ADL5320-EVALZ [ADI]

400 MHz to 2700 MHz RF Driver Amplifier; 400 MHz至2700 MHz的RF驱动器放大器
ADL5320-EVALZ
型号: ADL5320-EVALZ
厂家: ADI    ADI
描述:

400 MHz to 2700 MHz RF Driver Amplifier
400 MHz至2700 MHz的RF驱动器放大器

驱动器 放大器
文件: 总16页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz to 2700 MHz  
RF Driver Amplifier  
ADL5320  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
GND  
Operation: 400 MHz to 2700 MHz  
Gain of 17 dB at 880 MHz  
(2)  
ADL5320  
OIP3 of 45 dBm at 880 MHz  
P1dB of 25.4 dBm at 880 MHz  
Noise figure: 4 dB at 880 MHz  
Power supply: 5 V  
Power supply current: 104 mA typical  
Internal active biasing  
BIAS  
1
2
3
RF  
GND RF  
IN  
OUT  
Figure 1.  
Thermally efficient SOT-89 package  
ESD rating of 4 kV (Class 3A)  
GENERAL DESCRIPTION  
The ADL5320 is a broadband, linear driver RF amplifier that  
operates at frequencies from 400 MHz to 2700 MHz. The device  
can be used in a wide variety of wired and wireless applications,  
including ISM, WLL, PCS, GSM, CDMA, and W-CDMA.  
The ADL5320 is fabricated on a GaAs HBT process. The device  
is packaged in a low cost SOT-89 that uses an exposed paddle  
for excellent thermal impedance. It operates from −40°C to  
+85°C, and a fully populated evaluation board is available.  
The ADL5320 operates with a 5 V supply voltage and a supply  
current of 104 mA.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062−9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
ADL5320  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Basic Layout Connections............................................................. 11  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Typical Scattering Parameters..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Soldering Information and Recommended PCB Land  
Pattern.......................................................................................... 11  
Matching Procedure................................................................... 12  
W-CDMA ACPR Performance ................................................ 13  
Evaluation Board ............................................................................ 14  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
2/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADL5320  
SPECIFICATIONS  
VSUP = 5 V and TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
400  
16.3  
Typ  
Max  
Unit  
OVERALL FUNCTION  
Frequency Range  
FREQUENCY = 880 MHz  
Gain1  
vs. Frequency  
vs. Temperature  
vs. Supply  
Output 1 dB Compression Point  
Output Third-Order Intercept  
Noise Figure  
2700  
17.5  
MHz  
16.9  
0.3  
0.6  
0.1  
25.4  
45  
dB  
dB  
dB  
dB  
dBm  
dBm  
dB  
50 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
∆f = 1 MHz, POUT = 10 dBm per tone  
4.1  
FREQUENCY = 2140 MHz  
Gain1  
12.4  
11.5  
4.5  
13.2  
0.33  
0.8  
0.06  
25.7  
42  
4.4  
14.0  
dB  
dB  
dB  
dB  
dBm  
dBm  
dB  
vs. Frequency  
vs. Temperature  
vs. Supply  
Output 1 dB Compression Point  
Output Third-Order Intercept  
Noise Figure  
50 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
∆f = 1 MHz, POUT = 10 dBm per tone  
FREQUENCY = 2600 MHz  
Gain1  
12.5  
0.6  
1.1  
0.1  
27.4  
37  
13.4  
dB  
dB  
dB  
dB  
dBm  
dBm  
dB  
vs. Frequency  
vs. Temperature  
vs. Supply  
Output 1 dB Compression Point  
Output Third-Order Intercept  
Noise Figure  
100 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
∆f = 1 MHz, POUT = 10 dBm per tone  
Pin RFOUT  
5.1  
POWER INTERFACE  
Supply Voltage  
5
5.5  
V
Supply Current  
vs. Temperature  
Power Dissipation  
104  
6.0  
520  
124  
mA  
mA  
mW  
−40°C ≤ TA ≤ +85°C  
VSUP = 5 V  
1 Guaranteed maximum and minimum specified limits on this parameter are based on 6 sigma calculations.  
Rev. 0 | Page 3 of 16  
 
