ADL5566-EVALZ [ADI]

4.5 GHz Ultrahigh Dynamic Range, Dual Differential Amplifier;
ADL5566-EVALZ
型号: ADL5566-EVALZ
厂家: ADI    ADI
描述:

4.5 GHz Ultrahigh Dynamic Range, Dual Differential Amplifier

文件: 总24页 (文件大小:885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4.5 GHz Ultrahigh Dynamic Range,  
Dual Differential Amplifier  
Data Sheet  
ADL5566  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VCC1/VCC2  
ENBL1  
−3 dB bandwidth of 4.5 GHz (AV = 16 dB)  
Fixed 16 dB gain  
Channel-to-channel gain error: 0.1 dB at 100 MHz  
Channel-to-channel phase error: 0.06° at 100 MHz  
Differential or single-ended input to differential output  
I/O dc-coupled or ac-coupled  
Low noise input stage: 1.3 nV/√Hz RTI at AV = 16 dB  
Low broadband distortion (AV = 16 dB), supply = 5 V  
10 MHz: −103 dBc (HD2), −107 dBc (HD3)  
100 MHz: −95 dBc (HD2), −100 dBc (HD3)  
200 MHz: −94.5 dBc (HD2), −87 dBc (HD3)  
500 MHz: −83 dBc (HD2), −64 dBc (HD3)  
IMD3 of −95 dBc at 200 MHz center  
R
F
VON1  
R
R
G
VIP1  
VIN1  
VCOM1  
G
VOP1  
R
R
F
Maintains low single-ended distortion performance out to  
500 MHz  
F
Slew rate: 16 V/ns  
VON2  
Maintains low distortion down to 1.2 V VCOM  
Fixed 16 dB gain can be reduced by adding external resistors  
Fast settling and overdrive recovery of 2.5 ns  
Single-supply operation: 2.8 V to 5.2 V  
Power-down  
R
R
G
VIP2  
VIN2  
VCOM2  
G
VOP2  
Low dc power consumption, 462 mW at 3.3 V supply  
R
APPLICATIONS  
F
Differential ADC drivers  
Single-ended to differential conversion  
RF/IF gain blocks  
ADL5566  
GND  
ENBL2  
Figure 1.  
SAW filter interfacing  
GENERAL DESCRIPTION  
The ADL5566 is a high performance, dual differential amplifier  
optimized for IF and dc applications. The amplifier offers low  
noise of 1.3 nV/√Hz and excellent distortion performance over  
a wide frequency range, making it an ideal driver for high speed  
16-bit analog-to-digital converters (ADCs). The ADL5566 is  
ideally suited for use in high performance, zero IF/complex  
IF receiver designs. In addition, this device has excellent low  
distortion for single-ended input drive applications.  
The quiescent current of the ADL5566, using a 3.3 V supply, is  
typically 70 mA per amplifier. When disabled, it consumes less  
than 3.5 mA per amplifier and has −25 dB of input to output  
isolation at 100 MHz.  
The device is optimized for wideband, low distortion, and noise  
performance, giving it unprecedented performance for overall  
spurious-free dynamic range (SFDR). These attributes, together  
with the adjustable gain capability, make this device the amplifier of  
choice for driving a wide variety of ADCs, mixers, pin diode  
attenuators, SAW filters, and multi-element discrete devices.  
The ADL5566 provides a gain of 16 dB. For the single-ended input  
configuration, the gain is reduced to 14 dB. Using two external  
series resistors for each amplifier expands the gain flexibility of  
the amplifier and allows for any gain selection from 0 dB to 16 dB  
for a differential input and 0 dB to 14 dB for a single-ended input.  
In addition, this device maintains low distortion down to output  
(VOCM) levels of 1.2 V providing an added capability for driving  
CMOS ADCs at ac levels up to 2 V p-p.  
Fabricated on an Analog Devices, Inc., high speed SiGe process, the  
ADL5566 is supplied in a compact 4 mm × 4 mm, 24-lead LFCSP  
package and operates over the −40°C to +85°C temperature range.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADL5566  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 15  
Basic Connections...................................................................... 15  
Input and Output Interfacing ................................................... 16  
Gain Adjustment and Interfacing ............................................ 16  
ADC Interfacing......................................................................... 18  
DC-Coupled Receiver Application.......................................... 18  
Layout Considerations............................................................... 19  
Soldering Information and Recommended Land Pattern.... 21  
Evaluation Board........................................................................ 21  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Circuit Description......................................................................... 14  
REVISION HISTORY  
8/2019—Rev. B to Rev. C  
12/2013—Rev. 0 to Rev. A  
Changes to Figure 36...................................................................... 15  
Changes to Figure 48...................................................................... 19  
Updated Outline Dimensions....................................................... 24  
Changes to Ordering Guide .......................................................... 24  
Changes to ENBL1/ENBL2 Threshold Parameter, Table 1..........3  
Change to Table 2 ..............................................................................6  
11/2012—Revision 0: Initial Version  
4/2019—Rev. A to Rev. B  
Changes to Figure 26...................................................................... 11  
Updated Outline Dimensions....................................................... 24  
Rev. C | Page 2 of 24  
 
Data Sheet  
ADL5566  
SPECIFICATIONS  
VS = 3.3 V, VCM = 1.65 V, VS = 5 V, VCM = 2.5 V, RL = 200 Ω differential, AV = 16 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C,  
parameters specified as ac-coupled differential input and differential output, unless otherwise noted.  
Table 1.  
Test Conditions/  
Comments  
3.3 V  
Typ  
5 V  
Parameter  
Min  
Max Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Bandwidth 0.1 dB Flatness  
Gain Accuracy  
AV = 16 dB, VOUT ≤ 0.5 V p-p  
VOUT ≤ 1.0 V p-p  
4500  
500  
1
4500  
500  
1
MHz  
MHz  
dB  
Gain Error  
≤1000 MHz, Channel A to  
Channel B  
≤0.02  
≤0.02  
dB  
Phase Error  
≤1000 MHz, Channel A to  
Channel B  
≤0.5  
≤0.5  
Degrees  
Gain Supply Sensitivity  
Gain Temperature Sensitivity  
Slew Rate  
VS 5%  
−40°C to +85°C  
Rise, AV = 16 dB, RL = 200 Ω,  
VOUT = 2 V step  
3.4  
0.5  
16  
5.6  
0.5  
18  
mdB/V  
mdB/°C  
V/ns  
Fall, AV = 16 dB, RL = 200 Ω,  
18  
20  
V/ns  
VOUT = 2 V step  
Settling Time  
Overdrive Recovery Time  
2 V step to 1%  
VIN = 4 V to 0 V step,  
890  
2.5  
750  
2.5  
ps  
ns  
VOUT  
≤ 10 mV  
Reverse Isolation (S12)  
Channel Isolation  
75  
82.5  
75  
82.5  
dB  
dB  
Channel A to Channel B  
AV = 16 dB  
INPUT/OUTPUT CHARACTERISTICS  
Input Common-Mode Range  
Input Resistance (Differential)  
Input Resistance (Single-Ended)  
Input Capacitance (Single-Ended)  
Input Bias Current  
1.2  
1.8  
1.3  
3.5  
V
pF  
AV = 16 dB  
AV = 14 dB  
160  
150  
1.1  
5
160  
150  
1.1  
5
µA  
CMRR  
44  
44  
dB  
Output Common-Mode Range  
Output Common-Mode Offset  
Output Common-Mode Drift  
Output Differential Offset Voltage  
Output Differential Offset Drift  
Output Resistance (Differential)  
Maximum Output Voltage Swing  
POWER INTERFACE  
1.25  
−100  
1.8  
+20  
1.25  
−100  
3
+20  
V
Referenced to VCC/2  
−40°C to +85°C  
mV  
mV/°C  
mV  
mV/°C  
2
3.5  
−20  
+20  
−20  
+20  
−40°C to +85°C  
1.1  
11  
3.4  
1.7  
11  
5
1 dB compressed  
V p-p  
Supply Voltage  
ENBL1/ENBL2 Threshold  
2.8  
3.3  
5.2  
0.5  
2.8  
1.5  
5
5.2  
0.6  
V
V
V
nA  
µA  
mA  
mA  
Device disabled, ENBL low  
Device enabled, ENBL high 1.5  
ENBL high  
ENBL1/ENBL2 Input Bias Current  
Quiescent Current  
500  
−165  
140  
7
500  
−165  
160  
9
ENBL low  
ENBL high  
ENBL low  
150  
175  
Rev. C | Page 3 of 24  
 
