ADL5206-EVALZ [ADI]

1.0 GHz DGA with 30 dB Range and 1 dB Step Size;
ADL5206-EVALZ
型号: ADL5206-EVALZ
厂家: ADI    ADI
描述:

1.0 GHz DGA with 30 dB Range and 1 dB Step Size

文件: 总25页 (文件大小:1010K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.0 GHz DGA with 30 dB Range and  
1 dB Step Size  
Data Sheet  
ADL5206  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SPI/PARALLEL  
INTERFACE  
Digitally controlled VGA  
VPOS EPAD PWUP  
2 dB to 32 dB gain range  
1 dB gain step size  
ADL5206  
LOGIC  
MODEx  
100 Ω differential input resistance  
10 Ω differential output resistance  
Noise figure: 5.1 dB at 300 MHz, 5 V supply, and  
maximum gain  
VOUT+  
VOUT–  
VIN–  
VIN+  
32dB  
TO  
100Ω  
10Ω  
2dB  
OIP3 at maximum gain  
39.4 dBm at 300 MHz at 5 V supply  
38.1 dBm at 700 MHz at 5 V supply  
Gain step accuracy: 0.2 dB  
Figure 1.  
−3 dB bandwidth at 32 dB: 1.0 GHz typical at 5 V supply  
Multiple control interface options  
Parallel 5-bit control interface with latch  
3- and 4-wire SPI with fast attack  
Gain step-up and step-down interface  
Wide input dynamic range  
Power-down control  
Single 3.3 V or 5 V supply operation  
112 mA quiescent current at 5 V supply  
20-lead, 4 mm × 4 mm LFCSP  
APPLICATIONS  
Differential ADC drivers  
High intermediate frequency (IF) sampling receivers  
High output power IF amplification  
DOCSIS FDx upstream amplifier  
Instrumentation  
GENERAL DESCRIPTION  
The ADL5206 is a wide bandwidth, variable gain amplifier (VGA)  
with digital control (also known as a digital gain amplifier (DGA))  
that provides precise gain control, high output third-order  
intercept (OIP3), and low noise figure over the entire gain  
range. The excellent OIP3 performance of 39.4 dBm (at 300MHz,  
5 V supply, and maximum gain) makes the ADL5206 an excellent  
gain control device for a variety of receiver applications.  
current of the ADL5206 is typically 112 mA with a 5 V supply.  
When disabled, the ADL5206 consumes only 8 mA and offers  
excellent input to output isolation. The gain setting is preserved  
when the device is disabled.  
Fabricated on the Analog Devices, Inc., high speed, silicon  
germanium (SiGe), bipolar complementary metal-oxide  
semiconductor (BiCMOS) process, the ADL5206 provides  
precise gain adjustment capabilities with good distortion  
performance. The ADL5206 amplifier comes in a compact,  
thermally enhanced, 4 mm × 4 mm, 20-lead LFCSP and  
operates over the temperature range of −40°C to +85°C.  
For wide input dynamic range applications, the ADL5206  
provides a broad 2 dB to 32 dB gain range with a 1 dB step size.  
The gain is adjustable through multiple gain control and interface  
options: parallel, serial peripheral interface (SPI), or gain step-up  
and step-down controls.  
Note that throughout this data sheet, multifunction pins, such  
The ADL5206 can be powered up independently by applying  
the appropriate logic level to the PWUP pin. The quiescent  
CS  
as /GS1/D3, are referred to by the entire pin name or by a  
single function of the pin.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADL5206  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Basic Structure............................................................................ 19  
Control and Logic Circuitry ..................................................... 19  
Common-Mode Voltage........................................................... 19  
Register Summary and Details ..................................................... 20  
Applications Information ............................................................. 21  
Basic Connections...................................................................... 21  
Digital Interface Overview........................................................ 22  
SPI Read....................................................................................... 23  
ADC Interfacing......................................................................... 24  
Noise Figure vs. Gain Setting ................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings ........................................................... 7  
Thermal Resistance...................................................................... 7  
Junction to Board Thermal Impedance .................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics........................................... 10  
Theory of Operation ...................................................................... 19  
REVISION HISTORY  
9/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 25  
 
Data Sheet  
ADL5206  
SPECIFICATIONS  
TA = 25°C, load impedance (ZLOAD) = 100 Ω, maximum gain (gain code = 00000), frequency = 300 MHz, and 2 V p-p differential output,  
unless otherwise noted.  
Table 1.  
3.3 V Supply1  
Min Typ Max  
5 V Supply1  
Min Typ  
Parameter2  
Test Conditions/Comments  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
At 20 dB  
At 25 dB  
At 32 dB  
1.7  
1.4  
1.2  
4.3  
1.6  
1.3  
1.0  
4.3  
GHz  
GHz  
GHz  
V/ns  
Slew Rate  
INPUT STAGE  
VIN+ and VIN− pins  
Gain code = 11111  
Maximum Input Swing3  
Differential Input Resistance  
Input Common-Mode Voltage  
Common-Mode Rejection Ratio (CMRR)  
GAIN  
4
6.2  
100  
2.5  
56  
V p-p  
Ω
V
100  
1.65  
56  
dB  
Voltage Gain Range  
Maximum Gain  
Minimum Gain  
30  
32  
2
30  
32  
2
dB  
dB  
dB  
Gain code = 00000  
Gain code = 11110 to 11111  
Gain Step Size  
1
1
dB  
Gain Step Accuracy  
Gain Flatness  
Gain Temperature Sensitivity  
0.2  
0.2  
3
0.2  
0.2  
4
dB  
dB p-p  
mdB/°C  
From 30 MHz to 700 MHz  
Gain code = 00000 and at  
700 MHz  
Fast Attack Step Response Delay  
For input voltage (VIN) = 0.1 V,  
FA changing from 0 to 1 with  
16 dB step  
5
5
ns  
COMMON-MODE INPUTS  
VCM Pin Input Resistance  
OUTPUT STAGE  
2.6  
2.6  
kΩ  
VOUT+ and VOUT− pins  
Output Voltage Swing  
At 1 dB compression point (P1dB),  
gain code = 00000  
VCM pin  
4.1  
6.25  
2.5  
V p-p  
Common-Mode Voltage Reference  
Output Common-Mode Offset  
Differential Output Resistance  
Short-Circuit Current  
1.2  
−10  
1.65  
1.8  
+10  
1.4  
−10  
2.7  
V
((VOUT+) + (VOUT−))/2 − VCM/2  
+10 mV  
10  
20  
10  
25  
Ω
mA  
NOISE AND HARMONIC PERFORMANCE  
10 MHz  
Noise Figure  
6.2  
6.3  
dB  
Second Harmonic Distortion (HD2)  
Third Harmonic Distortion (HD3)  
Output Second-Order Intercept (OIP2) VOUT = 2 V p-p composite  
Third Intermodulation Distortion  
(IMD3)  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
−85  
−89.2  
−85.6  
87.1  
dBc  
dBc  
dBm  
dBc  
−76.5  
84.3  
−78.9  
VOUT = 2 V p-p composite  
−85.8  
Output Third-Order Intercept (OIP3)  
VOUT = 2 V p-p composite  
39.4  
42.9  
dBm  
Rev. 0 | Page 3 of 25  
 