ADL5320  
TYPICAL SCATTERING PARAMETERS  
VSUP = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device.  
Table 2.  
S11  
S21  
S12  
S22  
Freq (MHz) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°)  
400  
500  
550  
600  
650  
700  
750  
800  
−1.51  
−1.38  
−1.42  
−1.46  
−1.46  
−1.50  
−1.56  
−1.61  
−1.66  
−1.72  
−1.85  
−1.92  
−2.02  
−2.20  
−2.41  
−2.62  
−2.87  
−3.16  
−3.65  
−4.09  
−4.59  
−5.28  
−6.09  
−6.98  
−8.06  
−9.38  
−11.15  
−13.20  
−15.83  
−19.87  
−24.51  
−22.66  
−18.02  
−14.34  
−12.10  
−10.23  
−8.65  
−7.90  
−6.66  
−6.35  
−5.77  
−5.51  
−5.35  
−5.15  
−5.22  
−5.06  
164.18  
155.33  
151.34  
147.66  
144.12  
140.66  
137.19  
133.97  
130.74  
127.65  
124.15  
120.90  
117.54  
114.21  
110.72  
107.22  
103.77  
99.97  
96.51  
92.23  
88.76  
84.62  
80.71  
77.02  
72.69  
68.92  
14.18  
14.03  
13.79  
13.72  
13.53  
13.45  
13.21  
13.29  
13.04  
13.03  
12.92  
12.93  
12.92  
12.76  
12.97  
12.69  
12.98  
12.87  
12.94  
12.87  
13.04  
13.00  
12.89  
13.13  
13.07  
13.00  
12.97  
13.18  
13.03  
12.84  
13.08  
12.86  
12.88  
12.63  
12.45  
12.65  
11.82  
11.84  
11.55  
10.97  
10.36  
9.65  
+128.37  
+118.16  
+112.76  
+108.71  
+104.05  
+98.89  
+95.44  
+90.33  
+86.67  
+81.59  
+77.91  
+73.13  
+68.80  
+64.12  
+59.95  
+54.62  
+50.95  
+44.96  
+40.47  
+35.36  
+30.47  
+24.40  
+19.39  
+14.80  
+7.27  
−32.37  
−31.75  
−31.68  
−31.46  
−31.56  
−31.13  
−31.12  
−31.00  
−30.60  
−30.72  
−30.31  
−30.22  
−29.98  
−29.80  
−29.39  
−29.46  
−29.03  
−28.75  
−28.81  
−28.26  
−28.43  
−28.13  
−27.96  
−27.98  
−27.73  
−27.49  
−27.78  
−27.23  
−27.36  
−27.40  
−27.26  
−27.33  
−27.33  
−27.54  
−27.77  
−27.74  
−28.34  
−28.62  
−28.92  
−29.75  
−30.13  
−30.41  
−32.29  
−31.60  
−33.19  
−33.61  
+6.77  
+1.48  
−3.93  
−4.60  
−6.81  
−9.87  
−3.44  
−3.70  
−3.79  
−3.83  
−3.90  
−3.99  
−4.02  
−4.07  
−4.12  
−4.21  
−4.25  
−4.27  
−4.32  
−4.37  
−4.43  
−4.42  
−4.47  
−4.44  
−4.45  
−4.40  
−4.37  
−4.29  
−4.20  
−4.05  
−3.88  
−3.71  
−3.59  
−3.29  
−3.11  
−2.93  
−2.69  
−2.54  
−2.50  
−2.35  
−2.44  
−2.42  
−2.43  
−2.74  
−2.62  
−2.94  
−3.03  
−3.24  
−3.41  
−3.55  
−3.80  
−3.93  
160.94  
156.73  
154.66  
152.89  
151.08  
149.38  
147.87  
146.36  
144.94  
143.60  
142.41  
141.31  
140.51  
139.63  
138.68  
138.09  
137.74  
137.08  
136.77  
136.49  
136.43  
135.79  
135.63  
135.39  
134.43  
133.76  
132.94  
131.04  
129.62  
127.46  
124.63  
122.53  
118.78  
115.97  
112.52  
108.19  
104.65  
100.98  
96.52  
−11.14  
−13.96  
−14.90  
−17.78  
−20.23  
−22.21  
−24.19  
−28.18  
−29.56  
−33.00  
−37.13  
−38.18  
−44.64  
−46.78  
−49.56  
−56.47  
−59.31  
−62.71  
−69.93  
−73.80  
−77.79  
−85.28  
−89.22  
−96.30  
−102.96  
−109.25  
−117.37  
−124.60  
−132.56  
−141.32  
−149.30  
−161.50  
−165.89  
+179.97  
+170.82  
+163.00  
+152.20  
+138.60  
+135.12  
+120.22  
850  
900  
950  
1000  
1050  
1100  
1150  
1200  
1250  
1300  
1350  
1400  
1450  
1500  
1550  
1600  
1650  
1700  
1750  
1800  
1850  
1900  
1950  
2000  
2050  
2100  
2150  
2200  
2250  
2300  
2350  
2400  
2450  
2500  
2550  
2600  
2650  
2700  
+2.17  
−3.27  
−9.57  
66.21  
63.18  
63.73  
71.29  
−17.27  
−22.35  
−29.10  
−36.58  
−43.14  
−51.83  
−55.83  
−67.28  
−73.99  
−79.82  
−91.28  
−96.39  
−108.43  
−110.92  
−122.10  
−130.39  
−132.72  
−143.64  
103.69  
156.61  
171.65  
174.52  
172.15  
166.81  
160.58  
153.80  
145.88  
138.01  
128.87  
118.44  
112.21  
99.40  
92.52  
88.07  
83.25  
79.98  
73.08  
69.85  
63.87  
9.46  
7.99  
7.70  
6.61  
92.84  
82.21  
Rev. 0 | Page 4 of 16  
 
