ADL5370 [ADI]

300 MHz to 1000 MHz Quadrature Modulator; 300 MHz至1000 MHz的正交调制器
ADL5370
型号: ADL5370
厂家: ADI    ADI
描述:

300 MHz to 1000 MHz Quadrature Modulator
300 MHz至1000 MHz的正交调制器

文件: 总20页 (文件大小:1091K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
300 MHz to 1000 MHz  
Quadrature Modulator  
ADL5370  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Output frequency range: 300 MHz to 1000 MHz  
Modulation bandwidth: >500 MHz (3 dB)  
1 dB output compression: 11 dBm @ 450 MHz  
Noise floor: −160 dBm/Hz  
IBBP  
IBBN  
Sideband suppression: −41 dBc @ 450 MHz  
Carrier feedthrough: −50 dBm @ 450 MHz  
Single supply: 4.75 V to 5.25 V  
LOIP  
LOIN  
QUADRATURE  
PHASE  
SPLITTER  
VOUT  
24-lead LFCSP_VQ package  
QBBN  
QBBP  
APPLICATIONS  
Cellular communication systems at 450 MHz  
CDMA2000/GSM  
Figure 1.  
WiMAX/broadband wireless access systems  
Cable communication equipment  
Satellite modems  
GENERAL DESCRIPTION  
The ADL5370 is the first in the fixed-gain quadrature modulator  
(F-MOD) family designed for use from 300 MHz to 1000 MHz.  
Its excellent phase accuracy and amplitude balance enable high  
performance intermediate frequency or direct radio frequency  
modulation for communication systems.  
The ADL5370 accepts two differential baseband inputs and  
a single-ended LO and generates a single-ended 50 Ω output.  
The ADL5370 is fabricated using the Analog Devices, Inc.  
advanced silicon-germanium bipolar process. It is available in  
a 24-lead, exposed-paddle, Pb-free, LFCSP_VQ package. Perform-  
ance is specified over a −40°C to +85°C temperature range.  
A Pb-free evaluation board is available.  
The ADL5370 provides a greater than 500 MHz, 3 dB baseband  
bandwidth, making it ideally suited for use in broadband zero  
IF or low IF-to-RF applications and in broadband digital  
predistortion transmitters.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADL5370  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 13  
DAC Modulator Interfacing ..................................................... 13  
Limiting the AC Swing .............................................................. 13  
Filtering........................................................................................ 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Theory of Operation ...................................................................... 10  
Circuit Description..................................................................... 10  
Basic Connections .......................................................................... 11  
Optimization............................................................................... 12  
Using the AD9779 Auxiliary DAC for Carrier Feedthrough  
Nulling ......................................................................................... 14  
GSM Operation .......................................................................... 14  
LO Generation Using PLLs....................................................... 15  
Evaluation Board ............................................................................ 16  
Characterization Setup .................................................................. 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADL5370  
SPECIFICATIONS  
VS = 5 V; TA = 25°C; LO = 0 dBm1 single-ended; baseband I/Q amplitude = 1.4 V p-p differential sine waves in quadrature with a 500 mV  
dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ADL5370  
LO = 450 MHz  
Operating Frequency Range  
Range over which uncompensated sideband suppression < −30 dBc  
Low frequency  
High frequency  
VIQ = 1.4 V p-p differential  
300  
1000  
6.2  
MHz  
MHz  
dBm  
dBm  
dBm  
dBc  
Degrees  
dB  
dBc  
Output Power  
Output P1 dB  
11  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
Third Harmonic  
Output IP2  
−50  
−41  
0.76  
0.03  
−65  
−54  
60  
POUT − (fLO + (2 × fBB)), POUT = 6.2 dBm  
POUT − (fLO + (3 × fBB)), POUT = 6.2 dBm  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, POUT = −2 dBm per tone  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, POUT = −2 dBm per tone  
I/Q inputs = 0 V differential with a 500 mV common-mode bias,  
20 MHz carrier offset  
dBc  
dBm  
dBm  
dBm/Hz  
Output IP3  
Noise Floor  
24  
−160  
GSM  
6 MHz carrier offset, POUT = 6 dBm, PLO = 6 dBm  
−157  
dBc/Hz  
LO INPUTS  
LO Drive Level1  
Characterization performed at typical level  
See Figure 9 for a plot of return loss vs. frequency  
Pin IBBP, Pin IBBN, Pin QBBP, Pin QBBN  
−7  
0
6
+7  
dBm  
dB  
Input Return Loss  
BASEBAND INPUTS  
I and Q Input Bias Level  
Input Bias Current  
Input Offset Current  
Differential Input Impedance  
Bandwidth (0.1 dB)  
Bandwidth (1 dB)  
POWER SUPPLIES  
Voltage  
500  
45  
0.1  
2900  
70  
350  
mV  
μA  
μA  
kΩ  
MHz  
MHz  
Current sourcing from each baseband input with a bias of 500 mV dc2  
LO = 450 MHz, baseband input = 700 mV p-p sine wave on 500 mV dc  
LO = 450 MHz, baseband input = 700 mV p-p sine wave on 500 mV dc  
Pin VPS1 and Pin VPS2  
4.75  
5.25  
V
Supply Current  
205  
mA  
1 High LO drive reduces noise at a 6 MHz carrier offset in GSM applications.  
2 See V-to-I converter discussion in the Circuit Description section for architecture information.  
Rev. 0 | Page 3 of 20  
 