 
ADL5206  
Data Sheet  
3.3 V Supply1  
Min Typ Max  
5 V Supply1  
Min Typ  
Parameter2  
Test Conditions/Comments  
Max Unit  
100 MHz  
Noise Figure  
5.8  
5.9  
dB  
HD2  
HD3  
OIP2  
IMD3  
OIP3  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
−75.8  
−72.2  
74.7  
−77  
−78.4  
−81  
76.8  
−84.8  
42.4  
dBc  
dBc  
dBm  
dBc  
dBm  
38.5  
300 MHz  
Noise Figure  
4.6  
5.1  
dB  
HD2  
HD3  
OIP2  
IMD3  
OIP3  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
−67.8  
−56.2  
70.5  
−75  
−77.6  
−67.9  
79.5  
−78.8  
39.4  
dBc  
dBc  
dBm  
dBc  
dBm  
37.5  
500 MHz  
Noise Figure  
4.5  
5
dB  
HD2  
HD3  
OIP2  
IMD3  
OIP3  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
−58.7  
−52.6  
58.3  
−68.3  
34  
−65.6  
−66.2  
65.7  
−76.6  
38.3  
18  
dBc  
dBc  
dBm  
dBc  
dBm  
dBm  
OP1dB  
700 MHz  
14.3  
Noise Figure  
6.7  
7
dB  
HD2  
HD3  
OIP2  
IMD3  
OIP3  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
−62.7  
−55.4  
64.2  
−61.2  
30.6  
−69  
−77.7  
67.2  
−76.3  
38.1  
dBc  
dBc  
dBm  
dBc  
dBm  
1000 MHz  
Noise Figure  
HD2  
HD3  
OIP2  
7.5  
−60.3  
−49  
61.6  
−56.5  
28.2  
7.9  
−62.5  
−61  
63.3  
−69.1  
34.5  
dB  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
dBc  
dBc  
dBm  
dBc  
dBm  
IMD3  
OIP3  
1200 MHz  
Noise Figure  
HD2  
HD3  
OIP2  
6.6  
−53.4  
−44  
53.6  
−54.4  
27.2  
7
dB  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
VOUT = 2 V p-p composite  
−57.2  
−52  
57.5  
−66.9  
33.4  
dBc  
dBc  
dBm  
dBc  
dBm  
IMD3  
OIP3  
Rev. 0 | Page 4 of 25  
Data Sheet  
ADL5206  
3.3 V Supply1  
5 V Supply1  
Min Typ  
Parameter2  
Test Conditions/Comments  
Min Typ  
Max  
Max Unit  
DIGITAL INTERFACE  
Input Voltage  
MODE1, MODE0, PWUP,  
LATCH, and SDIO pins  
Logic High (VIH)  
Logic Low (VIL)  
2
0
VPOS  
1.0  
2
0
3.3  
1.0  
V
V
Input Leakage Current  
Output Voltage  
Digital VIN = 0 V to 3.3 V  
SDIO pin  
3
3
µA  
Logic High (VOH)  
Logic Low (VOL)  
Output high current (IOH) = −2 mA 2.4  
Output low current (IOL) = 2 mA  
2.4  
2.4  
0.5  
0.5  
POWER INTERFACE  
Supply Voltage (VPOS  
)
VPOS pin  
3.15 3.3  
3.45  
4.75  
5
5.25  
V
Quiescent Current  
Power-Down Current  
87  
8
112  
8
mA  
mA  
PWUP pin = low  
1 The 3.3 V supply is low power mode, and the 5 V supply is high performance mode.  
2 When referring to a single function of a multifunction pin in the specifications table, only the portion of the pin name that is relevant to the specification is listed. For  
full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.  
3 The maximum input swing of 6.2 V p-p is for the lowest gain setting of 2 dB. As the gain setting increases, the maximum input swing must be reduced correspondingly  
to maintain the same maximum output swing. The maximum output swing is based on P1dB.  
Rev. 0 | Page 5 of 25  
 
ADL5206  
Data Sheet  
TIMING SPECIFICATIONS  
Table 2. SPI Timing Parameters  
Parameter Description  
Min Typ Max Unit  
fSCLK  
tPWH  
tPWL  
tDS  
tDH  
tDCS  
tH  
Maximum serial clock rate, 1/tSCLK (tSCLK is the SCLK time)  
25  
10  
10  
5
MHz  
ns  
ns  
ns  
ns  
Minimum period that SCLK is in a logic high state  
Minimum period that SCLK is in a logic low state  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
5
Setup time between the falling edge of and the rising edge of SCLK  
CS  
10  
10  
5
ns  
Hold time between the rising edge of and the last falling edge of SCLK  
CS  
ns  
tDV  
Maximum time delay between the falling edge of SCLK and the output data valid for a read  
operation  
14  
12  
ns  
tz  
Maximum time delay between  
deactivation and the SDIO bus return to high impedance  
ns  
CS  
Timing Diagrams  
INSTRUCTION CYCLE  
ADDRESS  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDI  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5  
N
D3 D2 D1 D0  
N
N
0
0
0
0
Figure 2. SPI Register Timing, MSB First  
tSCLK  
tPWL  
tPWH  
SCLK  
CS  
tDCS  
tH  
tDH  
tDS  
tZ  
SDI  
R/W  
CS5  
CS4  
0
0
0
0
A_MSB  
A7  
A2  
A1  
A_LSB D_MSB  
D6  
D5  
D1  
D_LSB  
Figure 3. Timing Diagram for the SPI Register Write  
SCLK  
CS  
tDV  
D5  
R/W  
A_MSB  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A2  
A1  
A_LSB D_MSB  
D6  
D1  
D_LSB  
SDIO  
Figure 4. Timing Diagram for SPI Register Read  
Rev. 0 | Page 6 of 25  
 
Data Sheet  
ADL5206  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
JUNCTION TO BOARD THERMAL IMPEDANCE  
Parameter1  
Differential Output Voltage Swing ×  
Bandwidth Product  
5 V Supply Voltage  
3.3 V Supply Voltage  
Rating  
The junction thermal, die to board, impedance (θJB) is the  
thermal impedance from the die to the leads of the ADL5206.  
The value given in Table 4 is based on the standard PCB described  
in the JESD51-7 standard for thermal testing of surface-mount  
components. PCB size and complexity (number of layers) affect  
θJB, and more layers tend to reduce thermal impedance slightly.  
4 V-GHz  
3 V-GHz  
5.4 V  
−0.5 V to +3.6 V  
−0.5 V to +3.1 V  
1 V  
Supply Voltage, VPOS  
PWUP, D0 to D4, MODE0, MODE1, LATCH  
Input Voltage (VIN+ and VIN−)  
Differential Input Voltage2 ((VIN+) − (VIN−))  
If the PCB temperature (TB) is known, use the junction to board  
thermal impedance to calculate the die temperature (also  
known as the junction temperature, TJ) to ensure that the die  
temperature does not exceed the specified limit of 135°C. For  
example, if the PCB temperature is 85°C, the die temperature  
is given by  
Internal Power Dissipation (PDISS  
)
500 mW  
Temperature  
Maximum Junction  
Operating Range  
135°C  
−40°C to +85°C  
−65°C to +150°C  
TJ = TB + (PDISS × θJB)  
Storage Range  
1 When referring to a single function of a multifunction pin in the parameters,  
only the portion of the pin name that is relevant to the specification is listed.  
For full pin names of multifunction pins, refer to the Pin Configuration and  
Function Descriptions section.  
2 The differential input voltage limit is significantly lower than the maximum  
input swing of 6.2 V p-p with a 5 V supply. The maximum input swing is for  
the lowest gain setting of 2 dB. As the gain setting increases, the maximum  
input swing must be reduced correspondingly to maintain the same maximum  
output swing. The maximum output swing is based on P1dB.  
The worst case PDISS for the ADL5206 is 500 mW (5.0 V ×  
110 mA, see Table 3). Therefore, TJ is  
TJ = 85°C + (0.499 W × 24.4°C/W) = 97.2°C  
ESD CAUTION  
Stresses at or above those listed under absolute maximum  
ratings can cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Table 4 shows the thermal resistance from the die to ambient  
JA), die to board (θJB), and die to lead (θJC).  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
Unit  
CP-20-16  
55.42 16.01  
9.08  
°C/W  
Rev. 0 | Page 7 of 25  
 
 
 
 
 
 
ADL5206  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
15 VOUT+  
VCM  
MODE1  
14 VOUT–  
ADL5206  
MODE0  
13 PWUP  
TOP VIEW  
12 DNC  
SDIO/SDO  
SCLK/D4  
(Not to Scale)  
11 LATCH/SPI_HP_LP  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THESE PINS.  
2. EXPOSED PAD GROUND. THE EXPOSED PAD MUST BE  
CONNECTED TO A LOW IMPEDANCE GROUND PLANE.  
Figure 5. Pin Configuration (Top View)  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
VCM  
MODE1  
Common-Mode Output.  
The MSB for Mode Control. Use both the MODE0 and MODE1 pins to select high performance or to  
select low power parallel, SPI, or up and down interface mode.  
3
4
5
MODE0  
SDIO/SDO  
SCLK/D4  
The LSB for Mode Control. Use both the MODE1 and MODE0 pins to select parallel, SPI, or UPDN mode.  
Serial Data Input and Output in 3-Wire SPI Mode (SDIO). Serial data output in 4-wire SPI mode (SDO).  
Serial Clock Input/Digital Bit 4. Depending on the selection of the MODE0 and MODE1 pins, this pin  
has two functions. In serial or SPI mode, this pin functions as SCLK. In parallel mode, this pin  
represents D4 when in the parallel gain control interface.  
6
7
/GS1/D3  
Chip Select (Active Low)/Gain Step 1/Digital Bit 3. Depending on the selection of the MODE0 and  
CS  
MODE1 pins, this pin has three functions. In serial or SPI mode, this pin becomes . When in UPDN  
CS  
mode, the GS1 function is enabled for this pin, which controls the MSB gain step size. In parallel  
mode, this pin represents D3 when in the parallel gain control interface.  
FA/GS0/D2  
Fast Attack/Gain Step 0/Digital Bit 2. Depending on the selection of the MODE0 and MODE1 pins,  
this pin has three functions. In serial or SPI mode, the FA function of this pin is enabled. The FA  
function allows the user to define a larger attenuation jump in the digital gain control settings. The  
FA pin attenuates according to an FA SPI word definition of FA0 and FA1 (the attenuation step size  
bits), which is defined by the user. When in UPDN mode, the GS0 function is enabled for this pin  
which controls the LSB gain step size. In parallel mode, this pin represents D2 when in the parallel  
gain control interface.  
8
UPDN_CLK/D1/SDI  
Clock Interface for Up and Down Interface (UPDN_CLK). Depending on MODE0 and MODE1 selection,  
this pin has three functions. In the up and down interface mode, this pin becomes UPDN_CLK. In  
parallel mode, this pin represents Digital Bit 1 (D1) when using a parallel gain control interface. In  
4-wire SPI mode, this pin is the serial data input (SDI).  
9
UPDN_DAT/D0/  
_4SPI Data Interface for Up and Down Interface (UPDN_DAT). Depending on MODE0 and MODE1 selection,  
this pin has three functions. In up and down interface mode, this pin becomes UPDN_DAT. In parallel  
mode, this pin represents Digital Bit 0 (D0) when using a parallel gain control interface. In SPI mode,  
3SPI  
logic low selects 3-wire SPI and logic high selects 4-wire SPI (  
_4SPI).  
3SPI  
10, 12  
DNC  
Do Not Connect. Do not connect to these pins.  
Rev. 0 | Page 8 of 25  
 