ADL5320  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
ESD CAUTION  
Rating  
Supply Voltage, VSUP  
6.5 V  
Input Power (50 Ω Impedance)  
Internal Power Dissipation (Paddle Soldered)  
θJC (Junction to Paddle)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
20 dBm  
683 mW  
28.5°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 16  
 
 
ADL5320  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
RF  
1
2
3
IN  
ADL5320  
TOP VIEW  
(Not to Scale)  
GND  
(2)  
GND  
RF  
OUT  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
RFIN  
GND  
RFOUT  
RF Input. Requires a dc blocking capacitor.  
Ground. Connect to a low impedance ground plane.  
RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected  
to the external power supply. RF path requires a dc blocking capacitor.  
Exposed Paddle  
Expose Paddle. Internally connected to GND. Solder to a low impedance ground plane.  
Rev. 0 | Page 6 of 16  
 
ADL5320  
TYPICAL PERFORMANCE CHARACTERISTICS  
50  
50  
45  
40  
35  
30  
25  
20  
30  
OIP3 (10dBm)  
OIP3 (–40°C)  
45  
29  
28  
27  
26  
25  
24  
OIP3 (+25°C)  
40  
35  
30  
OIP3 (+85°C)  
P1dB  
25  
20  
15  
10  
5
GAIN  
P1dB (–40°C)  
P1dB (+25°C)  
P1dB (+85°C)  
NF  
0
800  
820  
840  
860  
880  
900  
920  
940  
960  
800  
820  
840  
860  
880  
900  
920  
940  
960  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 3. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,  
800 MHz to 960 MHz  
Figure 6. OIP3 and P1dB vs. Frequency and Temperature,  
800 MHz to 960 MHz  
19.0  
50  
930MHz  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
880MHz  
46  
42  
38  
34  
30  
–40°C  
+25°C  
830MHz  
+85°C  
850MHz  
960MHz  
–2  
0
2
4
6
8
10 12 14 16 18 20 22  
(dBm)  
800  
820  
840  
860  
880  
900  
920  
940  
960  
FREQUENCY (MHz)  
P
OUT  
Figure 4. Gain vs. Frequency and Temperature, 800 MHz to 960 MHz  
Figure 7. OIP3 vs. POUT and Frequency, 800 MHz to 960 MHz  
–25.0  
–25.5  
–26.0  
–26.5  
–27.0  
–27.5  
–28.0  
–28.5  
–29.0  
0
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
–5  
S22  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
+85°C  
+25°C  
S12  
–40°C  
S11  
700  
750  
800  
850  
900  
950  
1000  
700  
750  
800  
850  
900  
950  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Noise Figure vs. Frequency and Temperature, 800 MHz to 960 MHz  
Figure 5. Input Return Loss (S11), Output Return Loss (S22), and Reverse  
Isolation (S12) vs. Frequency, 800 MHz to 960 MHz  
Rev. 0 | Page 7 of 16  
 