 
ADL5370  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage VPOS  
IBBP, IBBN, QBBP, QBBN  
LOIP and LOIN  
Internal Power Dissipation  
θJA (Exposed Paddle Soldered Down)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
5.5 V  
0 V to 2 V  
13 dBm  
1375 mW  
54°C/W  
159°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Rev. 0 | Page 4 of 20  
 
ADL5370  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
COM1 1  
COM1 2  
VPS1 3  
VPS1 4  
VPS1 5  
VPS1 6  
18 VPS5  
17 VPS4  
16 VPS3  
15 VPS2  
14 VPS2  
13 VOUT  
ADL5370  
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No. Mnemonic  
1, 2, 7, 10 to 12, COM1, COM2,  
Description  
Input Common Pins. Connect to ground plane via a low impedance path.  
21, 22  
COM3, COM4  
3 to 6, 14 to 18  
VPS1, VPS2, VPS3, Positive Supply Voltage Pins. All pins should be connected to the same supply (VS). To ensure  
VPS4, VPS5  
adequate external bypassing, connect 0.1 μF capacitors between each pin and ground. Adjacent  
power supply pins of the same name can share one capacitor (see Figure 25).  
19, 20, 23, 24  
IBBP, IBBN, QBBN,  
QBBP  
Differential In-Phase and Quadrature Baseband Inputs. These high impedance inputs must be  
dc-biased to 500 mV dc, and must be driven from a low impedance source. Nominal characterized  
ac signal swing is 700 mV p-p on each pin. This results in a differential drive of 1.4 V p-p with a  
500 mV dc bias. These inputs are not self-biased and must be externally biased.  
8, 9  
13  
LOIP, LOIN  
50 Ω Single-Ended Local Oscillator Input. Internally dc-biased. Pins must be ac-coupled. AC-couple  
LOIN to ground and drive LO through LOIP.  
Device Output. Single-ended, 50 Ω internally biased RF output. Pin must be ac-coupled to the load.  
Connect to ground plane via a low impedance path.  
VOUT  
Exposed Paddle  
Rev. 0 | Page 5 of 20  
 
ADL5370  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V; TA = 25°C; LO = 0 dBm single-ended; baseband I/Q amplitude = 1.4 V p-p differential sine waves in quadrature with a 500 mV  
dc bias; baseband I/Q frequency (fBB) = 1 MHz, unless otherwise noted.  
8
7
6
5
4
3
2
1
0
14  
12  
10  
T
= –40°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
T
= +25°C  
A
A
8
6
4
T
= +85°C  
A
2
0
250  
450  
650  
850  
1050  
1250  
1450  
250  
450  
650  
850  
1050  
1250  
1450  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 3. Single Sideband (SSB) Output Power (POUT) vs. LO Frequency (fLO  
)
Figure 6. SSB Output 1 dB Compression Point (OP1dB) vs. fLO and Temperature  
and Temperature  
8
7
6
14  
V
= 5.25V  
S
12  
10  
V
= 5.25V  
S
V
= 5V  
S
V
= 5V  
5
4
3
2
1
0
S
V
= 4.75V  
S
8
6
4
V
= 4.75V  
S
2
0
250  
450  
650  
850  
1050  
1250  
1450  
250  
450  
650  
850  
1050  
1250  
1450  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 7. SSB Output 1 dB Compression Point (OP1dB) vs. fLO and Supply  
Figure 4. Single Sideband (SSB) Output Power (POUT) vs. LO Frequency (fLO  
)
and Supply  
90  
5
60  
120  
150  
30  
1450MHz  
S22 OF OUTPUT  
1450MHz  
0
180  
0
250MHz  
S11 OF LOIP  
210  
330  
250MHz  
–5  
240  
1
10  
100  
1000  
300  
BASEBAND FREQUENCY (MHz)  
270  
Figure 5. I and Q Input Bandwidth Normalized to Gain @ 1 MHz  
(fLO = 500 MHz)  
Figure 8. Smith Chart of LOIP S11 and VOUT S22 .  
(fLO from 250 MHz to 1450 MHz)  
Rev. 0 | Page 6 of 20  
ADL5370  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–5  
T
= +85°C  
A
T
= –40°C  
A
–10  
–15  
–20  
–25  
T
= +25°C  
850  
A
250  
450  
650  
1050  
1250  
1450  
250  
450  
650  
850  
1050  
1250  
1450  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 12. Sideband Suppression vs. fLO and Temperature  
Multiple Devices Shown  
Figure 9. Return Loss (S11) of LOIP  
0
–10  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= –40°C  
A
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= +85°C  
A
T
= +25°C  
A
250  
450  
650  
850  
1050  
1250  
1450  
250  
450  
650  
850  
1050  
1250  
1450  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 13. Sideband Suppression vs. fLO and Temperature after Nulling at 25°C  
Multiple Devices Shown  
Figure 10. Carrier Feedthrough vs. fLO and Temperature  
Multiple Devices Shown  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
15  
10  
5
0
SSB OUTPUT POWER  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
THIRD ORDER (dBc)  
CARRIER  
FEEDTHROUGH  
(dBm)  
SIDEBAND  
SUPPRESSION (dBc)  
0
–5  
–10  
–15  
SECOND ORDER (dBc)  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
250  
450  
650  
850  
1050  
1250  
1450  
BASEBAND INPUT VOLTAGE (V p-p)  
LO FREQUENCY (MHz)  
Figure 11. Carrier Feedthrough vs. fLO and Temperature after Nulling at 25°C  
Multiple Devices Shown  
Figure 14. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 450 MHz)  
Rev. 0 | Page 7 of 20  
 