 
Data Sheet  
ADL5206  
Pin No. Mnemonic  
Description  
11  
LATCH/SPI_HP_  
LP  
The latch when the MODE0 and MODE1 pins are in parallel mode (LATCH). A logic low on this pin  
allows the gain to change, and a logic high on this pin prevents the gain change. In SPI mode, logic  
high selects high performance mode, and logic low selects low power mode (SPI_HP_ ).  
LP  
13  
PWUP  
Power-Up. PWUP remains the power-up pin function with any selection of the MODE0 and MODE1  
pins. A logic high on this pin powers up, and a logic low on this pin powers down.  
14  
15  
16, 19  
17  
18  
VOUT−  
VOUT+  
VPOS  
VIN+  
VIN−  
Negative Analog Output.  
Positive Analog Output.  
Positive Power Supply, 5 V.  
Positive Analog Input.  
Negative Analog Input.  
20  
DNC INTERIM  
Do Not Connect. Tie DNC INTERIM to a resistor divider that is 25 kΩ to 5 V and 50 kΩ to ground or to  
a pull-up that is 50 kΩ to 3.3 V.  
EP  
Exposed Pad Ground. The exposed pad must be connected to a low impedance ground plane. This  
plane is the ground (0 V) reference for all voltages in Table 1.  
Table 6. Pin Function Overview for Various Modes  
Mode  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
Pin 9  
Pin 11  
Pin 13  
Parallel  
High Performance  
Low Power  
SPI, 3-Wire  
0
1
0
1
Unused  
Unused  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
LATCH  
LATCH  
1
1
High Performance  
Low Power  
0
0
1
1
SDIO  
SDIO  
SCLK  
SCLK  
CS  
CS  
FA  
FA  
Unused  
Unused  
0
0
0
1
1
1
SPI, 4-Wire  
High Performance  
Low Power  
0
0
1
1
SDO  
SDO  
SCLK  
SCLK  
CS  
CS  
FA  
FA  
SDI  
SDI  
1
1
0
1
1
1
Up or Down  
High Performance  
Low Power  
1
1
0
0
Unused  
Unused  
Unused  
Unused  
GS1  
GS1  
GS0  
GS0  
UPDN_CLK  
UPDN_CLK  
UPDN_DAT  
UPDN_DAT  
0
1
1
1
Rev. 0 | Page 9 of 25  
ADL5206  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
Nominal VPOS = 5 V, TA = 25°C, ZLOAD = 100 Ω, maximum gain (gain code = 00000), 2 V p-p composite differential output for IMD3 and  
OIP3, 2 V p-p differential output for HD2 and HD3, and VCM = VPOS/2, unless otherwise noted.  
130  
125  
120  
115  
110  
105  
100  
95  
1.2  
VPOS = 4.75V  
VPOS = 5V  
VPOS = 5.25V  
FREQUENCY = 10MHz  
FREQUENCY = 100MHz  
FREQUENCY = 200MHz  
FREQUENCY = 300MHz  
FREQUENCY = 500MHz  
FREQUENCY = 700MHz  
FREQUENCY = 1000MHz  
FREQUENCY = 1250MHz  
FREQUENCY = 1500MHz  
FREQUENCY = 1750MHz  
1.0  
0.8  
0.6  
0.4  
0.2  
0
90  
–0.2  
–0.4  
–0.6  
–0.8  
85  
80  
75  
70  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
2
7
12  
17  
22  
27  
32  
VOLTAGE GAIN (dB)  
Figure 6. Supply Current vs. Temperature, High Performance Mode  
Figure 9. Gain Step Error vs. Voltage Gain, 5 V High Performance Mode  
130  
55  
VPOS = 3.13V  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
VPOS = 5V  
VPOS = 3.3V  
VPOS = 3.47V  
VPOS = 4.75V  
VPOS = 5V  
125  
120  
115  
110  
105  
100  
95  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VPOS = 5.25V  
90  
85  
80  
75  
70  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 7. Supply Current vs. Temperature, Low Power Mode  
Figure 10. OIP3 vs. Frequency over VPOS = 5 V at Four Voltage Gains,  
High Performance Mode  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
55  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
VPOS = 5V  
A
A
A
A
A
A
50  
45  
40  
35  
30  
25  
20  
15  
10  
6
4
2
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
GAIN CODE  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 8. Gain vs. Gain Code over Temperature at 500 MHz  
Figure 11. OIP3 vs. Frequency over VPOS = 5 V for Three Temperatures at  
Maximum Gain, High Performance Mode  
Rev. 0 | Page 10 of 25  
 
Data Sheet  
ADL5206  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VPOS = 3.13V  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
VPOS = 3.3V  
VPOS = 3.47V  
VPOS = 4.75V  
VPOS = 5V  
VPOS = 3.3V  
VPOS = 5V  
VPOS = 5.25V  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 12. OIP3 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V at  
Four Voltage Gains, Low Power Mode  
Figure 15. OIP3 vs. Frequency and VPOS Variance (5%) at Maximum Gain,  
Low Power Mode  
55  
–20  
VPOS = 5V  
T
T
T
= –40°C  
= +25°C  
= +85°C  
VPOS = 3.3V  
VPOS = 5V  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
A
A
A
–30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 13. OIP3 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V for  
Three Temperatures at Maximum Gain, Low Power Mode  
Figure 16. IMD3 vs. Frequency over VPOS = 5 V for Four Voltage Gains,  
High Performance Mode  
55  
–20  
VPOS = 4.75V  
VPOS = 5V  
VPOS = 5.25V  
VPOS = 3.3V  
VPOS = 5V  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
–30  
–40  
50  
45  
40  
35  
30  
25  
20  
15  
10  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 14. OIP3 vs. Frequency and VPOS Variance (5%) at Maximum Gain,  
High Performance Mode  
Figure 17. IMD3 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V for  
Four Voltage Gains, Low Power Mode  
Rev. 0 | Page 11 of 25  
ADL5206  
Data Sheet  
–20  
–20  
–30  
VPOS = 3.3V  
VPOS = 5V  
VPOS = 5V  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 18. HD2 vs. Frequency over VPOS = 5 V for Four Voltage Gains,  
High Performance Mode  
Figure 21. HD2 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V for Three  
Temperatures at Maximum Gain, 2 V p-p, Low Power Mode  
–20  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
VPOS = 5V  
VPOS = 5V  
A
A
A
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 19. HD2 vs. Frequency over VPOS = 5 V for Three Temperatures at  
Maximum Gain, 2 V p-p, High Performance Mode  
Figure 22. HD3 vs. Frequency over VPOS = 5 V for Four Voltage Gains at  
2 V p-p, High Performance Mode  
–20  
–20  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 14dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
VPOS = 3.3V  
VPOS = 5V  
T
T
T
= –40°C  
= +25°C  
= +85°C  
VPOS = 5V  
A
A
A
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
Figure 20. HD2 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V for  
Four Voltage Gains at 2 V p-p, Low Power Mode  
Figure 23. HD3 vs. Frequency over VPOS = 5 V for Three Temperatures at  
Maximum Gain, 2 V p-p, High Performance Mode  
Rev. 0 | Page 12 of 25  
Data Sheet  
ADL5206  
–20  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VOLTAGE GAIN = 14dB  
VPOS = 3.3V  
VPOS = 5V  
VOLTAGE GAIN = 9dB TO 2dB  
VOLTAGE GAIN = 17dB TO 10dB  
VOLTAGE GAIN = 32dB TO 18dB  
VOLTAGE GAIN = 26dB  
VOLTAGE GAIN = 32dB  
VOLTAGE GAIN = 6dB  
–30  
–40  
–50  
–60  
–70  
–80  
8
7
–90  
6
5
–100  
–110  
–120  
4
3
2
1
0
0
500  
1000  
1500  
2000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 24. HD3 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V for  
Four Voltage Gains at 2 V p-p, Low Power Mode  
Figure 27. Noise Figure vs. Frequency over Voltage Gain Ranges,  
5 V Low Power Mode  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
VOLTAGE GAIN = 9dB TO 2dB  
VOLTAGE GAIN = 17dB TO 10dB  
VOLTAGE GAIN = 32dB TO 18dB  
8
7
6
5
4
3
2
1
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–110  
–120  
VPOS = 3.3V  
VPOS = 5V  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (MHz)  
0
500  
1000  
1500  
2000  
FREQUENCY (MHz)  
Figure 25. HD3 vs. Frequency over VPOS = 3.3 V and VPOS = 5 V for  
Three Temperatures at Maximum Gain, 2 V p-p, Low Power Mode  
Figure 28. Noise Figure vs. Frequency over Voltage Gain Ranges,  
3.3 V Low Power Mode  
20  
19  
10  
VOLTAGE GAIN = 9dB TO 2dB  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VOLTAGE GAIN = 17dB TO 10dB  
VOLTAGE GAIN = 32dB TO 18dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
0
500  
1000  
1500  
2000  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 26. Noise Figure vs. Frequency over Voltage Gain Ranges,  
5 V High Performance Mode  
Figure 29. SDD11 vs. Frequency at Gain = 2 dB, 5 V High Performance Mode  
Rev. 0 | Page 13 of 25  
ADL5206  
Data Sheet  
–20  
–30  
–40  
–50  
–60  
–70  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–80  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 30. SDD12 vs. Frequency at Gain = 2 dB, 5 V High Performance Mode  
Figure 33. SDD11 vs. Frequency at Gain = 32 dB, 5 V High Performance Mode  
40  
30  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
20  
10  
0
–10  
–20  
–30  
–40  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 31. SDD21 vs. Frequency at Gain = 2 dB, 5 V High Performance Mode  
Figure 34. SDD12 vs. Frequency at Gain = 32 dB, 5 V High Performance Mode  
–1  
–2  
40  
30  
–3  
20  
–4  
10  
–5  
–6  
0
–7  
–10  
–20  
–30  
–40  
–8  
–9  
–10  
–11  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. SDD22 vs. Frequency at Gain = 2 dB, 5 V High Performance Mode  
Figure 35. SDD21 vs. Frequency at Gain = 32 dB, 5 V High Performance Mode  
Rev. 0 | Page 14 of 25  
Data Sheet  
ADL5206  
–1  
–2  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
VOLTAGE GAIN = 32dB  
–3  
–4  
–5  
–6  
6
4
2
–7  
VOLTAGE GAIN = 2dB  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–8  
–9  
–10  
–11  
0
2
4
6
8
10  
12  
10M  
100M  
FREQUENCY (Hz)  
1G  
10G  
FREQUENCY (GHz)  
Figure 39. Gain vs. Frequency over Voltage Gains,  
3.3 V Low Power Mode  
Figure 36. SDD22 vs. Frequency at Gain = 32 dB, 5 V High Performance Mode  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
3
2
1
0
34  
VOLTAGE GAIN = 32dB  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
V oltage Gain = 2dB  
2
VOLTAGE GAIN = 2dB  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–1  
40  
–10  
–5  
0
5
10  
15  
20  
25  
30  
35  
10M  
100M  
FREQUENCY (Hz)  
1G  
10G  
TIME (ns)  
Figure 40. Enable Time Domain Response, 5 V High Performance Mode  
Figure 37. Gain vs. Frequency over Voltage Gains,  
5 V High Performance Mode  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