ADL5320  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
43  
41  
39  
37  
35  
33  
31  
29  
29.0  
28.5  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
OIP3 (–40°C)  
OIP3 (10dBm)  
OIP3 (+85°C)  
OIP3 (+25°C)  
P1dB  
P1dB (–40°C)  
P1dB (+25°C)  
GAIN  
NF  
P1dB (+85°C)  
0
2060  
2080  
2100  
2120  
2140  
2160  
2180  
2200  
2220  
2060  
2080  
2100  
2120  
2140  
2160  
2180  
2200  
2220  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,  
2060 MHz to 2200 MHz  
Figure 12. OIP3 and P1dB vs. Frequency and Temperature,  
2060 MHz to 2200 MHz  
16  
43  
2190MHz  
15  
41  
2140MHz  
2060MHz  
2090MHz  
–40°C  
14  
39  
+25°C  
2220MHz  
37  
13  
+85°C  
35  
33  
31  
12  
11  
10  
2060  
–2  
0
2
4
6
8
10 12 14 16 18 20 22  
(dBm)  
2080  
2100  
2120  
2140  
2160  
2180  
2200  
2220  
FREQUENCY (MHz)  
P
OUT  
Figure 10. Gain vs. Frequency and Temperature, 2060 MHz to 2200 MHz  
Figure 13. OIP3 vs. POUT and Frequency, 2060 MHz to 2200 MHz  
8.0  
7.5  
7.0  
6.5  
6.0  
–23  
–24  
–25  
–26  
–27  
–28  
–29  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
S22  
S11  
+85°C  
5.5  
5.0  
+25°C  
S12  
4.5  
4.0  
3.5  
–40°C  
3.0  
2.5  
2.0  
1900  
1950  
2000 2050  
2100  
2150  
2200  
2250  
2300  
1900  
1950  
2000 2050  
2100 2150  
2200  
2250  
2300  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. Noise Figure vs. Frequency and Temperature,  
2060 MHz to 2200 MHz  
Figure 11. Input Return Loss (S11), Output Return Loss (S22), and Reverse  
Isolation (S12) vs. Frequency, 2060 MHz to 2200 MHz  
Rev. 0 | Page 8 of 16  
ADL5320  
40  
35  
30  
25  
20  
15  
10  
5
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
32  
OIP3 (–40°C)  
OIP3 (10dBm)  
P1dB  
31  
OIP3 (+25°C)  
30  
29  
28  
27  
26  
25  
OIP3 (+85°C)  
P1dB (–40°C)  
P1dB (+25°C)  
GAIN  
NF  
P1dB (+85°C)  
0
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
2500  
2550  
2600  
2650  
2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,  
2500 MHz to 2700 MHz  
Figure 18. OIP3 and P1dB vs. Frequency and Temperature,  
2500 MHz to 2700 MHz  
15  
46  
44  
42  
40  
38  
36  
34  
32  
30  
14  
–40°C  
13  
+25°C  
2600MHz  
2700MHz  
12  
+85°C  
11  
10  
9
2500MHz  
2500  
2550  
2600  
2650  
2700  
–3 –1  
1
3
5
7
9
11 13 15 17 19 21 23  
(dBm)  
FREQUENCY (MHz)  
P
OUT  
Figure 16. Gain vs. Frequency and Temperature, 2500 MHz to 2700 MHz  
Figure 19. OIP3 vs. POUT and Frequency, 2500 MHz to 2700 MHz  
–25.0  
–25.5  
–26.0  
–26.5  
–27.0  
–27.5  
–28.0  
–28.5  
–29.0  
–29.5  
–30.0  
0
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
+85°C  
+25°C  
–40°C  
S22  
S11  
S12  
2400  
2450  
2500 2550  
2600  
2650  
2700  
2750  
2800  
2400 2450  
2500  
2550  
2600 2650  
2700  
2750 2800  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. Input Return Loss (S11), Output Return Loss (S22), and Reverse  
Isolation (S12) vs. Frequency, 2500 MHz to 2700 MHz  
Figure 20. Noise Figure vs. Frequency and Temperature,  
2500 MHz to 2700 MHz  
Rev. 0 | Page 9 of 16  
ADL5320  
18  
16  
14  
12  
10  
8
50  
40  
30  
20  
10  
0
6
4
2
0
42.0  
42.8  
43.6  