ADL5370  
–20  
15  
10  
5
30  
25  
THIRD ORDER (dBc)  
T
= –40°C  
A
–30  
CARRIER  
FEEDTHROUGH  
(dBm)  
SSB OUTPUT POWER  
T
= +25°C  
A
–40  
–50  
–60  
–70  
–80  
20  
15  
T
= +85°C  
A
SIDEBAND  
SUPPRESSION (dBc)  
0
SECOND ORDER (dBc)  
–5  
–10  
–15  
10  
5
0
250  
450  
650  
850  
1050  
1250  
1450  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
LO FREQUENCY (MHz)  
BASEBAND INPUT VOLTAGE (V p-p)  
Figure 15. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. Baseband Differential Input Level  
(fLO = 900 MHz)  
Figure 18. OIP3 vs. Frequency and Temperature  
–20  
70  
60  
50  
40  
30  
20  
10  
0
T
= –40°C  
A
–30  
T
= +25°C  
A
THIRD  
–40  
–50  
–60  
–70  
–80  
T
= +85°C  
A
THIRD  
ORDER = +85°C  
ORDER = –40°C  
THIRD  
ORDER = +25°C  
SECOND ORDER = –40°C  
SECOND ORDER = +85°C  
SECOND ORDER = +25°C  
250  
450  
650  
850  
1050  
1250  
1450  
250  
450  
650  
850  
1050  
1250  
1450  
LO FREQUENCY (Hz)  
LO FREQUENCY (MHz)  
Figure 16. Second- and Third-Order Distortion vs. fLO and Temperature  
(Baseband I/Q Amplitude = 1.4 V p-p differential)  
Figure 19. OIP2 vs. Frequency and Temperature  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
7
6
5
4
3
2
1
–20  
15  
10  
5
SSB OUTPUT POWER  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SIDEBAND  
SSB OUTPUT POWER  
SUPPRESSION (dBc)  
SIDEBAND SUPPRESSION (dBc)  
CARRIER  
FEEDTHROUGH (dBm)  
0
CARRIER FEEDTHROUGH (dBm)  
THIRD ORDER (dBc)  
THIRD ORDER (dBc)  
–5  
–10  
–15  
SECOND ORDER (dBc)  
SECOND ORDER (dBc)  
0
100  
–20  
7
1
10  
BASEBAND FREQUENCY (Hz)  
–7  
–5  
–3  
–1  
1
3
5
LO AMPLITUDE (dBm)  
Figure 17. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. fBB and Temperature (fLO = 450 MHz)  
Figure 20. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 450 MHz)  
Rev. 0 | Page 8 of 20  
 
ADL5370  
16  
14  
12  
10  
8
F
= 450MHz  
LO  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
15  
10  
5
SSB OUTPUT POWER  
CARRIER FEEDTHROUGH (dBm)  
0
THIRD ORDER (dBc)  
6
SIDEBAND SUPPRESSION (dBc)  
–5  
–10  
–15  
–20  
4
SECOND ORDER (dBc)  
2
0
NOISE (dBm/Hz) AT 20MHz OFFSET  
–7  
–5  
–3  
–1  
1
3
5
7
LO AMPLITUDE (dBm)  
Figure 21. Second- and Third-Order Distortion, Carrier Feedthrough,  
Sideband Suppression, and SSB POUT vs. LO Amplitude (fLO = 900 MHz)  
Figure 23. 20 MHz Offset Noise Floor Distribution at fLO = 450 MHz  
(I/Q Amplitude = 0 mV p-p with 500 mV dc bias)  
0.23  
0.22  
V
= 5.25V  
S
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
V
V
= 5V  
S
S
= 4.75V  
–40  
25  
TEMPERATURE (°C)  
85  
Figure 22. Power Supply Current vs. Temperature  
Rev. 0 | Page 9 of 20  
ADL5370  
THEORY OF OPERATION  
CIRCUIT DESCRIPTION  
V-to-I Converter  
The differential baseband inputs (QBBP, QBBN, IBBN, IBBP)  
consist of the bases of PNP transistors, which present a high  
impedance. The voltages applied to these pins drive the V-to-I  
stage that converts baseband voltages into currents. The differential  
output currents of the V-to-I stages feed each of their respective  
Gilbert-cell mixers. The dc common-mode voltage at the baseband  
inputs sets the currents in the two mixer cores. Varying the  
baseband common-mode voltage varies the current in the mixer  
and affects overall modulator performance. The recommended  
dc voltage for the baseband common-mode voltage is 500 mV dc.  
Overview  
The ADL5370 can be divided into five circuit blocks: the local  
oscillator (LO) interface, the baseband voltage-to-current(V-to-I)  
converter, the mixers, the differential-to-single-ended (D-to-S)  
amplifier, and the bias circuit. A detailed block diagram of the  
device is shown in Figure 24.  
LOIP  
PHASE  
SPLITTER  
LOIN  
Mixers  
The ADL5370 has two double-balanced mixers: one for the in-  
phase channel (I channel) and one for the quadrature channel  
(Q channel). Both mixers are based on the Gilbert-cell design of  
four cross-connected transistors. The output currents from the  
two mixers sum together into a load. The signal developed  
across this load is used to drive the D-to-S amplifier.  
IBBP  
IBBN  
Σ
OUT  
QBBP  
QBBN  
Figure 24. Block Diagram  
D-to-S Amplifier  
The LO interface generates two LO signals in quadrature. These  
signals are used to drive the mixers. The I and Q baseband input  
signals are converted to currents by the V-to-I stages, which  
then drive the two mixers. The outputs of these mixers combine  
to feed the differential-to-single-ended amplifier, which  
provides a 50 Ω output interface. The bias cell generates  
reference currents for the V-to-I stage and the D-to-S amplifier.  
The output D-to-S amplifier consists of a totem pole output  
stage. The 50 Ω output impedance is established by an on-chip  
resistor. The D-to-S output is internally dc-biased and should be  
ac-coupled at its output (VOUT).  
Bias Circuit  
An on-chip band gap reference circuit is used to generate a  
proportional-to-absolute temperature (PTAT) reference current  
for the V-to-I stage and a temperature independent current for  
the D-to-S output stage.  
LO Interface  
The LO interface consists of a polyphase quadrature splitter  
followed by a limiting amplifier. The LO input impedance is set  
by the polyphase. The LO can be driven either single-ended or  
differentially. When driven single-ended, the LOIN pin should  
be ac-grounded via a capacitor. Each quadrature LO signal then  
passes through a limiting amplifier that provides the mixer with  
a limited drive signal.  
Rev. 0 | Page 10 of 20  
 
