ADL5380ACPZ-R7 [ADI]

400 MHz to 6 GHz Quadrature Demodulator; 400 MHz至6 GHz的正交解调器
ADL5380ACPZ-R7
型号: ADL5380ACPZ-R7
厂家: ADI    ADI
描述:

400 MHz to 6 GHz Quadrature Demodulator
400 MHz至6 GHz的正交解调器

射频调制器 射频解调器 微波调制器 微波解调器 射频和微波
文件: 总36页 (文件大小:843K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz to 6 GHz  
Quadrature Demodulator  
ADL5380  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ENBL ADJ  
Operating RF and LO frequency: 400 MHz to 6 GHz  
Input IP3  
ADL5380  
IHI  
BIAS  
30 dBm @ 900 MHz  
28 dBm @1900 MHz  
Input IP2: >65 dBm @ 900 MHz  
Input P1dB (IP1dB): 11.6 dBm @ 900 MHz  
Noise figure (NF)  
ILO  
LOIP  
10.9 dB @ 900 MHz  
11.7 dB @ 1900 MHz  
Voltage conversion gain: ~7 dB  
Quadrature demodulation accuracy @ 900 MHz  
Phase accuracy: ~0.2°  
RFIN  
RFIP  
QUADRATURE  
PHASE SPLITTER  
V2I  
LOIN  
QHI  
Amplitude balance: ~0.07 dB  
Demodulation bandwidth: ~390 MHz  
Baseband I/Q drive: 2 V p-p into 200 Ω  
Single 5 V supply  
QLO  
Figure 1.  
APPLICATIONS  
Cellular W-CDMA/GSM/LTE  
Microwave point-to-(multi)point radios  
Broadband wireless and WiMAX  
GENERAL DESCRIPTION  
The ADL5380 is a broadband quadrature I-Q demodulator that  
covers an RF/IF input frequency range from 400 MHz to 6 GHz.  
With a NF = 10.9 dB, IP1dB = 11.6 dBm, and IIP3 = 29.7 dBm @  
900 MHz, the ADL5380 demodulator offers outstanding dynamic  
range suitable for the demanding infrastructure direct-conversion  
requirements. The differential RF inputs provide a well-behaved  
broadband input impedance of 50 Ω and are best driven from a  
1:1 balun for optimum performance.  
The fully balanced design minimizes effects from second-order  
distortion. The leakage from the LO port to the RF port is  
<−50 dBm. Differential dc offsets at the I and Q outputs are  
typically <20 mV. Both of these factors contribute to the  
excellent IIP2 specification, which is >65 dBm.  
The ADL5380 operates off a single 4.75 V to 5.25 V supply. The  
supply current is adjustable by placing an external resistor from  
the ADJ pin to either the positive supply, VS, (to increase supply  
current and improve IIP3) or to ground (which decreases supply  
current at the expense of IIP3).  
Excellent demodulation accuracy is achieved with amplitude  
and phase balances of ~0.07 dB and ~0.2°, respectively. The  
demodulated in-phase (I) and quadrature (Q) differential outputs  
are fully buffered and provide a voltage conversion gain of ~7 dB.  
The buffered baseband outputs are capable of driving a 2 V p-p  
differential signal into 200 Ω.  
The ADL5380 is fabricated using the Analog Devices, Inc.,  
advanced silicon-germanium bipolar process and is available  
in a 24-lead exposed paddle LFCSP.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADL5380  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
V-to-I Converter......................................................................... 22  
Mixers .......................................................................................... 22  
Emitter Follower Buffers ........................................................... 22  
Bias Circuit.................................................................................. 22  
Applications Information.............................................................. 23  
Basic Connections...................................................................... 23  
Power Supply............................................................................... 23  
Local Oscillator (LO) Input ...................................................... 23  
RF Input....................................................................................... 24  
Baseband Outputs ...................................................................... 24  
Error Vector Magnitude (EVM) Performance........................... 24  
Low IF Image Rejection............................................................. 25  
Example Baseband Interface..................................................... 26  
Characterization Setups................................................................. 30  
Evaluation Board ............................................................................ 32  
Thermal Grounding and Evaluation Board Layout............... 34  
Outline Dimensions....................................................................... 35  
Ordering Guide .......................................................................... 35  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Low Band Operation.................................................................... 7  
Midband Operation ................................................................... 11  
High Band Operation ................................................................ 14  
Distributions for fLO = 900 MHz............................................... 17  
Distributions for fLO = 1900 MHz............................................. 18  
Distributions for fLO = 2700 MHz............................................. 19  
Distributions for fLO = 3600 MHz............................................. 20  
Distributions for fLO = 5800 MHz............................................. 21  
Circuit Description......................................................................... 22  
LO Interface................................................................................. 22  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 36  
 
ADL5380  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, fLO = 900 MHz, fIF = 4.5 MHz, PLO = 0 dBm, ZO = 50 ꢀ, unless otherwise noted. Baseband outputs differentially  
loaded with 450 ꢀ. Loss of the balun used to drive the RF port was de-embedded from these measurements.  
Table 1.  
Parameter  
Condition  
Min Typ  
Max Unit  
OPERATING CONDITIONS  
LO and RF Frequency Range  
LO INPUT  
0.4  
6
GHz  
LOIP, LOIN  
Input Return Loss  
LO driven differentially through a balun at 900 MHz  
−10  
dB  
LO Input Level  
−6  
0
+6  
dBm  
I/Q BASEBAND OUTPUTS  
Voltage Conversion Gain  
QHI, QLO, IHI, ILO  
450 Ω differential load on I and Q outputs at 900 MHz  
200 Ω differential load on I and Q outputs at 900 MHz  
1 V p-p signal, 3 dB bandwidth  
At 900 MHz  
6.9  
5.9  
390  
0.2  
0.07  
10  
dB  
dB  
MHz  
Degrees  
dB  
Demodulation Bandwidth  
Quadrature Phase Error  
I/Q Amplitude Imbalance  
Output DC Offset (Differential)  
Output Common Mode  
0 dBm LO input at 900 MHz  
Dependent on ADJ pin setting  
mV  
VADJ ~ 4 V (set by 1.5 kΩ from ADJ pin to VS)  
VADJ ~ 4.8 V (set by 200 Ω from ADJ pin to VS)  
VADJ ~ 2.4 V (ADJ pin open)  
VS − 2.5  
VS − 2.8  
VS − 1.2  
37  
2
12  
V
V
V
MHz  
V p-p  
mA  
0.1 dB Gain Flatness  
Output Swing  
Peak Output Current  
POWER SUPPLIES  
Voltage  
Differential 200 Ω load  
Each pin  
VS = VCC1, VCC2, VCC3  
4.75  
5.25  
V
Current  
1.5 kΩ from ADJ pin to VS; ENBL pin low  
1.5 kΩ from ADJ pin to VS; ENBL pin high  
Pin ENBL  
245  
145  
mA  
mA  
ENABLE FUNCTION  
Off Isolation  
−70  
45  
950  
dB  
ns  
ns  
V
Turn-On Settling Time  
Turn-Off Settling Time  
ENBL High Level (Logic 1)  
ENBL Low Level (Logic 0)  
DYNAMIC PERFORMANCE at RF = 900 MHz  
Conversion Gain  
ENBL high to low  
ENBL low to high  
2.5  
1.7  
V
VADJ ~ 4 V (set by 1.5 kΩ from ADJ pin to VS)  
6.9  
dB  
Input P1dB  
11.6  
−19  
68  
29.7  
−52  
−67  
0.07  
0.2  
dBm  
dB  
RF Input Return Loss  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
RFIP, RFIN driven differentially through a balun  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
dBm  
dBm  
dBm  
dBc  
dB  
Degrees  
dB  
dB  
Noise Figure  
Noise Figure Under Blocking Conditions  
10.9  
13.1  
With a −5 dBm input interferer 5 MHz away  
Rev. 0 | Page 3 of 36  
 
ADL5380  
Parameter  
Condition  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE at RF = 1900 MHz  
VADJ ~ 4 V (set by 1.5 kΩ from ADJ pin to VS)  
Conversion Gain  
6.8  
dB  
Input P1dB  
11.6  
−13  
61  
dBm  
dB  
RF Input Return Loss  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
RFIP, RFIN driven differentially through a balun  
−5 dBm each input tone  
dBm  
dBm  
dBm  
dBc  
dB  
Degrees  
dB  
dB  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
27.8  
−49  
−77  
0.07  
0.25  
11.7  
14  
Noise Figure  
Noise Figure Under Blocking Conditions  
DYNAMIC PERFORMANCE at RF = 2700 MHz  
Conversion Gain  
With a −5 dBm input interferer 5 MHz away  
VADJ ~ 4 V (set by 1.5 kΩ from ADJ pin to VS)  
7.4  
dB  
Input P1dB  
11  
−10  
54  
dBm  
dB  
dBm  
dBm  
dBm  
dBc  
dB  
Degrees  
dB  
RF Input Return Loss  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
RFIP, RFIN driven differentially through a balun  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
28  
−49  
−73  
0.07  
0.5  
Noise Figure  
12.3  
DYNAMIC PERFORMANCE at RF = 3600 MHz  
Conversion Gain  
VADJ ~ 4.8 V (set by200 Ω from ADJ pin to VS)  
6.3  
dB  
Input P1dB  
9.6  
−11  
48  
dBm  
dB  
RF Input Return Loss  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
RFIP, RFIN driven differentially through a balun  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
dBm  
dBm  
dBm  
dBc  
dB  
Degrees  
dB  
dB  
21  
−46  
−72  
0.14  
1.1  
14.2  
16.2  
Noise Figure  
Noise Figure Under Blocking Conditions  
DYNAMIC PERFORMANCE at RF = 5800 MHz  
Conversion Gain  
With a −5 dBm input interferer 5 MHz away  
VADJ ~ 2.4 V (ADJ pin left open)  
5.8  
dB  
Input P1dB  
8.2  
−7.5  
44  
20.6  
−47  
−62  
0.07  
−1.25  
15.5  
18.9  
dBm  
dB  
RF Input Return Loss  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
RFIP, RFIN driven differentially through a balun  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
dBm  
dBm  
dBm  
dBc  
dB  
Degrees  
dB  
dB  
Noise Figure  
Noise Figure Under Blocking Conditions  
With a −5 dBm input interferer 5 MHz away  
Rev. 0 | Page 4 of 36  
ADL5380  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage: VCC1, VCC2, VCC3  
LO Input Power  
5.5 V  
13 dBm (re: 50 Ω)  
15 dBm (re: 50 Ω)  
1370 mW  
RF Input Power  
Internal Maximum Power Dissipation  
1
θJA  
53°C/W  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
150°C  
−40°C to +85°C  
−65°C to +125°C  
ESD CAUTION  
1 Per JDEC standard JESD 51-2. For information on optimizing thermal  
impedance, see the Thermal Grounding and Evaluation Board Layout  
section.  
Rev. 0 | Page 5 of 36  
 
 
ADL5380  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
GND3  
GND1  
IHI  
ILO  
GND1  
1
2
3
4
5
6
18 GND3  
17 GND2  
16 QHI  
15 QLO  
14 GND2  
13 VCC2  
ADL5380  
TOP VIEW  
(Not to Scale)  
VCC1  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD SHOULD BE CONNECTED TO A  
LOW IMPEDANCE THERMAL AND ELECTRICAL  
GROUND PLANE.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1, 2, 5, 8, 11, 14, GND1, GND2, GND3, GND4 Ground Connect.  
17, 18, 20, 23  
3, 4, 15, 16  
IHI, ILO, QLO, QHI  
I Channel and Q Channel Mixer Baseband Outputs. These outputs have a 50 Ω differential  
output impedance (25 Ω per pin). Each output pair can swing 2 V p-p (differential) into a  
load of 200 Ω. The output 3 dB bandwidth is ~400 MHz.  
6, 13, 24  
7
VCC1, VCC2, VCC3  
ENBL  
Supply. Positive supply for LO, IF, biasing, and baseband sections. Decouple these pins to  
the board ground using the appropriate-sized capacitors.  
Enable Control. When pulled low, the part is fully enabled; when pulled high, the part is  
partially powered down and the output is disabled.  
9, 10  
LOIP, LOIN  
Local Oscillator Input. Pins must be ac-coupled. A differential drive through a balun is  
necessary to achieve optimal performance. Recommended balun is the Mini-Circuits  
TC1-1-13 for lower frequencies, the Johanson Technology 3600 balun for midband  
frequencies, and the Johanson Technology 5400 balun for high band frequencies.  
Balun choice depends on the desired frequency range of operation.  
12  
19  
NC  
ADJ  
Do not connect this pin.  
A resistor to VS that optimizes third-order intercept. For operation <3 GHz, RADJ = 1.5 kΩ.  
For operation from 3 GHz to 4 GHz, RADJ = 200 Ω. For operation >5 GHz, RADJ = open.  
See the Circuit Description section for more details.  
21, 22  
RFIN, RFIP  
RF Input. A single-ended 50 Ω signal can be applied differentially to the RF inputs through  
a 1:1 balun. Recommended balun is the Mini-Circuits TC1-1-13 for lower frequencies, the  
Johanson Technology 3600 balun for midband frequencies, and the Johanson Technology  
5400 balun for high band frequencies. Balun choice depends on the desired frequency  
range of operation.  
EP  
Exposed Paddle. Connect to a low impedance thermal and electrical ground plane.  
Rev. 0 | Page 6 of 36  
 
ADL5380  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, LO drive level = 0 dBm, RF input balun loss is de-embedded, unless otherwise noted.  
LOW BAND OPERATION  
RF = 400 MHz to 3 GHz; Mini-Circuits TC1-1-13 balun on LO and RF inputs, 1.5 kꢀ from the ADJ pin to VS.  
18  
16  
14  
12  
10  
8
1.0  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0.8  
0.6  
INPUT P1dB  
0.4  
0.2  
0
GAIN  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
6
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
4
2
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 3. Conversion Gain and Input 1 dB Compression Point (IP1dB) vs.  
LO Frequency  
Figure 5. IQ Gain Mismatch vs. LO Frequency  
80  
2
1
I CHANNEL  
Q CHANNEL  
70  
0
60  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
INPUT IP2  
50  
40  
INPUT IP3 (I AND Q CHANNELS)  
30  
20  
10  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
100  
1000  
BASEBAND FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 6. Normalized IQ Baseband Frequency Response  
Figure 4. Input Third-Order Intercept (IIP3) and  
Input Second-Order Intercept Point (IIP2) vs. LO Frequency  
Rev. 0 | Page 7 of 36  
 
ADL5380  
35  
30  
25  
20  
15  
10  
5
300  
280  
260  
240  
220  
200  
180  
160  
18  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
17  
16  
15  
14  
13  
12  
11  
10  
9
INPUT IP3  
SUPPLY  
CURRENT  
NOISE FIGURE  
8
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
(V)  
ADJ  
LO FREQUENCY (MHz)  
Figure 7. Noise Figure vs. LO Frequency  
Figure 10. IIP3, Noise Figure, and Supply Current vs. VADJ, fLO = 900 MHz  
4
3
2
1
0
25  
23  
21  
19  
17  
15  
13  
1920MHz  
–1  
T
T
T
= –40°C  
= +25°C  
= +85°C  
11  
A
A
A
920MHz  
–2  
–3  
–4  
9
7
5
–30  
–25  
–20  
–15  
–10  
–5  
0
5
RF BLOCKER INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
Figure 8. IQ Quadrature Phase Error vs. LO Frequency  
Figure 11. Noise Figure vs. Input Blocker Level, fLO = 900 MHz, fLO = 1900 MHz  
(RF Blocker 5 MHz Offset)  
20  
18  
16  
14  
12  
10  
8
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
18  
16  
14  
12  
10  
8
60  
55  
50  
45  
40  
35  
30  
25  
20  
IIP2, I CHANNEL  
IIP2, Q CHANNEL  
IIP2, Q CHANNEL  
IIP2, I CHANNEL  
NOISE FIGURE  
IP1dB  
IP1dB  
GAIN  
NOISE FIGURE  
GAIN  
6
6
4
IIP3  
IIP3  
4
2
2
0
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 12. Conversion Gain, IP1dB, Noise Figure, IIP3, and IIP2 vs.  
LO Level, fLO = 2700 MHz  
Figure 9. Conversion Gain, IP1dB, Noise Figure, IIP3, and IIP2 vs.  
LO Level, fLO = 900 MHz  
Rev. 0 | Page 8 of 36  
ADL5380  
35  
30  
25  
20  
15  
10  
5
0
–5  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
INPUT IP3  
–10  
–15  
–20  
–25  
NOISE FIGURE  
0
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
RF FREQUENCY (GHz)  
V
ADJ  
Figure 13. IIP3 and Noise Figure vs. VADJ, fLO = 2700 MHz  
Figure 16. RF Port Return Loss vs. RF Frequency Measured on  
Characterization Board Through TC1-1-13 Balun  
80  
–20  
70  
60  
50  
40  
30  
20  
10  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
900MHz: GAIN  
900MHz: IP1dB  
900MHz: IIP2, I CHANNEL  
900MHz: IIP2, Q CHANNEL  
2700MHz: GAIN  
2700MHz: IP1dB  
2700MHz: IIP2, I CHANNEL  
2700MHz: IIP2, Q CHANNEL  
1
2
3
4
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
LO FREQUENCY (GHz)  
V
(V)  
ADJ  
Figure 14. Conversion Gain, IP1dB, and IIP2 vs.  
VADJ, fLO = 900 MHz, fLO = 2700 MHz  
Figure 17. LO-to-RF Leakage vs. LO Frequency  
40  
35  
30  
25  
20  
15  
10  
5
90  
85  
80  
75  
70  
65  
60  
55  
50  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
I CHANNEL  
Q CHANNEL  
IIP3  
IIP2  
IP1dB  
0
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16.5  
18.5  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
BASEBAND FREQUENCY (MHz)  
RF FREQUENCY (GHz)  
Figure 15. IP1dB, IIP3, and IIP2 vs. Baseband Frequency  
Figure 18. RF-to-LO Leakage vs. RF Frequency  
Rev. 0 | Page 9 of 36  
ADL5380  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
LO FREQUENCY (GHz)  
Figure 19. LO Port Return Loss vs. LO Frequency Measured on  
Characterization Board Through TC1-1-13 Balun  
Rev. 0 | Page 10 of 36  
 
ADL5380  
MIDBAND OPERATION  
RF = 3 GHz to 4 GHz; Johanson Technology 3600BL14M050T balun on LO and RF inputs, 200 ꢀ from VADJ to VS.  
14  
13  
12  
11  
10  
9
20  
18  
16  
14  
12  
10  
8
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
IIP2, Q CHANNEL  
IIP2, I CHANNEL  
IP1dB  
NOISE FIGURE  
IP1dB  
8
GAIN  
GAIN  
7
6
4
6
IIP3  
2
5
0
4
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
LO LEVEL (dBm)  
LO FREQUENCY (GHz)  
Figure 20. Conversion Gain and Input 1 dB Compression Point (IP1dB) vs.  
LO Frequency  
Figure 23. Conversion Gain, IP1dB, Noise Figure, IIP3, and IIP2 vs.  
LO Level, fLO = 3600 MHz  
80  
18  
17  
16  
15  
14  
13  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
60  
50  
40  
30  
20  
10  
I CHANNEL  
Q CHANNEL  
INPUT IP2  
12  
11  
10  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
INPUT IP3 I AND Q CHANNELS  
8
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 24. Noise Figure vs. LO Frequency  
Figure 21. Input Third-Order Intercept (IIP3) and  
Input Second-Order Intercept Point (IIP2) vs. LO Frequency  
4
3
2
1
0
1.0  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
0.8  
0.6  
A
A
A
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 25. IQ Quadrature Phase Error vs. LO Frequency  
Figure 22. IQ Gain Mismatch vs. LO Frequency  
Rev. 0 | Page 11 of 36  
 
ADL5380  
30  
300  
280  
260  
240  
220  
200  
180  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
25  
–30  
–40  
–50  
–60  
–70  
–80  
INPUT IP3  
20  
15  
10  
5
NOISE FIGURE  
SUPPLY CURRENT  
0
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
LO FREQUENCY (GHz)  
V
ADJ  
Figure 29. LO-to-RF Leakage vs. LO Frequency  
Figure 26. IIP3, Noise Figure, and Supply Current vs. VADJ, fLO = 3600 MHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
25  
23  
21  
19  
17  
15  
13  
11  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
RF FREQUENCY (GHz)  
RF POWEL LEVEL (dBm)  
Figure 30. RF-to-LO Leakage vs. RF Frequency  
Figure 27. Noise Figure vs. Input Blocker Level, fLO = 3600 MHz  
(RF Blocker 5 MHz Offset)  
0
–2  
80  
70  
60  
50  
–4  
40  
3600MHz: GAIN  
–6  
3600MHz: IP1dB  
3600MHz: IIP2, I CHANNEL  
30  
3600MHz: IIP2, Q CHANNEL  
–8  
20  
10  
0
–10  
–12  
–10  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
1
2
3
4
RF FREQUENCY (GHz)  
V
(V)  
ADJ  
Figure 31. RF Port Return Loss vs. RF Frequency Measured on  
Characterization Board Through Johanson Technology 3600 Balun  
Figure 28. Conversion Gain, IP1dB, and IIP2 vs. VADJ, fLO = 3600 MHz  
Rev. 0 | Page 12 of 36  
ADL5380  
0
–5  
–10  
–15  
–20  
–25  
–30  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
LO FREQUENCY (GHz)  
Figure 32. LO Port Return Loss vs. LO Frequency Measured on  
Characterization Board Through Johanson Technology 3600 Balun  
Rev. 0 | Page 13 of 36  
ADL5380  
HIGH BAND OPERATION  
RF = 5 GHz to 6 GHz; Johanson Technology 5400BL15B050E balun on LO and RF inputs, the ADJ pin is open.  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
20  
18  
16  
14  
12  
10  
8
12  
11  
10  
9
NOISE FIGURE  
IIP2, Q CHANNEL  
INPUT P1dB  
IIP2, I CHANNEL  
8
7
GAIN  
IP1dB  
GAIN  
6
6
5
4
4
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
IIP3  
2
3
0
2
–6 –5 –4 –3  
–2 –1  
0
1
2
3
4
5
6
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
LO LEVEL (dBm)  
LO FREQUENCY (GHz)  
Figure 33. Conversion Gain and Input 1 dB Compression Point (IP1dB) vs.  
LO Frequency  
Figure 36. Conversion Gain, IP1dB, Noise Figure, IIP3, and IIP2 vs.  
LO Level, fLO = 5800 MHz  
20  
80  
T
T
T
= –40°C  
= –25°C  
= +85°C  
A
A
A
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
I CHANNEL  
Q CHANNEL  
70  
60  
50  
40  
30  
20  
10  
INPUT IP2  
INPUT IP3 (I AND Q CHANNELS)  
8
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 37. Noise Figure vs. LO Frequency  
Figure 34. Input Third-Order Intercept (IIP3) and  
Input Second-Order Intercept Point (IIP2) vs. LO Frequency  
4
3
1.0  
0.8  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0.6  
2
0.4  
1
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 35. IQ Gain Mismatch vs. LO Frequency  
Figure 38. IQ Quadrature Phase Error vs. LO Frequency  
Rev. 0 | Page 14 of 36  
 
ADL5380  
30  
25  
20  
15  
10  
5
300  
280  
260  
240  
220  
200  
180  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
INPUT IP3  
NOISE FIGURE  
SUPPLY CURRENT  
0
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.9  
5.9  
6.0  
6.0  
6.0  
LO FREQUENCY (GHz)  
V
ADJ  
Figure 42. LO-to-RF Leakage vs. LO Frequency  
Figure 39. IIP3, Noise Figure, and Supply Current vs. VADJ, fLO = 5800 MHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
25  
20  
15  
10  
5
0
–30  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
–25  
–20  
–15  
–10  
–5  
RF FREQUENCY (MHz)  
RF POWER LEVEL (dBm)  
Figure 40. Noise Figure vs. Input Blocker Level, fLO = 5800 MHz  
(RF Blocker 5 MHz Offset)  
Figure 43. RF-to-LO Leakage vs. RF Frequency  
60  
0
–2  
–4  
50  
40  
–6  
5800MHz: GAIN  
5800MHz: IP1dB  
5800MHz: IIP2, I CHANNEL  
5800MHz: IIP2, Q CHANNEL  
30  
–8  
–10  
–12  
–14  
–16  
20  
10  
0
1
2
3
4
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
V
(V)  
RF FREQUENCY (GHz)  
ADJ  
Figure 41. Conversion Gain, IP1dB, and IIP2 vs.  
BIAS, fLO = 5800 MHz  
Figure 44. RF Port Return Loss vs. RF Frequency Measured on  
Characterization Board Through Johanson Technology 5400 Balun  
R
Rev. 0 | Page 15 of 36  
ADL5380  
–0  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
LO FREQUENCY (GHz)  
Figure 45. LO Port Return Loss vs. LO Frequency Measured on  
Characterization Board Through Johanson Technology 5400 Balun  
Rev. 0 | Page 16 of 36  
ADL5380  
DISTRIBUTIONS FOR fLO = 900 MHz  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
20  
10  
0
28  
29  
30  
31  
32  
33  
34  
14  
0.3  
45  
50  
55  
60  
65  
70  
75  
80  
85  
12.5  
1.0  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 49. IIP2 Distributions for I Channel and Q Channel  
Figure 46. IIP3 Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IP1dB  
GAIN  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
4
5
6
7
8
9
10  
11  
12  
13  
NOISE FIGURE (dB)  
GAIN (dB), IP1dB (dBm)  
Figure 50. Noise Figure Distributions  
Figure 47. Gain and IP1dB Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
QUADRATURE PHASE ERROR (Degrees)  
GAIN MISMATCH (dB)  
Figure 51. IQ Quadrature Phase Error Distributions  
Figure 48. IQ Gain Mismatch Distributions  
Rev. 0 | Page 17 of 36  
 
ADL5380  
DISTRIBUTIONS FOR fLO = 1900 MHz  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
90  
80  
70  
60  
50  
40  
30  
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
20  
10  
0
A
A
A
24  
25  
26  
27  
28  
29  
30  
31  
32  
45  
50  
55  
60  
65  
70  
75  
80  
13.5  
1.0  
INPUT IP2 (dBm)  
INPUT IP3 (dBm)  
Figure 52. IIP3 Distributions  
Figure 55. IIP2 Distributions for I Channel and Q Channel  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
IP1dB  
GAIN  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
4
5
6
7
8
9
10  
11  
12  
13  
14  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
GAIN (dB), IP1dB (dBm)  
NOISE FIGURE (dB)  
Figure 53. Gain and IP1dB Distributions  
Figure 56. Noise Figure Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
QUADRATURE PHASE ERROR (Degrees)  
GAIN MISMATCH (dB)  
Figure 57. IQ Quadrature Phase Error Distributions  
Figure 54. IQ Gain Mismatch Distributions  
Rev. 0 | Page 18 of 36  
 
ADL5380  
DISTRIBUTIONS FOR fLO = 2700 MHz  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
35  
40  
45  
50  
55  
60  
65  
70  
75  
14.0  
2.0  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 58. IIP3 Distributions  
Figure 61. IIP2 Distributions for I Channel and Q Channel  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
IP1dB  
GAIN  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
4
5
6
7
8
9
10  
11  
12  
13  
14  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
GAIN (dB), IP1dB (dBm)  
NOISE FIGURE (dB)  
Figure 59. Gain and IP1dB Distributions  
Figure 62. Noise Figure Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 60. IQ Gain Mismatch Distributions  
Figure 63. IQ Quadrature Phase Error Distributions  
Rev. 0 | Page 19 of 36  
 
ADL5380  
DISTRIBUTIONS FOR fLO = 3600 MHz  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
40  
45  
50  
55  
60  
65  
70  
16.0  
2.5  
INPUT IP2 (dBm)  
INPUT IP3 (dBm)  
Figure 64. IIP3 Distributions  
Figure 67. IIP2 Distributions for I Channel and Q Channel  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
IP1dB  
GAIN  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
4
5
6
7
8
9
10  
11  
12  
13  
14  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
GAIN (dB), IP1dB (dBm)  
NOISE FIGURE (dB)  
Figure 65. Gain and IP1dB Distributions  
Figure 68. Noise Figure Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 66. IQ Gain Mismatch Distributions  
Figure 69. IQ Quadrature Phase Error Distributions  
Rev. 0 | Page 20 of 36  
 
ADL5380  
DISTRIBUTIONS FOR fLO = 5800 MHz  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
18  
19  
20  
21  
22  
23  
24  
30  
35  
40  
45  
50  
55  
60  
65  
70  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 73. IIP2 Distributions for I Channel and Q Channel  
Figure 70. IIP3 Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
IP1dB  
GAIN  
2
3
4
5
6
7
8
9
10  
13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0  
NOISE FIGURE (dB)  
GAIN (dB), IP1dB (dBm)  
Figure 74. Noise Figure Distributions  
Figure 71. Gain and IP1dB Distributions  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–3  
–2  
–1  
0
1
2
3
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
QUADRATURE PHASE ERROR (Degrees)  
GAIN MISMATCH (dB)  
Figure 75. IQ Quadrature Phase Error Distributions  
Figure 72. IQ Gain Mismatch Distributions  
Rev. 0 | Page 21 of 36  
 
ADL5380  
CIRCUIT DESCRIPTION  
The ADL5380 can be divided into five sections: the local  
oscillator (LO) interface, the RF voltage-to-current (V-to-I)  
converter, the mixers, the differential emitter follower outputs,  
and the bias circuit. A detailed block diagram of the device is  
shown in Figure 76.  
Table 4. ADJ Pin Resistor Values and Approximate ADJ Pin  
Voltages  
~ Baseband Common-  
Mode Output (V)  
RADJ  
~VADJ (V)  
200 Ω to VS  
600 Ω to VS  
1.54 kΩ to VS  
3.8 kΩ to VS  
10 kΩ to VS  
Open  
9 kΩ to GND  
3.5 kΩ to GND  
1.5 kΩ to GND  
4.8  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
2.2  
2.3  
2.5  
2.7  
3
3.2  
3.4  
3.6  
3.8  
ENBL ADJ  
ADL5380  
IHI  
BIAS  
ILO  
LOIP  
RFIN  
QUADRATURE  
PHASE SPLITTER  
V2I  
RFIP  
MIXERS  
LOIN  
QHI  
The ADL5380 has two double-balanced mixers: one for the in-  
phase channel (I channel) and one for the quadrature channel  
(Q channel). These mixers are based on the Gilbert cell design  
of four cross-connected transistors. The output currents from  
the two mixers are summed together in the resistive loads that  
then feed into the subsequent emitter follower buffers.  
QLO  
Figure 76. Block Diagram  
EMITTER FOLLOWER BUFFERS  
The LO interface generates two LO signals at 90° of phase  
difference to drive two mixers in quadrature. RF signals are  
converted into currents by the V-to-I converters that feed into  
the two mixers. The differential I and Q outputs of the mixers  
are buffered via emitter followers. Reference currents to each  
section are generated by the bias circuit. A detailed description  
of each section follows.  
The output emitter followers drive the differential I and Q signals  
off chip. The output impedance is set by on-chip 25 ꢀ series  
resistors that yield a 50 ꢀ differential output impedance for  
each baseband port. The fixed output impedance forms a  
voltage divider with the load impedance that reduces the effective  
gain. For example, a 500 ꢀ differential load has 1 dB lower  
effective gain than a high (10 kꢀ) differential load impedance.  
LO INTERFACE  
BIAS CIRCUIT  
The LO interface consists of a polyphase quadrature splitter  
followed by a limiting amplifier. The LO input impedance is set  
by the polyphase, which splits the LO signal into two differential  
signals in quadrature. The LO input impedance is nominally  
50 ꢀ. Each quadrature LO signal then passes through a limiting  
amplifier that provides the mixer with a limited drive signal. For  
optimal performance, the LO inputs must be driven differentially.  
A band gap reference circuit generates the reference currents  
used by different sections. The bias circuit can be enabled and  
partially disabled using ENBL (Pin 7). If ENBL is grounded or  
left open, the part is fully enabled. Pulling ENBL high shuts off  
certain sections of the bias circuitry, reducing the standing  
power to about half of its fully enabled consumption and  
disabling the outputs.  
V-TO-I CONVERTER  
The differential RF input signal is applied to a V-to-I converter  
that converts the differential input voltage to output currents.  
The V-to-I converter provides a differential 50 ꢀ input impedance.  
The V-to-I bias current can be adjusted up or down using the  
ADJ pin (Pin 19). Adjusting the current up improves IIP3 and  
IP1dB but degrades SSB NF. Adjusting the current down improves  
SSB NF but degrades IIP3 and IP1dB. The current adjustment  
can be made by connecting a resistor from the ADJ pin (Pin 19)  
to VS to increase the bias current or to ground to decrease the  
bias current. Table 4 approximately dictates the relationship  
between the resistor used (RADJ), the resulting ADJ pin voltage,  
and the resulting baseband common-mode output voltage.  
Rev. 0 | Page 22 of 36  
 
 
 
 
ADL5380  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
LOCAL OSCILLATOR (LO) INPUT  
Figure 78 shows the basic connections schematic for the ADL5380.  
For optimum performance, drive the LO port differentially  
through a balun. The recommended balun for each performance  
level includes the following:  
POWER SUPPLY  
The nominal voltage supply for the ADL5380 is 5 V and is  
applied to the VCC1, VCC2, and VCC3 pins. Connect ground  
to the GND1, GND2, GND3, and GND4 pins. Solder the exposed  
paddle on the underside of the package to a low thermal and  
electrical impedance ground plane. If the ground plane spans  
multiple layers on the circuit board, these layers should be stitched  
together with nine vias under the exposed paddle. The AN-772  
Application Note discusses the thermal and electrical grounding  
of the LFCSP in detail. Decouple each of the supply pins using  
two capacitors; recommended capacitor values are 100 pF and 0.1 μF.  
Up to 3 GHz is the Mini-Circuits TC1-1-13.  
From 3 GHz to 4 GHz is the Johanson Technology  
3600BL14M050.  
From 4.9 GHz to 6 GHz is the Johanson Technology  
5400BL15B050.  
AC couple the LO inputs to the device with 100 pF capacitors.  
The LO port is designed for a broadband 50 ꢀ match from  
400 MHz to 6 GHz. The LO return loss can be seen in Figure 19.  
Figure 77 shows the LO input configuration.  
LO INPUT  
9
LOIP  
LOIN  
100pF  
100pF  
BALUN  
10  
Figure 77. Differential LO Drive  
The recommended LO drive level is between −6 dBm and +6 dBm.  
The applied LO frequency range is between 400 MHz and 6 GHz.  
RFIN  
BALUN  
100pF  
100pF  
RADJ  
V
S
V
S
100pF  
0.1µF  
24  
23  
22  
21  
20  
19  
1
GND3 18  
GND2 17  
QHI 16  
GND3  
2 GND1  
3 IHI  
QHI  
IHI  
ADL5380  
4 ILO  
QLO 15  
GND2 14  
VCC2 13  
ILO  
QLO  
5 GND1  
6 VCC1  
V
V
S
S
0.1µF  
100pF  
100pF  
0.1µF  
7
8
9
10  
11  
12  
100pF  
100pF  
BALUN  
LO_SE  
Figure 78. Basic Connections Schematic  
Rev. 0 | Page 23 of 36  
 
 
 
ADL5380  
RF INPUT  
3
4
16  
15  
IHI  
QHI  
ADL5380  
The RF inputs have a differential input impedance of approximately  
50 ꢀ. For optimum performance, drive the RF port differentially  
through a balun. The recommended balun for each performance  
level includes the following:  
ILO  
QLO  
Figure 81. Baseband Output Configuration  
Up to 3 GHz is the Mini-Circuits TC1-1-13.  
From 3 GHz to 4 GHz is the Johanson Technology  
3600BL14M050.  
From 4.9 GHz to 6 GHz is the Johanson Technology  
5400BL15B050.  
ERROR VECTOR MAGNITUDE (EVM) PERFORMANCE  
EVM is a measure used to quantify the performance of a digital  
radio transmitter or receiver. A signal received by a receiver has all  
constellation points at their ideal locations; however, various  
imperfections in the implementation (such as magnitude  
imbalance, noise floor, and phase imbalance) cause the actual  
constellation points to deviate from their ideal locations.  
AC couple the RF inputs to the device with 100 pF capacitors.  
Figure 79 shows the RF input configuration.  
In general, a demodulator exhibits three distinct EVM  
limitations vs. received input signal power. At strong signal  
levels, the distortion components falling in-band due to non-  
linearities in the device cause strong degradation to EVM  
as signal levels increase. At medium signal levels, where the  
demodulator behaves in a linear manner and the signal is well  
above any notable noise contributions, the EVM has a tendency to  
reach an optimum level determined dominantly by the quadrature  
accuracy of the demodulator and the precision of the test equipment.  
As signal levels decrease, such that noise is a major contribution,  
the EVM performance vs. the signal level exhibits a decibel-for-  
decibel degradation with decreasing signal level. At lower signal  
levels, where noise proves to be the dominant limitation, the  
decibel EVM proves to be directly proportional to the SNR.  
21  
RFIN  
RFIP  
100pF  
100pF  
BALUN  
22  
RF INPUT  
Figure 79. RF Input  
The differential RF port return loss is characterized, as shown  
in Figure 80.  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
The ADL5380 shows excellent EVM performance for various  
modulation schemes. Figure 82 shows the EVM performance of  
the ADL5380 with a 16 QAM, 200 kHz low IF.  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
RF FREQUENCY (GHz)  
Figure 80. Differential RF Port Return Loss  
–45  
–50  
BASEBAND OUTPUTS  
The baseband outputs QHI, QLO, IHI, and ILO are fixed  
impedance ports. Each baseband pair has a 50 ꢀ differential  
output impedance. The outputs can be presented with differential  
loads as low as 200 ꢀ (with some degradation in gain) or high  
impedance differential loads (500 ꢀ or greater impedance yields  
the same excellent linearity) that is typical of an ADC. The TCM9-1  
9:1 balun converts the differential IF output to a single-ended  
output. When loaded with 50 ꢀ, this balun presents a 450 ꢀ  
load to the device. The typical maximum linear voltage swing for  
these outputs is 2 V p-p differential. The output 3 dB bandwidth  
is 390 MHz. Figure 81 shows the baseband output configuration.  
–90  
–70  
–50  
–30  
–10  
10  
RF INPUT POWER (dBm)  
Figure 82. EVM, RF = 900 MHz, IF = 200 kHz vs.  
RF Input Power for a 16 QAM 160ksym/s Signal  
Rev. 0 | Page 24 of 36  
 
 
 
 
 
ADL5380  
Figure 83 shows the zero-IF EVM performance of a 10 MHz  
IEEE 802.16e WiMAX signal through the ADL5380. The  
differential dc offsets on the ADL5380 are in the order of a few  
millivolts. However, ac coupling the baseband outputs with 10 μF  
capacitors eliminates dc offsets and enhances EVM performance.  
With a 10 MHz BW signal, 10 μF ac coupling capacitors with  
the 500 ꢀ differential load results in a high-pass corner frequency  
of ~64 Hz, which absorbs an insignificant amount of modulated  
signal energy from the baseband signal. By using ac coupling  
capacitors at the baseband outputs, the dc offset effects, which  
can limit dynamic range at low input power levels, can be  
eliminated.  
Figure 84 exhibits multiple W-CDMA low-IF EVM performance  
curves over a wide RF input power range into the ADL5380. In  
the case of zero-IF, the noise contribution by the vector signal  
analyzer becomes predominant at lower power levels, making it  
difficult to measure SNR accurately.  
–10  
–15  
–20  
–25  
–30  
0
0Hz IF  
–35  
–10  
–20  
–30  
2.5MHz LOW-IF 5MHz LOW-IF  
–40  
7.5MHz LOW-IF  
–45  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
RF INPUT POWER (dBm)  
Figure 84. EVM, RF = 1900 MHz, IF = 0 Hz, IF = 2.5 MHz, IF = 5 MHz, and IF =  
7.5 MHz vs. RF Input Power for a W-CDMA Signal (AC-Coupled Baseband Outputs)  
5.8GHz  
3.5GHz  
–40  
LOW IF IMAGE REJECTION  
–50  
The image rejection ratio is the ratio of the intermediate frequency  
(IF) signal level produced by the desired input frequency to that  
produced by the image frequency. The image rejection ratio is  
expressed in decibels. Appropriate image rejection is critical  
because the image power can be much higher than that of the  
desired signal, thereby plaguing the down-conversion process.  
Figure 85 illustrates the image problem. If the upper sideband  
(lower sideband) is the desired band, a 90° shift to the Q channel  
(I channel) cancels the image at the lower sideband (upper sideband).  
Phase and gain balance between I and Q channels are critical  
for high levels of image rejection.  
2.6GHz  
–60  
–75  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
5
RF INPUT POWER (dBm)  
Figure 83. EVM, RF = 2.6 GHz, RF = 3.5 GHz, and RF = 5.8 GHz, IF = 0 Hz vs.  
RF Input Power for a 16 QAM 10 MHz Bandwidth Mobile WiMAX Signal  
(AC-Coupled Baseband Outputs)  
COSωLO  
t
0°  
ωIF  
ωIF  
0
0
+
ωIF  
ωIF  
0
+ωIF  
–90°  
+90°  
ωLSB ωLO ωUSB  
0°  
+ωIF  
ωIF  
0
+ωIF  
SINωLO  
t
Figure 85. Illustration of the Image Problem  
Rev. 0 | Page 25 of 36  
 
 
 
 
ADL5380  
Figure 86 and Figure 87 show the excellent image rejection  
capabilities of the ADL5380 for low IF applications, such as  
W-CDMA. The ADL5380 exhibits image rejection greater than  
45 dB over a broad frequency range.  
It is necessary to consider the overall source and load impedance  
presented by the ADL5380 and ADC input when designing the  
filter network. The differential baseband output impedance of  
the ADL5380 is 50 ꢀ. The ADL5380 is designed to drive a high  
impedance ADC input. It may be desirable to terminate the  
ADC input down to lower impedance by using a terminating  
resistor, such as 500 ꢀ. The terminating resistor helps to better  
define the input impedance at the ADC input at the cost of a  
slightly reduced gain (see the Circuit Description section for  
details on the emitter-follower output loading effects).  
60  
50  
2.5MHz LOW IF  
5MHz LOW IF  
40  
7MHz LOW IF  
30  
The order and type of filter network depends on the desired high  
frequency rejection required, pass-band ripple, and group delay.  
Filter design tables provide outlines for various filter types and  
orders, illustrating the normalized inductor and capacitor values  
for a 1 Hz cutoff frequency and 1 ꢀ load. After scaling the  
normalized prototype element values by the actual desired  
cut-off frequency and load impedance, the series reactance  
elements are halved to realize the final balanced filter network  
component values.  
20  
10  
0
400  
800 1200 1600 2000 2400 2800 3200 3600 4000  
RF FREQUENCY (MHz)  
Figure 86. Low Band and Midband Image Rejection vs. RF Frequency for a  
W-CDMA Signal, IF = 2.5 MHz, 5 MHz, and 7.5 MHz  
As an example, a second-order Butterworth, low-pass filter design  
is shown in Figure 88 where the differential load impedance is  
500 ꢀ and the source impedance of the ADL5380 is 50 ꢀ. The  
normalized series inductor value for the 10-to-1, load-to-source  
impedance ratio is 0.074 H, and the normalized shunt capacitor  
is 14.814 F. For a 10.9 MHz cutoff frequency, the single-ended  
equivalent circuit consists of a 0.54 μH series inductor followed  
by a 433 pF shunt capacitor.  
60  
50  
40  
2.5MHz LOW IF  
5MHz LOW IF  
7MHz LOW IF  
30  
20  
10  
0
The balanced configuration is realized as the 0.54 μH inductor  
is split in half to realize the network shown in Figure 88.  
R
= 50  
L
= 0.074H  
S
N
NORMALIZED  
SINGLE-ENDED  
CONFIGURATION  
V
C
14.814F  
R = 500Ω  
S
N
L
5000  
5200  
5400  
5600  
5800  
6000  
RF FREQUENCY (MHz)  
R
R
S
L
fC = 1Hz  
Figure 87. High Band Image Rejection vs. RF Frequency for a W-CDMA Signal,  
IF = 2.5 MHz, 5 MHz, and 7.5 MHz  
= 0.1  
0.54µH  
R
= 50Ω  
S
EXAMPLE BASEBAND INTERFACE  
DENORMALIZED  
SINGLE-ENDED  
EQUIVALENT  
V
V
433pF  
433pF  
R = 500Ω  
S
L
In most direct-conversion receiver designs, it is desirable to  
select a wanted carrier within a specified band. The desired  
channel can be demodulated by tuning the LO to the appropriate  
carrier frequency. If the desired RF band contains multiple  
carriers of interest, the adjacent carriers are also down converted to  
a lower IF frequency. These adjacent carriers can be problematic if  
they are large relative to the wanted carrier because they can  
overdrive the baseband signal detection circuitry. As a result, it  
is often necessary to insert a filter to provide sufficient rejection  
of the adjacent carriers.  
fC = 10.9MHz  
R
2
S
= 25Ω  
= 25Ω  
0.27µH  
R
2
L
= 250Ω  
= 250Ω  
BALANCED  
CONFIGURATION  
S
R
L
2
R
0.27µH  
S
2
Figure 88. Second-Order Butterworth, Low-Pass Filter Design Example  
Rev. 0 | Page 26 of 36  
 
 
 
 
ADL5380  
900  
800  
700  
600  
500  
400  
300  
200  
100  
A complete design example is shown in Figure 91. A sixth-order  
Butterworth differential filter having a 1.9 MHz corner frequency  
interfaces the output of the ADL5380 to that of an ADC input.  
The 500 ꢀ load resistor defines the input impedance of the  
ADC. The filter adheres to typical direct conversion W-CDMA  
applications where, 1.92 MHz away from the carrier IF frequency,  
1 dB of rejection is desired, and, 2.7 MHz away from the carrier IF  
frequency, 10 dB of rejection is desired.  
Figure 89 and Figure 90 show the measured frequency response  
and group delay of the filter.  
10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
5
0
FREQUENCY (MHz)  
Figure 90. Sixth-Order Baseband Filter Group Delay  
–5  
–10  
–15  
–20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
FREQUENCY (MHz)  
Figure 89. Sixth-Order Baseband Filter Response  
Rev. 0 | Page 27 of 36  
 
 
ADL5380  
RFIN  
BALUN  
100pF  
100pF  
V
V
S
S
100pF  
0.1µF  
24  
23  
22  
21  
20  
19  
1
GND3 18  
GND3  
2 GND1  
3 IHI  
GND2 17  
QHI 16  
ADL5380  
4 ILO  
QLO 15  
GND2 14  
VCC2 13  
5 GND1  
6 VCC1  
V
V
S
S
0.1µF  
100pF  
100pF  
0.1µF  
7
8
9
10  
11  
12  
100pF  
100pF  
BALUN  
LO_SE  
C
C
C
C
AC  
AC  
AC  
AC  
10µF  
10µF  
10µF  
10µF  
27µH  
27µH  
27µH  
27µH  
270pF  
270pF  
100pF  
68pF  
27µH  
10µH  
27µH  
10µH  
27µH  
10µH  
27µH  
10µH  
100pF  
68pF  
500Ω  
500Ω  
ADC INPUT  
ADC INPUT  
Figure 91. Sixth-Order Low-Pass Butterworth, Baseband Filter Schematic  
Rev. 0 | Page 28 of 36  
 
ADL5380  
Figure 93 and Figure 94 illustrate the magnitude response and  
group delay response of the fourth-order filter, respectively.  
As the load impedance of the filter increases, the filter design  
becomes more challenging in terms of meeting the required  
rejection and pass band specifications. In the previous W-CDMA  
example, the 500 ꢀ load impedance resulted in the design of a  
sixth-order filter that has relatively large inductor values and small  
capacitor values. If the load impedance is 200 ꢀ, the filter design  
becomes much more manageable. Figure 92 shows a fourth-order  
filter designed for a 10 MHz wide LTE signal. As shown in Figure 92,  
the resultant inductor and capacitor values become much more  
practical with a 200 ꢀ load.  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
2.2µH  
1.5µH  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
2.2µH  
1.5µH  
Figure 93. Fourth-Order Low-Pass LTE Filter Magnitude Response  
Figure 92. Fourth-Order Low-Pass LTE Filter Schematic  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
Figure 94. Fourth-Order Low-Pass LTE Filter Group Delay Response  
Rev. 0 | Page 29 of 36  
 
 
 
ADL5380  
CHARACTERIZATION SETUPS  
Figure 95 to Figure 97 show the general characterization bench  
setups used extensively for the ADL5380. The setup shown in  
Figure 97 was used to do the bulk of the testing and used sinusoidal  
signals on both the LO and RF inputs. An automated Agilent  
VEE program was used to control the equipment over the  
IEEE bus. This setup was used to measure gain, IP1dB, IIP2,  
IIP3, I/Q gain match, and quadrature error. The ADL5380  
characterization board had a 9-to-1 impedance transformer on  
each of the differential baseband ports to do the differential-to-  
single-ended conversion, which presented a 450 ꢀ differential load  
to each baseband port, when interfaced with 50 ꢀ test equipment.  
The two setups shown in Figure 95 and Figure 96 were used  
for making NF measurements. Figure 95 shows the setup for  
measuring NF with no blocker signal applied while Figure 96  
was used to measure NF in the presence of a blocker. For both  
setups, the noise was measured at a baseband frequency of  
10 MHz. For the case where a blocker was applied, the output  
blocker was at a 15 MHz baseband frequency. Note that great  
care must be taken when measuring NF in the presence of a  
blocker. The RF blocker generator must be filtered to prevent  
its noise (which increases with increasing generator output power)  
from swamping the noise contribution of the ADL5380. At least  
30 dB of attention at the RF and image frequencies is desired.  
For example, assume a 915 MHz signal applied to the LO inputs of  
the ADL5380. To obtain a 15 MHz output blocker signal, the RF  
blocker generator is set to 930 MHz and the filters tuned such  
that there is at least 30 dB of attenuation from the generator at  
both the desired RF frequency (925 MHz) and the image RF  
frequency (905 MHz). Finally, the blocker must be removed  
from the output (by the 10 MHz low-pass filter) to prevent  
the blocker from swamping the analyzer.  
For all measurements of the ADL5380, the loss of the RF input  
balun was de-embedded. Due to the wideband nature of the  
ADL5380, three different board configurations had to be used to  
characterize the product. For low band characterization (400 MHz  
to 3 GHz), the Mini-Circuits TC1-1-13 balun was used on the  
RF and LO inputs to create differential signals at the device pins.  
For midband characterization (3 GHz to 4 GHz), the Johanson  
Technology 3600BL14M050T was used, and for high band  
characterization (5 GHz to 6 GHz), the Johanson Technology  
5400BL15B050E balun was used.  
SNS  
CONTROL  
AGILENT N8974A  
NOISE FIGURE ANALYZER  
OUTPUT  
R1  
50  
RF  
Q
GND  
ADL5380  
CHAR BOARD  
V
POS  
I
LO  
HP 6235A  
POWER SUPPLY  
INPUT  
LOW-PASS  
FILTER  
AGILENT 8665B  
SIGNAL GENERATOR  
IEEE  
PC CONTROLLER  
Figure 95. General Noise Figure Measurement Setup  
Rev. 0 | Page 30 of 36  
 
 
ADL5380  
BAND-PASS  
TUNABLE FILTER  
BAND-REJECT  
TUNABLE FILTER  
R&S SMT03  
SIGNAL GENERATOR  
R&S FSEA30  
SPECTRUM ANALYZER  
R1  
50  
RF  
Q
I
GND  
ADL5380  
LOW-PASS  
FILTER  
6dB PAD  
CHAR BOARD  
V
POS  
LO  
HP 6235A  
POWER SUPPLY  
BAND-PASS  
CAVITY FILTER  
HP 87405  
LOW NOISE  
PREAMP  
AGILENT 8665B  
SIGNAL GENERATOR  
Figure 96. Measurement Setup for Noise Figure in the Presence of a Blocker  
3dB PAD  
RF  
AMPLIFIER  
IN  
OUT  
3dB PAD  
RF  
3dB PAD  
VP GND  
AGILENT  
11636A  
3dB PAD  
R&S SMT06  
RF  
R&S SMT06  
RF  
Q
I
6dB PAD  
GND  
SWITCH  
MATRIX  
ADL5380  
CHAR BOARD  
V
POS  
6dB PAD  
LO  
AGILENT E3631  
POWER SUPPLY  
RF  
INPUT  
AGILENT E8257D  
SIGNAL GENERATOR  
IEEE  
IEEE  
R&S FSEA30  
SPECTRUM ANALYZER  
HP 8508A  
VECTOR VOLTMETER  
PC CONTROLLER  
Figure 97. General Characterization Setup  
Rev. 0 | Page 31 of 36  
 
 
ADL5380  
EVALUATION BOARD  
The ADL5380 evaluation board is available. There are two  
versions of the board, optimized for performance for separate  
frequency ranges. For operation <3 GHz, an FR4 material-based  
board with the TC1-1-13 balun footprint is available. For operation  
between 3 GHz to 6 GHz, a Rogers® material-based RO3003 board  
with the Johanson Technology 3600BL14M050 balun (optimal  
for operation between 3 GHz and 4 GHz) footprint is available.  
The Johanson Technology 5400BL15K050 shares the same  
footprint and can be used for operation between 4900 MHz to  
5800 MHz.  
The board can be used for single-ended or differential baseband  
analysis. The default configuration of the board is for single-ended  
baseband analysis.  
RFx  
T3x  
C5x  
C12x  
R19x  
R23x  
V
V
POS  
POS  
24  
23  
22  
21  
20  
19  
C8x  
C11x  
1
2
3
4
5
6
GND3 18  
GND2 17  
GND3  
GND1  
IHI  
R5x  
R3x  
QPx  
QNx  
IPx  
INx  
R16x  
R14x  
R18x  
T2x  
R17x  
T4x  
16  
QHI  
R6x  
ADL5380  
R7x  
C16x  
R15x  
C15x  
15  
QLO  
ILO  
R13x  
14  
GND1  
VCC1  
GND2  
R4x  
V
R2x  
POS  
R10x  
R12x  
13  
VCC2  
V
POS  
C9x  
C6x  
C7x  
C10x  
7
8
9
10  
11  
12  
R9x  
R1x  
R11x  
V
C2x  
C3x  
POS  
C4x  
C1x  
P1x  
T1x  
V
POS  
LONx  
LOPx  
LO_SE  
NOTES  
1. X = B, FOR LOW FREQUENCY OPERATION UP TO 3GHz, TC1-1-13 BALUN ON RF AND LO PORTS.  
X = A, FOR FREQUENCY OPERATION FROM 3GHz TO 4GHz, JOHANSON TECHNOLOGY 3600BL14M050 BALUN ON RF AND LO PORTS.  
2. FOR OPERATION BETWEEN 4.9GHZ TO 6GHZ, THE JOHANSON TECHNOLOGY 5400BL15K050 BALUN, WHICH SHARES A SIMILAR  
FOOTPRINT AS THE 4GHZ BALUN, CAN BE USED.  
Figure 98. Evaluation Board Schematic  
Rev. 0 | Page 32 of 36  
 
ADL5380  
Table 5. Evaluation Board Configuration Options  
Component Description  
Default Condition  
VPOSx, GNDx Power Supply and Ground Vector Pins.  
Not applicable  
R10x, R12x,  
R19x  
Power Supply Decoupling. Shorts or power supply decoupling resistors.  
R10x, R12x, R19x = 0 Ω (0603)  
C6x to C11x  
The capacitors provide the required dc coupling up to 6 GHz.  
Device Enable. When connected to VS, the device is active.  
C6x, C7x, C8x = 100 pF (0402),  
C9x, C10x, C11x = 0.1 μF (0603)  
P1x, R11x,  
R9x, R1x  
P1x, R9x = DNI, R1x = DNI,  
R11x = 0 Ω  
R23x  
Adjust Pin. The resistor value here sets the bias voltage at this pin and optimizes  
third-order distortion.  
R23B = 1.5 kΩ (0603),  
R23A = 200 Ω (0603)  
C1x to C5x,  
C12x  
AC Coupling Capacitors. These capacitors provide the required ac coupling  
from 400 MHz to 4 GHz.  
C1x, C4x = DNI,  
C2x, C3x, C5x, C12x = 100 pF (0402)  
R2x to R7x,  
Single-Ended Baseband Output Path. This is the default configuration of the  
R2x to R7x = open,  
R13x to R18x = 0 Ω (0402)  
R13x to R18x evaluation board. R13x to R18x are populated for appropriate balun interface.  
R2x to R5x are not populated. Baseband outputs are taken from QHI and IHI. The  
user can reconfigure the board to use full differential baseband outputs. R2x to R5x  
provide a means to bypass the 9:1 TCM9-1 transformer to allow for differential base-  
band outputs. Access the differential baseband signals by populating R2x to R5x  
with 0 Ω and not populating R13x to R18x. This way the transformer does not need  
to be removed. The baseband outputs are taken from the SMAs of QHI, QLO, IHI,  
and ILO. R6x and R7x are provisions for applying a specific differential load across  
the baseband outputs  
T2x, T4x  
IF Output Interface. TCM9-1 converts a differential high impedance IF output to  
a single-ended output. When loaded with 50 Ω, this balun presents a 450 Ω load  
to the device. The center tap can be decoupled through a capacitor to ground.  
T2x, T4x = TCM9-1, 9:1 (Mini-Circuits)  
C15x, C16x = 0.1 μF (0402)  
C15x, C16x  
T1x  
Decoupling Capacitors. C15x and C16x are the decoupling capacitors used to reject  
noise on the center tap of the TCM9-1.  
LO Input Interface. A 1:1 RF balun that converts the single-ended RF input to  
differential signal is used.  
T1B = TC1-1-13, 1:1 (Mini-Circuits)  
for operation <3 GHz,  
T1A = Johanson Technology  
3600BL14M050 for operation from  
3 GHz to 4 GHz, Johanson Technology  
5400BL15K050 for operation from  
4900 MHz to 5800 MHz  
T3x  
RF Input Interface. A 1:1 RF balun that converts the single-ended RF input to  
differential signal is used.  
T3B = TC1-1-13, 1:1 (Mini-Circuits)  
for operation <3 GHz,  
T3A = Johanson Technology  
3600BL14M050 for operation from  
3 GHz to 4 GHz, Johanson Technology  
5400BL15K050 for operation from  
4900 MHz to 5800 MHz  
Rev. 0 | Page 33 of 36  
ADL5380  
Figure 99. Low Band Evaluation Board Top Layer  
Figure 101. Low Band Evaluation Board Bottom Layer  
Figure 100. Midband/High Band Evaluation Board Top Layer Silkscreen  
Figure 102. Midband/High Band Evaluation Board Bottom Layer Silkscreen  
12 mil.  
THERMAL GROUNDING AND EVALUATION  
BOARD LAYOUT  
23 mil.  
25 mil.  
The package for the ADL5380 features an exposed paddle on the  
underside that should be well soldered to a low thermal and  
electrical impedance ground plane. This paddle is typically  
soldered to an exposed opening in the solder mask on the  
evaluation board. Figure 103 illustrates the dimensions used in  
the layout of the ADL5380 footprint on the ADL5380 evaluation  
board (1 mil = 0.0254 mm).  
82 mil.  
Notice the use of nine via holes on the exposed paddle. These  
ground vias should be connected to all other ground layers on  
the evaluation board to maximize heat dissipation from the  
device package.  
12 mil.  
19.7 mil.  
98.4 mil.  
133.8 mil.  
Figure 103. Dimensions for Evaluation Board Layout for the ADL5380 Package  
Under these conditions, the thermal impedance of the ADL5380  
was measured to be approximately 30°C/W in still air.  
Rev. 0 | Page 34 of 36  
 
 
ADL5380  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
2.65  
2.50 SQ  
2.35  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
0.80 MAX  
0.65 TYP  
2.50 REF  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8  
Figure 104. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Ordering Quantity  
ADL5380ACPZ-R71  
ADL5380ACPZ-WP1  
ADL5380-29A-EVALZ1  
ADL5380-30A-EVALZ1  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Mid Band (3 GHz to 4 GHz) Evaluation Board  
Low Band (400 MHz to 3 GHz) Evaluation Board  
CP-24-3  
CP-24-3  
1,500, 7”Tape and Reel  
64, Waffle Pack  
1
1
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 35 of 36  
 
 
ADL5380  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07585-0-7/09(0)  
Rev. 0 | Page 36 of 36  

相关型号:

ADL5380ACPZ-WP

400 MHz to 6 GHz Quadrature Demodulator
ADI

ADL5382

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382-EVALZ

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382ACPZ-R7

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382ACPZ-WP

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5385

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385-EVALZ

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-R2

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-R7

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-WP

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5386

Correcting Imperfections in IQ Modulators to Improve RF Signal Fidelity
ADI

ADL5386ACPZ-R2

SPECIALTY TELECOM CIRCUIT, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220-VJJD-2, LFCSP-40
ADI