44.4  
45.2  
46.0  
46.8  
47.6  
3.80  
3.88  
3.96  
4.04  
4.12  
4.20  
4.28  
OIP3 (dBm)  
NF (dB)  
Figure 21. OIP3 Distribution at 880 MHz  
Figure 24. Noise Figure Distribution at 880 MHz  
60  
50  
40  
30  
20  
10  
0
120  
115  
110  
105  
100  
95  
5.25V  
5.0V  
4.75V  
90  
85  
80  
24.4  
24.8  
25.2  
25.6  
26.0  
26.4  
26.8  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
P1dB (dBm)  
TEMPERATURE (°C)  
Figure 22. P1dB Distribution at 880 MHz  
Figure 25. Supply Current vs. Supply Voltage and Temperature (Using  
880 MHz Matching Components)  
30  
25  
20  
15  
10  
5
0
16.65  
16.75  
16.85  
16.95  
17.05  
17.15  
17.25  
GAIN (dB)  
Figure 23. Gain Distribution at 880 MHz  
Rev. 0 | Page 10 of 16  
ADL5320  
BASIC LAYOUT CONNECTIONS  
The basic connections for operating the ADL5320 are shown in  
Figure 26.  
SOLDERING INFORMATION AND RECOMMENDED  
PCB LAND PATTERN  
Table 5 lists the required matching components. Capacitors C1,  
C2, C3, C4, and C7 are Murata GRM155 series (0402 size) and  
Inductor L1 is a Coilcraft 0603CS series (0603 size). For all  
frequency bands, the placement of C3 and C7 are critical. From  
2300 MHz to 2700 MHz, the placement of C2 is also important.  
Table 6 lists the recommended component placement for  
various frequencies.  
Figure 27 shows the recommended land pattern for the ADL5320.  
To minimize thermal impedance, the exposed paddle on the  
SOT-89 package underside is soldered down to a ground plane  
along with Pin 2. If multiple ground layers exist, they should  
be stitched together using vias. For more information on land  
pattern design and layout, refer to the Application Note AN-772,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP).  
A 5 V dc bias is supplied through L1 which is connected to  
RFOUT (Pin 3). In addition to C4, 10 nF and 10 μF power  
supply decoupling capacitors are also required. The typical  
current consumption for the ADL5320 is 110 mA.  
1.80mm  
VSUP  
GND  
C6 10µF  
3.48mm  
C5 10nF  
1
(2)  
ADL5320  
2
0.20mm  
5.56mm  
C4  
1
L1  
1
C2  
0.86mm  
0.62mm  
1
1
3
RF  
RF  
C1  
2
2
λ4  
2
IN  
2
OUT  
λ3  
λ2  
λ1  
1
1
C7  
C3  
1.27mm  
1
SEE TABLE 5 FOR FREQUENCY SPECIFIC COMPONENTS.  
2
SEE TABLE 10 FOR RECOMMENDED COMPONENT SPACING.  
1.50mm  
3.00mm  
Figure 26. Basic Connections  
Figure 27. Recommended Land Pattern  
Table 5. Recommended Components for Basic Connections  
Frequency (MHz)  
C1 (pF)  
100  
47  
22  
22  
22  
12  
12  
C2 (pF)  
100  
47  
22  
22  
22  
2.2  
1.0  
C3 (pF)  
18  
6.8  
0.5  
0.5  
0.5  
1.2  
1.8  
C4 (pF)  
100  
100  
22  
22  
22  
C7 (pF)  
6.8  
2.2  
1.5  
1.5  
1.5  
1.0  
0.5  
L1 (nH)  
47  
47  
15  
15  
15  
15  
15  
450 to 500  
800 to 960  
1805 to 1880  
1930 to 1990  
2110 to 2170  
2300 to 2400  
2500 to 2700  
12  
12  
Table 6. Matching Component Spacing  
Frequency (MHz)  
450 to 500  
800 to 960  
1805 to 2170  
λ1 (mils)  
λ2 (mils)  
λ3 (mils)  
364  
100  
175  
125  
λ4 (mils)  
391  
200  
300  
225  
142  
75  
75  
75  
75  
75  
50  
350  
275  
125  
75  
2300 to 2400  
2500 to 2700  
89  
Rev. 0 | Page 11 of 16  
 
