ADL5580BCCZ [ADI]

Fully Differential, 10 GHz ADC Driver with 10 dB Gain;
ADL5580BCCZ
型号: ADL5580BCCZ
厂家: ADI    ADI
描述:

Fully Differential, 10 GHz ADC Driver with 10 dB Gain

文件: 总22页 (文件大小:783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fully Differential, 10 GHz ADC Driver  
with 10 dB Gain  
Data Sheet  
ADL5580  
FEATURES  
−3 dB bandwidth: 10.0 GHz  
FUNCTIONAL BLOCK DIAGRAM  
5V  
Preset 10 dB gain, can be reduced by adding external  
resistors  
ADL5580  
2
4
14  
12  
VINP  
= 100Ω DIFFERENTIAL  
VINN  
VOUTP  
Differential or single-ended input to differential output  
Internally dc-coupled inputs and outputs  
Input voltage noise (NSD, RTI): 2.25 nV/√Hz at 100 MHz  
Low noise input stage: 11.3 dB noise figure at 1 GHz  
Low distortion with +5.0 V and −1.8 V supplies and 1.4 V p-p  
output differential with a 50 Ω||1 pF load differential  
2 GHz: −59.4 dBc (HD2), −54.3 dBc (HD3), −68.2 dBc (IMD3)  
6 GHz: −66 dBc (HD2), −88.1 dBc (HD3), −48.3 dBc (IMD3)  
276 mA positive supply current at 5.0 V typical  
−224 mA negative supply current at −1.8 V typical  
Power disable  
A
= 10dB  
Z
Z
= 50Ω DIFFERENTIAL  
V
IN  
OUT  
VOUTN  
–1.8V  
Figure 1.  
APPLICATIONS  
Instrumentation and defense applications  
GENERAL DESCRIPTION  
The ADL5580 is a high performance, single-ended or differential  
amplifier with 10 dB of voltage gain, optimized for applications  
spanning from dc to 10.0 GHz. The amplifier offers a low referred  
to input (RTI) noise spectral density (NSD) of 2.24 nV/√Hz (at  
1000 MHz) and is optimized for distortion performance over a  
wide frequency range, making the device an ideal driver for  
high speed 12-bit to 16-bit analog-to-digital converters (ADCs).  
The ADL5580 is suited for use in high performance, zero  
intermediate frequency (IF), and complex IF receiver designs.  
In addition, this device has low distortion for single-ended  
input driver applications.  
Operating from a +5 V and −1.8 V supply, the positive and  
negative supply current of the ADL5580 is typically +276 mA  
and −224 mA, respectively. The device has a power disable  
feature, and when disabled, the amplifier consumes 2 mA.  
The ADL5580 is optimized for wideband, low distortion, and  
low noise operation at the dc to 10.0 GHz frequency range.  
These attributes, together with its adjustable gain capability,  
make this device an optimal choice for driving a wide variety of  
ADCs, mixers, pin diode attenuators, surface acoustic wave  
(SAW) filters, and a multiplicity of discrete RF devices.  
Fabricated on an Analog Devices, Inc., high speed silicon  
germanium (SiGe) process, the ADL5580 is supplied in a  
compact 4 mm × 4 mm, 20-terminal land grid array (LGA)  
package and operates over the −40°C to +85°C temperature  
range.  
By using two external series resistors, the gain selection from  
10 dB for a differential input can be modified to a lower gain.  
The device maintains low distortion through its output  
common-mode voltage (VCM) of 0.5 V, providing a flexible  
capability for driving ADCs with full-scale levels up to 1.4 V p-p.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the propertyof their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADL5580  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
RF Input and Output with Common-Mode Network.......... 15  
RF Signal Chain.......................................................................... 15  
Programmability Guide............................................................. 15  
SPI ................................................................................................ 15  
Applications Information ............................................................. 16  
Basic Connections...................................................................... 16  
Input and Output Interfacing................................................... 17  
Layout .......................................................................................... 17  
Register Summary .......................................................................... 18  
Register Details ............................................................................... 19  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Digital Logic Timing.................................................................... 6  
Absolute Maximum Ratings ........................................................... 8  
Thermal Resistance...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions ............................ 9  
Typical Performance Characteristics........................................... 10  
Theory of Operation ...................................................................... 15  
REVISION HISTORY  
12/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 22  
 
Data Sheet  
ADL5580  
SPECIFICATIONS  
Positive supply voltage (VS) = +5.0 V, negative VS = −1.8 V, input VCM = 1.7 V, output VCM = 0.5 V, source impedance (RS) = 100 Ω  
differential, load impedance (RL) = 50 Ω differential, output voltage (VOUT) = 1.4 V p-p composite, peak capacitance (CPEAK) = 3, TA =  
25°C, and signal spacing = 2 MHz for two-tone measurements, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth1  
Bandwidth, 1.0 dB Flatness  
Voltage Gain (AV)  
VOUT ≤ 1.4 V p-p  
VOUT ≤ 1.4 V p-p  
10.0  
6
GHz  
GHz  
Differential Input  
RL = 50 Ω||1 pF differential  
RL = 50 Ω||1 pF differential  
Positive VS 5% and negative VS 5%  
TA = −40°C to +85°C  
Rising, VOUT = 1.4 V p-p step  
Falling, VOUT = 1.4 V p-p step  
1.4 V step to 1%  
10  
10  
128  
10.7  
24  
dB  
dB  
Single-Ended Input  
Gain Supply Sensitivity  
Gain Temperature Sensitivity  
Slew Rate  
mdB/V  
mdB/°C  
V/ns  
V/ns  
ns  
24  
Settling Time  
Overdrive Settling Time  
EN Response Time  
2.4  
640  
20  
Differential output voltage 2.8 V p-p  
From shutdown mode  
ps  
ns  
To shutdown mode  
6
ns  
Reverse Isolation (SDD12)  
Input to Output Isolation when Disabled  
Frequency = 1000 MHz  
Frequency = 1000 MHz, EN pin set to low  
−70  
−87  
dB  
dBc  
INPUT AND OUTPUT CHARACTERISTICS  
Input VCM  
VCMI  
1.7  
V
Input Resistance  
Differential  
Single-Ended  
Common-Mode Rejection Ratio (CMRR)  
Output VCM  
100  
100  
32.9  
0.5  
50  
dB  
V
Frequency = 1000 MHz  
VCMO  
Output Resistance (Differential)  
VCMI and VCMO Input Impedance  
10  
kΩ  
Input Common-Mode  
Offset  
97.7  
mV  
Drift  
TA = 25°C to 85°C  
0.188  
mV/°C  
Input Differential Offset  
Voltage  
0.4  
mV  
Drift  
TA = −40°C to +25°C  
TA = −40°C to +25°C  
3.076  
µV/°C  
Output Common-Mode  
Offset  
Drift  
6.6  
0.119  
mV  
mV/°C  
Output Differential Offset  
Voltage  
Drift  
0.4  
6.666  
5
mV  
µV/°C  
V p-p  
TA = 25°C to 85°C  
Frequency = 1000 MHz, 1 dB compression point  
Maximum Output Voltage Swing  
Rev. 0 | Page 3 of 22  
 
ADL5580  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
NOISE AND HARMONIC PERFORMANCE  
Input Signal Frequency, 100 MHz  
Second Harmonic Distortion (HD2)  
−77.2  
dBc  
Third Harmonic Distortion (HD3)  
Output Third-Order Intercept (OIP3)  
Third-Order Intermodulation Distortion (IMD3)  
Output Second-Order Intercept (OIP2)  
Second-Order Intermodulation Distortion (IMD2)  
Output 1 dB Compression Point (OP1dB)  
Noise Figure  
NSD, RTI2  
−74.2  
43.6  
−84.7  
77.7  
−76.4  
17.5  
11.3  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
2.25  
nV/√Hz  
Input Signal Frequency, 500 MHz  
HD2  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
−66.4  
−66.1  
40.3  
−78.2  
66.8  
−65.6  
17.5  
11.2  
dBc  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
nV/√Hz  
Noise Figure  
NSD, RTI2  
2.23  
Input Signal Frequency, 1000 MHz  
HD2  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
−66.3  
−61.1  
38.1  
−73.5  
65.9  
−64.7  
17.5  
11.3  
dBc  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
nV/√Hz  
Noise Figure  
NSD, RTI2  
2.24  
Input Signal Frequency, 2000 MHz  
HD2  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
Noise Figure  
NSD, RTI2  
−59.4  
−54.3  
35.3  
−68.2  
60.2  
−59.1  
17.5  
11.4  
dBc  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
nV/√Hz  
2.26  
Rev. 0 | Page 4 of 22  
Data Sheet  
ADL5580  
Parameter  
Input Signal Frequency, 3000 MHz  
Test Conditions/Comments  
Min Typ  
−60.6  
Max  
Unit  
HD2  
dBc  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
Noise Figure  
NSD, RTI2  
−47.1  
32.8  
−63.2  
69.8  
−68.6  
17.5  
10.9  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
2.13  
nV/√Hz  
Input Signal Frequency, 4000 MHz  
HD2  
−58  
dBc  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
Noise Figure  
NSD, RTI2  
−54.8  
30.7  
−53.9  
58.6  
−57.3  
18.0  
10.3  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
1.96  
nV/√Hz  
Input Signal Frequency, 5000 MHz  
HD2  
−60  
dBc  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
Noise Figure  
NSD, RTI2  
−72.1  
28.1  
−53.9  
60.9  
−59.7  
17.5  
10.0  
dBc  
dBm  
dBc  
dBm  
dBc  
dBm  
dB  
1.90  
nV/√Hz  
Input Signal Frequency, 6000 MHz  
HD2  
HD3  
OIP3  
IMD3  
OIP2  
IMD2  
OP1dB  
NF  
−66  
dBc  
dBc  
dBm  
dBc  
dBm  
dBc  
−88.1  
25.4  
−48.3  
67.3  
−66.1  
17.0  
9.5  
dBm  
dB  
NSD, RTI2  
DIGITAL LOGIC  
Input Voltage  
1.78  
nV/√Hz  
SCLK, SDIO, , and EN  
CS  
High (VIH)  
Low (VIL)  
1.07  
V
V
0.68  
Input Current  
High (IIH)  
Low (IIL)  
−100 μA  
100 μA  
Rev. 0 | Page 5 of 22  
ADL5580  
Data Sheet  
Parameter  
Output Voltage  
At 1.8 V  
Test Conditions/Comments  
SDIO  
Register 0x200, Bit 0 = 0x0  
Min Typ  
Max  
Unit  
High (VOH)  
Output high current (IOH) = −100 µA or  
−1 mA static load  
Output low current (IOL) = 100 μA or 1 mA static load  
Register 0x200, Bit 0 = 0x1  
IOH = −100 μA or −1 mA static load  
IOL = 100 μA or 1 mA static load  
1.5  
V
V
Low (VOL)  
At 3.3 V  
VOH  
VOL  
0.2  
0.2  
2.7  
V
V
SUPPLY AND POWER SPECIFICATIONS  
Power  
Shutdown Power  
Shutdown Current  
Positive Supply  
1.76  
11  
2
W
mW  
mA  
At room temperature  
At room temperature  
Voltage (VPAVCC  
Current (IPAVCC  
Negative Supply  
Voltage (VMAVEE  
Current (IMAVEE  
)
5%  
5%  
4.75 5.0  
276  
5.25  
V
mA  
)
)
−1.7 −1.8  
−224  
−1.89  
V
mA  
)
1 S parameters are taken with the device under test (DUT) itself. The printed circuit board (PCB) is not used in the measurement.  
2 NSD RTI is calculated from noise figure as follows, assuming that RS = RL:  
NSD (RTI) = ½ × 4kT × (10NF/10 1) × RIN  
where:  
k is Boltzmann's constant, which equals 1.381 × 10−23J/K.  
T is the standard absolute temperature for evaluating noise figure, which equals 290 K.  
RIN is the differential input impedance of the amplifier, which equals 100 Ω.  
DIGITAL LOGIC TIMING  
Table 2.  
Parameter Description  
Min Typ Max Unit  
fSCLK  
tPWH  
tPWL  
tDS  
Maximum serial clock rate, 1/tSCLK (tSCLK is the SCLK time)  
25  
10  
10  
5
MHz  
ns  
ns  
ns  
ns  
Minimum period that SCLK is in logic high state  
Minimum period that SCLK is in logic low state  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
tDH  
5
tDCS  
tH  
Setup time between falling edge of  
and rising edge of SCLK  
10  
10  
ns  
CS  
Hold time between rising edge of  
and the last falling edge of SCLK  
ns  
CS  
Maximum time delay between falling edge of SCLK and output data valid for a read operation  
Maximum time delay between deactivation and SDIO bus return to high impedance  
tDV  
tz  
5
14  
12  
ns  
ns  
CS  
Timing Diagrams  
INSTRUCTION CYCLE  
ADDRESS  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDI  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5  
N
D3 D2 D1 D0  
0
N
N
0
0
0
Figure 2. Serial Port Interface Register Timing, MSB First  
Rev. 0 | Page 6 of 22  
 
 
 
Data Sheet  
ADL5580  
tSCLK  
tPWH  
tPWL  
SCLK  
tDCS  
tH  
CS  
tDH  
tDS  
tZ  
SDI  
R/W  
CS5  
CS4  
0
0
0
0
A_MSB  
A7  
A2  
A1  
A_LSB D_MSB  
D6  
D5  
D1  
D_LSB  
Figure 3. Timing Diagram for the Serial Port Interface Register Write  
SCLK  
CS  
tDV  
D5  
R/W  
A_MSB  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A2  
A1  
A_LSB D_MSB  
D6  
D1  
D_LSB  
SDIO  
Figure 4. Timing Diagram for Serial Port Interface Register Read  
Rev. 0 | Page 7 of 22  
ADL5580  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
Parameter  
Supply Voltage  
At PAVCC  
Rating  
5.5 V  
At MAVEE  
−1.98 V  
350 mV  
−0.3 V to +3.6 V  
Table 4. Thermal Resistance  
RF Input Power (VINP and VINN) at 100 Ω  
Package  
, SCLK, SDIO, and EN  
CS  
Type1  
θJA  
θJCTOP θJCBOTTOM θJB  
ψJT ψJB  
Unit  
Temperature  
Operating Range  
Maximum Junction  
Storage  
CC-20-7  
53.5  
24.3 20.9 24.2 6.0 25.5 °C/W  
−40°C to +85°C  
125°C  
150°C  
1 Thermal resistance values specified are simulated based on JEDEC  
specifications in compliance with JESD-51.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ESD CAUTION  
Rev. 0 | Page 8 of 22  
 
 
 
Data Sheet  
ADL5580  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADL5580  
20  
19  
18  
17  
16  
1
2
3
4
5
15  
14  
13  
12  
11  
GND  
GND  
VINP  
GND  
VINN  
GND  
PAD 1  
PAVCC  
PAD 4  
PAVCC  
VOUTP  
GND  
TOP VIEW  
PAD 2  
MAVEE  
PAD 3  
MAVEE  
VOUTN  
GND  
6
7
8
9
10  
NOTES  
1. PAD 1 AND PAD 4 ARE THE POSITIVE VOLTAGE SUPPLY, 5.0V.  
2. PAD 2 AND PAD 3 ARE THE NEGATIVE VOLTAGE SUPPLY, –1.8V.  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No  
Mnemonic Description  
1, 3, 5, 6, 10, 11, 13, 15, 16, 20 GND  
Ground. Connect the GND pins to ground.  
2
VINP  
Positive RF Input (RFIN) Signal. VINP is the positive side of the amplifier balanced differential  
inputs.  
4
7
VINN  
CS  
Negative RFIN Signal. VINN is the negative side of the amplifier balanced differential inputs.  
Serial Peripheral Interface (SPI) Chip Select.  
SPI Serial Clock. SCLK is a digital input.  
is a digital input.  
CS  
8
9
12  
SCLK  
SDIO  
VOUTN  
SPI Serial Data Input and Output. SDIO is a digital input and output.  
Negative RF Output (RFOUT) Signal. VOUTN is the negative side of the amplifier balanced  
differential outputs.  
14  
17  
18  
VOUTP  
VCMO  
VCMI  
Positive RFOUT Signal. VOUTP is the positive side of the amplifier balanced differential outputs.  
VCM for the RF Output Signal.  
VCM for the RF Input Signal.  
19  
EN  
Digital Input Power Enable.  
PAD1, PAD4  
PAD2, PAD3  
PAVCC  
MAVEE  
Positive Voltage Supply, 5.0 V.  
Negative Voltage Supply, −1.8 V.  
Rev. 0 | Page 9 of 22  
 
ADL5580  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5.0 V, negative VS = −1.8 V, input VCM = 1.7 V, output VCM = 0.5 V, RS = 100 Ω differential, RL = 50 Ω differential VOUT = 1.4 V p-p  
composite, CPEAK = 3, TA = 25°C, and signal spacing = 2 MHz for two-tone measurements, unless otherwise noted.  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
VINN TERMINATED  
VINP TERMINATED  
6
4
2
0
10  
0
10  
100  
1000  
10000  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Gain vs. Frequency for CPEAK = 0 Through CPEAK = 7,  
Supply = Nominal, Temperature = 25°C  
Figure 9. Single-Ended Gain vs. Frequency, Temperature = 25°C, CPEAK = 3,  
Supply = Nominal  
20  
25  
20  
15  
PAVCC = 5V, MAVEE = –1.8V  
PAVCC = 5.25V, MAVEE = –1.89V  
PAVCC = 4.75V, MAVEE = –1.71V  
18  
16  
14  
12  
10  
8
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
10  
25  
6
0
4
–5  
–10  
C
C
C
= 0  
= 3  
= 7  
PEAK  
PEAK  
PEAK  
2
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. Gain vs. Frequency over Supply, CPEAK = 3, Temperature = 25°C  
Figure 10. Output P1dB vs. Frequency over Temperature, Supply = Nominal,  
CPEAK = 0, CPEAK = 3, and CPEAK = 7  
25  
25  
20  
15  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
20  
15  
10  
5
PAVCC = 5V, MAVEE = –1.8V  
PAVCC = 5.25V, MAVEE = –1.89V  
PAVCC = 4.75V, MAVEE = –1.71V  
10  
5
0
–5  
C
C
C
= 0  
= 3  
= 7  
PEAK  
PEAK  
PEAK  
0
10  
–10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Gain vs. Frequency over Temperature, CPEAK = 3, Supply = Nominal  
Figure 11. Output P1dB vs. Frequency over Supply, Temperature = 25°C,  
CPEAK = 0, CPEAK = 3, and CPEAK = 7  
Rev. 0 | Page 10 of 22  
 
Data Sheet  
ADL5580  
16  
14  
12  
10  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
T
T
= +85°C  
= +25°C  
= –40°C  
PAVCC = 5V, MAVEE = –1.8V  
PAVCC = 5.25V, MAVEE = –1.89V  
PAVCC = 4.75V, MAVEE = –1.71V  
A
A
A
6
4
2
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Noise Figure vs. Frequency over Temperature,  
PEAK = 3, Supply = Nominal  
Figure 15. NSD, RTI vs. Frequency over Supply, Temperature = 25°C, CPEAK = 3  
C
16  
14  
12  
10  
8
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
PAVCC = 5V, MAVEE = –1.8V  
PAVCC = 5.25V, MAVEE = –1.89V  
PAVCC = 4.75V, MAVEE = –1.71V  
80  
70  
T
T
T
= +85°C  
= +25°C  
= –40°C  
60  
A
A
A
50  
40  
6
30  
20  
80  
4
10  
70  
0
60  
50  
40  
2
–10  
–20  
0
10  
100  
1000  
10000  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Noise Figure vs. Frequency over Supply,  
PEAK = 3, Temperature = 25°C  
Figure 16. OIP2 Lower and OIP2 Higher vs. Frequency over Temperature,  
Supply = Nominal, CPEAK = 7  
C
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
T
T
T
= +85°C  
= +25°C  
= –40°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
45  
40  
35  
30  
25  
20  
15  
10  
5
0
10  
100  
1000  
10000  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. NSD, RTI vs. Frequency over Temperature, Supply = Nominal,  
PEAK = 3  
Figure 17. OIP3 vs. Frequency over Temperature, Supply = Nominal, CPEAK = 7  
C
Rev. 0 | Page 11 of 22  
ADL5580  
Data Sheet  
–30  
–40  
–10  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–40  
–50  
30  
–50  
–60  
–20  
10  
–60  
–30  
–40  
–70  
–10  
–30  
–50  
–70  
–80  
–70  
–90  
–80  
–50  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–90  
–100  
–110  
–120  
–130  
–70  
–80  
RF SINGLE-ENDED INPUT = VINN, TA = +85°C  
RF SINGLE-ENDED INPUT = VINP, TA = +85°C  
RF SINGLE-ENDED INPUT = VINN, TA = +25°C  
RF SINGLE-ENDED INPUT = VINP, TA = +25°C  
RF SINGLE-ENDED INPUT = VINN, TA = –40°C  
RF SINGLE-ENDED INPUT = VINP, TA = –40°C  
–90  
–90  
–110  
–100  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
0
1000  
2000  
3000  
4000  
5000  
6000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. IMD2 Lower and IMD2 Higher vs. Frequency over Temperature,  
Supply = Nominal, CPEAK = 7  
Figure 21. HD2 Lower and HD3 Lower vs. Frequency over Temperature,  
PEAK = 7  
C
0
–40  
–10  
–20  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–30  
–40  
–70  
–80  
–50  
–60  
–90  
–100  
–110  
–120  
–130  
–70  
–80  
PAVCC = 4.75V, MAVEE = –1.71V, T = +25°C  
A
–90  
PAVCC = 5V, MAVEE = –1.8V, T = +25°C  
A
PAVCC = 5.25V, MAVEE = –1.89V, T = +25°C  
A
–100  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
FREQUENCY (MHz)  
0
1000  
2000  
3000  
4000  
5000  
6000  
FREQUENCY (MHz)  
Figure 19. IMD3 vs. Frequency over Temperature,  
Supply = Nominal and CPEAK = 7  
Figure 22. HD2 and HD3 vs. Frequency, Temperature = Nominal,  
Supply = Nominal, and CPEAK = 7  
50  
45  
40  
35  
30  
25  
20  
15  
10  
–40  
–10  
–20  
–50  
–60  
–30  
–40  
–70  
–80  
–50  
–60  
–90  
–100  
–110  
–120  
–130  
–70  
–80  
RF SINGLE-ENDED INPUT = VINN, T = +85°C  
A
RF SINGLE-ENDED INPUT = VINP, T = +85°C  
A
RF SINGLE-ENDED INPUT = VINN, T = +25°C  
A
PAVCC = 5V, MAVEE = –1.8V, T = +85°C  
A
RF SINGLE-ENDED INPUT = VINP, T = +25°C  
A
PAVCC = 5V, MAVEE = –1.8V, T = +25°C  
–90  
5
0
A
RF SINGLE-ENDED INPUT = VINN, T = –40°C  
A
PAVCC = 5V, MAVEE = –1.8V, T = –40°C  
A
RF SINGLE-ENDED INPUT = VINP, T = –40°C  
A
–100  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
FREQUENCY (MHz)  
0
1000  
2000  
3000  
4000  
5000  
6000  
FREQUENCY (MHz)  
Figure 20. Single-Ended OIP3 vs. Frequency over Temperature  
Figure 23. Single-Ended HD2 and HD3 vs. Frequency over Temperature  
Rev. 0 | Page 12 of 22  
Data Sheet  
ADL5580  
250  
200  
a
b
M1  
3
150  
100  
50  
CH3 1.0V/DIV  
M1 200mV  
50  
M10.0ns  
6.1ns  
A CH3  
960mV  
0
2
4
6
8
10  
12  
T
B/W: 4.0G  
FREQUENCY (GHz)  
Figure 27. Group Delay vs. Frequency  
Figure 24. Enable Time Domain Response (Channel 3 (3) Is the Enable  
Voltage, and Marker 1 (M1) Is the Output Voltage)  
–20  
–30  
2000  
C
C
C
= 0  
= 3  
= 7  
PEAK  
PEAK  
PEAK  
1500  
1000  
500  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–500  
–1000  
–1500  
–2000  
C
C
C
= 0  
= 3  
= 7  
PEAK  
PEAK  
PEAK  
–110  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1000  
10000  
TIME (ns)  
FREQUENCY (MHz)  
Figure 25. Large Signal Pulse Response  
Figure 28. SDD12 vs. Frequency (Red: CPEAK = 0, Green: CPEAK = 3,  
and Blue: CPEAK = 7)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
280  
–220  
279  
278  
277  
276  
275  
274  
273  
272  
–221  
–222  
–223  
–224  
–225  
–226  
–227  
–228  
–229  
–230  
271  
270  
0
10  
100  
1000  
10000  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 26. CMRR vs. Frequency  
Figure 29. PAVCC Current (PIACC) and MAVEE Current (MAIEE) vs.  
Temperature  
Rev. 0 | Page 13 of 22  
ADL5580  
Data Sheet  
1.0  
1.0  
2.0  
2.0  
H
0.5  
0.5  
H
5.0  
5.0  
0.2  
0.2  
10  
10  
20  
20  
0.5  
1.0  
2.0  
5.0  
10 20  
0.5  
1.0  
2.0  
5.0  
10 20  
–20  
–10  
–20  
–10  
–0.2  
–0.2  
–5.0  
–5.0  
–0.5  
–0.5  
–2.0  
–2.0  
–1.0  
FREQUENCY (1.000MHz TO 10.00GHz)  
–1.0  
FREQUENCY (1.000MHz TO 10.00GHz)  
Figure 30. SDD11 Impedance vs. Frequency (Red: CPEAK = 0, Green: CPEAK = 3,  
and Blue: CPEAK = 7) (SDD11 Is the Differential S11)  
Figure 31. SDD22 Impedance vs. Frequency (Red: CPEAK = 0, Green: CPEAK = 3,  
and Blue: CPEAK = 7)  
Rev. 0 | Page 14 of 22  
Data Sheet  
ADL5580  
THEORY OF OPERATION  
The ADL5580 is a fixed voltage gain (10 dB), fully differential,  
high linearity amplifier, and ADC driver that operates on a dual  
power supply voltage, +5 V and −1.8 V.  
bandwidth is critical, the ADL5580 offers tuning options  
through the peaking control bits, PRG_CPEAK_1P8V  
(Register 0x101, Bits[6:4]).  
The small signal −3 dB bandwidth is 10.0 GHz, and all of the  
integrated building blocks of the ADL5580 are programmable via  
the SPI.  
Enable  
The enable bits (EN_AMP_1P8V and EN_REF_1P8V) are  
located in Register 0x101, Bit 1 and Bit 0, respectively. These  
particular enable bits control enabling the amplifier (EN_  
AMP_1P8V) and the reference (EN_REF_1P8V). The ADL5580  
can be enabled or disabled by using the EN pin (Pin 19), a real-  
time external pin with no SPI latency  
RF INPUT AND OUTPUT WITH COMMON-MODE  
NETWORK  
The input impedance is 100 Ω differential, and the output  
impedance is 50 Ω differential, which allows users to drive  
ADCs like the AD9213 directly without any matching networks,  
that is at a 50 Ω differential input. For load conditions other  
than 50 Ω differential, external termination networks are  
required.  
PROGRAMMABILITY GUIDE  
Viewing the register map at the highest level, the registers are  
subdivided into three memory map functional blocks (see Table 6).  
See Table 9 for a complete list of all the registers on the  
ADL5580.  
The input and output termination blocks have four operation  
modes that allow users to set the input and output common-  
mode operation through Register 0x100, Bits[7:0], see Table 7.  
Table 6. Memory Map Functional Blocks  
Register Address  
Functional Blocks  
In Mode 00, the VCM terminal must be provided externally on  
the input termination and the output termination blocks.  
0x000 to 0x011  
0x100 to 0x101, 0x200 Signal path configuration, enable  
Analog Devices SPI configuration  
0x300  
Optional linearity optimization  
For Mode 01, the internal voltage generator (the voltage controlled  
by two bits) is activated, and the VCM terminal input and output  
termination blocks are driven to the internal reference voltage.  
If the internal reference voltage and the connecting termination  
blocks have a different VCM, the behavior of the system is  
undefined and must be avoided.  
SPI  
The SPI of the ADL5580 allows the user to configure the device  
for specific functions or operations via a 3-wire SPI port. It  
includes enable blocks, the bias current level, transfer function  
peaking, change input and output termination block operation  
modes, and change input and output VCM termination for  
certain operation modes. This SPI provides users with added  
flexibility and customization and consists of three control lines:  
Mode 10 is identical to Mode 01 except that the VCMO and  
VCMI pins are driven to the internal reference voltage to  
convey the internal VCM to the connecting termination blocks.  
Use Mode 11 to set the internal VCM termination to externally  
provide the voltage for the VCMx pins.  
CS  
SCLK, SDIO, and . The timing requirements for the SPI port  
are shown in Table 2.  
RF SIGNAL CHAIN  
The ADL5580 input logic level for the write cycle is with a 1.8 V  
logic level.  
The ADL5580 provides another level of control to optimize  
flatness or wider bandwidth. In applications where flatness is  
critical, the ADL5580 offers flatness optimization at the  
expense of the operating bandwidth. However, if the operating  
On a read cycle, the SDIO is configurable for 1.8 V (default) or  
3.3 V output levels by setting the SPI_1P8_3P3_CTRL bit  
(Register 0x200, Bit 0).  
Table 7. Common-Mode Setup Modes  
Register 0x100, Bits[7:6]  
Mode Output VCM (V)  
Register 0x100, Bits[5:4]  
Register 0x100, Bits[3:2]  
Input VCM (V)  
Register 0x100, Bits[1:0]  
Output Internal VCM VCMO Pin  
Input Internal VCM  
VCMI Pin  
Disconnect  
Disconnect  
Export  
00  
01  
10  
11  
0.41  
0.51  
0.60  
0.70  
Disabled  
Enabled  
Enabled  
Disabled  
Disconnect 1.39  
Disconnect 1.53  
Export  
Import  
Disabled  
Enabled  
Enabled  
Disabled  
1.67  
1.80  
Import  
Rev. 0 | Page 15 of 22  
 
 
 
 
 
 
 
ADL5580  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 32 shows the basic connection diagram, and Table 8  
describes the operation of the ADL5580.  
manner without any glitches to avoid issues with the internal  
digital logic.  
The ADL5580 is sensitive to power supplies. Power rail voltages  
must be brought up and applied in a monotonically increasing  
The ADL5580 can be ac-coupled, as shown in Figure 32, or the  
device can be dc-coupled if within the specified input and  
output VCM ranges.  
BASIC CONNECTIONS  
0.1µF  
0.1µF  
½ R  
S
VINP  
VINN  
2
4
14  
VOUTP  
+
BALANCED  
AC  
R
BALANCED  
LOAD  
ADL5580  
L
0.1µF  
0.1µF  
12  
17  
VOUTN  
VCMO  
½ R  
S
0.1µF  
EN  
19  
7
8
9
CS  
0.1µF  
GND  
SCLK  
SDIO  
1, 3, 5, 6, 10, 11, 13, 15, 16, 20  
18  
VCMI  
0.1µF  
PAD1  
PAD2  
PAD3  
PAD4  
PAVCC MAVEE MAVEE PAVCC  
0.1µF  
0.1µF  
+5V  
–1.8V  
Figure 32. Basic Connection Diagram  
Table 8. Basic Connections of the ADL5580  
Functional Blocks Pin No. Mnemonic Description  
Basic Connection  
5 V  
PAD1, PAD4  
PAVCC  
Amplifier analog supply  
voltage, 5 V  
Decouple each PAVCC pad via 100 pF, 1 µF capacitors  
to ground. Ensure that the decoupling capacitors are  
located close to the pads.  
−1.8 V  
RF Input  
PAD2, PAD3  
MAVEE  
Amplifier analog supply  
voltage, −1.8 V  
Decouple each MAVEE pad via 100 pF, 1 µF capacitors  
to ground. Ensure that the decoupling capacitors are  
located close to the pads.  
Differential RF inputs  
Positive RF Input  
Connect these pins to a differential configuration.  
2
4
18  
VINP  
VINN  
VCMI  
Negative RF Input  
VCM for the RF input signal  
Differential RF outputs  
Negative RF output  
Positive RF output  
VCM for the RF output signal  
Chip select active low  
SPI clock  
RF Output  
Serial Port  
Connect the RF outputs to a power meter, network  
analyzer, noise figure meter, or spectrum analyzer.  
12  
14  
17  
7
VOUTN  
VOUTP  
VCMO  
CS  
1.8 V to 3.3 V tolerant logic levels.  
1.8 V to 3.3 V tolerant logic levels.  
1.8 V to 3.3 V tolerant logic levels.  
1.8 V to 3.3 V tolerant logic levels.  
Connect the GND pins to the ground of the PCB.  
8
9
SCLK  
SDIO  
EN  
SPI data input output  
Amplifier enable  
AMP Control  
Ground  
19  
1, 3, 5, 6, 10, 11, GND  
13, 15, 16, 20  
Ground  
Rev. 0 | Page 16 of 22  
 
 
 
 
Data Sheet  
ADL5580  
Single-Ended Input to Differential Output  
INPUT AND OUTPUT INTERFACING  
The ADL5580 can also be configured in a single-ended input to  
differential output configuration. In this configuration, the gain  
of the device is reduced due to the application of the signal to  
only one side of the amplifier. The input and output 0.1 µF  
capacitors isolate the VCM on input and output pins from the  
source and balanced load.  
Differential Input to Differential Output  
The ADL5580 can be configured as a differential input to  
differential output driver (see Figure 33). The 50 Ω resistors,  
R1 and R2, combined with the 100 Ω input impedance provide  
a 50 Ω input match with the 1:1 balun. The input and output  
0.1 µF capacitors isolate the common-mode bias voltage (VBIAS  
on input and output pins from the source and balanced load.  
The load is 50 Ω to provide the expected ac performance.  
)
0.1µF  
0.1µF  
+
½ R  
½ R  
L
50Ω  
R2  
ADL5580  
0.1µF  
0.1µF  
L
AC  
0.1µF  
0.1µF  
1:1BALUN  
R1  
+
R2  
50Ω  
50Ω  
½ R  
½ R  
+ 5V  
L
ADL5580  
Figure 35. Single-Ended Input to Differential Output Configuration  
L
0.1µF  
0.1µF  
AC  
The ADL5580 is a high output linearity, fixed gain dc-coupled  
amplifier for multigigasample ADC interfacing. The open-loop  
architecture anticipates a 50 Ω differential dc output load. The  
maximum linear output swing is optimized for 1.4 V p-p  
differential.  
R1  
50Ω  
–1.8V  
Figure 33. Differential Input to Differential Output Configuration  
The differential gain of the ADL5580 is dependent on the source  
impedance and load, as shown in Figure 34.  
LAYOUT  
0.1µF  
Solder the four exposed power supply pads on the underside of  
the ADL5580 to a low thermal and electrical impedance power  
plane. These pads are typically soldered to exposed opens in the  
solder mask on the evaluation board. Notice the use of 4 via holes  
on each exposed power pad of the ADL5580-EVALZ. Connect  
these power vias to power layers on the evaluation board to  
maximize heat dissipation from the device package. For more  
information on the evaluation board, see the ADL5580-EVALZ  
product page.  
0.1µF  
0.1µF  
½ R  
S
+
R
ADL5580  
L
AC  
½ R  
S
0.1µF  
Figure 34. Differential Input Loading Circuit  
Ensure that the decoupling capacitors are located close to the  
supply voltage pins.  
Rev. 0 | Page 17 of 22  
 
 
 
 
ADL5580  
Data Sheet  
REGISTER SUMMARY  
Table 9.  
Reg  
Name  
Bits  
[7:0]  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
0x00  
0x00  
R/W  
R/W  
R/W  
0x000  
0x001  
ADI_SPI_CONFIG  
REG_0X0001  
SOFTRESET_  
LSB_FIRST_  
CSB_STALL  
ENDIAN_  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
LSB_FIRST  
SOFTRESET  
SINGLE_  
INTSTRUCTION  
MASTER_  
SLAVE_  
RB  
RESERVED  
SOFT_RESET  
MASTER_  
SLAVE_  
TRANSFER  
0x003  
0x004  
0x005  
0x00A  
0x00B  
0x010  
0x011  
0x100  
0x101  
0x200  
CHIPTYPE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
CHIPTYPE  
PRODUCT_ID_L  
PRODUCT_ID_H  
SCRATCHPAD  
SPI_REV  
0x01  
0x03  
0x00  
0x00  
0x00  
0x00  
0x00  
0x78  
0x33  
0x01  
R
PRODUCT_ID_L  
PRODUCT_ID_H  
SCRATCHPAD  
SPI_REV  
R
R
R/W  
R
VARIANT_FEOL  
BEOL_SIF  
FEOL  
SIF  
VARIANT  
BEOL  
R
R
GEN_CTL0  
PRG_OTRM_1P8V  
RESERVED  
MS_OTRM_1P8V  
PRG_CPEAK_1P8V  
RESERVED  
PRG_ITRM_1P8V  
RESERVED  
MS_ITRM_1P8V  
R/W  
R/W  
R/W  
GEN_CTL1  
EN_AMP_1P8V  
EN_REF_1P8V  
SPI_CTL  
SPI_1P8_  
3P3_CTRL  
Rev. 0 | Page 18 of 22  
 
 
Data Sheet  
ADL5580  
REGISTER DETAILS  
Address: 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG  
Table 10. Bit Descriptions for ADI_SPI_CONFIG  
Bit(s)  
Bit Name  
Description  
Reset  
Access  
7
SOFTRESET_  
Soft Reset  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0: reset asserted  
1: reset not asserted  
LSB First  
0: LSB first  
1: MSB first  
6
5
4
3
2
1
0
LSB_FIRST_  
ENDIAN_  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Endian  
0: little endian  
1: big endian  
SDO Active  
0: SDO inactive  
1: SDO active  
SDO Active  
0: SDO inactive  
1: SDO active  
Endian  
0: little endian  
1: big endian  
LSB First  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
LSB_FIRST  
SOFTRESET  
0: LSB first  
1: MSB first  
Soft Reset  
0: reset asserted  
1: reset not asserted  
Address: 0x001, Reset: 0x00, Name: REG_0X0001  
Table 11. Bit Descriptions for REG_0X0001  
Bit(s)  
7
6
Bit Name  
SINGLE_INTSTRUCTION  
CSB_STALL  
Description  
Single Instruction  
Chip Select ( ) Stall  
CS  
Reset  
0x00  
0x00  
Access  
R/W  
R/W  
5
MASTER_SLAVE_RB  
RESERVED  
Master Slave Read Back (RB)  
Reserved  
0x00  
0x00  
0x00  
0x00  
R/W  
R
[4:3]  
[2:1]  
0
SOFT_RESET  
Soft Reset  
R/W  
R/W  
MASTER_SLAVE_TRANSFER  
Master Slave Transfer  
Address: 0x003, Reset: 0x01, Name: CHIPTYPE  
Table 12. Bit Descriptions for CHIPTYPE  
Bit(s)  
[7:0]  
Bit Name  
CHIPTYPE  
Description  
Chip Type, Read Only  
Reset  
0x01  
Access  
R
Rev. 0 | Page 19 of 22  
 
ADL5580  
Data Sheet  
Address: 0x004, Reset: 0x03, Name: PRODUCT_ID_L  
Table 13. Bit Descriptions for PRODUCT_ID_L  
Bit(s)  
Bit Name  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID_L  
Product_ID_L, Lower 8 Bits  
0x03  
R
Address: 0x005, Reset: 0x00, Name: PRODUCT_ID_H  
Table 14. Bit Descriptions for PRODUCT_ID_H  
Bit(s)  
Bit Name  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID_H  
Product_ID_H, Higher 8 Bits  
0x00  
R
Address: 0x00A, Reset: 0x00, Name: SCRATCHPAD  
Table 15. Bit Descriptions for SCRATCHPAD  
Bit(s)  
[7:0]  
Bit Name  
SCRATCHPAD  
Description  
Scratch Pad  
Reset  
0x00  
Access  
R/W  
Address: 0x00B, Reset: 0x00, Name: SPI_REV  
Table 16. Bit Descriptions for SPI_REV  
Bit(s)  
[7:0]  
Bit Name  
SPI_REV  
Description  
SPI Register Map Revision  
Reset  
0x00  
Access  
R
Address: 0x010, Reset: 0x00, Name: VARIANT_FEOL  
Table 17. Bit Descriptions for VARIANT_FEOL  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
FEOL  
Description  
Front End of Line (FEOL)  
Variant  
Reset  
0x00  
0x00  
Access  
R
R
VARIANT  
Address: 0x011, Reset: 0x00, Name: BEOL_SIF  
Table 18. Bit Descriptions for BEOL_SIF  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
SIF  
Description  
Stress Intensity Factor (SIF) Version  
Back End of Line (BEOL) Version  
Reset  
0x00  
0x00  
Access  
R
R
BEOL  
Address: 0x100, Reset: 0x78, Name: GEN_CTL0  
Table 19. Bit Descriptions for GEN_CTL0  
Bit(s) Bit Name  
Description  
Reset Access  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
PRG_OTRM_1P8V These bits set up the output VCM  
.
0x1  
0x3  
0x2  
0x0  
R/W  
R/W  
R/W  
R/W  
MS_OTRM_1P8V  
PRG_ITRM_1P8V  
MS_ITRM_1P8V  
These bits set VCM to internal or external and set the VCMO pin definition.  
These bits set up the input VCM  
These bits set VCM to internal or external and set the VCMI pin definition.  
.
Rev. 0 | Page 20 of 22  
Data Sheet  
ADL5580  
Address: 0x101, Reset: 0x33, Name: GEN_CTL1  
Table 20. Bit Descriptions for GEN_CTL1  
Bit(s) Bit Name  
Description  
Reserved.  
Reset  
Access  
R
7
RESERVED  
0x0  
0x3  
0x0  
0x1  
0x1  
[6:4]  
[3:2]  
1
PRG_CPEAK_1P8V  
RESERVED  
These bits set up CPEAK  
Reserved.  
.
R/W  
R
EN_AMP_1P8V  
EN_REF_1P8V  
Enable Amplifier Block.  
Enable Reference Block.  
R/W  
R/W  
0
Address: 0x200, Reset: 0x01, Name: SPI_CTL  
Table 21. Bit Descriptions for SPI_CTL  
Bit(s)  
[7:1]  
0
Bit Name  
RESERVED  
Description  
Reserved  
Reset  
0x0  
Access  
R
SPI_1P8_3P3_CTRL  
SPI Supply Control  
0: 1.8 V readback  
1: 3.3 V readback  
0x1  
R/W  
Rev. 0 | Page 21 of 22  
ADL5580  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.27  
0.24  
PIN 1  
INDICATOR  
0.39  
0.36  
0.33  
0.275  
PIN 1  
CORNER AREA  
REF  
20  
16  
15  
1
0.80 BSC  
SQ  
2.00 REF  
SQ  
0.48  
BSC  
11  
5
1.00  
REF  
0.50  
BSC  
6
10  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.96  
BSC  
0.52  
0.45  
0.38  
0.89  
0.81  
0.73  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.396  
0.356  
0.316  
SECTION OF THIS DATA SHEET  
Figure 36. 20-Terminal Land Grid Array [LGA]  
(CC-20-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADL5580BCCZ  
ADL5580BCCZ-R7  
ADL5580-EVALZ  
AD-FMCADC20-DC-EBZ  
AD-FMCADC20-EBZ  
Temperature Range Package Description  
Package Option  
CC-20-7  
CC-20-7  
−40°C to +85°C  
−40°C to +85°C  
20-Terminal Land Grid Array [LGA]  
20-Terminal Land Grid Array [LGA]  
Evaluation Board  
DC-Coupled Combination AD9213 and ADL5580 Reference Design  
AC-Coupled Combination AD9213 and ADL5580 Reference Design  
1 Z = RoHS-Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17004-12/20(0)  
Rev. 0 | Page 22 of 22  
 
 

相关型号:

ADL5580BCCZ-R7

Fully Differential, 10 GHz ADC Driver with 10 dB Gain
ADI

ADL5590

869 MHz to 1990 MHz Quadrature Modulators
ADI

ADL5590ACPZ-R7

869 MHz to 1990 MHz Quadrature Modulators
ADI

ADL5590_15

869 MHz to 1990 MHz Quadrature Modulators
ADI

ADL5591

869 MHz to 1990 MHz Quadrature Modulators
ADI

ADL5591ACPZ-R7

869 MHz to 1990 MHz Quadrature Modulators
ADI

ADL5591_15

869 MHz to 1990 MHz Quadrature Modulators
ADI

ADL5592

250 MHz to 2400 MHz RF Variable Gain Amplifier
ADI

ADL5592-EVALZ

250 MHz to 2400 MHz RF Variable Gain Amplifier
ADI

ADL5592-EVALZ1

250 MHz to 2400 MHz RF Variable Gain Amplifier
ADI

ADL5592ACPZ

250 MHz to 2400 MHz RF Variable Gain Amplifier
ADI

ADL5592ACPZ-R7

250 MHz to 2400 MHz RF Variable Gain Amplifier
ADI