VOLTAGE GAIN = 32dB  
6
4
2
VOLTAGE GAIN = 2dB  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–0.5  
–1.0  
40  
–10  
–5  
0
5
10  
15  
20  
25  
30  
35  
10M  
100M  
FREQUENCY (Hz)  
1G  
10G  
TIME (ns)  
Figure 41. Disable Time Domain Response, 5 V High Performance Mode  
Figure 38. Gain vs. Frequency over Voltage Gains,  
5 V Low Power Mode  
Rev. 0 | Page 15 of 25  
ADL5206  
Data Sheet  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
3
2
1
0
–0.5  
–1.0  
–1  
–10  
0
10  
20  
30  
40  
50  
60  
–10  
–5  
0
5
10  
15  
20  
25  
30  
TIME (ns)  
TIME (ns)  
Figure 42. Enable Time Domain Response, 3.3 V Low Power Mode  
Figure 45. Fast Attack Disable Time Domain Response,  
5 V High Performance Mode  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
3
3
2
2
1
1
0
0
–1  
15  
–1  
15  
–5  
–3  
–1  
1
3
5
7
9
11  
13  
–5  
–3  
–1  
1
3
5
7
9
11  
13  
TIME (ns)  
TIME (ns)  
Figure 43. Disable Time Domain Response, 3.3 V Low Power Mode  
Figure 46. Fast Attack Enable Time Domain Response,  
3.3 V Low Power Mode  
5.0  
4.5  
4.00  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4
3
2
1
0
–1  
15  
–5  
–3  
–1  
1
3
5
7
9
11  
13  
TIME (ns)  
TIME (ns)  
Figure 44. Fast Attack Enable Time Domain Response,  
5 V High Performance Mode  
Figure 47. Fast Attack Disable Time Domain Response,  
3.3 V Low Power Mode  
Rev. 0 | Page 16 of 25  
Data Sheet  
ADL5206  
70  
400  
350  
300  
250  
200  
150  
100  
VOLTAGE GAIN = 2dB  
VOLTAGE GAIN = 32dB  
60  
50  
40  
30  
20  
10  
0
VPOS = 3.3V, LOW POWER MODE  
VPOS = 5V, HIGH PERFORMANCE MODE  
–10  
10M  
100M  
1G  
10G  
10M  
100M  
1G  
2G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48. CMRR vs. Frequency at Voltage Gain = 2 dB and Voltage Gain =  
32 dB, 5 V High Performance Mode and 3.3 V Low Power Mode  
Figure 51. Group Delay vs. Frequency at Maximum Gain,  
5 V High Performance Mode  
4.0  
40  
21ns TO 28ns  
30  
20  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
10  
0
–10  
–20  
–30  
–40  
–10  
–5  
0
5
10  
15  
20  
25  
30  
10M  
100M  
1G  
2G  
SETTLING TIME (ns)  
FREQUENCY (Hz)  
Figure 49. Output Common-Mode Voltage vs. Settling Time,  
5 V High Performance Mode, Maximum Gain Transition  
Figure 52. Group Delay vs. Frequency at Maximum Gain,  
5 V Low Power Mode  
400  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3ns TO 4ns  
350  
300  
250  
200  
150  
100  
10M  
100M  
1G  
2G  
–5  
–3  
–1  
1
3
5
7
9
11  
13  
15  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
Figure 50. Group Delay vs. Frequency at Maximum Gain,  
3.3 V Low Power Mode  
Figure 53. Output Common-Mode Voltage vs. Settling Time,  
3.3 V Low Power Mode, Maximum Gain Transition  
Rev. 0 | Page 17 of 25  
ADL5206  
Data Sheet  
1
1
2
2
0.5  
0.5  
0.1  
0.1  
5
5
M2  
M3  
M5  
M6  
0
30  
0
30  
M2  
M3  
M5  
M6  
–0.1  
–5  
–0.1  
–5  
GAIN = 8dB  
GAIN = 14dB  
GAIN = 26dB  
GAIN = 32dB  
GAIN = 8dB  
GAIN = 14dB  
GAIN = 26dB  
GAIN = 32dB  
–0.5  
–0.5  
–2  
–2  
–1  
–1  
FREQUENCY (10MHz TO 12GHz)  
FREQUENCY (10MHz TO 12GHz)  
Figure 54. Differential Input Reflection (SDD11) Magnitude and Phase vs.  
Frequency over Four Gain  
Figure 56. Differential Output Reflection (SDD22) Magnitude and Phase vs.  
Frequency over Four Gains  
150  
3.3V, LOW POWER MODE  
5.0V,HIGH PERFORMANCE MODE  
145  
5.0V,LOW POWER MODE  
140  
135  
130  
125  
120  
115  
110  
FREQUENCY = 100MHz  
105  
100  
FREQUENCY = 700MHz  
FREQUENCY = 1200MHz  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
VOLTAGE GAIN (dB)  
Figure 55. Spurious-Free Dynamic Range (SFDR) vs. Voltage Gain  
Across Power Modes and Various Frequencies  
Rev. 0 | Page 18 of 25  
Data Sheet  
ADL5206  
THEORY OF OPERATION  
BASIC STRUCTURE  
COMMON-MODE VOLTAGE  
The ADL5206 is a differential, digitally controlled VGA, which is  
also known as a DGA. The DGA consists of a 100 Ω differential  
input, digitally controlled passive attenuator, followed by a  
digitally controlled gain amplifier. On-chip logic circuitry maps  
the gain codes such that all gain changes, from the maximum  
gain to minimum gain, are accomplished by only using the  
digitally controlled resistors in the feedback of the amplifier.  
The ADL5206 is flexible in terms of input and output coupling.  
The ADL5206 can be ac-coupled or dc-coupled at the inputs  
and/or outputs within the specified output common-mode  
voltage reference range of 1.2 V to 1.8 V for the 3.3 V supply  
and 1.4 V to 2.7 V for the 5 V supply, depending on the supply  
voltage. If no external output common-mode voltage is applied,  
the input and output common-mode voltages are set internally  
to half of the supply voltage.  
This technique does not require a digital step attenuator (DSA)  
on the input of the amplifier, thus providing SFDR increases  
as gain reduces. This topology also allows all 30 dB of gain  
reduction in the feedback with a total noise figure degradation  
of 7 dB only over the total 30 dB gain range at 700 MHz. The  
differential output impedance of the amplifier is 10 Ω.  
The output common-mode voltages of the ADL5206 are  
controlled by the voltages on the VCM pin. The VCM pin is  
connected internally through 5 kΩ resistors to the VPOS pin  
as well as to the exposed pad. As a result, the common-mode  
output voltage is preset internally to half of the supply voltage at  
VPOS. Alternatively, the VCM pin can be connected to the  
common-mode voltage reference output from an ADC, and  
thus the common-mode levels between the amplifier and the  
ADC can be matched without requiring any external components.  
CONTROL AND LOGIC CIRCUITRY  
The ADL5206 features three different gain control interfaces:  
serial, parallel, or up and down control, which is determined by  
the combination of the MODE1 and MODE0 pins. For details  
on controlling the gain in each of these modes, see the Digital  
Interface Overview section. Typically, the gain step size is 1 dB.  
Larger step sizes can be programmed, as described in the Digital  
Interface Overview section. The amplifier has a maximum gain  
of 32 dB (Gain Code 00000) to a minimum gain of 2 dB  
(Gain Code 11110 to Gain Code 11111).  
Rev. 0 | Page 19 of 25  
 
 
 
 
ADL5206  
Data Sheet  
REGISTER SUMMARY AND DETAILS  
Table 7. Register Summary  
Register  
Address  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x0  
CTL  
[7:0]  
RESERVED  
FAST_ATTACK_CTL  
GAIN_CTL  
0x18  
R/W  
Register Address: 0x0, Reset: 0x18, Name: CTL  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7] RESERVED  
[4:0] GAIN_CTL (R/W)  
[6:5] FAST_ATTACK_CTL (R/W)  
Table 8. Bit Descriptions for CTL  
Bits Bit Name Description  
RESERVED Reserved  
[6:5] FAST_ATTACK_CTL Fast Attack Step Size  
[4:0] GAIN_CTL Gain Control  
Reset  
0x0  
Access  
R
7
0x0  
R/W  
R/W  
0x18  
Rev. 0 | Page 20 of 25  
 
Data Sheet  
ADL5206  
APPLICATIONS INFORMATION  
are decoupled using 0.1 µF capacitors as well. The digital pins  
(that is the mode control pins, the associated SPI and parallel  
gain control pins, the power mode, and the PWUP pin) operate  
at a 3.3 V voltage.  
BASIC CONNECTIONS  
Figure 57 shows the basic connections for operating the  
ADL5206.  
Apply a 3.3 V or 5 V voltage to the VPOS pins. Decouple the  
supply pins with at least one low inductance, surface-mount, 0.1  
µF ceramic capacitor and place the capacitor as close to the  
device as possible.  
To enable the ADL5206, pull the PWUP pin high (2.0 V ≤  
PWUP ≤ 3.3 V).  
A logic low on the PWUP pin sets the ADL5206 to sleep mode,  
reducing the current consumption to approximately 7 mA. The  
VCOM pin is the output common-mode voltage, and the  
VCOM pin must be decoupled with a 0.1 µF capacitor for  
filtering noise.  
The differential outputs (VOUT+ and VOUT−) have a dc  
common-mode voltage that is approximately half of the supply.  
Therefore, decouple these outputs using 0.1 µF capacitors to  
balance the load. The balanced differential inputs have the same  
dc common-mode voltage as the outputs. Note that the inputs  
BALANCED  
SOURCE  
AC  
½R  
½R  
S
S
0.1µF  
0.1µF  
5PO_VCC  
0.1µF  
0.1µF  
ADL5206  
0.1µF  
0.1µF  
15  
VCOM  
MODE1  
EXPOSED  
PAD  
VOUT+  
VCOM  
BALANCED  
LOAD  
R
14  
13  
12  
11  
L
0.1µF  
VOUT–  
MODE1  
MODE0  
SDIO/SDO  
SCLK/D4  
PWUP  
MODE0  
PWUP  
DNC  
SDIO/SDO  
SCLK/D4  
LATCH/SPI_HP_LP  
LATCH/SPI_HP_LP  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THESE PINS.  
2. EXPOSED PAD GROUND. THE EXPOSED PAD MUST BE  
CONNECTED TO A LOW IMPEDANCE GROUND PLANE.  
Figure 57. Basic Connections  
Rev. 0 | Page 21 of 25  
 
 
 
ADL5206  
Data Sheet  
The SPI uses a bidirectional pin (SDIO) for writing to the SPI  
register and for reading from the SPI register in 3-wire SPI mode.  
Whereas in 4-wire SPI mode, SDI is dedicated to writing to the  
SPI register of the device, and SDO is dedicated to reading from  
the SPI register of the device. To write to the SPI register, pull  
DIGITAL INTERFACE OVERVIEW  
The three digital control interface options for the ADL5206  
DGA include the following:  
Parallel control interface  
Serial peripheral interface  
Gain step-up and step-down interface  
CS  
the  
pin low and apply 8 clock pulses to shift the 8 bits into  
the corresponding SPI register, MSB first.  
The digital control interface selection is made via two digital  
pins, MODE1 and MODE0, as shown in Table 9.  
The SPI register read back operation is described in the SPI  
Read section.  
The same physical pins are shared between three interfaces,  
resulting in as many as three different functions per digital pin  
(see Table 5).  
SPI fast attack mode is controlled by the FA pin. A logic high on  
the FA pin results in an attenuation selected by the FA1 and the  
FA0 bits in the SPI register.  
Table 9. Digital Control Interface Selection Truth Table  
Table 10. SPI 2-Bit Attenuation Step Size Truth Table  
MODE1  
MODE0  
Interface  
FA1  
FA0  
Step Size (dB)  
0
0
1
1
0
1
0
1
Parallel, high performance  
Serial  
Up and down  
Parallel, low power  
0
0
1
1
0
1
0
1
2
4
8
16  
Parallel Digital Interface  
Up and Down Interface  
The parallel digital interface uses five gain control bits and a  
latch pin. The LATCH pin controls whether the input data latch  
is transparent (logic low) or latched (logic high). In transparent  
mode, the gain changes as the input gain control bits change. In  
latched mode, the gain is determined by the latched gain setting  
and is not changed by changing the input gain control bits.  
The up and down interface uses two digital pins to control the  
gain. When the UPDN_DAT pin is low, the gain is increased by  
a clock pulse on the UPDN_CLK pin (rising and falling edges).  
When the UPDN_DAT pin is high, the corresponding gain is  
decreased by a clock pulse on the UPDN_CLK pin. Reset is  
detected when the rising edge of UPDN_CLK latches one  
polarity on UPDN_DAT, and the falling edge latches the opposite  
polarity. Reset results in a minimum gain code of 11110.  
SPI  
CS  
The SPI uses three pins (SDIO, SCLK, and ) in 3-wire SPI  
CS  
mode and four pins (SDI, SDO, SCLK, and ) in 4-wire SPI  
UPDN_DAT  
UPDN_CLK  
mode. The SPI data register consists of eight bits: five gain  
control bits (D0 to D4), two attenuation step size address bits  
W
(FA0 and FA1), and one read/write bit (R/ ), as shown in  
UP  
DN  
RESET  
Figure 58.  
Figure 59. Up and Down Gain Control Timing  
LSB  
MSB LSB MSB  
The step size is selectable by the GS1 and GS0 pins. The default  
step size is 1 dB. The gain code count rails at the top and bottom  
of the control range.  
DATA  
D0  
D1  
D2  
D3  
D4 FA0 FA1 R/W  
READ/WRITE  
FAST ATTACK  
GAIN CONTROL  
Table 11. Step Size Control Truth Table  
GS1  
GS0  
Step Size (dB)  
Figure 58. 8-Bit SPI Register  
0
0
1
1
0
1
0
1
1
2
4
8
Rev. 0 | Page 22 of 25  
 
 
 
Data Sheet  
ADL5206  
SPI READ  
Table 12. Gain Code vs. Voltage Gain  
The ADL5206 can be read back only in serial mode during a  
CS CS W  
high) after the R/ bit is set high  
in the previous cycle. During the read cycle, data changes at  
each rising edge of SCLK and can be latched using the falling  
edge of SCLK. There is no continual read operation. A logic  
5-Bit Binary Gain Code, D4 to D0  
Voltage Gain (dB)  
read cycle (from  
low to  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
W
high (1) must be written into the R/ bit to enable the subsequent  
W
read cycle, and once the R/ bit is set, the rest of the bits are  
ignored in that write cycle.  
The sequence for writing and then reading back is shown in  
Figure 60 to Figure 62, showing the operation of the input and  
output functions of the SDIO pin.  
CS  
SCLK  
SDIO (IN)  
SDIO (OUT)  
WRITE VALUE  
WRITE 0x54  
R/W BIT LOW ON SDIO (IN)  
DATA WRITTEN ON RISING CLOCK EDGE  
Figure 60. Write Gain Control Word  
CS  
SCLK  
8
7
6
5
4
3
2
SDIO (IN)  
SDIO (OUT)  
SET UP READ  
WRITE 0x10  
R/W BIT LOW ON SDIO (OUT)  
Figure 61. Write Logic 1 into R/W Bit  
CS  
SCLK  
SDIO (IN)  
SDIO (OUT)  
PERFORM READ  
READ 0x54  
R/W BIT HIGH  
DATA READ ON FALLING CLOCK EDGE  
Figure 62. Perform Read  
Rev. 0 | Page 23 of 25  
 
 
 
ADL5206  
Data Sheet  
ADC INTERFACING  
NOISE FIGURE vs. GAIN SETTING  
A typical data acquisition system using the ADL5206 together  
with an antialiasing filter and an ADC is shown in Figure 63.  
The main role of the filter after the amplifier is for attenuating  
the broadband noise and out of band harmonics generated by  
the amplifier. Component values for a 500 MHz acquisition  
bandwidth are listed in Table 13. Without this filter, the out  
of band noise and distortion components alias back into the  
Nyquist band, resulting in a reduction of signal-to-noise ratio.  
The design of the filter preceding the ADL5206 amplifier is  
more specific to the system rejection requirements for the  
acquisition system.  
Because of the architecture of the ADL5206, the noise figure  
does not degrade significantly for the first 10 dB of gain reduction  
from the maximum gain setting. The noise figure increases by  
0.5 dB only during the first 10 dB of gain reduction. The noise  
figure changes by 7 dB over the 30 dB gain range.  
45  
40  
35  
30  
REGULAR ATTENUATOR  
AMPLIFIER CASCADE  
25  
20  
15  
C2A  
L1A  
L3A  
C4  
L3B  
R1A  
R1B  
FILTER  
AMP  
VCM  
ADC  
10  
L1B  
C2B  
ADL5206  
5
AT 700MHz 5V  
HIGH PERFORMANCE  
0
–10  
–5  
0
5
10  
15  
20  
25  
30 32  
Figure 63. ADC Interface (One of Two Channels Shown)  
GAIN (dB)  
Table 13. Component Values for a 500 MHz Acquisition System  
Figure 64. Noise Figure vs. Gain  
Component Value  
Description/Comments  
Amplifier  
L1A, L1B  
C2A, C2B  
½ ADL5206 One channel  
22 nH  
6.8 pF  
Q ≥ 50 at 500 MHz  
Final value depends on PCB  
parasitics  
L3A, L3B  
C4  
22 nH  
1.5 pF  
Q ≥ 50 at 500 MHz  
Final value depends on PCB  
parasitics  
R1A, R1B  
ADC  
10 Ω  
½ AD9680  
Not applicable  
One channel, input impedance set  
to 100 Ω  
Rev. 0 | Page 24 of 25  
 
 
 
 
Data Sheet  
ADL5206  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
NS  
INDICATOR AR E A OP TIO  
(SEE DETAIL A)  
16  
20  
15  
1
0.50  
BSC  
1.36  
1.26  
1.16  
EXPOSED  
PAD  
5
11  
10  
6
0.50  
0.45  
0.40  
TOP VIEW  
SIDE VIEW  
1.26BOTTOM VIEW  
1.16  
1.06  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.55  
0.050 MAX  
0.035 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
Figure 65. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-20-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADL5206ACPZ-R7 −40°C to +85°C  
Temperature Range  
Package Description  
Package Option  
CP-20-16  
CP-20-16  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
ADL5206ACPZ  
−40°C to +85°C  
ADL5206-EVALZ  
1 Z = RoHS-Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D24682-9/20(0)  
Rev. 0 | Page 25 of 25  
 
 

相关型号:

ADL5206ACPZ

1.0 GHz DGA with 30 dB Range and 1 dB Step Size
ADI

ADL5206ACPZ-R7

1.0 GHz DGA with 30 dB Range and 1 dB Step Size
ADI

ADL5230-EVALZ

400 MHz to 2700 MHz Pre-driver RF Amplifier
ADI

ADL5231-EVALZ

2.3 GHz to 4.0 GHz RF Driver Amplifier
ADI

ADL5240

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA
ADI

ADL5240-EVALZ

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA
ADI

ADL5240ACPZ-R7

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA
ADI

ADL5243

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA
ADI

ADL5243-EVALZ

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA
ADI

ADL5243ACPZ-R7

100 MHz to 4000 MHz RF/IF Digitally Controlled VGA
ADI

ADL5246

3 GHz Variable Gain LNA with Integrated ½ W Driver Amplifier
ADI

ADL5246-EVALZ

3 GHz Variable Gain LNA with Integrated ½ W Driver Amplifier
ADI