 
ADL5370  
BASIC CONNECTIONS  
Baseband Inputs  
Figure 25 shows the basic connections for the ADL5370.  
The baseband inputs QBBP, QBBN, IBBP, and IBBN must be  
driven from a differential source. The nominal drive level of  
1.4 V p-p differential (700 mV p-p on each pin) should be  
biased to a common-mode level of 500 mV dc.  
QBBP  
QBBN  
IBBN  
IBBP  
The dc common-mode bias level for the baseband inputs may  
range from 400 mV to 600 mV. This results in a reduction in  
the usable input ac swing range. The nominal dc bias of 500 mV  
allows for the largest ac swing, limited on the bottom end by the  
ADL5370 input range and on the top end by the output compliance  
range on most digital-to-analog converters (DAC) from Analog  
Devices.  
C16  
0.1µF  
C15  
0.1µF  
VPS5  
VPS4  
VPS3  
VPS2  
VPS2  
COM1  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
COM1  
VPS1  
Z1  
LO Input  
C14  
0.1µF  
ADL5370  
VPS1  
VPS1  
VPS1  
A single-ended LO signal should be applied to the LOIP pin  
through an ac-coupling capacitor. The recommended LO drive  
power is 0 dBm. The LO return pin, LOIN, should be ac-coupled  
to ground through a low impedance path.  
VPOS  
EXPOSED PADDLE  
VOUT C13  
0.1µF  
COUT  
100pF  
C11  
OPEN  
C12  
0.1µF  
VOUT  
The nominal LO drive of 0 dBm can be increased to up to 7 dBm  
to realize an improvement in the noise performance of the  
modulator. This improvement is tempered by degradation in  
the sideband suppression performance (see Figure 20) and,  
therefore, should be used judiciously. If the LO source cannot  
provide the 0 dBm level, then operation at a reduced power  
below 0 dBm is acceptable. Reduced LO drive results in slightly  
increased modulator noise. The effect of LO power on sideband  
suppression and carrier feedthrough is shown in Figure 20. The  
effect of LO power on GSM noise is shown in Figure 35.  
GND  
CLOP  
CLON  
100pF  
100pF  
LO  
Figure 25. Basic Connections for the ADL5370  
Power Supply and Grounding  
All the VPS pins must be connected to the same 5 V source.  
Adjacent pins of the same name can be tied together and decoupled  
with a 0.1 μF capacitor. These capacitors should be located as  
close as possible to the device. The power supply can range  
between 4.75 V and 5.25 V.  
RF Output  
The RF output is available at the VOUT pin (Pin 13). This pin  
must also be ac-coupled. The VOUT pin has a nominal  
broadband impedance of 50 Ω and does not need further  
external matching.  
The COM1 pin, COM2 pin, COM3 pin, and COM4 pin should  
be tied to the same ground plane through low impedance paths.  
The exposed paddle on the underside of the package should also  
be soldered to a low thermal and electrical impedance ground  
plane. If the ground plane spans multiple layers on the circuit  
board, they should be stitched together with nine vias under the  
exposed paddle. The Analog Devices AN-772 application note  
discusses the thermal and electrical grounding of the  
LFCSP_VQ in greater detail.  
Rev. 0 | Page 11 of 20  
 
 
 
 
ADL5370  
It is often desirable to perform a one-time carrier null calibra-  
tion. This is usually performed at a single frequency. Figure 27  
shows how carrier feedthrough varies with LO frequency over a  
range of 50 MHz on either side of a null at 450 MHz.  
OPTIMIZATION  
The carrier feedthrough and sideband suppression performance  
of the ADL5370 can be improved through the use of optimiza-  
tion techniques.  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
Carrier Feedthrough Nulling  
Carrier feedthrough results from minute dc offsets that occur  
between each of the differential baseband inputs. In an ideal  
modulator the quantities (VIOPP − VIOPN) and (VQOPP − VQOPN) are  
equal to zero, and this results in no carrier feedthrough. In a real  
modulator, those two quantities are nonzero; and, when mixed  
with the LO, they result in a finite amount of carrier feedthrough.  
The ADL5370 is designed to provide a minimal amount of carrier  
feedthrough. Should even lower carrier feedthrough levels be  
required, minor adjustments can be made to the (VIOPP − VIOPN  
)
and (VQOPP − VQOPN) offsets. The I-channel offset is held constant  
while the Q-channel offset is varied, until a minimum carrier  
feedthrough level is obtained. The Q-channel offset required to  
achieve this minimum is held constant while the offset on the I-  
channel is adjusted, until a new minimum is reached. Through  
two iterations of this process, the carrier feedthrough can be  
reduced to as low as the output noise. The ability to null is  
sometimes limited by the resolution of the offset adjustment.  
Figure 26 shows the relationship of carrier feedthrough vs. dc  
offset as null.  
–85  
400 410 420 430 440 450 460 470 480 490 500  
LO FREQUENCY (MHz)  
Figure 27. Carrier Feedthrough vs. Frequency After Nulling at 450 MHz  
Sideband Suppression Optimization  
Sideband suppression results from relative gain and relative  
phase offsets between the I and Q channels and can be  
suppressed through adjustments to those two parameters.  
Figure 28 illustrates how sideband suppression is affected by the  
gain and phase imbalances.  
–60  
0
–64  
–68  
–72  
–76  
–80  
–84  
–88  
–10  
2.5dB  
–20  
1.25dB  
0.5dB  
–30  
–40  
–50  
–60  
–70  
–80  
0.25dB  
0.125dB  
0.05dB  
0.025dB  
0.0125dB  
0dB  
–300 –240 –180 –120 –60  
0
60  
120 180 240 300  
–90  
0.01  
V
–V OFFSET (µV)  
0.1  
1
10  
100  
P
N
PHASE ERROR (Degrees)  
Figure 26. Carrier Feedthrough vs. DC Offset Voltage at 450 MHz  
Figure 28. Sideband Suppression vs. Quadrature Phase Error for Various  
Quadrature Amplitude Offsets  
Note that throughout the nulling process, the dc bias for the  
baseband inputs remains at 500 mV. When no offset is applied  
Figure 28 underlines the fact that adjusting only one parameter  
improves the sideband suppression only to a point, unless the  
other parameter is also adjusted. For example, if the amplitude  
offset is 0.25 dB, improving the phase imbalance better than 1°  
does not yield any improvement in the sideband suppression. For  
optimum sideband suppression, an iterative adjustment  
between phase and amplitude is required.  
V
V
IOPP = VIOPN = 500 mV, or  
IOPP VIOPN = VIOS = 0 V  
When an offset of +VIOS is applied to the I-channel inputs  
V
V
V
IOPP = 500 mV + VIOS/2, and  
IOPN = 500 mV − VIOS/2, such that  
IOPP VIOPN = VIOS  
The sideband suppression nulling can be performed either through  
adjusting the gain for each channel or through the modification  
of the phase and gain of the digital data coming from the digital  
signal processor.  
The same applies to the Q channel.  
Rev. 0 | Page 12 of 20  
 
 
 
 
 
 
 
ADL5370  
APPLICATIONS INFORMATION  
AD9779  
ADL5370  
DAC MODULATOR INTERFACING  
93  
92  
19  
20  
OUT1_P  
IBBP  
The ADL5370 is designed to interface with minimal components  
to members of the Analog Devices family of DACs. These DACs  
feature an output current swing from 0 to 20 mA, and the  
interface described in this section can be used with any DAC  
that has a similar output.  
RBIP  
50  
RSLI  
100Ω  
RBIN  
50Ω  
OUT1_N  
IBBN  
QBBN  
QBBP  
Driving the ADL5370 with an Analog Devices TxDAC®  
84  
83  
23  
24  
OUT2_N  
OUT2_P  
An example of the interface using the AD9779 TxDAC is shown  
in Figure 31. The baseband inputs of the ADL5370 require a dc  
bias of 500 mV. The average output current on each of the  
outputs of the AD9779 is 10 mA. Therefore, a single 50 Ω  
resistor to ground from each of the DAC outputs results in an  
average current of 10 mA flowing through each of the resistors,  
thus producing the desired 500 mV dc bias for the inputs to the  
ADL5370.  
RBQN  
50Ω  
RSLQ  
100Ω  
RBQP  
50Ω  
Figure 30. AC Voltage Swing Reduction Through the Introduction  
of a Shunt Resistor Between Differential Pair  
The value of this ac voltage swing limiting resistor is chosen  
based on the desired ac voltage swing. Figure 31 shows the  
relationship between the swing-limiting resistor and the peak-  
to-peak ac swing that it produces when 50 Ω bias-setting  
resistors are used.  
AD9779  
ADL5370  
93  
19  
OUT1_P  
IBBP  
RBIP  
50  
2.0  
RBIN  
50Ω  
92  
20  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
OUT1_N  
OUT2_N  
OUT2_P  
IBBN  
QBBN  
QBBP  
84  
83  
23  
24  
RBQN  
50Ω  
RBQP  
50Ω  
Figure 29. Interface Between the AD9779 and ADL5370 with 50 Ω Resistors to  
Ground to Establish the 500 mV DC Bias for the ADL5370 Baseband Inputs  
The AD9779 output currents have a swing that ranges from 0 mA  
to 20 mA. With the 50 Ω resistors in place, the ac voltage swing  
going into the ADL5370 baseband inputs ranges from 0 V to 1 V.  
A full-scale sine wave out of the AD9779 can be described as a  
1 V p-p single-ended (or 2 V p-p differential) sine wave with a  
500 mV dc bias.  
10  
100  
1000  
10000  
R
()  
L
Figure 31. Relationship Between the AC Swing-Limiting Resistor and the  
Peak-to-Peak Voltage Swing with 50 Ω Bias-Setting Resistors  
FILTERING  
It is necessary to low-pass filter the DAC outputs to remove  
images when driving a modulator. The interface for setting up  
the biasing and ac swing that was discussed in the Limiting the  
AC Swing section lends itself well to the introduction of such a  
filter. The filter can be inserted between the dc bias setting  
resistors and the ac swing-limiting resistor. Doing so establishes  
the input and output impedances for the filter.  
LIMITING THE AC SWING  
There are situations in which it is desirable to reduce the ac  
voltage swing for a given DAC output current. This can be  
achieved through the addition of another resistor to the interface.  
This resistor is placed in shunt between each side of the  
differential pair, as shown in Figure 30. It has the effect of  
reducing the ac swing without changing the dc bias already  
established by the 50 Ω resistors.  
An example is shown in Figure 32 with a third-order elliptical  
filter with a 3 dB frequency of 3 MHz. Matching input and output  
impedances makes the filter design easier, so the shunt resistor  
chosen is 100 Ω, producing an ac swing of 1 V p-p differential.  
Rev. 0 | Page 13 of 20  
 
 
 
 
 
 
ADL5370  
GSM OPERATION  
LPI  
AD9779  
ADL5370  
2.7nH  
93  
19  
20  
Figure 34 shows the GSM EVM and spectral mask performance  
vs. output power for the ADL5370 at 450 MHz. For a given LO  
amplitude, the performance is independent of output power.  
OUT1_P  
OUT1_N  
OUT2_N  
OUT2_P  
IBBP  
RBIP  
50Ω  
RSLI  
1.1nF  
C1I  
1.1nF  
C2I  
100Ω  
RBIN  
50Ω  
92  
84  
–35  
–42  
–49  
–56  
–63  
–70  
–77  
–84  
–91  
2.0  
1.5  
1.0  
0.5  
0
IBBN  
QBBN  
QBBP  
LNI  
2.7nH  
250kHz  
EVM  
(%)  
RMS  
LNQ  
2.7nH  
23  
24  
RBQN  
50Ω  
1.1nF  
C1Q  
1.1nF  
C2Q  
RSLQ  
100Ω  
EVM (%)  
PK  
RBQP  
83  
50Ω  
LPQ  
2.7nH  
400kHz  
Figure 32. DAC Modulator Interface with 3 MHz Third-Order Low-Pass Filter  
USING THE AD9779 AUXILIARY DAC FOR CARRIER  
FEEDTHROUGH NULLING  
1200kHz  
4
600kHz  
6
The AD9779 features an auxiliary DAC that can be used to  
inject small currents into the differential outputs for each main  
DAC channel. This feature can be used to produce the small  
offset voltages necessary to null out the carrier feedthrough  
from the modulator. Figure 33 shows the interface required  
to utilize the auxiliary DACs. This adds four resistors to the  
interface.  
0
1
2
3
5
7
OUTPUT POWER (dBm)  
Figure 34. GSM EVM and Spectral Performance vs. Channel Power at  
450 MHz vs. Output Power; LO Power = 0 dBm  
Figure 35 shows the GSM EVM, spectral mask performance  
and 6 MHz offset noise vs. LO amplitude at 450 MHz with an  
output power of 6 dBm. Increasing the LO drive level improves  
the noise performance but degrades EVM performance.  
90  
AUX1_P  
–35  
–42  
–49  
–56  
–63  
–70  
–77  
–84  
–91  
–98  
–105  
–112  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
500Ω  
AD9779  
ADL5370  
250Ω  
LPI  
2.7nH  
93  
19  
20  
EVM (%)  
PK  
250kHz  
OUT1_P  
IBBP  
RBIP  
50Ω  
RSLI  
1.1nF  
C1I  
1.1nF  
C2I  
100Ω  
RBIN  
50Ω  
92  
89  
400kHz  
OUT1_N  
AUX1_N  
IBBN  
LNI  
2.7nH  
250Ω  
600kHz  
500Ω  
87  
EVM  
RMS  
(%)  
1200kHz  
AUX2_N  
OUT2_N  
500Ω  
250Ω  
LNQ  
2.7nH  
84  
23  
24  
QBBN  
QBBP  
6 MHz OFFSET NOISE  
RBQN  
50Ω  
–6  
–4  
–2  
0
2
4
6
1.1nF  
C1Q  
1.1nF  
C2Q  
RSLQ  
100Ω  
LO AMPLITUDE (dBm)  
RBQP  
50Ω  
83  
86  
Figure 35. GSM EVM, Spectral Performance, and 6 MHz Noise Floor vs.  
LO Power at 450 MHz; Output Power = 6 dBm  
OUT2_P  
AUX2_P  
LPQ  
2.7nH  
250Ω  
Figure 35 illustrates that an LO amplitude of 0 dBm provides  
the ideal operating point for noise and EVM for a GSM signal  
at 450 MHz.  
500Ω  
Figure 33. DAC Modulator Interface with Auxiliary DAC Resistors  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
ADL5370  
LO GENERATION USING PLLS  
TRANSMIT DAC OPTIONS  
Analog Devices has a line of PLLs that can be used for  
generating the LO signal. Table 4 lists the PLLs together with  
their maximum frequency and phase noise performance.  
The AD9779 recommended in the previous sections of this data  
sheet is by no means the only DAC that can be used to drive the  
ADL5370. There are other appropriate DACs, depending on the  
level of performance required. Table 6 lists the dual Tx-DACs  
offered by Analog Devices.  
Table 4. ADI PLL Selection Table  
Phase Noise @ 1 kHz Offset  
Frequency FIN (MHz) and 200 kHz PFD (dBc/Hz)  
Table 6. Analog Devices Dual Tx—DAC Selection Table  
Part  
Part  
Resolution (Bits)  
Update Rate (MSPS Min)  
ADF4110 550  
ADF4111 1200  
ADF4112 3000  
ADF4113 4000  
ADF4116 550  
ADF4117 1200  
ADF4118 3000  
−91 @ 540 MHz  
−87@ 900 MHz  
−90 @ 900 MHz  
−91 @ 900 MHz  
−89 @ 540 MHz  
−87 @ 900 MHz  
−90 @ 900 MHz  
AD9709  
AD9761  
AD9763  
AD9765  
AD9767  
AD9773  
AD9775  
AD9777  
AD9776  
AD9778  
AD9779  
8
125  
40  
10  
10  
12  
14  
12  
14  
16  
12  
14  
16  
125  
125  
125  
160  
160  
160  
1000  
1000  
1000  
The ADF4360 comes as a family of chips, with nine operating  
frequency ranges. One is chosen, depending on the local  
oscillator frequency required. While the use of the integrated  
synthesizer may come at the expense of slightly degraded noise  
performance from the ADL5370, it can be a cheaper alternative  
to a separate PLL and VCO solution. Table 5 shows the options  
available.  
All DACs listed have nominal bias levels of 0.5 V and use the same  
simple DAC-modulator interface that is shown in Figure 31.  
MODULATOR/DEMODULATOR OPTIONS  
Table 5. ADF4360 Family Operating Frequencies  
Table 7 lists other Analog Devices modulators and demodulators.  
Part  
Output Frequency Range (MHz)  
ADF4360-0  
ADF4360-1  
ADF4360-2  
ADF4360-3  
ADF4360-4  
ADF4360-5  
ADF4360-6  
ADF4360-7  
ADF4360-8  
2400 to 2725  
2050 to 2450  
1850 to 2150  
1600 to 1950  
1450 to 1750  
1200 to 1400  
1050 to 1250  
350 to 1800  
Table 7. Modulator/Demodulator Options  
Frequency  
Part  
Mod/Demod Range (MHz) Comments  
AD8345  
AD8346  
AD8349  
ADL5390 Mod  
ADL5385 Mod  
ADL5371 Mod  
ADL5372 Mod  
ADL5373 Mod  
ADL5374 Mod  
AD8347  
AD8348  
AD8340  
AD8341  
Mod  
Mod  
Mod  
140 to 1000  
800 to 2500  
700 to 2700  
20 to 2400  
External quadrature  
50 to 2200  
65 to 400  
700 to 1300  
1600 to 2400  
2300 to 3000  
3000 to 4000  
800 to 2700  
50 to 1000  
Demod  
Demod  
Vector mod  
Vector mod  
700 to 1000  
1500 to 2400  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
ADL5370  
EVALUATION BOARD  
Populated RoHS-compliant evaluation boards are available for  
evaluation of the ADL5370. The ADL5370 package has an  
exposed paddle on the underside. This exposed paddle must  
be soldered to the board (see the Power Supply and Grounding  
discussion in the Basic Connections section). The evaluation  
board is designed without any components on the underside  
so heat can be applied to the underside for easy removal and  
replacement of the ADL5370.  
QBBP  
QBBN  
IBBN  
IBBP  
RFPQ RFNQ  
RFNI RFPI  
CFNQ CFNI  
OPEN OPEN  
0Ω  
0Ω  
0Ω  
0Ω  
RTQ  
OPEN  
RTI  
OPEN  
CFPQ  
OPEN  
CFPI  
OPEN  
C16  
0.1µF  
L12  
0Ω  
C15  
0.1µF  
VPS5  
Figure 37. Evaluation Board Layout, Top Layer.  
COM1  
L11  
0Ω  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
VPS4  
VPS3  
VPS2  
VPS2  
COM1  
VPS1  
Z1  
C14  
0.1µF  
ADL5370  
VPS1  
VPS1  
VPS1  
EXPOSED PADDLE  
VOUT C13  
0.1µF  
COUT  
100pF  
C11  
OPEN  
C12  
0.1µF  
VOUT  
GND  
CLOP  
100pF  
CLON  
100pF  
LO  
Figure 36. ADL5370 Evaluation Board Schematic  
Table 8. Evaluation Board Configuration Options  
Component  
Description  
Default Condition  
VPOS, GND  
Power Supply and Ground Clip Leads.  
Not applicable  
RFPI, RFNI, RFPQ, RFNQ, CFPI,  
CFNI, CFPQ, CFNQ, RTQ, RTI  
Baseband Input Filters. These components can be used  
to implement a low-pass filter for the baseband signals.  
See the Filtering discussion in the Applications  
Information section.  
RFNQ, RFPQ, RFNI, RFPI = 0 Ω (0402)  
CFNQ, CFPQ, CFNI, CFPI = Open (0402)  
RTQ, RTI = Open (0402)  
Rev. 0 | Page 16 of 20  
 
ADL5370  
CHARACTERIZATION SETUP  
AEROFLEX IFR 3416  
250kHz TO 6GHz SIGNAL GENERATOR  
R AND S SPECTRUM ANALYZER  
FSU 20Hz TO 8GHz  
RF  
OUT  
FREQ 4MHz LEVEL 0dBm  
GAIN 0.7V  
GAIN 0.7V  
BIAS 0.5V  
BIAS 0.5V  
LO  
CONNECT TO BACK OF UNIT  
I OUT I/AM Q OUT Q/FM  
RF  
IN  
+6dBm  
90°  
0°  
I
Q
AGILENT 34401A  
MULTIMETER  
FMOD TEST SETUP  
0.175 ADC  
FMOD  
IP  
IN  
LO  
VPOS +5V  
QP  
QN  
AGILENT E3631A  
POWER SUPPLY  
OUTPUT  
OUT  
VPOS GND  
5.000  
0.175A  
6V  
±25V  
+
COM  
+
Figure 38. Characterization Bench Setup  
The primary setup used to characterize the ADL5370 is shown  
in Figure 38. This setup was used to evaluate the product as a  
single-sideband modulator. The Aeroflex signal generator supplied  
the local oscillator (LO) and differential I and Q baseband  
signals to the device under test, DUT. The typical LO drive was  
0 dBm. The I channel is driven by a sine wave, and the Q channel  
is driven by a cosine wave. The lower sideband is the single  
sideband (SSB) output.  
The majority of characterization for the ADL5370 was performed  
using a 1 MHz sine wave signal with a 500 mV common-mode  
voltage applied to the baseband signals of the DUT. The baseband  
signal path was calibrated to ensure that the VIOS and VQOS  
offsets on the baseband inputs were minimized, as close as  
possible, to 0 V before connecting to the DUT.  
1
1
See the Carrier Feedthrough Nulling section for the definitions of VIOS  
and VQOS  
.
Rev. 0 | Page 17 of 20  
 
 
ADL5370  
TEKTRONIX AFG3252  
DUAL FUNCTION  
ARBITRARY FUNCTION GENERATOR  
R AND S SMT 06  
SIGNAL GENERATOR  
CH1 1MHz  
AMPL 700mV p-p  
PHASE 0°  
RF  
OUT  
CH2 1MHz  
FREQ 4MHz TO 4GHz  
LEVEL 0dBm  
AMPL 700mV p-p  
PHASE 90°  
LO  
90°  
0°  
I
Q
SINGLE TO DIFFERENTIAL  
CIRCUIT BOARD  
AGILENT E3631A  
POWER SUPPLY  
FMOD TEST RACK  
Q IN AC  
5.000  
0.350A  
+
FMOD  
CHAR BD  
6V  
–  
±25V  
COM  
Q IN DCCM  
TSEN  
+
IP  
IN  
IP  
LO  
GND  
VPOSB VPOSA  
IN  
IN1  
AGND  
IN1  
QP  
OUTPUT  
OUT  
GND  
VN1  
VP1  
–5V  
+5V  
QN  
VPOS  
QP  
QN  
I IN DCCM  
I IN AC  
VPOS +5V  
AGILENT E3631A  
POWER SUPPLY  
R AND S FSEA 30  
SPECTRUM ANALYZER  
0.500  
0.010A  
RF  
IN  
6V  
±25V  
+
COM  
+
100MHz TO 4GHz  
+6dBm  
VCM = 0.5V  
AGILENT 34401A  
MULTIMETER  
0.200 ADC  
Figure 39. Setup for Baseband Frequency Sweep and Undesired Sideband Nulling  
The setup used to evaluate baseband frequency sweep and  
undesired sideband nulling of the ADL5370 is shown in Figure 39.  
The interface board has circuitry that converts the single-ended  
I and Q inputs from the arbitrary function generator to differ-  
ential I and Q baseband signals with a dc bias of 500 mV.  
Undesired sideband nulling was achieved through an iterative  
process of adjusting amplitude and phase on the Q channel.  
See Sideband Suppression Optimization in the Optimization  
section for a more detailed discussion on sideband nulling.  
Rev. 0 | Page 18 of 20  
 
ADL5370  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
*
2.45  
2.30 SQ  
2.15  
TOP  
3.75  
EXPOSED  
VIEW  
BSC SQ  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
2.50 REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 40. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5370ACPZ-R21  
ADL5370ACPZ-R71  
ADL5370ACPZ-WP1  
ADL5370-EVALZ1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-24-2  
CP-24-2  
Ordering Quantity  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, Waffle Pack  
Evaluation Board  
250  
1,500  
64  
–40°C to +85°C  
CP-24-2  
1 Z = Pb-free part.  
Rev. 0 | Page 19 of 20  
 
 
ADL5370  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06117-0-10/06(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADL5370-EVALZ

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R2

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R7

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-R7

250 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADL5370ACPZ-WP

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5370ACPZ-WP

250 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADL5371

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5371ACPZ-R7

500 MHz TO 1500 MHz Quadrature Modulator
ADI

ADL5371ACPZ-WP

RF/Microwave Modulator/Demodulator, 700 MHz - 1300 MHz RF/MICROWAVE QUADRAPHASE MODULATOR, LEAD FREE, MO-220VGGD-2, LFCSP-24
ADI

ADL5372

300 MHz to 1000 MHz Quadrature Modulator
ADI

ADL5372-EVALZ1

1500 MHz to 2500 MHz Quadrature Modulator
ADI

ADL5372ACPZ-R2

1500 MHz TO 2500 MHz Quadrature Modulator
ADI