 
 
 
 
 
ADL5320  
MATCHING PROCEDURE  
The ADL5320 is designed to achieve excellent gain and IP3  
performance. To achieve this, both input and output matching  
networks must present specific impedance to the device. The  
matching components listed in Table 6 were chosen to provide  
−10 dB input return loss while maximizing OIP3. The load-pull  
plots (Figure 28, Figure 29, and Figure 30) show the load  
impedance points on the Smith chart where optimum OIP3,  
gain, and output power can be achieved. These load impedance  
values (that is, the impedance that the device sees when looking  
into the output matching network) are listed in Table 7 and  
Table 8 for maximum gain and maximum OIP3, respectively.  
The contours show how each parameter degrades as it is moved  
away from the optimum point.  
Figure 28. Load-Pull Contours, 880 MHz  
Figure 29. Load-Pull Contours, 2140 MHz  
Figure 30. Load-Pull Contours, 2600 MHz  
From the data shown in Table 7 and Table 8 it becomes clear that  
maximum gain and maximum OIP3 do not occur at the same  
impedance. This can also be seen on the load-pull contours in  
Figure 28 through Figure 30. Thus, output matching generally  
involves compromising between gain and OIP3. In addition,  
the load-pull plots demonstrate that the quality of the output  
impedance match must be compromised to optimize gain  
and/or OIP3. In most applications where line lengths are short  
and where the next device in the signal chain presents a low  
input return loss, compromising on the output match is  
acceptable.  
To adjust the output match for operation at a different  
frequency or if a different trade-off between OIP3, gain,  
and output impedance is desired, the following procedure  
is recommended.  
For example, to optimize the ADL5320 for optimum OIP3 and  
gain at 700 MHz use the following steps:  
1. Install the recommended tuning components for a 800 MHz  
to 960 MHz tuning band, but do not install C3 and C7.  
2. Connect the evaluation board to a vector network analyzer  
so that input and output return loss can be viewed simulta-  
neously.  
3. Starting with the recommended values and positions for  
C3 and C7, adjust the positions of these capacitors along  
the transmission line until the return loss and gain are  
acceptable. Push-down capacitors that are mounted on  
small sticks can be used in this case as an alternative to  
soldering. If moving the component positions does not  
yield satisfactory results, then the values of C3 and C7  
should be increased or decreased (most likely increased  
in this case as the user is tuning for a lower frequency).  
Repeat the process.  
4. Once the desired gain and return loss are realized, OIP3  
should be measured. Most likely, it will be necessary to  
go back and forth between return loss/gain and OIP3  
measurements (probably compromising most on output  
return loss) until an acceptable compromise is achieved.  
Rev. 0 | Page 12 of 16  
 
 
 
 
ADL5320  
The ADL5320 achieves an ACPR of −82 dBc at 0 dBm output,  
at which point device noise and not distortion is beginning to  
dominate the power in the adjacent channels. At an output  
power of 10 dBm, ACPR is still very low at −70 dBc making the  
device particularly suitable for PA driver applications.  
–30  
Table 7. Load Conditions for Gain MAX  
ΓLoad  
Frequency (MHz)  
(Magnitude) ΓLoad (°) Gain MAX (dB)  
880  
2140  
2600  
0.5147  
0.6611  
0.5835  
159.88  
134.40  
133.80  
17.76  
13.78  
12.36  
–40  
–50  
–60  
–70  
–80  
–90  
Table 8. Load Conditions for IP3 MAX  
ΓLoad  
Frequency (MHz) (Magnitude) ΓLoad (°) IP3 MAX (dBm)  
880  
2140  
2600  
0.4156  
0.5035  
0.4595  
−138.22  
+110.27  
+102.48  
46.29  
42.72  
43.01  
W-CDMA ACPR PERFORMANCE  
Figure 31 shows a plot of adjacent channel power ratio (ACPR)  
vs. POUT for the ADL5320. The signal type being used is a single  
W-CDMA carrier (Test Model 1−64) at 2140 MHz. This signal  
is generated by a very low ACPR source. ACPR is measured at  
the output by a high dynamic range spectrum analyzer, which  
incorporates an instrument noise correction function.  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
P
(dBm)  
OUT  
Figure 31. ACPR vs. POUT, Single Carrier W-CDMA (Test Model 1−64) at 2140  
MHz Evaluation Board  
Rev. 0 | Page 13 of 16  
 
 
 
ADL5320  
EVALUATION BOARD  
The schematic of the ADL5320 evaluation board is shown in  
Figure 32. This evaluation board uses 25 mil wide traces and is  
made from FR4 material. The evaluation board comes tuned for  
operation in the 1805 MHz to 2140 MHz tuning band. Tuning  
options for other frequency bands are also provided in Table 9.  
The recommended placement for these components is provided  
in Table 10. The inputs and outputs should be ac-coupled with  
appropriately sized capacitors. DC bias is provided to the  
amplifier via an inductor connected to the RFOUT pin. A bias  
voltage of 5 V is recommended.  
10uF  
10nF  
22pF  
C1  
22pF  
C2  
22pF  
15nH  
C3  
0.5pF  
C7  
1.5pF  
GND VSUP  
C6 10µF  
C5 10nF  
(2)  
C4 22pF  
ADL5320  
L1  
15nH  
Figure 33. Evaluation Board Layout and Default Component Placement for  
Operation from 1805 MHz to 2170 MHz  
C2  
22pF  
C1  
22pF  
2
1
3
RF  
RF  
IN  
OUT  
λ3  
λ4  
λ2  
λ1  
C3  
0.5pF  
C7  
1.5pF  
Figure 32. Evaluation Board, 1805 MHz to 2170 MHz  
Table 9. Evaluation Board Configuration Options  
1805 MHz to  
2170 MHz  
(Default  
2300 MHz to  
2400 MHz  
2500 MHz to  
2700 MHz  
Component Function  
450 MHz to 500 MHz  
800 MHz to 960 MHz Configuration)  
C1, C2  
AC coupling  
capacitors  
0402, 100 pF  
0402, 47 pF  
0402, 22pF  
C1= 0402 12 pF  
C2 = 0402 2.2 pF  
C1 = 0402 12 pF  
C2 = 0402 1.0 pF  
C4, C5, C6  
Power supply  
bypassing  
capacitors  
C4 = 0603 100 pF  
C5 = 0603 10 nF  
C6 = 1206 10 μF  
C4 = 0603 100 pF  
C5 = 0603 10 nF  
C6 = 1206 10 μF  
C4 = 0402 22pF  
C5 = 0603 10 nF  
C6 = 1206 10 μF  
C4 = 0603 12 pF  
C5 = 0603 10 nF  
C6 = 1206 10 μF  
C4 = 0603 12 pF  
C5 = 0603 10 nF  
C6 = 1206 10 μF  
L1  
DC bias  
inductor  
0603, 47 nH  
0603, 47 nH  
0603, 15 nH  
0603, 15 nH  
0603, 15 nH  
C3, C7  
Tuning  
capacitors  
C3 = 0402 18 pF  
C7 = 0402 6.8 pF  
C3 = 0402 6.8 pF  
C7 = 0402 2.2 pF  
C3 = 0402 0.5 pF  
C7 = 0402 1.5 pF  
C3 = 0402 1.2 pF  
C7 = 0402 1.0 pF  
C3 = 0402 1.8 pF  
C7 = 0402 0.5 pF  
R1  
R1 = 0402 0 Ω  
R1 = 0402 0 Ω  
VSUP, GND  
Power supply  
connections  
VSUP red test  
loop, GND black test  
loop  
VSUP red test  
loop, GND black test  
loop  
VSUP red test  
loop, GND black  
test loop  
VSUP red test  
loop, GND black  
test loop  
VSUP red test  
loop, GND black  
test loop  
Table 10. Recommended Component Spacing on Evaluation Board  
Frequency (MHz)  
λ1 (mils)  
λ2 (mils)  
λ3 (mils)  
λ4 (mils)  
50  
350  
275  
125  
450 to 500  
800 to 960  
1805 to 2170  
2300 to 2400  
2500 to 2700  
391  
200  
300  
225  
75  
75  
75  
75  
75  
364  
100  
175  
125  
89  
142  
75  
Rev. 0 | Page 14 of 16  
 
 
 
ADL5320  
10uF  
10uF  
10nF  
10nF  
12pF  
100pF  
C1  
100pF  
C1  
12pF  
C2  
100pF  
15nH  
47nH  
C3  
1.2pF  
C7  
6.8pF  
C3  
C7  
1pF  
R1 0Ω  
C2  
2.2pF  
18pF  
Figure 34. Evaluation Board Layout and Component Placement  
450 MHz to 500 MHz Operation  
Figure 36. Evaluation Board Layout and Component Placement  
2300 MHz to 2400 MHz Operation  
10uF  
10nF  
10uF  
10nF  
100pF  
12pF  
C1  
47pF  
C2  
47pF  
C1  
12pF  
15nH  
47nH  
C7  
2.2pF  
C2  
1.0pF  
C3  
6.8pF  
R1 0Ω  
C3  
1.8pF  
C7  
0.5pF  
Figure 35. Evaluation Board Layout and Component Placement  
800 MHz to 960 MHz Operation  
Figure 37. Evaluation Board Layout and Component Placement  
2500 MHz to 2700 MHz Operation  
Rev. 0 | Page 15 of 16  
ADL5320  
OUTLINE DIMENSIONS  
*
1.55 REF  
(2)  
2
4.25  
3.94  
2.60  
2.30  
1
3
1.20  
1.50 TYP  
0.90  
3.00 TYP  
4.60  
4.40  
1.60  
1.40  
0.44  
0.35  
END VIEW  
*
0.58  
0.40  
*
0.52  
0.32  
*
COMPLIANT TO JEDEC STANDARDS TO-243 WITH  
EXCEPTION TO DIMENSIONS INDICATED BY AN ASTERISK.  
Figure 38. 3−Lead Small Outline Transistor Package [SOT-89]  
(RK-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5320ARKZ-R71  
ADL5320-EVALZ1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
3-Lead SOT-89, 7“ Tape and Reel  
Evaluation Board  
RK-3  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05840-0-2/08(0)  
Rev. 0 | Page 16 of 16  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY