the ALM_STS  
register for an indication of which alarm is active.  
4.90  
4.95  
5
+669  
+331  
0
0x014B  
0x0000  
0xFEBC  
0000 0001 0100 1011  
0000 0000 0000 0000  
1111 1110 1011 1100  
5.05  
5.10  
−324  
−643  
0xFD7D 1111 1101 0111 1101  
Rev. 0 | Page 15 of 38  
 
 
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
Table 25. TEMP_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x0E, 0x0F Not applicable No  
Self Test Error Flags (DIAG_STS)  
SYS_E_FLAG, Bit 5 (see Table 20) contains the pass and fail result  
(0 = pass) for both CST and ODST operations, whereas the  
DIAG_STS register (see Table 21 and Table 22) contains pass  
and fail flags (0 = pass) for each inertial sensor. Reading the  
DIAG_STS register clears all bits to 0. The bits in the DIAG_STS  
register return to 1 if the error conditions persist. The CST  
leverages a proprietary method for detecting abnormal behavior  
during normal operation, whereas the ODST artificially forces  
each inertial sensor to simulate their response to actual motion.  
R
Table 26. TEMP_OUT Bit Definition  
Bits  
Description (No Default)  
[15:0]  
Temperature data, twos complement, 0.00565°C per LSB,  
25°C = 0x0000  
Table 27. TEMP_OUT Data Format Examples  
Temperature (°C) Decimal Hex Binary  
+85  
+10,619  
+2  
+1  
0
−1  
−2  
−11,504  
0x297B  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0010 1001 0111 1011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
Table 21. DIAG_STS Register Definition  
+25 + 0.0113  
+25 + 0.00565  
+25  
+25 − 0.00565  
+25 − 0.0113  
−40  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x00  
0x0A, 0x0B  
0x0000  
R
No  
Table 22. DIAG_STS Bit Definitions  
Bits Description (Default = 0x0000)  
[15:6] Not used  
0xD310 1101 0011 0001 0000  
5
4
3
2
1
0
ODST failure, z-axis accelerometer (1 = failure)  
ODST failure, y-axis accelerometer (1 = failure)  
ODST failure, x-axis accelerometer (1 = failure)  
ODST failure, z-axis gyroscope (1 = failure)  
ODST failure, y-axis gyroscope (1 = failure)  
GYROSCOPE DATA  
The gyroscopes in the ADIS16486 measure the angular rate of  
rotation around three orthogonal axes (x, y, and z). Figure 16  
shows the orientation of each gyroscope axis, as well as the  
direction of rotation that produces a positive response in each  
of their measurements.  
ODST failure, x-axis gyroscope (1 = failure) or  
continuous self test (CST) failure, all gyroscope and  
accelerometers (1 = failure)  
Z-AXIS  
Alarm Error Flags (ALM_STS)  
ω
Z
The ALM_STS register (see Table 23 and Table 24) contains the  
error flags for the alarm settings in the ALM_CNFG_0 (see  
Table 159) and ALM_CNFG_1 (see Table 161) registers. Reading  
the ALM_STS register clears all bits to 0. If the alarm condition  
is persistent, the corresponding bit returns to 1 in the next  
sample cycle.  
X-AXIS  
Y-AXIS  
ω
X
ω
Y
PIN 23  
PIN 1  
Table 23. ALM_STS Register Definition  
Figure 16. Gyroscope Axis and Polarity Assignments  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
Each gyroscope has two output data registers. Figure 17 shows  
how the X_GYRO_LOW and X_GYRO_OUT registers  
combine to support a 32-bit, twos complement data format for  
the x-axis gyroscope measurements. This format also applies to  
the y- and x-axes.  
0x00  
0x0C, 0x0D  
0x0000  
R
No  
Table 24. ALM_STS Bit Definitions  
Bits  
Description (Default = 0x0000)  
[15:6]  
Not used  
5
4
3
2
1
0
Z-axis accelerometer alarm flag (1 = alarm is active)  
Y-axis accelerometer alarm flag (1 = alarm is active)  
X-axis accelerometer alarm flag (1 = alarm is active)  
Z-axis gyroscope alarm flag (1 = alarm is active)  
Y-axis gyroscope alarm flag (1 = alarm is active)  
X-axis gyroscope alarm flag (1 = alarm is active)  
X_GYRO_OUT  
X_GYRO_LOW  
15  
0 15  
0
X-AXIS GYROSCOPE DATA  
Figure 17. Gyroscope Output Data Structure  
X-Axis Gyroscope (X_GYRO_LOW, X_GYRO_OUT)  
The X_GYRO_LOW (see Table 28 and Table 29) and X_GYRO  
_OUT (see Table 30 and Table 31) registers contain the gyroscope  
data for the x-axis.  
Internal Temperature (TEMP_OUT)  
The TEMP_OUT register (see Table 25 and Table 26) provides  
a coarse measurement of the temperature inside of the ADIS16486.  
This data is most useful for monitoring relative changes in the  
thermal environment.  
Table 28. X_GYRO_LOW Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x10, 0x11 Not applicable  
R
No  
Rev. 0 | Page 16 of 38  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
Table 29. X_GYRO_LOW Bit Definition  
Gyroscope Resolution  
Bits  
Description (No Default)  
Table 40 and Table 41 offer various numerical examples that  
demonstrate the format of the angular rate (gyroscopes) data in  
both 16-bit and 32-bit formats.  
[15:0]  
X-axis gyroscope data, low word  
Table 30. X_GYRO_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x12, 0x13 Not applicable No  
Table 40. 16-Bit Gyroscope Data Format Examples  
Rotation Rate  
R
(°/sec)  
Decimal  
+22,500  
+2  
+1  
0
−1  
−2  
−22,500  
Hex  
Binary  
Table 31. X_GYRO_OUT Bit Definition  
+450  
0x57E4  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0101 0111 1110 0100  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
Bits  
Description (No Default)  
+0.04  
+0.02  
0
−0.02  
−0.04  
−450  
[15:0]  
X-axis gyroscope data, high word, twos complement,  
450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
Y-Axis Gyroscope (Y_GYRO_LOW, Y_GYRO_OUT)  
The Y_GYRO_LOW (see Table 32 and Table 33) and Y_GYRO  
_OUT (see Table 34 and Table 35) registers contain the gyroscope  
data for the y-axis.  
0xA81C 1010 1000 0001 1100  
Table 41. 32-Bit Gyroscope Data Format Examples  
Rotation Rate (°/sec)  
Decimal  
Hex  
Table 32. Y_GYRO_LOW Register Definition  
+450  
+1,474,560,000 0x57E40000  
Page ID Addresses Default  
Access Flash Backup  
+0.02/215  
+0.02/216  
0
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x00 0x14, 0x15 Not applicable  
R
No  
Table 33. Y_GYRO_LOW Bit Definition  
−0.02/216  
−0.02/215  
−450  
Bits  
Description (No Default)  
[15:0]  
Y-axis gyroscope data, low word  
−1,474,560,000 0x73600000  
Table 34. Y_GYRO_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x16, 0x17 Not applicable No  
ACCELERATION DATA  
R
The accelerometers in the ADIS16486 measure both dynamic  
and static (response to gravity) acceleration along three orthogonal  
axes (x, y, and z). Figure 18 shows the orientation of each  
accelerometer axis, along with the direction of acceleration that  
produces a positive response in each of their measurements.  
Z-AXIS  
Table 35. Y_GYRO_OUT Bit Definition  
Bits  
Description (No Default)  
[15:0]  
Y-axis gyroscope data, high word, twos complement,  
450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
Z-Axis Gyroscope (Z_GYRO_LOW, Z_GYRO_OUT)  
aZ  
The Z_GYRO_LOW (see Table 36 and Table 37) and Z_GYRO  
_OUT (see Table 38 and Table 39) registers contain the gyroscope  
data for the z-axis.  
X-AXIS  
Table 36. Z_GYRO_LOW Register Definition  
Y-AXIS  
Page ID Addresses Default  
Access Flash Backup  
aX  
aY  
0x00 0x18, 0x19 Not applicable  
R
No  
PIN 23  
PIN 1  
Table 37. Z_GYRO_LOW Bit Definition  
Figure 18. Accelerometer Axis and Polarity Assignments  
Bits  
Description (No Default)  
[15:0]  
Z-axis gyroscope data, low word, additional resolution  
bits  
Each accelerometer has two output data registers. Figure 19  
shows how the X_ACCL_LOW and X_ACCL_OUT registers  
combine to support a 32-bit, twos complement data format for  
the x-axis accelerometer measurements. This format also applies  
to the y- and x-axes.  
Table 38. Z_GYRO_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x1A, 0x1B Not applicable No  
R
X_ACCL_OUT  
X_ACCL_LOW  
Table 39. Z_GYRO_OUT Bit Definition  
15  
0 15  
0
Bits  
Description (No Default)  
X-AXIS ACCELEROMETER DATA  
[15:0]  
Z-axis gyroscope data, high word, twos complement,  
450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
Figure 19. Accelerometer Output Data Structure  
Rev. 0 | Page 17 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
Table 52. Z_ACCL_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x26, 0x27 Not applicable No  
X-Axis Accelerometer (X_ACCL_LOW, X_ACCL_OUT)  
The X_ACCL_LOW (see Table 42 and Table 43) and X_ACCL  
_OUT (see Table 44 and Table 45) registers contain the  
accelerometer data for the x-axis.  
R
Table 53. Z_ACCL_OUT Bit Definition  
Bits  
Description (No Default)  
Table 42. X_ACCL_LOW Register Definition  
[15:0]  
Z-axis accelerometer data, high word, twos complement,  
18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x1C, 0x1D Not applicable  
R
No  
Accelerometer Resolution  
Table 43. X_ACCL_LOW Bit Definition  
Bits Description (No Default)  
Table 54 and Table 55 offer various numerical examples that  
demonstrate the format of the linear acceleration data in both  
16-bit and 32-bit formats.  
[15:0] X-axis accelerometer data, low word  
Table 44. X_ACCL_OUT Register Definition  
Table 54. 16-Bit Accelerometer Data Format Examples  
Page ID Addresses Default  
Access Flash Backup  
Acceleration  
Decimal  
+20,000  
+2  
Hex  
Binary  
0x00 0x1E, 0x1F Not applicable  
R
No  
+18 g  
0x4E20  
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
0xB1E0  
0100 1110 0010 0000  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
1011 0001 1110 0000  
+1.6 mg  
+0.8 mg  
0 mg  
Table 45. X_ACCL_OUT Bit Definition  
+1  
0
Bits  
Description (No Default)  
[15:0]  
X-axis accelerometer data, high word, twos complement,  
−0.8 mg  
−1.6 mg  
−18 g  
−1  
−2  
−20,000  
18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg  
Y-Axis Accelerometer (Y_ACCL_LOW, Y_ACCL_OUT)  
The Y_ACCL_LOW (see Table 46 and Table 47) and Y_ACCL  
_OUT (see Table 48 and Table 49) registers contain the  
accelerometer data for the y-axis.  
Table 55. 32-Bit Accelerometer Data Format Examples  
Acceleration (g)  
Decimal  
Hex  
+18  
+1,310,720,000  
+2  
+1  
0
−1  
−2  
0x4E200000  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0xB1E00000  
Table 46. Y_ACCL_LOW Register Definition  
+0.0008/215  
+0.0008/216  
0
Page ID Addresses Default  
Access Flash Backup  
0x00 0x20, 0x21 Not applicable  
R
No  
−0.0008/216  
−0.0008/215  
−18  
Table 47. Y_ACCL_LOW Bit Definition  
Bits Description (No Default)  
−1,310,720,000  
[15:0] Y-axis accelerometer data, low word  
DELTA ANGLES  
Table 48. Y_ACCL_OUT Register Definition  
In addition to the angular rate of rotation (gyroscope)  
measurements around each axis (x, y, and z), the ADIS16486  
provides delta angle measurements that represent a computation  
of angular displacement between each sample update.  
Z-AXIS  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x22, 0x23 Not applicable  
R
No  
Table 49. Y_ACCL_OUT Bit Definition  
Bits  
Description (No Default)  
[15:0]  
Y-axis accelerometer data, twos complement, 18 g  
range, 0 g = 0x0000, 1 LSB = 0.8 mg  
ΔΘ  
Z
Z-Axis Accelerometer (Z_ACCL_LOW, Z_ACCL_OUT)  
The Z_ACCL_LOW (see Table 50 and Table 51) and Z_ACCL  
_OUT (see Table 52 and Table 53) registers contain the  
accelerometer data for the z-axis.  
X-AXIS  
Y-AXIS  
ΔΘ  
X
Table 50. Z_ACCL_LOW Register Definition  
ΔΘ  
Y
PIN 23  
Page ID Addresses Default  
Access Flash Backup  
PIN 1  
0x00 0x24, 0x25 Not applicable  
R
No  
Figure 20. Delta Angle Axis and Polarity Assignments  
Table 51. Z_ACCL_LOW Bit Definition  
Bits Description (No Default)  
[15:0] Z-axis accelerometer data, low word  
Rev. 0 | Page 18 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
The delta angle outputs represent an integration of the gyroscope  
measurements and use the following formula for all three axes (the  
x-axis is shown as follows):  
Table 60. Y_DELTANG_LOW Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x44, 0x45 Not applicable No  
R
D 1  
1
2 fS  
Table 61. Y_DELTANG_LOW Bit Definition  
θx,nD  
=
×
ω
+ωx,nD +d 1  
x,nD +d  
(
)
d =0  
Bits  
Description (No Default)  
[15:0]  
Y-axis delta angle data, low word  
where:  
D is the decimation rate = DEC_RATE + 1 (see Table 149).  
fs is the sample rate.  
d is the incremental variable in the summation formula.  
ωx is the x-axis rate of rotation (gyroscope).  
n is the sample time, prior to the decimation filter.  
Table 62. Y_DELTANG_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x46, 0x47 Not applicable No  
R
Table 63. Y_DELTANG_OUT Bit Definition  
Bits Description (No Default)  
When using the internal sample clock, fS is equal to 2460 SPS.  
When using the external clock option, fS is equal to the frequency  
of the external clock. Ensure that the external clock frequency is  
at least 700 Hz to prevent overflow in the delta angle data  