ADL5566  
Data Sheet  
Test Conditions/  
Comments  
3.3 V  
Typ  
5 V  
Parameter  
Min  
Max Min  
Typ  
Max Unit  
NOISE/HARMONIC PERFORMANCE  
10 MHz  
Second/Third Harmonic  
Distortion (HD2/HD3)  
Output IP3/Third-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
−99.1/−111  
−103.1/−107.3  
+49.4/−101.8  
dBc  
V
OUT = 2 V p-p  
AV = 16 dB, RL = 200 Ω,  
OUT = 2 V p-p composite  
+50.2/−103.3  
dBm/dBc  
V
Distortion (OIP3/IMD3)  
(2 MHz spacing)  
Output IP2 Second-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
dBm/dBc  
+90.8/−92.1  
+91.2/−92.5  
V
OUT = 2 V p-p composite  
Distortion (OIP2/IMD2)  
(2 MHz spacing)  
1 dB Compression Point, RTO  
(OP1dB)  
Noise Spectral Density,  
RTI (NSD)  
Noise Figure (NF)  
100 MHz  
AV = 16 dB  
14  
17.7  
1.32  
6.66  
dBm  
nV/√Hz  
dB  
AV = 16 dB  
AV = 16 dB  
1.28  
6.47  
Second/Third Harmonic  
Distortion (HD2/HD3)  
Output IP3/Third-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
−89/−92.1  
−94.7/−100  
dBc  
V
OUT = 2 V p-p  
AV = 16 dB, RL = 200 Ω,  
OUT = 2 V p-p composite  
+49.4/−101.9  
+50.9/−104.7  
dBm/dBc  
V
Distortion (OIP3/IMD3)  
(2 MHz spacing)  
Output IP2 Second-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
+96.9/−98.2  
+98.9/−100.2  
dBm/dBc  
V
OUT = 2 V p-p composite  
Distortion (OIP2/IMD2)  
(2 MHz spacing)  
1 dB Compression Point, RTO  
(OP1dB)  
Noise Spectral Density,  
RTI (NSD)  
Noise Figure (NF)  
200 MHz  
AV = 16 dB  
14.2  
1.26  
6.36  
17.8  
1.3  
dBm  
nV/√Hz  
dB  
AV = 16 dB  
AV = 16 dB  
6.58  
Second/Third Harmonic  
Distortion (HD2/HD3)  
Output IP3/Third-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
−92.7/−80.2  
+45.9/−94.7  
−94.5/−87.2  
+46/−95  
dBc  
V
OUT = 2 V p-p  
AV = 16 dB, RL = 200 Ω,  
OUT = 2 V p-p composite  
dBm/dBc  
V
Distortion (OIP3/IMD3)  
(2 MHz spacing)  
Output IP2 Second-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
+80.4/−81.7  
+82.6/−83.9  
dBm/dBc  
V
OUT = 2 V p-p composite  
Distortion (OIP2/IMD2)  
(2 MHz spacing)  
1 dB Compression Point, RTO  
(OP1dB)  
Noise Spectral Density,  
RTI (NSD)  
Noise Figure (NF)  
500 MHz  
AV = 16 dB  
14.1  
1.25  
6.31  
17.7  
1.28  
6.48  
dBm  
nV/√Hz  
dB  
AV = 16 dB  
AV = 16 dB  
Second/Third Harmonic  
Distortion (HD2/HD3)  
Output IP3/Third-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
−82.6/−60.5  
+30.7/−64.7  
−82.8/−64.2  
+32.4/−67.8  
dBc  
V
OUT = 2 V p-p  
AV = 16 dB, RL = 200 Ω,  
OUT = 2 V p-p composite  
dBm/dBc  
V
Distortion (OIP3/IMD3)  
(2 MHz spacing)  
Output IP2 Second-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
+74.2/−75.5  
+75.8/−77.1  
dBm/dBc  
V
OUT = 2 V p-p composite  
Distortion (OIP2/IMD2)  
(2 MHz spacing)  
Noise Spectral Density,  
RTI (NSD)  
Noise Figure (NF)  
AV = 16 dB  
1.32  
6.64  
1.35  
6.83  
nV/√Hz  
dB  
AV = 16 dB  
Rev. C | Page 4 of 24  
Data Sheet  
ADL5566  
Test Conditions/  
Comments  
3.3 V  
Typ  
5 V  
Parameter  
Min  
Max Min  
Typ  
Max Unit  
1000 MHz  
Second/Third Harmonic  
Distortion (HD2/HD3)  
Output IP3/Third-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
−57.6/−43  
−57.1/−45.9  
+24.8/−52.6  
dBc  
V
OUT = 2 V p-p  
AV = 16 dB, RL = 200 Ω,  
OUT = 2 V p-p composite  
+23.2/−49.4  
dBm/dBc  
V
Distortion (OIP3/IMD3)  
(2 MHz spacing)  
Output IP2 Second-Order  
Intermodulation  
AV = 16 dB, RL = 200 Ω,  
+56.1/−57.4  
+55.9/−57.2  
dBm/dBc  
V
OUT = 2 V p-p composite  
Distortion (OIP2/IMD2)  
(2 MHz spacing)  
Noise Spectral Density,  
RTI (NSD)  
Noise Figure (NF)  
AV = 16 dB  
1.93  
9.45  
1.99  
9.66  
nV/√Hz  
dB  
AV = 16 dB  
Rev. C | Page 5 of 24  
ADL5566  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Table 3 lists the junction to air thermal resistance (θJA) and the  
junction to paddle thermal resistance (θJC) for the ADL5566.  
Parameter  
Rating  
Output Voltage Swing × Bandwidth Product 2300 V p-p MHz  
Supply Voltage, VCC  
VIPx, VINx  
IOUT Maximum  
Internal Power Dissipation  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
5.25 V  
VCC + 0.5 V  
30 mꢀ  
900 mW  
135°C  
Table 3. Thermal Resistance  
Package Type  
1
2
θJA  
34.0  
θJC  
1.8  
Unit  
24-Lead LFCSP  
°C/W  
1 Measured on ꢀnalog Devices evaluation board. For more information about  
board layout, see the Soldering Information and Recommended Land Pattern  
section.  
−40°C to +105°C  
−65°C to +150°C  
2 Based on simulation with JEDEC standard JESD51.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. C | Page 6 of 24  
 
 
 
 
Data Sheet  
ADL5566  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
18  
VON1  
VIN1  
VIP1  
NC  
17 VOP1  
16  
NC  
ADL5566  
TOP VIEW  
15  
NC  
NC  
VIP2  
VIN2  
14  
VOP2  
13 VON2  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PADDLE IS INTERNALLY CONNECTED TO  
GND AND MUST BE SOLDERED TO A LOW IMPEDANCE  
GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
VIN1  
VIP1  
NC  
Balanced Differential Input for Amplifier 1. Biased to VCC/2, typically ac-coupled. Input for AV = 16 dB.  
Balanced Differential Input for Amplifier 1. Biased to VCC/2, typically ac-coupled. Input for AV = 16 dB.  
No Connect. Do not connect to this pin. Solder to ground.  
3, 4, 7, 8, 12, 15,  
16, 19, 23, 24  
5
6
9
10  
VIP2  
VIN2  
ENBL2  
VCOM2  
Balanced Differential Input for Amplifier 2. Biased to VCC/2, typically ac-coupled. Input for AV = 16 dB.  
Balanced Differential Input for Amplifier 2. Biased to VCC/2, typically ac-coupled. Input for AV = 16 dB.  
Enable for Amplifier 2. Apply positive voltage (1.3 V < ENBL2 < VCC2) to activate device.  
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the inputs and  
outputs of Amplifier 2. If left open, VCOM2 = VCC/2. Typically, it is decoupled to ground with a 0.1 µF  
capacitor.  
11  
13  
14  
17  
18  
20  
21  
VCC2  
VON2  
VOP2  
VOP1  
VON1  
VCC1  
VCOM1  
Positive Supply for Amplifier 2.  
Balanced Differential Output for Amplifier 2. Biased to VCC/2, typically ac-coupled.  
Balanced Differential Output for Amplifier 2. Biased to VCC/2, typically ac-coupled.  
Balanced Differential Output for Amplifier 1. Biased to VCC/2, typically ac-coupled.  
Balanced Differential Output for Amplifier 1. Biased to VCC/2, typically ac-coupled.  
Positive Supply for Amplifier 1.  
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the inputs and  
outputs of Amplifier 1. If left open, VCOM1 = VCC/2. Typically, it is decoupled to ground with a 0.1 µF  
capacitor.  
22  
ENBL1  
EP  
Enable for Amplifier 1. Apply positive voltage (1.3 V < ENBL1 < VCC1) to activate device.  
The exposed paddle is internally connected to GND and must be soldered to a low impedance ground plane.  
Rev. C | Page 7 of 24  
 
ADL5566  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 16 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C, parameters specified as  
ac-coupled differential input and differential output, unless otherwise noted.  
25  
20  
15  
10  
5
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3.3V, 25°C  
5V, 25°C  
SDD21 PHASE  
SDD21 MAG  
0
–5  
–10  
–15  
10M  
100M  
FREQUENCY (Hz)  
1G  
10  
100  
1000  
FREQUENCY (MHz)  
Figure 3. Gain vs. Frequency Response for 200 Ω Differential Load,  
POS = 3.3 V and VPOS = 5 V, 25°C  
Figure 6. Channel-to-Channel Gain Error and Phase Error vs. Frequency  
V
25  
20  
15  
10  
5
25  
3.3V, –40°C  
3.3V, +25°C  
3.3V, +85°C  
3.3V, +105°C  
20  
15  
10  
0
5V, +25°C  
5V, –40°C  
5V, +85°C  
5V, +105°C  
3.3V, +25°C  
3.3V, –40°C  
3.3V, +85°C  
3.3V, +105°C  
–5  
–10  
–15  
5
0
10M  
100M  
FREQUENCY (Hz)  
1G  
0
50  
100  
150  
200  
250  
FREQUENCY (MHz)  
Figure 4. Gain vs. Frequency Response for 200 Ω Differential Load,  
Four Temperatures, VPOS = 3.3 V  
Figure 7. OP1dB vs. Frequency for 200 Ω Differential Load, Four  
Temperatures, VPOS = 3.3 V, VPOS = 5 V  
25  
10.0  
5V, –40°C  
3.3V SUPPLY  
5V SUPPLY  
5V, +25°C  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
5V, +85°C  
5V, +105°C  
20  
15  
10  
5
0
–5  
–10  
–15  
10M  
100M  
FREQUENCY (Hz)  
1G  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 5. Gain vs. Frequency Response for 200 Ω Differential Load,  
Four Temperatures, VPOS = 5 V  
Figure 8. Noise Figure vs. Frequency at VPOS = 3.3 V, VPOS = 5 V, 25°C  
Rev. C | Page 8 of 24  
 
Data Sheet  
ADL5566  
3.00  
60  
50  
40  
30  
20  
10  
0
3.3V SUPPLY  
5V SUPPLY  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
OIP3, 5V, 25°C  
OIP3, 3.3V, 25°C  
10M  
100M  
1G  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
P
/TONE (dBm)  
OUT  
Figure 9. Noise Spectral Density vs. Frequency at VPOS = 3.3 V and VPOS = 5 V  
Figure 12. OIP3 vs. Output Power (POUT) per Tone, Frequency 200 MHz,  
POS = 3.3 V and VPOS = 5 V  
V
60  
0
IMD3, 3.3V, +25°C, 2V p-p  
IMD3, 5V, +25°C, 2V p-p  
IMD3, 3.3V, +85°C, 2V p-p  
IMD3,5V, +85°C, 2V p-p  
IMD3, 3.3V, –40°C, 2V p-p  
IMD3, 5V, –40°C, 2V p-p  
IMD3, 3.3V, +105°C, 2V p-p  
IMD3, 5V, +105°C, 2V p-p  
IMD3, 3.3V, +25°C, 1V p-p  
IMD3, 5V, +25°C, 1V p-p  
IMD3, 3.3V, +85°C, 1V p-p  
IMD3, 5V, +85°C, 1V p-p  
IMD3, 3.3V, –40°C, 1V p-p  
IMD3, 5V, –40°C, 1V p-p  
IMD3, 3.3V, +105°C, 1V p-p  
IMD3, 5V, +105°C, 1V p-p  
OIP3, 3.3V, 25°C, 2V p-p  
OIP3, 5V, 25°C, 2V p-p  
OIP3, 3.3V, 25°C, 1V p-p  
50  
–20  
OIP3, 5V, 25°C, 1V p-p  
40  
30  
20  
10  
0
–40  
–60  
–80  
–100  
–120  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
Figure 10. Output Third-Order Intercept (OIP3) at Output Level at 2 V p-p  
Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
Figure 13. IMD3 vs. Frequency, Over Temperature, Output Level at  
2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
60  
50  
40  
30  
–20  
–30  
–40  
–50  
–60  
–70  
5V  
SUPPLY  
3.3V  
SUPPLY  
–80  
20  
10  
0
OIP3, 3.3V, +25°C, 2V p-p  
OIP3, 5V, +25°C, 2V p-p  
OIP3, 3.3V, +85°C, 2V p-p  
OIP3, 5V, +85°C, 2V p-p  
OIP3, 3.3V, –40°C, 2V p-p  
OIP3, 5V, –40°C, 2V p-p  
OIP3, 3.3V, +105°C, 2V p-p  
OIP3, 5V, +105°C, 2V p-p  
OIP3, 3.3V, +25°C, 1V p-p  
OIP3, 5V, +25°C, 1V p-p  
OIP3, 3.3V, +85°C, 1V p-p  
OIP3, 5V, +85°C, 1V p-p  
OIP3, 3.3V, –40°C, 1V p-p  
OIP3, 5V, –40°C, 1V p-p  
OIP3, 3.3V, +105°C, 1V p-p  
OIP3, 5V, +105°C, 1V p-p  
–90  
–100  
–110  
–120  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
0
0.5  
1.0  
1.5  
2.0  
VCOM (V)  
2.5  
3.0  
3.5  
4.0  
Figure 11. OIP3 vs. Frequency, Overtemperature, Output Level at 2 V p-p  
Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
Figure 14. IMD3 vs. VCOM, Output Level at 2 V p-p Composite, RL = 200 Ω,  
POS = 3.3 V and VPOS = 5 V, Frequency = 100 MHz  
V
Rev. C | Page 9 of 24  
ADL5566  
Data Sheet  
–50  
0
–20  
–40  
IMD3 100Ω LOAD  
IMD3 150Ω LOAD  
IMD3 200Ω LOAD  
HD3, 5V, 25°C, 1V p-p  
HD3, 3.3V, 25°C, 2V p-p  
HD3, 5V, 25°C, 2V p-p  
HD3, 3.3V, 25°C, 1V p-p  
–55  
–60  
–60  
–65  
–70  
–80  
–40  
–75  
–80  
–85  
–100  
–120  
–140  
–60  
–90  
–95  
–80  
–100  
–105  
–110  
–115  
–120  
–100  
–120  
HD2, 3.3V, 25°C, 2V p-p  
HD2, 5V, 25°C, 2V p-p  
HD2, 3.3V, 25°C, 1V p-p  
HD2, 5V, 25°C, 1V p-p  
–160  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
Figure 18. Harmonic Distortion (HD2/HD3) vs. Frequency,  
Output Level at 2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
Figure 15. IMD3 vs. Frequency, RL = 100 Ω, RL = 150 Ω, and RL = 200 Ω, VPOS = 3.3 V,  
Input Common-Mode = 1.65 V, Output Common-Mode = 1.25 V, VOUT = 1.5 V p-p  
0
–40  
60  
55  
50  
45  
40  
35  
30  
25  
20  
HD2, 3.3V, +25°C  
HD2, 3.3V, +85°C  
HD2, 3.3V, –40°C  
HD2, 3.3V, +105°C  
HD2, 5V, +25°C  
HD2, 5V, +85°C  
HD2, 5V, –40°C  
HD2, 5V, +105°C  
–20  
–60  
–80  
–40  
–100  
–120  
–140  
–160  
–60  
–80  
–100  
–120  
HD3, 3.3V, +25°C  
HD3, 5V, +25°C  
HD3, 5V, +85°C  
HD3, 5V, –40°C  
HD3, 5V, +105°C  
HD3, 3.3V, +85°C  
HD3, 3.3V, –40°C  
HD3, 3.3V, +105°C  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 19. Harmonic Distortion (HD2/HD3) vs. Frequency,  
Output Level at 2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
Figure 16. Single-Ended OIP3 vs. Frequency, VPOS = 3.3 V,  
2 V p-p Composite Output, RL = 200 Ω  
–60  
0
120  
100  
80  
60  
40  
20  
0
0
3.3V, HD2, 25°C  
5V, HD2, 25°C  
3.3V OIP2  
5V OIP2  
3.3V IMD2  
5V IMD2  
–20  
–40  
–60  
–80  
–100  
–120  
–80  
–20  
–40  
–60  
–80  
–100  
–120  
–100  
–120  
–140  
–160  
–180  
3.3V, HD3, 25°C  
5V, HD3, 25°C  
–2  
0
2
4
6
8
10  
0
100 200 300 400 500 600 700 800 900 1000  
P
/TONE (dBm)  
OUT  
FREQUENCY (MHz)  
Figure 17. OIP2/IMD2 vs. Frequency  
Figure 20. Harmonic Distortion (HD2/HD3) vs. Output Power (POUT) per Tone,  
Frequency = 200 MHz, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
Rev. C | Page 10 of 24  
 
Data Sheet  
ADL5566  
–60  
–65  
0
HD2 AT 3.3V  
HD3 AT 3.3V  
HD2 AT 5.0V  
HD3 AT 5.0V  
HD2, 3.3V  
HD3, 3.3V  
HD2, 5V  
HD3, 5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–105  
–110  
0
100  
200  
300  
400  
500  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (MHz)  
VCOM (V)  
Figure 21. Harmonic Distortion (HD2/HD3) vs. VCOM, Output Level at  
2 V p-p, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V, Frequency = 100 MHz  
Figure 24. Single-Ended Harmonic Distortion (HD2/HD3) vs. Frequency,  
VPOS = 3.3 V and VPOS = 5 V, VOUT = 2 V p-p, RL = 200 Ω  
–50  
–80  
–85  
–90  
HD2 100Ω LOAD  
HD2 200Ω LOAD  
–55  
–60  
–65  
–70  
–75  
HD2  
–95  
–100  
–105  
–110  
–115  
–120  
–80  
IMD3  
–85  
–90  
–95  
HD3  
–100  
–105  
–110  
–115  
–120  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
0
1
2
3
4
5
6
FREQUENCY (MHz)  
Figure 22. HD2 vs. Frequency, RL = 100 Ω and RL = 200 Ω, VPOS = 3.3 V, Input  
Common-Mode = 1.65 V, Output Common-Mode = 1.25 V, VOUT = 1.5 V p-p  
Figure 25. Low Frequency Distortion (HD2/HD3/IMD3) vs. Frequency,  
Output Level at 2 V p-p, RL = 200 Ω, VPOS = 3.3 V  
–50  
HD3 200Ω LOAD  
HD3 100Ω LOAD  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
3
–90  
–95  
–100  
–105  
–110  
–115  
–120  
2
2ns/DIV  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
CH2 100mV/DIV 50Ω  
CH3 500mV/DIV 50Ω  
8G  
8G  
A CH3  
1.1V  
Figure 23. HD3 vs. Frequency, RL = 100 Ω and RL = 200 Ω, VPOS = 3.3 V, Input  
Common-Mode = 1.65 V, Output Common-Mode = 1.25 V, VOUT = 1.5 V p-p  
Figure 26. ENBLx Time Domain Response, VPOS = 3.3 V  
Rev. C | Page 11 of 24  
 
ADL5566  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
CH1 400mV 2ns  
A CH1  
0V  
10  
100  
1000  
FREQUENCY (MHz)  
Figure 30. Reverse Isolation (S12) vs. Frequency  
Figure 27. Large Signal Pulse Response Using a Slow Transient Signal  
Generator, 4 V p-p, VPOS = 3.3 V  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
220  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
RESITANCE  
CAPACITANCE  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
0
10  
10  
100  
1000  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. S11 Equivalent RLC Parallel Network  
Figure 28. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
20  
18  
16  
14  
12  
10  
8
10  
9
8
7
6
5
4
3
2
1
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
RESISTANCE  
CAPACITANCE  
6
4
2
0
10  
100  
1000  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. S22 Equivalent RLC Parallel Network  
Figure 29. Group Delay vs. Frequency  
Rev. C | Page 12 of 24  
Data Sheet  
ADL5566  
0
–5  
85  
80  
75  
70  
65  
60  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
5V  
3.3V  
–100  
10M  
100M  
FREQUENCY (Hz)  
1G  
10G  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 33. Output Referred Crosstalk, Channel A to Channel B, VPOS = 3.3 V,  
VCOM = 1.65 V  
Figure 34. ISUPPLY vs. Temperature, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V  
Rev. C | Page 13 of 24  
ADL5566  
Data Sheet  
CIRCUIT DESCRIPTION  
The ADL5566 is a high gain, fully differential dual amplifier/ADC  
driver that uses a 2.8 V to 5 V supply. It provides a 16 dB gain  
that can be reduced by adding external series resistors. The 3 dB  
bandwidth is 4.5 GHz, and it has a differential input impedance of  
160 Ω. It has a differential output impedance of 10 ꢀ and an  
output common-mode adjust voltage of 1.1 V to 1.8 V.  
product that results in distortion levels that are the best in the  
industry for power consumed at frequencies beyond 100 MHz.  
This amplifier achieves greater than −69 dBc IMD3 at 500 MHz  
and −100 dBc at 200 MHz for 2 V p-p operation. In addition,  
the ADL5566 can also deliver 5 V p-p operation under heavy  
loads. The internal gain is set at 16 dB, and the part has a noise  
figure of 6.5 dB and a RTI of 1.5 nV/√Hz. When comparing noise  
figure and distortion performance, this amplifier delivers the  
best in category spurious-free dynamic range (SFDR).  
500Ω  
80Ω  
80Ω  
5Ω  
5Ω  
0.1µF  
The ADL5566 is very flexible in terms of I/O coupling. It can be  
ac- or dc-coupled. For dc coupling, the output common-mode  
voltage (VCOMx) can be adjusted (using the VCOMx pin) from  
1.1 V to 1.8 V output for VCCx at 3.3 V and up to 3 V with VCCx  
at 5 V. For the best distortion, the common-mode output should  
not go below 1.25 V at VCCx equal to 3.3 V and 1.35 V for 5 V  
VCCx operation. Note that the input common-mode voltage  
slaves to the VCOMx output voltage when ac-coupled at the  
inputs. For dc-coupled inputs, the input common-mode voltage  
should also stay between 1.25 V and 1.8 V for a 3.3 V supply and  
1.35 V to 3.5 V for a 5 V supply. Note again that, for ac-coupled  
applications with series capacitors at the inputs, as in Figure 37,  
the output common-mode voltage, VCOMx, sets the common-  
mode input to the same level. Because of the wide input common-  
mode range, this part can easily be dc-coupled to many types of  
mixers, demodulators, and amplifiers. Forcing a higher input  
VCOMx does not affect the output VCOMx in dc-coupled mode.  
Note that, if the outputs are ac-coupled (see the ADC Interfacing  
section), no external VCOMx adjust is required because the  
amplifier common-mode outputs are set at VCCx/2.  
+
0.1µF  
RL  
½ R  
AC  
S
½
ADL5566  
½ R  
S
0.1µF  
0.1µF  
500Ω  
Figure 35. Basic Structure  
The ADL5566 is composed of a dual fully differential amplifier  
with on-chip feedback and feed-forward resistors. The gain is fixed  
at 16 dB but can be reduced by adding two resistors in series with  
the two inputs (see the Gain Adjustment and Interfacing section).  
The amplifier is designed to provide a high differential open-loop  
gain and has an output common-mode circuit that enables the  
user to change the output common-mode voltage by applying a  
voltage to a VCOMx pin. The amplifier is designed to provide  
superior low distortion at frequencies to and beyond 300 MHz  
with low noise and low power consumption. The low distortion  
and noise are realized with a 3.3 V power supply at 140 mA.  
The dual amplifier has an extremely high gain bandwidth (GBW)  
Rev. C | Page 14 of 24  
 
Data Sheet  
ADL5566  
APPLICATIONS INFORMATION  
6 (VIN2), and the output pins, Pin 13 (VON2) and Pin 14  
(VOP2), are biased by applying a voltage to VCOM2. If  
BASIC CONNECTIONS  
Figure 36 shows the basic connections for operating the ADL5566.  
Apply a voltage between 3 V and 5 V to the VCC1 and VCC2  
pins through a 5.1 nH inductor and decouple the supply side of the  
inductor with at least one low inductance, 0.1 μF surface-mount  
ceramic capacitor. In addition, decouple the VCOM1 and VCOM2  
pins (Pin 21 and Pin 10) using a 0.1 μF capacitor. The ENBL1  
and ENBL2 pins (Pin 22 and Pin 9) are tied to their amplifiers  
VCC_x pin to enable each amplifier. A differential signal is  
applied to Amplifier 1 through Pin 1 (VIN1) and Pin 2 (VIP1)  
and to Amplifier 2 through Pin 5 (VIP2) and Pin 6 (VIN2).  
Each amplifier has a gain of 16 dB.  
VCOM2 is left open, VCOM2 equals ½ of VCC2. The ADL5566  
can be ac-coupled as shown in Figure 36 or can be dc-coupled if  
within the specified input and output common-mode voltage  
ranges (see the Circuit Description section). To enable the  
ADL5566, the ENBL1 and ENBL2 pins must be pulled high.  
Pulling the ENBL1/ENBL2 pins low puts the ADL5566 in sleep  
mode, reducing the current consumption to 7 mA at ambient.  
A series 5.1 nH inductor can be connected to the VCCx pins with  
the VCC decoupling capacitor connected to the VCC bus side (see  
Figure 36 and Figure 53). This inductor with the internal  
capacitance of the amplifier results in a two pole low-pass  
network and reduces the amplifier VCC noise.  
The input pins, Pin 1 (VIN1) and Pin 2 (VIP1), and the output  
pins, Pin 18 (VON1) and Pin 17 (VOP1), are biased by  
applying a voltage to Pin 21 (VCOM1). If VCOM1 is left open,  
VCOM1 equals ½ of VCC1. The input pins, Pin 5 (VIP2) and Pin  
VCC  
+
10µF  
0.01µF  
5.1nH  
VCC1  
0.01µF  
5.1nH  
VCC2  
11
20
EXPOSED PAD  
R
F
0.01µF  
VON1  
18  
21  
½ R  
0.01µF  
0.01µF  
S
R
G
VCOM1  
0.01µF  
VIP1  
VIN1  
2
1
BALANCED  
LOAD  
BALANCED  
SOURCE  
R
G
½ R  
S
VOP1  
17  
R
0.01µF  
F
ENBL1  
ENBL2  
22  
9
VCC  
VCC  
ADL5566  
R
F
0.01µF  
VON2  
13  
10  
½ R  
0.01µF  
S
R
G
VCOM2  
VIP2  
VIN2  
5
6
BALANCED  
LOAD  
BALANCED  
SOURCE  
0.01µF  
R
G
0.01µF  
½ R  
S
VOP2  
14  
R
0.01µF  
F
NC  
NC  
3
24  
4
7
8
12 15 16 19 23  
NOTES  
1. EXPOSED PADDLE IS INTERNALLY CONNECTED TO GND AND MUST BE SOLDERED  
TO A LOW IMPEDANCE GROUND PLANE.  
Figure 36. Basic Connections  
Rev. C | Page 15 of 24  
 
 
 
ADL5566  
Data Sheet  
VCC  
+
INPUT AND OUTPUT INTERFACING  
The ADL5566 can be configured as a differential input to  
differential output driver, as shown in Figure 37. The 36 Ω  
resistors, R1 and R2, combined with the ETC1-1-13 balun  
transformer, provide a 50 ꢀ input match for the 160 Ω input  
impedance. The input and output 0.1 μF capacitors isolate the  
VCC/2 bias from the source and balanced load. The load should  
equal 200 Ω to provide the expected ac performance (see the  
Specifications section).  
R2  
0.1µF  
0.1µF  
0.1µF  
R
½ RL  
½ RL  
S
½
77Ω  
ADL5566  
AC  
+
0.1µF  
R1  
30Ω  
Figure 39. Single-Ended Input to Differential Output Configuration  
VCC  
The single-ended gain configuration of the ADL5566 is dependent  
on the source impedance and load, as shown in Figure 40.  
ETC1-1-13  
+
0.1µF  
0.1µF  
0.1µF  
0.1µF  
50Ω  
AC  
R2  
½ RL  
½ RL  
½
ADL5566  
500Ω  
80Ω  
80Ω  
5Ω  
5Ω  
+
R1  
R2  
0.1µF  
0.1µF  
0.1µF  
R
½ RL  
½ RL  
S
½
77Ω  
ADL5566  
AC  
Figure 37. Differential Input to Differential Output Configuration  
The differential gain of the ADL5566 is dependent on the source  
impedance and load, as shown in Figure 38.  
+
0.1µF  
R1  
500Ω  
30Ω  
500Ω  
Figure 40. Single-Ended Input Loading Circuit  
80Ω  
80Ω  
5Ω  
5Ω  
0.1µF  
The single-ended gain can be determined by the following two  
equations:  
+
0.1µF  
RL  
½ R  
AC  
S
½
ADL5566  
R2131  
R2 131  
RMATCH  
½ R  
S
0.1µF  
RMATCH RS  
RMATCH  
RL  
10 RL  
500  
R2  
RS R2  
0.1µF  
500Ω  
A
V1   
RS R2  
RS R2  
80   
Figure 38. Differential Input Loading Circuit  
The differential gain can be determined by  
500 RL  
80 10 RL  
GAIN ADJUSTMENT AND INTERFACING  
The effective gain of the ADL5566 can be reduced by adding two  
resistors in series with the inputs to reduce the 16 dB gain.  
(1)  
AV   
Single-Ended Input to Differential Output  
500Ω  
The ADL5566 can also be configured in a single-ended input to  
differential output driver, as shown in Figure 39. In this  
R
SERIES  
80Ω  
80Ω  
5Ω  
5Ω  
+
configuration, the gain of the part is reduced due to the application  
of the signal to only one side of the amplifier. The input and output  
0.1 μF capacitors isolate the VCC/2 bias from the source and the  
balanced load. R2 is used to match the single-ended input  
impedance of the amplifier (131 Ω) with the 50 Ω source. R1 is  
selected to balance the input of the amplifier. See the Application  
Note AN-0990 for more information on terminating single-ended  
inputs. The performance for this configuration is shown in  
Figure 16 and Figure 24.  
0.1µF  
RL  
0.1µF  
R
½ R  
AC  
S
½
ADL5566  
SHUNT  
0.1µF  
½ R  
S
R
SERIES  
0.1µF  
500Ω  
Figure 41. Gain Adjustment Using a Series Resistor Show  
Rev. C | Page 16 of 24  
 
 
 
 
 
 
Data Sheet  
ADL5566  
To find RSERIES for a given AV gain and RL, use the following:  
The necessary shunt component, RSHUNT, to match to the source  
impedance, RS, can be expressed with the following:  
1
(5)  
RSHUNT  
=
1
1
RS 2RSERIES +160  
500  
RSERIES  
=
80  
(3)  
The voltage gain for multiple shunt resistor values are summarized  
in Table 5. The source resistance and input impedance need  
careful attention when using Equation 5. The reactance of the  
input impedance of the ADL5566 and the ac coupling capacitors  
must be considered before assuming that they make a negligible  
contribution.  
AV  
RL  
10 + RL  
  
  
   
   
To calculate the AV gain for a given RSERIES and RL, use the following:  
–50  
HD2 3.3V  
500  
SERIES +80  
R
L
   
   
–55  
–60  
HD3 3.3V  
IMD 3.3V  
HD2 5V  
HD3 5V  
IMD 5V  
(4)  
AGAIN  
=
×
   
R
10 + R  
L
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
–65  
–70  
–75  
–80  
–85  
–90  
–95  
8
–100  
–105  
–110  
–115  
–120  
7
6
5
4
3
2
1
0
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
–1  
–2  
–3  
–4  
–5  
Figure 43. IMD, HD2, and HD3 vs. Frequency, AV = 6 dB, 2 V p-p Output,  
POS = 3.3 and VPOS = 5 V  
1M  
10M  
100M  
1G  
10G  
V
FREQUENCY (Hz)  
Figure 42. SDD21, VPOS = 3.3 V, Three Gains, 25°C  
Table 5. Differential Gain Adjustment Using Series Resistor  
Target Gain (dB)  
Actual Gain (dB)  
RS (Ω)  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
RSERIES (Ω)1  
396.2  
344.4  
298.3  
257.1  
220.5  
187.8  
158.7  
132.7  
109.6  
89  
70.6  
54.2  
39.6  
26.6  
15  
4.8  
RSHUNT (Ω)1  
52.8  
53.1  
53.5  
54  
54.5  
55.1  
55.8  
56.7  
57.6  
58.7  
60  
0
−0.1  
1
+1.2  
2
+2.1  
3
+2.9  
4
+4.1  
5
+5.1  
6
+6.1  
7
+6.9  
8
+8.1  
9
+8.9  
10  
11  
12  
13  
14  
15  
+10  
+11.1  
+12  
+12.8  
+14  
61.4  
63.2  
65.3  
67.9  
70.9  
+15.1  
+15.8  
16  
50  
0
72.7  
1 The resistor values are rounded to the nearest real resistor value.  
Rev. C | Page 17 of 24  
 
ADL5566  
Data Sheet  
FUNDAMENTAL1 = –7.03dBFS  
FUNDAMENTAL2 = –7.05dBFS  
IMD (2f1 – f2) = –90.53dBc  
IMD (2f2 + f1) = –96.81dBc  
NOISE FLOOR = –114.703dB  
ADC INTERFACING  
0
–15  
The ADL5566 is a dual high output linearity amplifier that is  
optimized for ADC interfacing. One option of applying the  
ADL5566 to drive an ADC is shown in Figure 47. The wideband  
1:1 transmission line balun provides a differential input to the  
amplifier, and the 36 Ω resistors provide a 50 Ω match to the  
source. The ADL5566 is ac-coupled from the input and output  
to avoid common-mode loading. A reference voltage is  
required to bias the AD9268 inputs and is delivered through  
the 200 Ω resistors. These, in parallel with the 400 Ω resistor,  
create the low frequency amplifier load of 200 Ω. The 56 nH  
inductors and the 56 pF capacitor are used to create a 70 MHz  
low-pass filter. The two 25 Ω resistors are added to raise the  
ADL5566 output impedance, which reduces peaking when the  
filter drives a light load. The two 25 Ω resistors provide isolation to  
the switching currents of the ADC sample-and-hold circuitry.  
The AD9268 dual ADC presents a 6 kΩ differential load  
impedance and requires a 1 V p-p to 2 V p-p input signal to  
reach full scale. The system frequency response is shown in  
Figure 46. By applying a 2 V p-p, 32 MHz single-tone signal from  
the ADL5566 in a gain of 16 dB, an SFDR of 94.6 dBc is achieved.  
By applying two half scale signals of 32 MHz and 33 MHz from  
the ADL5566 in a gain of 16 dB, an SFDR of 90.5 dBc is  
realized.  
–30  
–45  
–60  
–75  
–90  
–105  
–120  
–135  
–150  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
Figure 45. Measured Two-Tone Performance of the Circuit in Figure 47 for a  
32 MHz and 33 MHz Input Signals  
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
–20  
0
SNR = 74.28dB  
FUND FREQ = 32.123MHz  
FUND POWER = –1.014dBFS  
–15  
SECOND HARM = –94.629dBc  
THIRD HARM = –95.19dBc  
FOURTH HARM = –99.98dBc  
FIFTH HARM = –104.971dBc  
SIXTH HARM = –107.105dBc  
–30  
–45  
0
20  
40  
60  
80  
100  
120  
140  
160  
FREQUENCY (MHz)  
–60  
Figure 46. Measured Relative Frequency Response of the Wideband ADC  
Interface Depicted in Figure 47  
–75  
–90  
3
+
2
–105  
–120  
–135  
–150  
4
5
6
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
Figure 44. Measured Single-Tone Performance of the Circuit in Figure 47 for a  
32 MHz Input Signal  
VCC  
0.1µF  
ETC1-1  
VIN_1  
VIP_1  
25Ω  
25Ω  
25Ω  
+
0.1µF  
0.1µF  
50Ω  
AC  
36Ω  
36Ω  
200Ω  
½
16  
AD9268  
V
56pF  
REF  
400Ω  
ADL5566  
SIDE A  
200Ω  
25Ω  
0.1µF  
Figure 47. Wideband ADC Interfacing Example Featuring the AD9268  
Rev. C | Page 18 of 24  
 
 
Data Sheet  
ADL5566  
DC-COUPLED RECEIVER APPLICATION  
The ADL5566 is well suited for dc-coupled applications, such  
as zero-IF direct conversion receivers. An example receiver  
configuration is shown in Figure 48, consisting of the ADL5380  
quadrature demodulator and the ADL5566 dual differential  
amplifier. This is an ideal combination because of the wide RF  
input bandwidth from 400 MHz to 6 GHz, the high linearity of the  
ADL5566, and when operating on a 5 V supply, level shifting to  
align the common-mode voltage is not required.  
performance. When using the ADL5566 as shown in Figure 48,  
the OIP3s at the outputs are improved due to the high OIP3 of  
the amplifier pair (see Table 6). In a real-world receiver where  
blockers are present, it is advantageous to insert a low-pass  
filter between the ADL5380 and the ADL5566 to remove  
these undesired signals.  
If the ADL5566 is followed by an ADC, insert an antialiasing  
filter between the ADL5566 and the ADC to prevent broadband  
noise from aliasing back in band. For more information on this  
interface, see the ADC Interfacing section.  
The interface between the ADL5380 and the ADL5566 is  
straight forward because the impedance presented by the  
ADL5566 is sufficiently high enough to permit directly  
connecting the two devices without any degradation in  
The cascade of the performance of the circuit shown in Figure 48 is  
presented in Table 6.  
V
S
VCC  
+
0.1µF  
0.1µF  
0.1µF  
10µF  
0.01µF  
5.1nH  
0.01µF  
5.1nH  
VCC2  
100pF  
100pF  
100pF  
1.5kΩ  
VCC1  
11
20
6
13  
24  
19  
R
F
NC  
12  
7
0.01µF  
ILO  
VON1  
4
3
18  
21  
R
R
ENBL  
G
VCOM1  
0.01µF  
IHI  
VIP1  
VIN1  
2
1
BALANCED  
LOAD  
GND3  
G
23  
9
VOP1  
17  
100pF  
100pF  
R
0.01µF  
F
TC1-1-13  
RFIP  
RFIN  
ENBL1  
ENBL2  
22  
21  
100pF  
100pF  
22  
9
TC1-1-13  
VCC  
VCC  
LOIP  
90°  
ADL5566  
0Ω  
R
F
0°  
LOIN  
R4  
0Ω  
10  
20  
0.01µF  
VON2  
GND3  
13  
10  
GND3  
1
2
R
G
VCOM2  
VIP2  
VIN2  
5
6
BALANCED  
LOAD  
0.01µF  
QHI  
GND1  
GND1  
16  
15  
R
G
VOP2  
NC  
QLO  
14  
24  
R
0.01µF  
F
5
NC  
GND3  
3
18  
4
7
8
12 15 16 19 23  
8
11  
14  
17  
Figure 48. DC-Coupled Interface Example Featuring the ADL5380  
Table 6. Cascade Performance of the ADL5380 and ADL5566  
IF Frequency = 200 MHz, RL = 200 Ω, VOUT = 2 V p-p Composite  
Frequency (MHz) HD2 (dBc) HD3 (dBc) OIP3 (dBm) ADL5380 OIP3 (dBm)1 OIP2 (dBm) Voltage Gain (dB) Power Gain (dB)  
900  
1900  
2700  
−79.3  
−82.2  
−80.7  
−84.2  
−80.5  
−73.9  
44.9  
40.8  
39.6  
26.2  
26.5  
25.7  
91.8  
83.9  
75.6  
18.1  
18.1  
18.1  
12.0  
12.0  
12.0  
1 Output referred IP3 of the ADL5380, PIN = −14 dBm, and RL = 200 Ω.  
Rev. C | Page 19 of 24  
 
 
ADL5566  
Data Sheet  
LAYOUT CONSIDERATIONS  
High-Q inductive drives and loads, as well as stray transmission  
line capacitance in combination with package parasitics, can  
potentially form a resonant circuit at high frequencies, resulting  
in excessive gain peaking or possible oscillation. If RF transmission  
lines connecting the input or output are used, design them such  
that stray capacitance at the input/output pins is minimized. In  
many board designs, the signal trace widths should be minimal  
where the driver/receiver is no more than one-eighth of the wave-  
length from the amplifier. This nontransmission line configuration  
requires that underlying and adjacent ground and low impedance  
planes be dropped from the signal lines.  
VCC  
+
0.1µF  
5.1nH  
VIN_1  
0.1µF  
ETC1-1  
ETC1-1  
84.5Ω  
34.8Ω  
+
0.1µF  
0.1µF  
50Ω  
AC  
36Ω  
36Ω  
½
50Ω  
ANALYZER  
ADL5566  
AMPLIFIER 1  
VIP_1  
84.5Ω  
34.8Ω  
0.1µF  
Figure 49. General-Purpose Characterization Circuit  
VCC  
+
0.1µF  
5.1nH  
0.1µF  
+
0.1µF  
+
VIN_1  
VIP_1  
50Ω  
50Ω  
PORT 1  
PORT 3  
+
50Ω  
AC  
50Ω  
AC  
½
ADL5566  
AMPLIFIER 1  
36Ω  
PORT 2  
PORT 4  
+
+
0.1µF  
0.1µF  
50Ω  
AC  
50Ω  
AC  
Figure 50. Differential Characterization Circuit Using Agilent E8357A Four-Port PNA  
INPUT  
COMMON-MODE V  
ADJUST  
VCC  
+
0.1µF  
2kΩ 2kΩ  
0.1µF  
5.1nH  
VIN_1  
0.1µF  
ETC1-1  
84.5Ω  
34.8Ω  
ETC1-1  
+
+
50Ω  
AC  
36Ω  
36Ω  
50Ω  
ANALYZER  
ADL5566  
AMPLIFIER 1  
84.5Ω  
34.8Ω  
VIP_1  
0.1µF  
0.1µF  
VCOM  
OUTPUT  
Figure 51. Distortion Measurement Circuit for Various Common-Mode Voltages  
Rev. C | Page 20 of 24  
Data Sheet  
ADL5566  
SOLDERING INFORMATION AND RECOMMENDED  
LAND PATTERN  
EVALUATION BOARD  
Figure 53 shows the schematic of the ADL5566 evaluation board.  
The board is powered by a single supply in the 3 V to 5 V range.  
The power supply is decoupled by 10 µF and 0.1 µF capacitors.  
The L1 and L2 inductors decouple the ADL5566 from the power  
supply.  
Figure 52 shows the recommended land pattern for the ADL5566.  
The ADL5566 is contained in a 4 mm × 4 mm LFCSP package,  
which has an exposed ground paddle (EPAD). This paddle is  
internally connected to the ground of the chip. To minimize  
thermal impedance and ensure electrical performance, solder  
the paddle to the low impedance ground plane on the printed  
circuit board (PCB). To further reduce thermal impedance, it  
is recommended that the ground planes on all layers under the  
paddle be stitched together with vias.  
Table 7 details the various configuration options of the evaluation  
board. Figure 54 and Figure 55 show the component and circuit  
side layouts of the evaluation board.  
The balanced input and output interfaces are converted to single  
ended with a pair of baluns (M/A-COM ETC1-1-13). The baluns  
at the input, T1 and T2, provide a 50 Ω single-ended-to-differential  
transformation. The output baluns, T3 and T4, and the matching  
components are configured to provide a 200 Ω to 50 Ω impedance  
transformation with an insertion loss of about 11 dB.  
For more information on land pattern design and layout, refer  
to the AN-772 Application Note, A Design and Manufacturing  
Guide for the Lead Frame Chip Scale Package (LFCSP).  
This land pattern, on the ADL5566 evaluation board, provides a  
measured thermal resistance (θJA) of 34.0°C/W. To measure θJA,  
the temperature at the top of the LFCSP package is found with  
an IR temperature gun. Thermal simulation suggests a junction  
temperature 1.5°C higher than the top of package temperature.  
With additional ambient temperature and I/O power measure-  
ments, θJA can be determined.  
91 MILS  
13 MILS  
13.7 MILS  
39 MILS  
19.7 MILS  
12 MILS  
Figure 52. Recommended Land Pattern  
Rev. C | Page 21 of 24  
 
 
ADL5566  
Data Sheet  
ENBL_1  
V
VCOM-1  
C6  
CC  
V
CC  
+
GND  
0.1µF  
V
C7  
0.1µF  
POS  
V
CC  
C21  
10µF  
C3  
0.1µF  
L2  
5.1nH  
2
2
C10  
DNI  
C12  
DNI  
24  
23  
22  
21  
20  
19  
VOP1  
C18  
R18  
R10  
36Ω  
C13  
VIN1  
R14  
R5  
0Ω  
0.01µF  
34.8Ω  
0.01µF  
84.5Ω  
T1  
T3  
VON1  
VIIN1  
VIP1  
NC  
18  
17  
16  
15  
1
C17  
R27  
DNI  
R8  
0Ω  
VON1  
DNI  
0.01µF  
R1  
VIP1  
VIP2  
VOP1  
NC  
2
3
4
5
6
DNI  
DNI  
R13  
84.5Ω  
R25  
R9  
36Ω  
R17  
34.8Ω  
C14  
0.01µF  
ADL5566  
R3  
0Ω  
0Ω  
VON2  
NC  
NC  
C20  
0.01µF  
C15  
0.01µF  
R20  
34.8Ω  
R11  
36Ω  
R16  
84.5Ω  
R21  
0Ω  
EXPOSED PADDLE  
T2  
T4  
VOP2 14  
VIP2  
VIN2  
DNI  
R28  
R24  
0Ω  
R2  
DNI  
VOP2  
DNI  
VIN2  
DNI  
VON2  
12  
13  
R19  
34.8Ω  
R15  
84.5Ω  
R26  
0Ω  
R12  
36Ω  
C19  
0.01µF  
R4  
0Ω  
C16  
0.01µF  
7
8
9
10  
11  
2
2
C1  
DNI  
C11  
DNI  
L1  
5.1nH  
C4  
0.1µF  
V
POS  
C2  
0.1µF  
C5  
0.1µF  
ENBL_2  
VCOM-2  
V
CC  
Figure 53. Evaluation Board Schematic  
Table 7. Evaluation Board Configuration Options  
Component  
Description  
Default Condition  
VPOS, GND  
Ground and supply test loops.  
VPOS, GND = installed  
C5, C7, C21, L1, Power supply decoupling. The supply decoupling consists of a 10 μF capacitor (C21) and C21 = 10 μF (Size D),  
L2  
two 0.1ꢀF capacitors, C5 and C7, connected between the supply lines and ground.  
L1 and L2 decouple the ADL5566 from the power supply.  
C5, C7 = 0.1 μF (Size 0402),  
L1, L2 = 5.1 nH (Size 0603)  
VIN1, VIP1, VIP2, Input interface. The SMA labeled VIN1 is the input to Amplifier 1. T1 is a 1:1  
VIN2, R1, R2, R3, impedance ratio balun to transform a single-ended input into a balanced differential  
VIN1, VIP2 = installed,  
VIP1, VIN2 = not installed,  
R1, R2 = DNI,  
R4, R5, R8, R9,  
R10, R11, R12,  
R21, R24, C13,  
C1, C12, C14,  
C15, C16, T1, T2  
signal. Removing R3, installing R1 (0 Ω), and installing an SMA connector (VIP1) allow  
driving from a differential source. C13 and C14 provide ac coupling. C12 is an  
optional bypass capacitor. R9 and R10 provide a differential 50 Ω input termination. The (Size 0402),  
SMA labeled VIP2 is the input to Amplifier 2. T2 is a 1:1 impedance ratio balun to  
transform a single-ended input into a balanced differential signal. Removing R4,  
installing R2 (0 Ω), and installing an SMA connector (VIN2) allow driving from a  
R3, R4, R5, R8, R21, R24 = 0 Ω  
R9, R10, R11, R12 = 36 Ω (Size 0402),  
C13, C14, C15, C16 = 0.01 μF  
(Size 0402),  
differential source. C15 and C16 provide ac coupling. C1 is an optional by pass capacitor. C1, C12 = DNI,  
R11 and R12 provide a differential 50 Ω input termination.  
T1, T2 = ETC1-1-13 (M/A-COM)  
VOP1, VON1,  
VON2, VOP2,  
C10, C11, C17,  
C18, C19, C20,  
R13, R14, R15,  
R16, R17, R18,  
R19, R20, R25,  
R26, R27, R28,  
T3, T4  
Output interface. The SMA labeled VOP1 is the output for Amplifier 1. T3 is a 1:1  
impedance ratio balun used to transform a balanced differential signal to a single-  
ended signal. Removing R25, installing R27 (0 Ω), and installing an SMA connector  
(VON1) allow differential loading. C10 is an optional bypass capacitor. C17 and C18  
provide ac coupling. R13, R14, R17, and R16 are provided for generic placement of  
matching components.  
VOP1, VON2 = installed,  
VON1, VOP2 = not installed,  
R13, R14, R15, R16 = 84.5 Ω  
(Size 0402),  
R17, R18, R19, R20 = 34.8 Ω  
(Size 0402),  
The SMA labeled VON2 is the output for Amplifier 2. T4 is a 1:1 impedance ratio balun  
R25, R26 = 0 Ω (Size 0402),  
used to transform a balanced differential signal to a single-ended signal. Removing R26, R27, R28 = DNI (Size 0402),  
installing R28 (0 Ω), and installing an SMA connector (VOP2) allow differential loading. C10, C11 = DNI (Size 0402),  
C11 is an optional bypass capacitor. C19 and C20 provide ac coupling. R15, R16, R19, C17, C18 = 0.01 μF (Size 0402),  
and R20 are provided for generic placement of matching components.  
The evaluation board is configured to provide a 200 Ω to 50 Ω impedance  
transformation with an insertion loss of 11 dB.  
C19, C20 = 0.01 ꢀF (Size 0402),  
T3, T4 = ETC1-1-13 (M/A-COM)  
Rev. C | Page 22 of 24  
 
 
Data Sheet  
ADL5566  
Component  
Description  
Default Condition  
ENBL_1, ENBL_2 = installed,  
ENBL_1,  
Device enable. ENBL_1 is the enable for Amplifier 1. Connecting a jumper between  
ENBL_2, C3, C4 Pin 2 and VPOS enables Amplifier 1. C3 is a bypass capacitor. ENBL_2 is the enable for C3, C4 = 0.1 µF (Size 0402)  
Amplifier 2. Connecting a jumper between Pin 2 and VPOS enables Amplifier 2. C4 is  
a bypass capacitor.  
VCOM-1,  
Common-mode voltage interface. VCOM1 is the common-mode interface for  
VCOM-1, VCOM-2 = installed  
C2, C6 = 0.1 µF (Size 0402)  
VCOM-2, C2, C6 Amplifier 1. A voltage applied to this pin sets the common-mode voltage of the output  
of Amplifier 1. VCOM2 is the common-mode interface for Amplifier 2. A voltage applied  
to this pin sets the common-mode voltage of the output of Amplifier 2. Typically  
decoupled to ground with a 0.1 µF capacitor (C2 and C6). With no reference applied,  
input and output common mode float to midsupply (VCC/2).  
Figure 55. Layout of Evaluation Board, Circuit Side  
Figure 54. Layout of Evaluation Board, Component Side  
Rev. C | Page 23 of 24  
 
 
ADL5566  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.44  
2.30 SQ  
2.16  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8  
Figure 56. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-24-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADL5566ACPZ-R7  
ADL5566-EVALZ  
−40°C to +85°C  
24-Lead Lead Frame Chip Scale Package [LFCSP], 7” Tape and Reel  
Evaluation Board  
CP-24-14  
1 Z = RoHS Compliant Part.  
©2012–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10916-0-8/19(C)  
Rev. C | Page 24 of 24  
 
 

相关型号:

ADL5566ACPZ-R7

4.5 GHz Ultrahigh Dynamic Range, Dual Differential Amplifier
ADI

ADL5567

4.3 GHz, Ultrahigh Dynamic Range, Dual Differential Amplifier
ADI

ADL5567-EVALZ

4.3 GHz, Ultrahigh Dynamic Range, Dual Differential Amplifier
ADI

ADL5567ACPZN-R7

4.3 GHz, Ultrahigh Dynamic Range, Dual Differential Amplifier
ADI

ADL5569BCPZ

6.5 GHz, Ultrahigh Dynamic Range, Differential Amplifier
ADI

ADL5569BCPZ-R7

6.5 GHz, Ultrahigh Dynamic Range, Differential Amplifier
ADI

ADL5570

2.3 GHz to 2.4 GHz WiMAX Power Amplifier
ADI

ADL5570ACPZ-R7

2300MHz - 2400MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, 4 X 4 MM, ROHS COMPLIANT, LFCSP, 16 PIN
ROCHESTER

ADL5571

2.5 GHz to 2.7 GHz WiMAX Power Amplifier
ADI

ADL5571-EVALZ

2.5 GHz to 2.7 GHz WiMAX Power Amplifier
ADI

ADL5571ACPZ-R7

2.5 GHz to 2.7 GHz WiMAX Power Amplifier
ADI

ADL5580

Fully Differential, 10 GHz ADC Driver with 10 dB Gain
ADI