registers at high rotation rates.  
[15:0] Y-axis delta angle data, twos complement, 720° range,  
0° = 0x0000, 1 LSB = 720°/215 = ~0.022°  
Z-Axis Delta Angle (Z_DELTANG_LOW, Z_DELTANG_OUT)  
The Z_DELTANG_LOW (see Table 64 and Table 65) and  
Z_DELTANG_OUT (see Table 66 and Table 67) registers  
contain the delta angle data for the z-axis.  
Each axis of the delta angle measurements has two output data  
registers. Figure 21 shows how the X_DELTANG_LOW and  
X_DELTANG_OUT registers combine to support a 32-bit, twos  
complement data format for the x-axis delta angle measurements.  
This format also applies to the y- and x-axes.  
Table 64. Z_DELTANG_LOW Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x48, 0x49 Not applicable  
R
No  
X_DELTANG_OUT  
X_DELTANG_LOW  
15  
0 15  
0
Table 65. Z_DELTANG_LOW Bit Definition  
X-AXIS DELTA ANGLE DATA  
Bits  
Description (No Default)  
[15:0]  
Z-axis delta angle data, low word  
Figure 21. Delta Angle Output Data Structure  
X-Axis Delta Angle (X_DELTANG_LOW, X_DELTANG_OUT)  
Table 66. Z_DELTANG_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x4A, 0x4B Not applicable No  
The X_DELTANG_LOW (see Table 56 and Table 57) and  
X_DELTANG_OUT (see Table 58 and Table 59) registers  
contain the delta angle data for the x-axis.  
R
Table 67. Z_DELTANG_OUT Bit Definition  
Bits Description (No Default)  
Table 56. X_DELTANG_LOW Register Definition  
Page ID Addresses Default  
Access Flash Backup  
[15:0] Z-axis delta angle data, twos complement, 720° range,  
0° = 0x0000, 1 LSB = 720°/215 = ~0.022°  
0x00 0x40, 0x41 Not applicable  
R
No  
Delta Angle Resolution  
Table 57. X_DELTANG_LOW Bit Definition  
Table 68 and Table 69 offer various numerical examples that  
demonstrate the format of the delta angle data in both 16-bit  
and 32-bit formats.  
Bits  
Description (No Default)  
[15:0]  
X-axis delta angle data, low word  
Table 58. X_DELTANG_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x42, 0x43 Not applicable No  
Table 68. 16-Bit Delta Angle Data Format Examples  
Delta Angle (°)  
Decimal Hex  
Binary  
R
+720 × (215 − 1)/215 +32,767  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+720/214  
+720/215  
0
+2  
+1  
0
Table 59. X_DELTANG_OUT Bit Definition  
Bits Description (No Default)  
[15:0] X-axis delta angle data, twos complement, 720° range,  
0° = 0x0000, 1 LSB = 720°/215 = ~0.022°  
−720/215  
−720/214  
−720  
−1  
−2  
−32,768  
Y-Axis Delta Angle (Y_DELTANG_LOW, Y_DELTANG_OUT)  
The Y_DELTANG_LOW (see Table 60 and Table 61) and  
Y_DELTANG_OUT (see Table 62 and Table 63) registers  
contain the delta angle data for the y-axis.  
Rev. 0 | Page 19 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
X-Axis Delta Velocity (X_DELTVEL_LOW, X_DELTVEL_OUT)  
Table 69. 32-Bit Delta Angle Data Format Examples  
The X_DELTVEL_LOW (see Table 70 and Table 71) and  
X_DELTVEL_OUT (see Table 72 and Table 73) registers  
contain the delta velocity data for the x-axis.  
Delta Angle (°)  
+720 × (223 − 1)/223  
+720/222  
+720/223  
0
−720/223  
−720/223  
−720  
Decimal  
Hex  
+2,147,483,647 0x7FFFFFFF  
+2  
+1  
0
−1  
−2  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
Table 70. X_DELTVEL_LOW Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x4C, 0x4D Not applicable  
R
No  
Table 71. X_DELTVEL_LOW Bit Definition  
−2,147,483,648 0x80000000  
Bits  
Description (No Default)  
DELTA VELOCITY  
[15:0]  
X-axis delta velocity data, low word  
In addition to the linear acceleration measurements along each  
axis (x, y, and z), the ADIS16486 provides delta velocity  
measurements that represent a computation of linear velocity  
change between each sample update.  
Table 72. X_DELTVEL_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x4E, 0x4F Not applicable No  
R
Z-AXIS  
Table 73. X_DELTVEL_OUT Bit Definition  
Bits  
Description (No Default)  
ΔV  
Z
[15:0]  
X-axis delta velocity data, high word, twos complement,  
200 m/sec range, 0 m/sec = 0x0000, 1 LSB = 200 m/sec ÷  
215 = ~6.104 mm/sec  
X-AXIS  
Y-AXIS  
Y-Axis Delta Velocity (Y_DELTVEL_LOW, Y_DELTVEL_OUT)  
ΔV  
X
The Y_DELTVEL_LOW (see Table 74 and Table 75) and  
Y_DELTVEL_OUT (see Table 76 and Table 77) registers  
contain the delta velocity data for the y-axis.  
ΔV  
Y
PIN 23  
PIN 1  
Figure 22. Delta Velocity Axis and Polarity Assignments  
Table 74. Y_DELTVEL_LOW Register Definition  
The delta velocity outputs represent an integration of the  
Page ID Addresses Default  
Access Flash Backup  
acceleration measurements and use the following formula for  
all three axes (the x-axis is shown as follows):  
0x00 0x50, 0x51 Not applicable  
R
No  
Table 75. Y_DELTVEL_LOW Bit Definition  
D1  
1
2 fS  
Bits  
Description (No Default)  
Vx,nD  
=
×
ax,nD+d +ax,nD +d 1  
(
)
d =0  
[15:0]  
Y-axis delta velocity data, low word  
where:  
Table 76. Y_DELTVEL_OUT Register Definition  
Page ID Addresses Default Access Flash Backup  
0x00 0x52, 0x53 Not applicable No  
D is the decimation rate = DEC_RATE + 1 (see Table 149).  
fs is the sample rate.  
d is the incremental variable in the summation formula.  
ax is the x-axis acceleration (accelerometer).  
n is the sample time, prior to the decimation filter.  
R
Table 77. Y_DELTVEL_OUT Bit Definition  
Bits Description (No Default)  
When using the internal sample clock, fS is equal to 2460 SPS.  
When using the external clock option, fS is equal to the frequency  
of the external clock. Ensure that the frequency of the external  
clock is at least 700 Hz to prevent overflow in the delta velocity  
data registers at high acceleration levels.  
[15:0] Y-axis delta velocity data, high word, twos complement,  
200 m/sec range, 0 m/sec = 0x0000, 1 LSB = 200 m/sec ÷  
215 = ~6.104 mm/sec  
Z-Axis Delta Velocity (Z_DELTVEL_LOW, Z_DELTVEL_OUT)  
The Z_DELTVEL_LOW (see Table 78 and Table 79) and  
Z_DELTVEL_OUT (see Table 80 and Table 81) registers  
contain the delta velocity data for the z-axis.  
Each axis of the delta velocity measurements has two output  
data registers. Figure 23 shows how the X_DELTVEL_LOW  
and X_DELTVEL_OUT registers combine to support a 32-bit,  
twos complement data format for the x-axis delta velocity  
measurements. This format also applies to the y- and x-axes.  
Table 78. Z_DELTVEL_LOW Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x54, 0x55 Not applicable  
R
No  
X_ DELTVEL_OUT  
X_ DELTVEL_LOW  
15  
0 15  
0
Table 79. Z_DELTVEL_LOW Bit Definition  
X-AXIS DELTA VELOCITY DATA  
Bits  
Description (No Default)  
[15:0]  
Z-axis delta velocity data, low word  
Figure 23. Delta Velocity Output Data Structure  
Rev. 0 | Page 20 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
Table 80. Z_DELTVEL_OUT Register Definition  
The updates to the timer become active only after a write to  
TIME_YM_OUT, Bits[14:8] byte completes.  
Page ID Addresses Default  
Access Flash Backup  
0x00 0x56, 0x57 Not applicable  
R
No  
The RTC registers reflect the newly updated values only after the  
next seconds tick of the clock that follows the write to TIME_YM_  
OUT, Bits[14:8] (year(s)). Writing to TIME_YM_OUT, Bits[14:8]  
activates all of the timing values. Therefore, always write to this  
location last when updating the timer, even if the year information  
does not require updating.  
Table 81. Z_DELTVEL_OUT Bit Definition  
Bits Description (No Default)  
[15:0] Z-axis delta velocity data, high word, twos complement,  
200 m/sec range, 0 m/sec = 0x0000, 1 LSB = 200 m/sec ÷  
215 = ~6.104 mm/sec  
Write the current time to each time data register after setting  
CONFIG, Bit 0 = 1 (DIN = 0x8003, DIN = 0x8AC1, DIN =  
0x8B00). This sequence preserves the factory default for other  
bits in the CONFIG register. After configuring the CONFIG  
register, set GLOB_CMD, Bit 3 = 1 (DIN = 0x8003, DIN =  
0x8204, DIN = 0x8300) to back up these settings in flash. Even  
though only VDDRTC must have power for time tracking,  
access to the time data in the TIME_xx_OUT registers requires  
normal operation (VDD = 3.3 V and full startup). Even when  
not using the RTC function, the supply voltage on VDDRTC  
must meet the conditions in Table 1.  
Delta Velocity Resolution  
Table 82 and Table 83 illustrate delta angle data in both 16-bit  
and 32-bit formats.  
Table 82. 16-Bit Delta Velocity Data Format Examples  
Velocity (m/sec)  
Decimal Hex  
Binary  
+200 × (215 − 1)/215 +32,767  
0x7FFF 0111 1111 1110 1111  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF 1111 1111 1111 1111  
0xFFFE 1111 1111 1111 1110  
0x8000 1000 0000 0000 0000  
+200/214  
+200/215  
0
+2  
+1  
0
−200/215  
−200/214  
−200  
−1  
−2  
−32,768  
RTC: Minutes and Seconds, TIME_MS_OUT  
Table 84. TIME_MS_OUT Register Definition  
Table 83. 32-Bit Delta Velocity Data Format Examples  
Page ID Addresses Default  
Access Flash Backup  
Velocity (m/sec)  
+200 × (231 − 1)/231  
+200/230  
+200/231  
0
−200/231  
−200/230  
−200  
Decimal  
Hex  
0x00  
0x78, 0x79 Not applicable R/W  
No  
+2,147,483,647  
+2  
+1  
0
−1  
−2  
0x7FFFFFFF  
0x00000002  
0x00000001  
0x00000000  
0xFFFFFFFF  
0xFFFFFFFE  
0x80000000  
Table 85. TIME_MS_OUT Bit Definitions  
Bits  
Description (No Default)  
[15:14]  
[13:8]  
[7:6]  
Not used  
Minute(s), binary data, range = 0 to 59  
Not used  
[5:0]  
Second(s), binary data, range = 0 to 59  
−2,147,483,648  
RTC: Day and Hour, TIME_DH_OUT  
REAL-TIME CLOCK (RTC)  
The VDDRTC power supply pin (see Table 6, Pin 23) provides a  
separate supply for the RTC function. Connecting the VDDRTC  
pin to its own 3.3 V supply enables the RTC to keep track of time,  
even when the main supply (VDD) is off. Note that the VDDRTC  
power supply must always be connected, even when this  
function is not used.  
Table 86. TIME_DH_OUT Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x00  
0x7A, 0x7B Not applicable R/W No  
Table 87. TIME_DH_OUT Bit Definitions  
Bits  
Description (No Default)  
[15:13]  
[12:8]  
[7:6]  
Not used  
Configure the RTC function by selecting one of two modes in  
Bit 0 of the CONFIG register (see Table 147). The RTC data is  
available in the TIME_MS_OUT (see Table 85), TIME_DH_OUT  
(see Table 87), and TIME_YM_OUT (see Table 89) registers.  
When using the elapsed timer mode, the time data registers start  
at 0x0000 when the device starts up (or resets) and begin keeping  
time in a similar manner to a stopwatch.  
Day(s), binary data, range = 1 to 31  
Not used  
[5:0]  
Hour(s), binary data, range = 0 to 23  
RTC: Year and Month, TIME_YM_OUT  
Table 88. TIME_YM_OUT Register Definition  
Page ID Addresses Default  
Access Flash Backup  
When using the clock and calendar mode, write the current time  
to the real-time registers in the following sequence: second(s)  
(TIME_MS_OUT, Bits[5:0]), minute(s) (TIME_ MS_OUT,  
Bits[13:8]), hour(s) (TIME_DH_OUT, Bits[5:0]), day(s)  
(TIME_DH_OUT, Bits[12:8]), month(s) (TIME_YM_OUT,  
Bits[3:0]), and year(s) (TIME_YM_OUT, Bits[14:8]).  
0x00  
0x7C, 0x7D Not applicable R/W  
No  
Rev. 0 | Page 21 of 38  
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
See Figure 15 for an example of how to use a looping read of  
this register to validate the integrity of the communication.  
Table 89. TIME_YM_OUT Bit Definitions  
Bits  
Description (No Default)  
Table 90. PROD_ID Register Definition  
[15]  
Not used  
Page ID Addresses  
Default Access Flash Backup  
[14:8] Year(s), binary data, range = 0 to 99, relative to 2000 AD  
0x00 0x7E, 0x7F  
0x4066 Yes  
R
[7:4]  
[3:0]  
Not used  
Month(s), binary data, range = 1 to 12  
Table 91. PROD_ID Bit Definition  
Product Identification, PROD_ID  
Bits  
Description (Default = 0x4066)  
The PROD_ID register (see Table 90 and Table 91) contains  
the numerical portion of the device number (16,486).  
[15:0]  
Product identification = 0x4066  
fs  
4
D
FIR  
FILTER  
BANK  
÷D  
1
4
1
D
MEMS  
SENSOR  
ADC  
330Hz  
÷4  
GYROSCOPE  
INTERNAL  
CLOCK  
2-POLE: 404Hz, 757Hz  
4×  
SELECTABLE AVERAGE/DECIMATION FILTER  
9.84kHz  
AVERAGE  
DECIMATION  
FILTER  
FIR FILTER BANK  
FILTR_BNK_0  
FILTR_BNK_1  
D = DEC_RATE, BITS[10:0] + 1  
ACCELEROMETER  
1-POLE: 330Hz  
fs  
DIOx  
OPTIONAL INPUT CLOCK  
FNCTIO_CTRL, BIT 7 = 1  
fs < 2400Hz  
NOTES  
1. WHEN FNCTIO_CTRL, BIT 7 = 1, fs IS THE EXTERNAL INPUT CLOCK, AND EACH CLOCK PULSE ON THE DESIGNATED DIOx LINE  
(FNCTIO_CTRL, BITS[5:4]) STARTS A 4-SAMPLE BURST, AT A SAMPLE RATE OF 9.84 kHz. THESE FOUR SAMPLES FEED INTO THE  
4× AVERAGE/DECIMATION FILTER, WHICH PRODUCES A DATA RATE THAT IS EQUAL TO THE INPUT CLOCK FREQUENCY.  
2. WHEN FNCTIO_CTRL, BIT 7 = 0, fs IS THE INTERNALLY GENERATED 2.46 kHz SAMPLE CLOCK.  
Figure 24. Sampling and Frequency Response Signal Flow  
Rev. 0 | Page 22 of 38  
 
 
 
 
Data Sheet  
ADIS16486  
Table 96. Z_GYRO_SCALE Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x08, 0x09 0x0000 R/W Yes  
CALIBRATION  
The signal chain of each inertial sensor (accelerometers and  
gyroscopes) includes the application of unique correction  
formulas, which come from extensive characterization of bias,  
sensitivity, alignment, and response to linear acceleration  
(gyroscopes) over a temperature range of −40°C to +85°C for  
every ADIS16486. These correction formulas are not accessible,  
but users can adjust bias and scale factor for each sensor  
individually through user accessible registers. These correction  
factors follow immediately after the factory derived correction  
formulas in the signal chain.  
Table 97. Z_GYRO_SCALE Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] Z-axis gyroscope scale correction, twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Calibration, Accelerometer Scale, X_ACCL_SCALE  
The X_ACCL_SCALE register (see Table 98 and Table 99)  
allows users to adjust the scale factor for the x-axis accelerometers.  
See Figure 26 for an illustration of how this scale factor influences  
the x-axis accelerometer data.  
Calibration, Gyroscope Scale, X_GYRO_SCALE  
The X_GYRO_SCALE register (see Table 92 and Table 93)  
allows users to adjust the scale factor for the x-axis gyroscopes.  
See Figure 25 for an illustration of how this scale factor  
influences the x-axis gyroscope data.  
Table 98. X_ACCL_SCALE Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x0A, 0x0B  
0x0000 R/W Yes  
Table 92. X_GYRO_SCALE Register Definition  
Table 99. X_ACCL_SCALE Bit Definition  
Bits Description (Default = 0x0000)  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x04, 0x05  
0x0000 R/W Yes  
[15:0] X-axis accelerometer scale correction, twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Table 93. X_GYRO_SCALE Bit Definition  
Bits Description (Default = 0x0000)  
1 + X_ACCL_SCALE  
FACTORY  
[15:0] X-axis gyroscope scale correction, twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
X-AXIS  
ACCL  
CALIBRATION  
AND  
X_ACCL_OUT X_ACCL_LOW  
FILTERING  
1 + X_GYRO_SCALE  
XA_BIAS_HIGH  
XA_BIAS_LOW  
FACTORY  
X-AXIS  
GYRO  
CALIBRATION  
AND  
Figure 26. User Calibration Signal Path, Accelerometers  
X_GYRO_OUT X_GYRO_LOW  
FILTERING  
Calibration, Accelerometer Scale, Y_ACCL_SCALE  
XG_BIAS_HIGH XG_BIAS_LOW  
The Y_ACCL_SCALE register (see Table 100 and Table 101)  
allows users to adjust the scale factor for the y-axis accelerometers.  
This register influences the y-axis accelerometer measurements  
in the same manner that the X_ACCL_SCALE register influences  
the x-axis accelerometer measurements (see Figure 26).  
Figure 25. User Calibration Signal Path, Gyroscopes  
Calibration, Gyroscope Scale, Y_GYRO_SCALE  
The Y_GYRO_SCALE register (see Table 94 and Table 95)  
allows users to adjust the scale factor for the y-axis gyroscopes.  
This register influences the y-axis gyroscope measurements in  
the same manner that the X_GYRO_SCALE register influences  
the x-axis gyroscope measurements (see Figure 25).  
Table 100. Y_ACCL_SCALE Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x02  
0x0C, 0x0D 0x0000 R/W  
Yes  
Table 94. Y_GYRO_SCALE Register Definition  
Table 101. Y_ACCL_SCALE Bit Definition  
Bits Description (Default = 0x0000)  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x06, 0x07  
0x0000 R/W Yes  
[15:0] Y-axis accelerometer scale correction, twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Table 95. Y_GYRO_SCALE Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] Y-axis gyroscope scale correction, twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Calibration, Accelerometer Scale, Z_ACCL_SCALE  
The Z_ACCL_SCALE register (see Table 102 and Table 103)  
allows users to adjust the scale factor for the z-axis accelerometers.  
This register influences the z-axis accelerometer measurements  
in the same manner that the X_ACCL_SCALE register influences  
the x-axis accelerometer measurements (see Figure 26).  
Calibration, Gyroscope Scale, Z_GYRO_SCALE  
The Z_GYRO_SCALE register (see Table 96 and Table 97)  
allows users to adjust the scale factor for the z-axis gyroscopes.  
This register influences the z-axis gyroscope measurements in the  
same manner that the X_GYRO_SCALE register influences the  
x-axis gyroscope measurements (see Figure 25).  
Table 102. Z_ACCL_SCALE Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x0E, 0x0F  
0x0000 R/W Yes  
Rev. 0 | Page 23 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
Table 103. Z_ACCL_SCALE Bit Definition  
Table 110. YG_BIAS_HIGH Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x16, 0x17 0x0000 R/W Yes  
Bits  
Description (Default = 0x0000)  
[15:0] Z-axis accelerometer scale correction, twos complement,  
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%  
Table 111. YG_BIAS_HIGH Bit Definition  
Bits Description (Default = 0x0000)  
Calibration, Gyroscope Bias, XG_BIAS_LOW,  
XG_BIAS_HIGH  
[15:0] Y-axis gyroscope offset correction, high word, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
The XG_BIAS_LOW (see Table 104 and Table 105) and XG_  
BIAS_HIGH (see Table 106 and Table 107) registers combine  
to allow users to adjust the bias of the x-axis gyroscopes. The  
digital format examples in Table 40 also apply to the XG_BIAS_  
HIGH register, and the digital format examples in Table 41 apply  
to the 32-bit number that comes from combining the XG_BIAS_  
LOW and XG_BIAS_HIGH registers. See Figure 25 for an  
illustration of how these two registers combine and influence  
the x-axis gyroscope measurements.  
Calibration, Gyroscope Bias, ZG_BIAS_LOW,  
ZG_BIAS_HIGH  
The ZG_BIAS_LOW (see Table 112 and Table 113) and ZG_  
BIAS_HIGH (see Table 114 and Table 115) registers combine  
to allow users to adjust the bias of the z-axis gyroscopes. The  
digital format examples in Table 40 also apply to the ZG_BIAS_  
HIGH register, and the digital format examples in Table 41 apply  
to the 32-bit number that comes from combining the ZG_BIAS_  
LOW and ZG_BIAS_HIGH registers. These registers influence  
the z-axis gyroscope measurements in the same manner that the  
XG_BIAS_LOW and XG_BIAS_HIGH registers influence the  
x-axis gyroscope measurements (see Figure 25).  
Table 104. XG_BIAS_LOW Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x10, 0x11  
0x0000 R/W Yes  
Table 105. XG_BIAS_LOW Bit Definition  
Table 112. ZG_BIAS_LOW Register Definition  
Bits  
Description (Default = 0x0000)  
Page ID Addresses  
Default Access Flash Backup  
[15:0]  
X-axis gyroscope offset correction, low word, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec ÷ 216  
~0.000000305°/sec  
=
0x02 0x18, 0x19  
0x0000 R/W Yes  
Table 113. ZG_BIAS_LOW Bit Definition  
Bits Description (Default = 0x0000)  
Table 106. XG_BIAS_HIGH Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x12, 0x13 0x0000 R/W Yes  
[15:0] Z-axis gyroscope offset correction, low word, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec ÷ 216  
~0.000000305°/sec  
=
Table 107. XG_BIAS_HIGH Bit Definition  
Bits Description (Default = 0x0000)  
Table 114. ZG_BIAS_HIGH Register Definition  
Page ID Addresses  
Default Access Flash Backup  
[15:0] X-axis gyroscope offset correction, high word, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
0x02 0x1A, 0x1B  
0x0000 R/W Yes  
Calibration, Gyroscope Bias, YG_BIAS_LOW,  
YG_BIAS_HIGH  
Table 115. ZG_BIAS_HIGH Bit Definition  
Bits Description (Default = 0x0000)  
The YG_BIAS_LOW (see Table 108 and Table 109) and YG_  
BIAS_HIGH (see Table 110 and Table 111) registers combine  
to allow users to adjust the bias of the y-axis gyroscopes. The  
digital format examples in Table 40 also apply to the YG_BIAS_  
HIGH register, and the digital format examples in Table 41 apply  
to the 32-bit number that comes from combining the YG_BIAS_  
LOW and YG_BIAS_HIGH registers. These registers influence  
the y-axis gyroscope measurements in the same manner that  
the XG_BIAS_LOW and XG_BIAS_HIGH registers influence  
the x-axis gyroscope measurements (see Figure 25).  
[15:0] Z-axis gyroscope offset correction, high word, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
Calibration, Accelerometer Bias, XA_BIAS_LOW,  
XA_BIAS_HIGH  
The XA_BIAS_LOW (see Table 116 and Table 117) and XA_  
BIAS_HIGH (see Table 118 and Table 119) registers combine  
to allow users to adjust the bias of the x-axis accelerometers. The  
digital format examples in Table 54 also apply to the XA_BIAS_  
HIGH register, and the digital format examples in Table 55 apply  
to the 32-bit number that comes from combining the XA_BIAS_  
LOW and XA_BIAS_HIGH registers. See Figure 26 for an  
illustration of how these two registers combine and influence  
the x-axis accelerometer measurements.  
Table 108. YG_BIAS_LOW Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x14, 0x15  
0x0000 R/W Yes  
Table 109. YG_BIAS_LOW Bit Definition  
Bits Description (Default = 0x0000)  
Table 116. XA_BIAS_LOW Register Definition  
Page ID Addresses  
Default Access Flash Backup  
[15:0] Y-axis gyroscope offset correction, low word, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec ÷ 216  
~0.000000305°/sec  
0x02  
0x1C, 0x1D 0x0000 R/W  
Yes  
=
Rev. 0 | Page 24 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
Table 117. XA_BIAS_LOW Bit Definition  
manner that the XA_BIAS_LOW and XA_BIAS_HIGH registers  
influence the x-axis accelerometer measurements (see Figure 26).  
Bits  
Description (Default = 0x0000)  
[15:0]  
X-axis accelerometer offset correction, low word, twos  
Table 124. ZA_BIAS_LOW Register Definition  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg ÷ 216  
~0.01221 µg  
=
Page ID Addresses  
Default Access Flash Backup  
0x02 0x24, 0x25  
0x0000 R/W Yes  
Table 118. XA_BIAS_HIGH Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x1E, 0x1F 0x0000 R/W Yes  
Table 125. ZA_BIAS_LOW Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] Z-axis accelerometer offset correction, low word, twos  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg ÷ 216  
~0.01221 µg  
=
Table 119. XA_BIAS_HIGH Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] X-axis accelerometer offset correction, high word, twos  
Table 126. ZA_BIAS_HIGH Register Definition  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg  
Page ID Addresses  
Default Access Flash Backup  
Calibration, Accelerometer Bias, YA_BIAS_LOW,  
YA_BIAS_HIGH  
0x02 0x26, 0x27  
0x0000 R/W Yes  
Table 127. ZA_BIAS_HIGH Bit Definition  
Bits Description (Default = 0x0000)  
The YA_BIAS_LOW (see Table 120 and Table 121) and YA_  
BIAS_HIGH (see Table 122 and Table 123) registers combine  
to allow users to adjust the bias of the y-axis accelerometers. The  
digital format examples in Table 54 also apply to the YA_BIAS_  
HIGH register, and the digital format examples in Table 55 apply  
to the 32-bit number that comes from combining the YA_BIAS_  
LOW and YA_BIAS_HIGH registers. These registers influence  
the y-axis accelerometer measurements in the same manner  
that the XA_BIAS_LOW and XA_BIAS_HIGH registers influence  
the x-axis accelerometer measurements (see Figure 26).  
[15:0] Z-axis accelerometer offset correction, high word, twos  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg  
Scratch Registers, USER_SCR_x  
The USER_SCR_1 (see Table 128 and Table 129), USER_SCR_2  
(see Table 130 and Table 131), USER_SCR_3 (see Table 132  
and Table 133), and USER_SCR_4 (see Table 134 and Table 135)  
registers provide four locations for users to store information.  
Table 128. USER_SCR_1 Register Definition  
Table 120. YA_BIAS_LOW Register Definition  
Page ID Addresses  
Default Access Flash Backup  
Page ID Addresses  
Default Access Flash Backup  
0x02 0x74, 0x75  
0x0000 R/W Yes  
0x02 0x20, 0x21  
0x0000 R/W Yes  
Table 129. USER_SCR_1 Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] User defined  
Table 121. YA_BIAS_LOW Bit Definition  
Bits  
Description (Default = 0x0000)  
[15:0]  
Y-axis accelerometer offset correction, low word, twos  
Table 130. USER_SCR_2 Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x76, 0x77 0x0000 R/W Yes  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg ÷ 216  
~0.01221 µg  
=
Table 122. YA_BIAS_HIGH Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x22, 0x23 0x0000 R/W Yes  
Table 131. USER_SCR_2 Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] User defined  
Table 123. YA_BIAS_HIGH Bit Definition  
Bits Description (Default = 0x0000)  
Table 132. USER_SCR_3 Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x78, 0x79 0x0000 R/W Yes  
[15:0] Y-axis accelerometer offset correction, high word, twos  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg  
Table 133. USER_SCR_3 Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] User defined  
Calibration, Accelerometer Bias, ZA_BIAS_LOW,  
ZA_BIAS_HIGH  
The ZA_BIAS_LOW (see Table 124 and Table 125) and ZA_  
BIAS_HIGH (see Table 126 and Table 127) registers combine  
to allow users to adjust the bias of the z-axis accelerometers.  
The digital format examples in Table 54 also apply to the ZA_  
BIAS_HIGH register, and the digital format examples in Table 55  
apply to the 32-bit number that comes from combining the  
ZA_BIAS_LOW and ZA_BIAS_HIGH registers. These registers  
influence the z-axis accelerometer measurements in the same  
Table 134. USER_SCR_4 Register Definition  
Page ID Addresses Default Access Flash Backup  
0x02 0x7A, 0x7B 0x0000 R/W Yes  
Table 135. USER_SCR_4 Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] User defined  
Rev. 0 | Page 25 of 38  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
Flash Memory Endurance Counter, FLSHCNT_LOW,  
FLSHCNT_HIGH  
Table 141. GLOB_CMD Bit Definitions  
Bits  
Description (Default = 0x0000)  
The FLSHCNT_LOW (see Table 136 and Table 137) and  
FLSHCNT_HIGH (see Table 138 and Table 139) registers  
combine to create a 32-bit binary counter that tracks the number  
of flash memory write cycles. In addition to the number of  
write cycles, the flash memory has a finite service lifetime,  
which depends on the junction temperature. Figure 27 provides  
guidance for estimating the retention life for the flash memory  
at specific junction temperatures. The junction temperature is  
approximately 7°C above the case temperature.  
[15:8]  
Not used  
7
Software reset  
Factory calibration restore  
Not used  
6
[5:4]  
3
Flash memory update  
Not used  
2
1
Self test  
0
Bias correction update  
Software Reset  
Table 136. FLSHCNT_LOW Register Definition  
Select Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 7 = 1  
(DIN = 0x8280, then DIN = 0x8300) to initiate a reset of the  
ADIS16486. This reset removes all data, initializes all of the  
registers from their flash settings, and restarts data sampling  
and processing. This function provides a firmware alternative  
Page ID Addresses Default  
Access Flash Backup  
0x02  
0x7C, 0x7D Not applicable R/W  
Yes  
Table 137. FLSHCNT_LOW Bit Definition  
Bits Description (No Default)  
RST  
to providing a low pulse on the  
pin (see Table 6).  
[15:0] Flash memory write counter, low word  
Factory Calibration Restore  
Table 138. FLSHCNT_HIGH Register Definition  
Select Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 6 = 1  
(DIN = 0x8240, then DIN = 0x8300) to restore the factory  
calibration. This restoration writes 0x0000 to the following  
registers: X_GYRO_SCALE, Y_GYRO_SCALE,  
Z_GYRO_SCALE, X_ACCL_SCALE, Y_ACCL_SCALE,  
Z_ACCL_SCALE, XG_BIAS_LOW, XG_BIAS_HIGH,  
YG_BIAS_LOW, YG_BIAS_HIGH, ZG_BIAS_LOW,  
ZG_BIAS_HIGH, XA_BIAS_LOW, XA_BIAS_HIGH,  
YA_BIAS_LOW, YA_BIAS_HIGH, ZA_BIAS_LOW, and  
ZA_BIAS_HIGH.  
Page ID Addresses Default  
Access Flash Backup  
0x02  
0x7E, 0x7F Not applicable R/W Yes  
Table 139. FLSHCNT_HIGH Bit Definition  
Bits  
Description (No Default)  
[15:0] Flash memory write counter, high word  
600  
450  
300  
Flash Memory Update  
Select Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 3 = 1  
(DIN = 0x8208, then DIN = 0x8300) to initiate a manual flash  
update. SYS_E_FLAG, Bit 6 (see Table 20) identifies success (0)  
or failure (1) in completing this process.  
150  
0
ODST  
Select Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 1 = 1  
(DIN = 0x8202, then DIN = 0x8300) to run the ODST routine,  
which executes the following steps:  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
Figure 27. Flash Memory Retention  
1. Measure the output on each sensor.  
2. Activate an internal force on the mechanical elements of  
each sensor, which simulates the force associated with  
actual inertial motion.  
3. Measure the output response on each sensor.  
4. Deactivate the internal force on each sensor.  
5. Calculate the difference between the force on and normal  
operating conditions (force off).  
Global Commands, GLOB_CMD  
The GLOB_CMD register (see Table 140 and Table 141) provides  
trigger bits for several operations. Write a 1 to the appropriate  
bit in the GLOB_CMD register to start a desired function.  
Table 140. GLOB_CMD Register Definition  
Page ID Addresses  
Default Access Flash Backup  
6. Compare the difference with internal pass and fail criteria.  
7. Report the pass and fail results for each sensor in DIAG_  
STS (see Table 22) and the overall pass and fail flag in SYS_  
E_FLAG, Bit 5 (see Table 20).  
0x03 0x02, 0x03  
0x0000 No  
W
Rev. 0 | Page 26 of 38  
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
When using an external clock, the self test execution times may  
vary from the 12 ms listed in Table 1. In addition, false positive  
results are possible when executing the ODST while the device  
is in motion.  
data collection and minimize latency. The factory default assigns  
the DIO2 pin as a positive polarity, data ready signal. This  
means that the data in the output registers is valid when the  
DIO2 line is high (see Figure 28). This configuration is intended  
when the DIO2 pin drives an interrupt service pin that activates  
on a low to high pulse.  
Bias Correction Update  
Select Page 3 (DIN = 0x8003) and set GLOB_CMD, Bit 0 = 1  
(DIN = 0x8201, then DIN = 0x8300) to update the user offset  
registers with the correction factors of the continuous bias  
estimator (CBE). Ensure that the inertial platform is stable during  
the entire average time for optimal bias estimates.  
DIO2  
INACTIVE  
ACTIVE  
Figure 28. Data Ready, when FNCTIO_CTRL, Bits[3:0] = 1101 (Default)  
Use the following sequence to change this assignment to the  
DIO1 pin with a negative polarity:  
Auxiliary Input and Output Line Configuration,  
FNCTIO_CTRL  
1. Select Page 3 (DIN = 0x8003).  
2. Set FNCTIO_CTRL, Bits[3:0] = 1000 (DIN = 0x8608, then  
DIN = 0x8700).  
The FNCTIO_CTRL register (see Table 142 and Table 143)  
provides configuration control for each input and output pin  
(DIO1, DIO2, DIO3, and DIO4). Each DIOx pin supports only  
one function at a time. In cases where a single pin has two  
assignments, the enable bit for the lower priority function  
automatically resets to zero (disabling the lower priority function).  
The order of priority is as follows, from highest priority to lowest  
priority: data ready, sync clock input, alarm indicator, and  
general-purpose. Changing the FNCTIO_CTRL, Bits[5:4] bit  
settings requires an execution time of 75 ms, whereas changing  
the settings of the remaining bits in the FNCTIO_CTRL register  
only takes 3 ms. During this execution time (75 ms or 3 ms),  
the operational state and the contents of the register remain  
unchanged. However, the SPI interface supports normal  
The period of the data ready signal can vary by up to 2%.  
Input Sync and Clock Control  
FNCTIO_CTRL, Bits[7:4] provide configuration options for  
using one of the DIOx pins as an input synchronization signal for  
sampling inertial sensor data. For example, use the following  
sequence to establish the DIO4 pin as a positive polarity, input  
clock pin, and to keep the factory default setting for the data ready  
function:  
1. Select Page 3 (DIN = 0x8003).  
2. Set FNCTIO_CTRL, Bits[7:0] = 0xFD (DIN = 0x86FD).  
3. Set FNCTIO_CTRL, Bits[15:8] = 0x00 (DIN = 0x8700).  
communication (for accessing other registers).  
Note that this command also disables the internal sampling  
clock. Therefore, data sampling does not occur if an input clock  
signal is not present. Use an input clock frequency of 2400 Hz  
for the best performance.  
Table 142. FNCTIO_CTRL Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x03 0x06, 0x07  
0x000D R/W Yes  
Alarm Indicator  
Table 143. FNCTIO_CTRL Bit Definitions  
FNCTIO_CTRL, Bits[11:8] provide three configuration options  
for using one of the DIOx pins as an alarm indicator: on and off,  
polarity, and the DIOx pin. The primary purpose of this signal  
is to provide an output signal that activates when a bit in the  
SYS_E_FLAG register = 1 (see Table 20). For example, use the  
following sequence to establish the DIO3 pin as a negative-polarity,  
alarm indicator, while preserving the factory default setting for the  
data ready function:  
Bits  
[15:12]  
11  
Description (Default = 0x000D)  
Not used  
Alarm indicator: 1 = enabled, 0 = disabled  
Alarm indicator polarity: 1 = positive, 0 = negative  
Alarm indicator line selection:  
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4  
Sync clock input enable: 1 = enabled, 0 = disabled  
Sync clock input polarity:  
10  
[9:8]  
7
6
1. Select Page 3 (DIN = 0x8003).  
1 = rising edge, 0 = falling edge  
2. Set FNCTIO_CTRL, Bits[7:0] = 0x0D (DIN = 0x860D).  
3. Set FNCTIO_CTRL, Bits[15:8] = 0x0A (DIN = 0x870A).  
[5:4]  
Sync clock input line selection:  
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4  
Data ready enable: 1 = enabled, 0 = disabled  
Data ready polarity: 1 = positive, 0 = negative  
Data ready line selection:  
3
General-Purpose Input and Output Control, GPIO_CTRL  
2
Table 144. GPIO_CTRL Register Definition1  
[1:0]  
Page ID Addresses  
Default Access Flash Backup  
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4  
0x03 0x08, 0x09  
0x00X0 R/W Yes  
Data Ready Indicator  
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx pins and do not have  
a default setting.  
FNCTIO_CTRL, Bits[3:0] provide three configuration options for  
the data ready function: on and off, polarity, and which DIOx  
pin is used. The primary purpose of this signal is to drive the  
interrupt control line of an embedded processor to synchronize  
Rev. 0 | Page 27 of 38  
 
 
 
ADIS16486  
Data Sheet  
Table 145. GPIO_CTRL Bit Definitions1  
Bits  
Description (Default = 0x00X0)  
[15:8]  
Don’t care  
7
6
5
4
3
2
1
0
General-Purpose Input and Output Line 4 (DIO4) data level  
General-Purpose Input and Output Line 3 (DIO3) data level  
General-Purpose Input and Output Line 2 (DIO2) data level  
General-Purpose Input and Output Line 1 (DIO1) data level  
DIO4 direction control (1 = output, 0 = input)  
DIO3 direction control (1 = output, 0 = input)  
DIO2 direction control (1 = output, 0 = input)  
DIO1 direction control (1 = output, 0 = input)  
PIN 23  
PIN 1  
POINT OF PERCUSSION  
ALIGNMENT REFERENCE POINT.  
SEE CONFIG, BIT 6.  
Figure 29. Point of Percussion Reference Point  
Linear Acceleration Effect on Gyroscope Bias  
The ADIS16486 includes first-order compensation for the  
linear g effect in the gyroscopes, which uses the following  
model:  
1 GPIO_CTRL, Bits[7:4] reflect the logic levels on the DIOx pins and do not have  
a default setting.  
When the FNCTIO_CTRL register does not configure a DIOx pin,  
the GPIO_CTRL register provides register controls for general-  
purpose use of the pin. GPIO_CTRL, Bits[3:0] provide input and  
output assignment controls for each line. When the DIOx pins  
are inputs, monitor their level by reading GPIO_CTRL, Bits[7:4].  
When the DIOx pins are used as outputs, set their level by writing  
to GPIO_CTRL, Bits[7:4]. For example, use the following  
sequence to set the DIO1 and DIO3 pins as high and low  
output lines, respectively, and set the DIO2 and DIO4 pins as  
input lines:  
XC   
XPC   
LG11 LG12 LG13  
A
ω
ω
ω
ω
ω
ω
X   
= LG  
LG22 LG23 × AY  
+
21  
YC   
YPC   
LG31 LG32 LG33  
AZ  
ZC   
ZPC   
The linear g correction factors, LGXY, apply correction for linear  
acceleration in all three directions to the data path of each  
gyroscope (ωXPC, ωYPC, and ωZPC) at the rate of the data samples  
(2460 SPS when using the internal clock). CONFIG, Bit 7  
provides an on and off control for this compensation. The  
factory default value for this bit activates this compensation. To  
turn the compensation off, select Page 3 (DIN = 0x8003) and  
set CONFIG, Bit 7 = 0 (DIN = 0x8A40, then DIN = 0x8B00).  
This command sequence also preserves the default setting for  
the point of percussion alignment function (on).  
1. Select Page 3 (DIN = 0x8003).  
2. Set GPIO_CTRL, Bits[7:0] = 0x15 (DIN = 0x8815, then  
DIN = 0x8900).  
Miscellaneous Configuration, CONFIG  
The CONFIG register (see Table 146 and Table 147) provides  
configuration options for the linear g compensation in the  
gyroscopes (on and off), point of percussion alignment for the  
accelerometers (on and off), and the RTC function.  
Decimation Filter, DEC_RATE  
The DEC_RATE register (see Table 148 and Table 149) provides  
user control for the final filter stage (see Figure 24), which  
averages and decimates the accelerometer and gyroscope data,  
while also extending the time that the delta angle and delta  
velocity track between each update. The output sample rate is  
equal to 2460/(DEC_RATE + 1). When using the external clock  
option (FNCTIO_CTRL, Bits[7:4], see Figure 24), replace 2460 in  
this relationship with the input clock frequency. For example,  
select Page 3 (DIN = 0x8003), and set DEC_RATE = 0x18 (DIN  
= 0x8C18, then DIN = 0x8D00) to reduce the output sample rate  
to 98.4 SPS (2460 ÷ 25).  
Table 146. CONFIG Register Definition  
Page ID Addresses  
Default Access Flash Backup  
0x03 0x0A, 0x0B  
0x00C0 R/W Yes  
Table 147. CONFIG Bit Definitions  
Bits Description (Default = 0x00C0)  
[15:8] Not used  
7
Linear g compensation for gyroscopes (1 = enabled)  
Point of percussion alignment (1 = enabled)  
Not used  
6
Table 148. DEC_RATE Register Definition  
[5:2]  
1
Page ID Addresses  
Default Access Flash Backup  
RTC, daylight savings time (1: enabled, 0: disabled)  
0x03  
0x0C, 0x0D 0x0000 R/W  
Yes  
0
RTC control (1: relative and elapsed timer mode,  
0: calendar mode)  
Table 149. DEC_RATE Bit Definitions  
Point of Percussion  
Bits  
Description (Default = 0x0000)  
CONFIG, Bit 6 offers a point of percussion alignment function  
that maps the accelerometer sensors to the corner of the package  
identified in Figure 29. To activate this feature, select Page 3  
(DIN = 0x8003) and set CONFIG, Bit 6 = 1 (DIN = 0x8A40,  
DIN = 0x8B00).  
[15:11]  
[10:0]  
Don’t care  
Decimation rate, binary format, maximum = 2047, see  
Figure 24 for the impact on sample rate  
Rev. 0 | Page 28 of 38  
 
 
 
 
 
Data Sheet  
ADIS16486  
Continuous Bias Estimation, NULL_CNFG  
Table 152. SLP_CNT Register Definition  
Page ID Addresses Default  
Access Flash Backup  
The NULL_CNFG register (see Table 150 and Table 151) provides  
the configuration controls for the CBE, which is associated with  
the bias correction update command in GLOB_CMD, Bit 0 (see  
Table 141). NULL_CNFG, Bits[3:0] establishes the total average  
time (tA) for the bias estimates, and NULL_CNFG, Bits[13:8]  
provides on and off controls for each sensor. The factory  
default configuration for the NULL_CNFG register enables the  
bias null command for the gyroscopes, disables the bias null  
command for the accelerometers, and sets the average time to  
~26.64 sec. This calculation assumes that the internal sample  
clock (fS = 2460 SPS) is used. If the user supplies an external  
clock by setting Bit 7 to 1 of the FNCTIO_CRTL register (see  
Table 142 and Table 143), fS is the inertial measurement unit  
(IMU) sample rate before decimation.  
0x03  
0x10, 0x11 Not applicable R/W  
No  
Table 153. SLP_CNT Bit Definitions  
Bits  
Description (No Default)  
[15:10] Not used  
9
Power-down mode  
Normal sleep mode  
Programmable time bits, 1 sec/LSB, 0x00 = indefinite  
8
[7:0]  
To initiate sleep mode for a specific period, select Page 3 (DIN =  
0x8003), write the amount of sleep time to SLP_CNT, Bits[7:0],  
and set SLP_CNT, Bit 8 = 1 (DIN = 0x9101). Sleep mode begins  
CS  
when the  
line goes high after setting SLP_CNT, Bit 8 = 1. Use  
the following sequence to place the ADIS16486 into sleep mode  
for 100 sec:  
Table 150. NULL_CNFG Register Definition  
1. Select Page 3 (DIN = 0x8003).  
Page ID Addresses  
Default Access Flash Backup  
2. Set SLP_CNT, Bits[7:0] = 0x64 (DIN = 0x9064), 100 sec  
0x03 0x0E, 0x0F  
0x070A R/W Yes  
sleep time.  
Table 151. NULL_CNFG Bit Definitions  
Bits Description (Default = 0x070A)  
[15:14] Not used.  
3. Set SLP_CNT, Bit 8 = 1 (DIN = 0x9101), start sleep mode.  
To initiate an indefinite sleep mode, set SLP_CNT, Bits[7:0] = 0x00  
(DIN = 0x9000), and then set SLP_CNT, Bit 8 = 1 (DIN = 0x9101).  
To initiate a power-down period of 100 sec, use the sequence  
for placing the ADIS16486 into sleep mode for 100 sec with one  
exception: set SLP_CNT, Bit 9 = 1 (DIN = 0x9102) instead of  
setting SLP_CNT, Bit 8 = 1 (DIN = 0x9101). To initiate an  
indefinite power-down, set SLP_CNT, Bits[7:0] = 0x00 first,  
and then set SLP_CNT, Bit 9 = 1 (DIN = 0x9102).  
13  
12  
11  
10  
9
Z-axis acceleration bias correction enable (1 = enabled).  
Y-axis acceleration bias correction enable (1 = enabled).  
X-axis acceleration bias correction enable (1 = enabled).  
Z-axis gyroscope bias correction enable (1 = enabled).  
Y-axis gyroscope bias correction enable (1 = enabled).  
X-axis gyroscope bias correction enable (1 = enabled).  
Not used.  
8
[7:4]  
[3:0]  
To wake the device from sleep or power-down mode, use one of  
the following options to restore normal operation:  
Time base control (TBC), range is 0 to 13 (default = 10),  
and time base (tB) = 2TBC/fS, where fS is the IMU sample  
rate before decimation and is 2460 SPS if the factory  
default internal clock is used. The tA required for  
autonull = 64 × tB.  
CS  
Assert  
RST  
from high to low.  
Pulse  
low, and then high again.  
Cycle the power.  
When a sensor bit in the NULL_CNFG register is active (equal  
to 1), setting GLOB_CMD, Bit 0 = 1 (DIN sequence: 0x8003,  
0x8201, 0x8300) causes the corresponding bias correction register  
to automatically update with a value that corrects for its present  
bias error (from the CBE). For example, setting NULL_CNFG,  
Bit 8 = 1 causes an update in the XG_BIAS_LOW (see Table 105)  
and XG_BIAS_HIGH (see Table 107) registers.  
If the sleep mode and power-down mode bits are both set to  
high, the normal sleep mode bit (SLP_CNT, Bit 8) takes  
precedence.  
FIR Filter Control, FILTR_BNK_0, FILTR_BNK_1  
The FILTR_BNK_0 (see Table 154 and Table 155) and FILTR_  
BNK_1 (see Table 156 and Table 157) registers provide the  
configuration controls for the FIR filter bank in the signal chain  
of each sensor (see Figure 24). These registers provide on and  
off control for the FIR bank for each inertial sensor, along with  
the FIR bank (A, B, C, D) that each sensor uses.  
Power Management, SLP_CNT  
The SLP_CNT register (see Table 152 and Table 153) provides  
controls for both power-down mode and sleep mode. The trade-  
off between power-down mode and sleep mode is idle power  
and recovery time. Power-down mode offers the best power  
consumption but requires the most time to recover. In addition, all  
volatile settings are lost during power-down, whereas sleep  
mode preserves these settings.  
Write commands to the FILTR_BNK_0 and FILTR_BNK_1  
registers, which enable or configure the FIR filters and take up  
to 101 µs to fully process. During this execution time, the SPI  
interface supports normal operation, and the register values  
update at the conclusion of the update process.  
Rev. 0 | Page 29 of 38  
 
 
 
 
ADIS16486  
Data Sheet  
7
7
Table 154. FILTR_BNK_0 Register Definition  
1
8
(3)  
(4)  
(5)  
ΔZ_GYRO_OUT =  
Z
Y
(
n
)
)
Z
Y
(
n 104  
)
G
G
Page ID Addresses  
Default Access Flash Backup  
n = 0  
n = 0  
0x03 0x16, 0x17  
0x0000 R/W Yes  
where ZG = Z_GYRO_OUT.  
Table 155. FILTR_BNK_0 Bit Definitions  
7
7
1
8
Bits  
Description (Default = 0x0000)  
ΔY_GYRO_OUT =  
(
n
(
n 104  
)
G
G
n = 0  
n = 0  
15  
Don’t care  
14  
Y-axis accelerometer filter enable (1 = enabled)  
Y-axis accelerometer filter bank selection:  
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D  
X-axis accelerometer filter enable (1 = enabled)  
X-axis accelerometer filter bank selection:  
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D  
Z-axis gyroscope filter enable (1 = enabled)  
Z-axis gyroscope filter bank selection:  
where YG = Y_GYRO_OUT.  
[13:12]  
7
7
1
8
ΔX_GYRO_OUT =  
X
(
n
)
X
(
n 104  
)
G
G
11  
n = 0  
n = 0  
[10:9]  
where XG = X_GYRO_OUT.  
Solving for ΔZ_ACCL_OUT and ΔY_ACCL_OUT  
8
[7:6]  
Use Equation 6 and Equation 7 to solve for ΔZ_ACCL_OUT  
and ΔY_ACCL_OUT in Bits[5:4] and Bits[1:0] in Table 161.  
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D  
Y-axis gyroscope filter enable (1 = enabled)  
Y-axis gyroscope filter bank selection:  
5
7
7
1
8
[4:3]  
ΔZ_ACCL_OUT =  
Z
n −  
A ( )  
Z
n 104  
(6)  
(7)  
(
)
A
n = 0  
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D  
X-axis gyroscope filter enable (1 = enabled)  
X-axis gyroscope filter bank selection:  
n = 0  
2
where ZA = Z_ACCL_OUT.  
[1:0]  
7
7
1
8
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D  
ΔY_ACCL_OUT =  
Y
n −  
A ( )  
Y n 104  
( )  
A
n = 0  
n = 0  
Table 156. FILTR_BNK_1 Register Definition  
Page ID Addresses Default Access Flash Backup  
0x03 0x18, 0x19 0x0000 R/W Yes  
where YA = Y_ACCL_OUT.  
Table 159. ALM_CNFG_0 Bit Definitions  
Bits  
15  
Description (Default = 0x0000)  
Table 157. FILTR_BNK_1 Bit Definitions  
X-axis accelerometer. 0: alarm is off, and 1: alarm is on.  
Not used.  
Bits  
[15:3]  
2
Description (Default = 0x0000)  
14  
Don’t care  
[13:12] X-axis accelerometer polarity and mode settings.  
Select one of the four options for the condition that  
triggers the alarm (ALM_STS, Bit 3 = 1, see Table 24).  
Z-axis accelerometer filter enable (1 = enabled)  
Z-axis accelerometer filter bank selection:  
[1:0]  
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D  
00: X_ACCL_OUT < XA_ALM_MAGN.  
Alarm Configuration, ALM_CNFG_0, ALM_CNFG_1  
01: ΔX_ACCL_OUT < XA_ALM_MAGN (see Equation 2).  
10: X_ACCL_OUT > XA_ALM_MAGN.  
11: ΔX_ACCL_OUT > XA_ALM_MAGN (see Equation 2).  
The ALM_CNFG_0 (see Table 158 and Table 159) and ALM_  
CNFG_1 (see Table 160 and Table 161) registers provide three  
configuration control options for the alarm functions of each  
inertial sensor: on and off, polarity, and mode of operation  
(static and dynamic).  
11  
Z-axis gyroscope. 0: alarm is off, and 1: alarm is on.  
Not used.  
10  
[9:8]  
Z-axis gyroscope polarity and mode settings. Select  
one of the four options for the condition that triggers  
the alarm (ALM_STS, Bit 2 = 1, see Table 24).  
Table 158. ALM_CNFG_0 Register Definition  
Page ID Addresses  
Default Access Flash Backup  
00: Z_GYRO_OUT < ZG_ALM_MAGN.  
01: ΔZ_GYRO_OUT < ZG_ALM_MAGN (see Equation 3).  
10: Z_GYRO_OUT > ZG_ALM_MAGN.  
11: ΔZ_GYRO_OUT > ZG_ALM_MAGN (see Equation 3).  
Y-axis gyroscope. 0: alarm is off, and 1: alarm is on.  
Not used.  
0x03 0x20, 0x21  
0x0000 R/W Yes  
Solving for ΔX_ACCL_OUT, ΔZ_GYRO_OUT,  
ΔY_GYRO_OUT, and ΔX_GYRO_OUT  
7
Use Equation 2 to Equation 5 to solve for ΔX_ACCL_OUT,  
ΔZ_GYRO_OUT, ΔY_GYRO_OUT, and ΔX_GYRO_OUT in  
Bits[13:12], Bits[9:8], Bits[5:4], and Bits[1:0] in Table 159.  
6
[5:4]  
Y-axis gyroscope polarity and mode settings. Select  
one of the four options for the condition that triggers  
the alarm (ALM_STS, Bit 1 = 1, see Table 24).  
00: Y_GYRO_OUT < YG_ALM_MAGN.  
01: ΔY_GYRO_OUT < YG_ALM_MAGN (see Equation 4).  
10: Y_GYRO_OUT > YG_ALM_MAGN.  
7
7
1
8
ΔX_ACCL_OUT =  
X
n −  
A ( )  
X
n 104  
(2)  
(
)
A
n = 0  
n = 0  
where XA = X_ACCL_OUT.  
11: ΔY_GYRO_OUT > YG_ALM_MAGN (see Equation 4).  
Rev. 0 | Page 30 of 38  
 
 
 
 
 
 
Data Sheet  
ADIS16486  
Alarm Example  
Bits  
3
Description (Default = 0x0000)  
X-axis gyroscope. 0: alarm is off, and 1: alarm is on.  
Not used.  
Use the following sequence to configure the x-axis gyroscopes  
alarm to be active (ALM_STS, Bit 0 = 1) when the rate of  
rotation around the x-axis exceeds 100°/sec:  
2
1:0  
X-axis gyroscope polarity and mode settings. Select  
one of the four options for the condition that triggers  
the alarm flag (ALM_STS, Bit 0 = 1, see Table 24).  
00: X_GYRO_OUT < XG_ALM_MAGN.  
01: ΔX_GYRO_OUT < XG_ALM_MAGN (see Equation 5).  
10: X_GYRO_OUT > XG_ALM_MAGN.  
1. Select Page 3 (DIN = 0x8003).  
2. Set XG_ALM_MAGN, Bits[7:0] = 0x88 (DIN = 0xA888).  
3. Set XG_ALM_MAGN, Bits[15:8] = 0x13 (DIN = 0xA913).  
4. Set ALM_CNFG_1, Bits[7:0] = 0x0C (DIN = 0xA00C).  
5. Set ALM_CNFG_1, Bits[15:8] = 0x00 (DIN = 0xA100).  
11: ΔX_GYRO_OUT > XG_ALM_MAGN (see Equation 5).  
The value for the XG_ALM_MAGN register is 0x1388, as  
shown in the equation  
Table 160. ALM_CNFG_1 Register Definition  
Page ID Addresses Default Access Flash Backup  
0x03 0x22, 0x23 0x0000 R/W Yes  
100°/sec ÷ 0.02°/sec/LSB = 5000 LSB = 0x1388  
Y-Axis Gyroscope Alarm, YG_ALM_MAGN  
Table 161. ALM_CNFG_1 Bit Definitions  
Bits Description (Default = 0x0000)  
[15:8] Not used.  
The YG_ALM_MAGN register (see Table 164 and Table 165)  
contains the alarm threshold for the y-axis gyroscope when  
ALM_CNFG_0, Bit 7 = 1 (see Table 159). This alarm is associated  
with the alarm flag in ALM_STS, Bit 1 (see Table 24).  
7
Z-axis accelerometer. 0: alarm is off, and 1: alarm is on.  
Not used.  
6
[5:4]  
Z-axis accelerometer polarity and mode settings. Select  
one of the four options for the condition that triggers  
the alarm (ALM_STS, Bit 5 = 1, see Table 24).  
Table 164. YG_ALM_MAGN Register Definition  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x2A, 0x2B  
0x0000  
R/W  
Yes  
00: Z_ACCL_OUT < ZA_ALM_MAGN.  
01: ΔZ_ACCL_OUT < ZA_ALM_MAGN (see Equation 6).  
10: Z_ACCL_OUT > ZA_ALM_MAGN.  
Table 165. YG_ALM_MAGN Bit Definition  
Bits Description (Default = 0x0000)  
11: ΔZ_ACCL_OUT > ZA_ALM_MAGN (see Equation 6).  
Z-axis accelerometer mode. 0: static, and 1: dynamic.  
Y-axis accelerometer. 0: alarm is off, and 1: alarm is on.  
Not used.  
[15:0] Y-axis gyroscope alarm threshold settings, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
4
3
Z-Axis Gyroscope Alarm, ZG_ALM_MAGN  
2
The ZG_ALM_MAGN register (see Table 166 and Table 167)  
contains the alarm threshold for the z-axis gyroscope when  
ALM_CNFG_0, Bit 11 = 1 (see Table 159). This alarm is associated  
with the alarm flag in ALM_STS, Bit 2 (see Table 24).  
[1:0]  
Y-axis accelerometer polarity and mode settings. Select  
one of the four options for the condition that triggers  
the alarm (ALM_STS, Bit 4 = 1, see Table 24).  
00: Y_ACCL_OUT < YA_ALM_MAGN.  
01: ΔY_ACCL_OUT < YA_ALM_MAGN (see Equation 7).  
10: Y_ACCL_OUT > YA_ALM_MAGN.  
11: ΔY_ACCL_OUT > YA_ALM_MAGN (see Equation 7).  
Table 166. ZG_ALM_MAGN Register Definition  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x2C, 0x2D  
0x0000  
R/W  
Yes  
X-Axis Gyroscope Alarm, XG_ALM_MAGN  
Table 167. ZG_ALM_MAGN Bit Definition  
Bits Description (Default = 0x0000)  
The XG_ALM_MAGN register (see Table 162 and Table 163)  
contains the alarm threshold for the x-axis gyroscope when  
ALM_CNFG_0, Bit 3 = 1 (see Table 159). This alarm is associated  
with the alarm flag in ALM_STS, Bit 0 (see Table 24).  
[15:0] Z-axis gyroscope alarm threshold settings, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
X-Axis Accelerometer Alarm, XA_ALM_MAGN  
Table 162. XG_ALM_MAGN Register Definition  
The XA_ALM_MAGN register (see Table 168 and Table 169)  
contains the alarm threshold for the x-axis accelerometer when  
ALM_CNFG_0, Bit 15 = 1 (see Table 159). This alarm is associated  
with the alarm flag in ALM_STS, Bit 3 (see Table 24).  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x28, 0x29  
0x0000  
R/W  
Yes  
Table 163. XG_ALM_MAGN Bit Definition  
Bits Description (Default = 0x0000)  
[15:0] X-axis gyroscope alarm threshold settings, twos  
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec  
Table 168. XA_ALM_MAGN Register Definition  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x2E, 0x2F  
0x0000  
R/W  
Yes  
Table 169. XA_ALM_MAGN Bit Definition  
Bits  
Description (Default = 0x0000)  
[15:0]  
X-axis accelerometer alarm threshold settings, twos  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg  
Rev. 0 | Page 31 of 38  
 
 
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
by FIRM_DM, Bits[15:8] = 0x11. FIRM_DM, Bits[7:4] and  
Y-Axis Accelerometer Alarm, YA_ALM_MAGN  
FIRM_DM, Bits[3:0] contain digits that represent the day of  
factory configuration in a BCD format. For example, the 27th day  
of the month is represented by FIRM_DM, Bits[7:0] = 0x27.  
The YA_ALM_MAGN register (see Table 170 and Table 171)  
contains the alarm threshold for the y-axis accelerometer when  
ALM_CNFG_1, Bit 3 = 1 (see Table 161). This alarm is associated  
with the alarm flag in ALM_STS, Bit 4 (see Table 24).  
Table 176. FIRM_DM Register Definition  
Page ID Addresses Default  
Access Flash Backup  
Table 170. YA_ALM_MAGN Register Definition  
0x03 0x7A, 0x7B Not applicable  
R
Yes  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x30, 0x31  
0x0000  
R/W  
Yes  
Table 177. FIRM_DM Bit Definitions  
Bits  
Description (No Default)  
Table 171. YA_ALM_MAGN Bit Definition  
[15:12]  
Factory configuration month BCD code, tens digit,  
numerical format = 4-bit binary, range = 0 to 2  
Bits  
Description (Default = 0x0000)  
[15:0]  
Y-axis accelerometer alarm threshold settings, twos  
[11:8]  
[7:4]  
[3:0]  
Factory configuration month BCD code, ones digit,  
numerical format = 4-bit binary, range = 0 to 9  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg  
Z-Axis Accelerometer Alarm, ZA_ALM_MAGN  
Factory configuration day BCD code, tens digit,  
numerical format = 4-bit binary, range = 0 to 3  
The ZA_ALM_MAGN register (see Table 172 and Table 173)  
contains the alarm threshold for the z-axis accelerometer when  
ALM_CNFG_1, Bit 7 = 1 (see Table 161). This alarm is associated  
with the alarm flag in ALM_STS, Bit 5 (see Table 24).  
Factory configuration day BCD code, ones digit,  
numerical format = 4-bit binary, range = 0 to 9  
Firmware Revision Year, FIRM_Y  
The FIRM_Y register (see Table 178 and Table 179) contains  
the year of the factory configuration date. For example, the  
year, 2013, is represented by FIRM_Y = 0x2013.  
Table 172. ZA_ALM_MAGN Register Definition  
Page ID  
Addresses  
Default  
Access  
Flash Backup  
0x03  
0x32, 0x33  
0x0000  
R/W  
Yes  
Table 178. FIRM_Y Register Definition  
Page ID Addresses Default  
Table 173. ZA_ALM_MAGN Bit Definition  
Access Flash Backup  
Bits  
Description (Default = 0x0000)  
0x03 0x7C, 0x7D Not applicable  
R
Yes  
[15:0]  
Z-axis accelerometer alarm threshold settings, twos  
complement, 0 g = 0x0000, 1 LSB = 0.8 mg  
Table 179. FIRM_Y Bit Definitions  
Firmware Revision, FIRM_REV  
Bits  
Description (No Default)  
The FIRM_REV register (see Table 174 and Table 175) provides  
the firmware revision for the internal firmware. This register  
uses a binary coded decimal (BCD) format, where each nibble  
represents a digit. For example, if FIRM_REV = 0x1234, the  
firmware revision is 12.34.  
[15:12]  
Factory configuration year BCD code, thousands digit,  
numerical format = 4-bit binary, range = 0 to 9  
[11:8]  
[7:4]  
[3:0]  
Factory configuration year BCD code, hundreds digit,  
numerical format = 4-bit binary, range = 0 to 9  
Factory configuration year BCD code, tens digit,  
numerical format = 4-bit binary, range = 0 to 3  
Table 174. FIRM_REV Register Definition  
Factory configuration year BCD code, ones digit,  
numerical format = 4-bit binary, range = 0 to 9  
Page ID Addresses Default  
Access Flash Backup  
0x03 0x78, 0x79 Not applicable  
R
Yes  
Boot Revision Number, BOOT_REV  
Table 180. BOOT_REV Register Definition  
Table 175. FIRM_REV Bit Definitions  
Bits Description (No Default)  
Page ID Addresses Default  
Access Flash Backup  
0x03 0x7E, 0x7F Not applicable  
R
Yes  
[15:12] Firmware revision BCD code, tens digit, numerical  
format = 4-bit binary, range = 0 to 9  
Table 181. BOOT_REV Bit Definitions  
[11:8]  
[7:4]  
[3:0]  
Firmware revision BCD code, ones digit, numerical  
format = 4-bit binary, range = 0 to 9  
Bits  
Description (No Default)  
[15:8]  
[7:0]  
Binary, major revision number  
Binary, minor revision number  
Firmware revision BCD code, tenths digit, numerical  
format = 4-bit binary, range = 0 to 9  
Firmware revision BCD code, hundredths digit,  
numerical format = 4-bit binary, range = 0 to 9  
Continuous SRAM Testing  
This device employs a CRC function on the SRAM memory blocks  
that contain the program code (CODE_SIGTR_xxx) and the  
calibration coefficients (CAL_DRVTN_xxx). This process operates  
in the background and generates real-time 32-bit CRC values for  
the program code and calibration coefficients, respectively. At  
the conclusion of each cycle, the processor writes these calculated  
Firmware Revision Day and Month, FIRM_DM  
The FIRM_DM register (see Table 176 and Table 177) contains the  
month and day of the factory configuration date. FIRM_DM,  
Bits[15:12] and FIRM_DM, Bits[11:8] contain digits that represent  
the month of the factory configuration in a BCD format. For  
example, November is the 11th month in a year and is represented  
Rev. 0 | Page 32 of 38  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
ADIS16486  
values in the CAL_SIGTR_xxx and CODE_DRVTN_xxx registers  
(see Table 187, Table 189, Table 195, and Table 197) and compares  
them with the signature values, which reflect the state of these  
memory locations at the time of factory configuration. When the  
calculation results do not match the signature values, SYS_E_  
FLAG, Bit 2 increases to a 1. The respective signature values are  
available for user access through the CAL_SIGTR_xxx and  
CODE_DRVTN_xxx registers (see Table 183, Table 185, Table  
191, and Table 193). The following conditions must be met for  
SYS_E_FLAG, Bit 2 to remain at 0:  
Signature CRC, Program Code, CODE_SIGTR_LWR  
Table 190. CODE_SIGTR_LWR Register Definition  
Page ID Addresses Default Access Flash Backup  
0x04 0x0C, 0x0D Not applicable Yes  
R
Table 191. CODE_SIGTR_LWR Bit Definition  
Bits Description (No Default)  
[15:0] Factory programmed CRC value for the calibration  
coefficients, low word  
Signature CRC, Program Code, CODE_SIGTR_UPR  
CAL_SIGTR_LWR = CAL_DRVTN_LWR  
CAL_SIGTR_UPR = CAL_DRVTN_UPR  
CODE_SIGTR_LWR = CODE_DRVTN_LWR  
CODE_SIGTR_UPR = CODE_DRVTN_UPR  
Table 192. CODE_SIGTR_UPR Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x04 0x0E, 0x0F Not applicable  
R
Yes  
Signature CRC, Calibration Values, CAL_SIGTR_LWR  
Table 193. CODE_SIGTR_UPR Bit Definition  
Bits Description (No Default)  
[15:0] Factory programmed CRC value for the calibration  
coefficients, high word  
Table 182. CAL_SIGTR_LWR Register Definition  
Page ID Addresses Default  
Access Flash Backup  
0x04 0x04, 0x05 Not applicable  
R
Yes  
Derived CRC, Program Code, CODE_DRVTN_LWR  
Table 183. CAL_SIGTR_LWR Bit Definition  
Bits Description (No Default)  
Table 194. CODE_DRVTN_LWR Register Definition  
Page ID Addresses Default  
Access Flash Backup  
[15:0] Factory programmed CRC value for the program code,  
low word  
0x04 0x10, 0x11 Not applicable  
R
No  
Signature CRC, Calibration Values, CAL_SIGTR_UPR  
Table 195. CODE_DRVTN_LWR Bit Definition  
Bits Description (No Default)  
Table 184. CAL_SIGTR_UPR Register Definition  
[15:0] Calculated CRC value for the calibration coefficients, low  
word  
Page ID Addresses Default  
Access Flash Backup  
0x04 0x06, 0x07 Not applicable  
R
Yes  
Derived CRC, Program Code, CODE_DRVTN_UPR  
Table 185. CAL_SIGTR_UPR Bit Definition  
Bits Description (No Default)  
Table 196. CODE_DRVTN_UPR Register Definition  
Page ID Addresses Default  
Access Flash Backup  
[15:0] Factory programmed CRC value for the program code,  
high word  
0x04 0x12, 0x13 Not applicable  
R
No  
Derived CRC, Calibration Values, CAL_DRVTN_LWR  
Table 197. CODE_DRVTN_UPR Bit Definition  
Bits Description (No Default)  
Table 186. CAL_DRVTN_LWR Register Definition  
[15:0] Calculated CRC value for the calibration coefficients,  
high word  
Page ID Addresses Default  
Access Flash Backup  
0x04 0x08, 0x09 Not applicable  
R
No  
Lot Specific Serial Number, SERIAL_NUM  
Table 187. CAL_DRVTN_LWR Bit Definition  
Bits Description (No Default)  
Table 198. SERIAL_NUM Register Definition  
Page ID Addresses Default  
Access Flash Backup  
[15:0] Calculated CRC value for the program code, low word  
Derived CRC, Calibration Values, CAL_DRVTN_UPR  
Table 188. CAL_DRVTN_UPR Register Definition  
0x04 0x20, 0x21 Not applicable  
R
Yes  
Table 199. SERIAL_NUM Bit Definition  
Bits  
Description (No Default)  
Page ID Addresses Default  
Access Flash Backup  
[15:0]  
Lot specific serial number  
0x04 0x0A, 0x0B Not applicable  
R
No  
Table 189. CAL_DRVTN_UPR Bit Definition  
Bits Description (No Default)  
[15:0] Calculated CRC value for the program code, high word  
Rev. 0 | Page 33 of 38  
 
 
 
 
 
 
 
 
ADIS16486  
Data Sheet  
Use the following sequence to set the FIR_COEF_A071 register  
to a decimal value of −169 (0xFF57):  
FIR FILTERS  
The ADIS16486 has four user configurable FIR filter banks. The  
sample rate of the FIR filter banks is identical to the IMU  
sample rate. Because decimation occurs after the FIR filters, the  
FIR sample rate is independent of the decimation rate and not  
affected by the setting of the DEC_RATE register. If the user  
selects the internally generated sample clock (which is the  
default setting), the nominal IMU sample rate (and FIR sample  
rate) is 2460 SPS. If the user supplies an external clock by setting  
Bit 7 to 1 of the FNCTIO_CRTL register (see Table 142 and  
Table 143), the FIR sample rate is the same frequency as the  
input synchronization clock provided to the ADIS16486.  
1. Select Page 6 (DIN = 0x8006).  
2. Set FIR_COEF_A071, Bits[7:0] = 0x57 (DIN = 0x9E57).  
3. Set FIR_COEF_A071, Bits[15:8] = 0xFF (DIN = 0x9FFF).  
FIR Filter Bank B, FIR_COEF_B000 to FIR_COEF_B119  
Table 203. Filter Bank B Memory Map  
Page  
Page ID  
Address  
Register  
PAGE_ID  
Not used  
7
7
0x07  
0x07  
0x00  
0x02 to  
0x07  
7
7
7
0x07  
0x07  
0x07  
0x08  
0x0A  
0x0C to  
0x7C  
FIR_COEF_B000  
FIR_COEF_B001  
FIR_COEF_B002 to  
FIR_COEF_B058  
The user can individually configure and select one of the four FIR  
filter banks for each individual inertial sensor using the FILTR_  
BNK_0 (see Table 155) and FILTR_BNK_1 (see Table 157)  
registers (see Figure 24). Each FIR filter bank (A, B, C, D) has  
120 taps that consume two pages of memory. The coefficient  
associated with each tap in each filter bank has its own  
dedicated register that uses a 16-bit, twos complement format.  
The FIR filter has unity gain when the sum of all of the coefficients  
is equal to 32,768. For filter designs that require fewer than 120  
taps, write 0x0000 to all unused registers to eliminate the  
latency associated with that particular tap.  
7
8
8
0x07  
0x08  
0x08  
0x7E  
0x00  
0x02 to  
0x07  
FIR_COEF_B059  
PAGE_ID  
Not used  
8
8
8
0x08  
0x08  
0x08  
0x08  
0x0A  
0x0C to  
0x7C  
FIR_COEF_B060  
FIR_COEF_B061  
FIR_COEF_B062 to  
FIR_COEF_B118  
8
0x08  
0x7E  
FIR_COEF_B119  
FIR Filter Bank A, FIR_COEF_A000 to FIR_COEF_A119  
FIR Filter Bank C, FIR_COEF_C000 to FIR_COEF_C119  
Table 201 and Table 202 offer detailed register and bit definitions  
for FIR_COEF_A071, one of the FIR coefficient registers in  
Bank A (see Table 200).  
Table 204. Filter Bank C Memory Map  
Page  
Page ID  
Address  
Register  
PAGE_ID  
Not used  
9
9
0x09  
0x09  
0x00  
0x02 to  
0x07  
Table 200. FIR Filter Bank A Memory Map  
Page Page ID  
Address  
Register  
5
5
5
5
5
0x05  
0x05  
0x05  
0x05  
0x05  
0x00  
0x02 to 0x07  
0x08  
0x0A  
0x0C to 0x7C  
PAGE_ID  
Not used  
FIR_COEF_A000  
FIR_COEF_A001  
FIR_COEF_A002 to  
FIR_COEF_A058  
9
9
9
0x09  
0x09  
0x09  
0x08  
0x0A  
0x0C to  
0x7C  
FIR_COEF_C000  
FIR_COEF_C001  
FIR_COEF_C002 to  
FIR_COEF_C058  
9
10  
10  
0x09  
0x0A  
0x0A  
0x7E  
0x00  
0x02 to  
0x07  
FIR_COEF_C059  
PAGE_ID  
Not used  
5
6
6
6
6
6
0x05  
0x06  
0x06  
0x06  
0x06  
0x06  
0x7E  
0x00  
0x02 to 0x07  
0x08  
0x0A  
FIR_COEF_A059  
PAGE_ID  
Not used  
FIR_COEF_A060  
FIR_COEF_A061  
FIR_COEF_A062 to  
FIR_COEF_A118  
10  
10  
10  
0x0A  
0x0A  
0x0A  
0x08  
0x0A  
0x0C to  
0x7C  
FIR_COEF_C060  
FIR_COEF_C061  
FIR_COEF_C062 to  
FIR_COEF_C118  
0x0C to 0x7C  
10  
0x0A  
0x7E  
FIR_COEF_C119  
6
0x06  
0x7E  
FIR_COEF_A119  
Table 201. FIR_COEF_A071 Register Definition  
Page ID Addresses Default Access Flash Backup  
0x1E, 0x1F Not applicable R/W Yes  
0x06  
Table 202. FIR_COEF_A071 Bit Definition  
Bits  
Description (No Default)  
[15:0]  
FIR Bank A, Coefficient 71, twos complement  
Rev. 0 | Page 34 of 38  
 
 
 
 
Data Sheet  
ADIS16486  
FIR Filter Bank D, FIR_COEF_D000 to FIR_COEF_D119  
Table 206. FIR Filter Descriptions, Default Configuration  
FIR Filter Bank  
Taps  
120  
120  
32  
−3 dB Frequency (Hz)  
Table 205. Filter Bank D Memory Map  
A
B
C
D
310  
55  
275  
63  
Page  
Page ID  
Address  
Register  
PAGE_ID  
Not used  
11  
0x0B  
0x00  
11  
0x0B  
0x02 to  
0x07  
32  
11  
11  
11  
0x0B  
0x0B  
0x0B  
0x08  
0x0A  
0x0C to  
0x7C  
FIR_COEF_D000  
FIR_COEF_D001  
FIR_COEF_D002 to  
FIR_COEF_D058  
0
–10  
NO FIR  
FILTERING  
–20  
B
D
A
C
–30  
–40  
–50  
–60  
–70  
–80  
–90  
11  
12  
12  
0x0B  
0x0C  
0x0C  
0x7E  
0x00  
0x02 to  
0x07  
0x08  
0x0A  
0x0C to  
0x7C  
FIR_COEF_D059  
PAGE_ID  
Not used  
12  
12  
12  
0x0C  
0x0C  
0x0C  
FIR_COEF_D060  
FIR_COEF_D061  
FIR_COEF_D062 to  
FIR_COEF_D118  
–100  
0
12  
0x0C  
0x7E  
FIR_COEF_D119  
200  
400  
600  
800  
1000  
1200  
FREQUENCY (Hz)  
Default Filter Performance  
Figure 30. FIR Filter Frequency Response Curves  
The FIR filter banks have factory programmed filter designs. They  
are all low-pass filters that have unity dc gain. Table 206 provides a  
summary of each filter design, and Figure 30 shows the frequency  
response characteristics. The phase delay is equal to ½ of the total  
number of taps.  
Rev. 0 | Page 35 of 38  
 
 
ADIS16486  
Data Sheet  
APPLICATIONS INFORMATION  
39.600 BSC  
19.800 BSC  
MOUNTING BEST PRACTICES  
For the best performance, follow these rules when installing the  
ADIS16486 into a system:  
PASSTHROUGH HOLE  
FOR MOUNTING SCREWS  
DIAMETER OF THE HOLE  
MUST ACCOMODATE  
DIMENSIONAL TOLERANCE  
BETWEEN THE CONNECTOR  
AND HOLES.  
Eliminate the opportunity for translational force (x-axis  
and y-axis direction, per Figure 18) application on the  
electrical connector.  
Isolate the mounting force to the four corners on the  
portion of the package surface that surrounds the  
mounting holes.  
DEVICE  
OUTLINE  
0.560 BSC 2×  
ALIGNMENT HOLES  
FOR MATING SOCKET  
Use uniform mounting forces on all four corners. The  
suggested torque setting is 40 inch ounces (0.285 Nm).  
These three rules help prevent irregular force profiles that can  
warp the package and introduce bias errors in the sensors.  
Figure 33 provides an example that leverages washers to set the  
package off the mounting surface and uses 2.85 mm passthrough  
holes and backside washers and nuts for attachment. Figure 31  
and Figure 32 provide details for mounting hole and connector  
alignment pin drill locations.  
5 BSC  
5 BSC  
NOTES  
1. ALL DIMENSIONS IN mm UNITS.  
2. IN THIS CONFIGURATION, THE CONNECTOR IS FACING DOWN AND  
ITS PINS ARE NOT VISIBLE.  
Figure 31. Suggested PCB Layout Pattern, Connector Down  
0.4334 [11.0]  
0.019685  
For more information on mounting the ADIS16486, see the  
AN-1295 Application Note.  
[0.5000]  
(TYP)  
0.0240 [0.610]  
0.054 [1.37]  
0.1800  
[4.57]  
0.0394 [1.00]  
0.0394 [1.00]  
0.022±  
DIA (TYP)  
NONPLATED  
THRU HOLE 2×  
0.022 DIA THRU HOLE (TYP)  
NONPLATED THRU HOLE  
Figure 32. Suggested Layout and Mechanical Design When Using  
Samtec CLM-112-02-G-D-A for the Mating Connector  
MOUNTING SCREWS  
M2 × 0.4mm, 4×  
WASHERS (OPTIONAL)  
M2, 4×  
ADIS16486  
SPACERS/WASHERS  
SUGGESTED, 4×  
PCB  
MATING CONNECTOR  
CLM-112-02  
PASS-THROUGH HOLES  
DIAMETER 2.85mm  
WASHERS (OPTIONAL)  
M2, 4×  
NUTS  
M2 × 0.4mm, 4×  
Figure 33. Mounting Example  
Rev. 0 | Page 36 of 38  
 
 
 
 
 
Data Sheet  
ADIS16486  
T
EVALUATION TOOLS  
VDD  
Breakout Board, ADIS16IMU1/PCBZ  
1
The ADIS16IMU1/PCBZ (sold separately) provides a breakout  
board function for the ADIS16486, providing access to the  
ADIS16486 through larger connectors that support standard  
1 mm ribbon cabling. This breakout board also provides four  
mounting holes for attaching the ADIS16486 to the breakout  
board. See the Ordering Guide for ordering details.  
CURRENT  
PC-Based Evaluation, EVAL-ADIS2  
4
The EVAL-ADIS2 provides the system support PC-based  
evaluation of the ADIS16486.  
CH1 2.00V  
100ms/DIV  
CH4 100mA Ω  
POWER SUPPLY CONSIDERATIONS  
Figure 34. Transient Current Demand, Startup  
The VDD power supply must charge 24 µF of capacitance (inside  
of the ADIS16486, across the VDD pins and GND pins) during  
the initial ramp and settling process of the power supply. When  
VDD reaches 2.85 V, the ADIS16486 begins its internal start-up  
process, which generates additional transient current demand.  
See Figure 34 for a typical current profile during the start-up  
process. The first peak in Figure 34 relates to charging the 24 µF  
capacitor bank, whereas the second peak (~360 ms after the first  
peak) relates to the initialization process of the ADIS16486. See  
Figure 35 for a close view of the current profile associated with  
the second peak in Figure 34.  
T
CURRENT  
4
CH4 100mA Ω  
1ms/DIV  
Figure 35. Transient Current Demand, Peak Demand  
X-RAY SENSITIVITY  
Exposure to high dose rate X-rays, such as those in production  
systems that inspect solder joints in electronic assemblies, can  
affect accelerometer bias errors. For optimal performance,  
avoid exposing the ADIS16486 to this type of inspection.  
Rev. 0 | Page 37 of 38  
 
 
 
 
 
ADIS16486  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
44.254  
44.000  
39.854  
39.600  
39.346  
43.746  
2.20 BSC  
(8 PLACES)  
20.10  
19.80  
19.50  
Ø 2.40 BSC  
(4 PLACES)  
DETAIL A  
15.00  
BSC  
1.942  
1.642  
1.342  
PIN 1  
8.25  
BSC  
42.854  
42.600  
42.346  
1.00 BSC  
47.254  
47.000  
46.746  
DETAIL A  
BOTTOM VIEW  
FRONT VIEW  
14.254  
14.000  
13.746  
DETAIL B  
6.50 BSC  
3.454  
3.200  
2.946  
5.50  
BSC  
5.50  
BSC  
2.84 BSC  
1.00 BSC  
PITCH  
0.30 SQ BSC  
DETAIL B  
Figure 36. 24-Lead Module with Connector Interface [MODULE]  
(ML-24-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADIS16486BMLZ-P  
ADIS16IMU1/PCBZ  
EVAL-ADIS2Z  
−40°C to +105°C  
24-Lead Module with Connector Interface [MODULE]  
Breakout Board  
EVAL-ADIS2 Evaluation System  
ML-24-6  
1 Z = RoHS Compliant Part.  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23373-1/21(0)  
www.analog.com/ADIS16486 (Rev. 0)  
Rev. 0 | Page 38 of 38  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY