ADL5811 [ADI]

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier; 高IP3 , 700 MHz至2800 MHz的双平衡无源混频器, IF放大器和宽带LO放大器
ADL5811
型号: ADL5811
厂家: ADI    ADI
描述:

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
高IP3 , 700 MHz至2800 MHz的双平衡无源混频器, IF放大器和宽带LO放大器

放大器
文件: 总28页 (文件大小:639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High IP3, 700 MHz to 2800 MHz, Double Balanced,  
Passive Mixer, IF Amplifier, and Wideband LO Amplifier  
ADL5811  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
RF frequency: 700 MHz to 2800 MHz continuous  
LO frequency: 250 MHz to 2800 MHz, high-side or  
low-side inject  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NC  
RFCT  
NC  
NC  
IF range: 30 MHz to 450 MHz  
NC  
Power conversion gain of 7.5 dB at 1900 MHz  
SSB noise figure of 10.7 dB at 1900 MHz  
Input IP3 of 27.5 dBm at 1900 MHz  
Input P1dB of 12.7 dBm at 1900 MHz  
Typical LO drive of 0 dBm  
ADL5811  
NC  
RFIN  
NC  
LOIP  
LOIN  
LE  
NC  
SERIAL  
PORT  
INTERFACE  
Single-ended, 50 Ω RF port  
BIAS  
GEN  
NC  
DATA  
CLK  
Single-ended or balanced LO input port  
Single-supply operation: 3.6 V to 5.0 V  
Serial port interface control on all functions  
Exposed paddle 5 mm × 5 mm, 32-lead LFCSP package  
NC  
9
10  
11  
12  
13  
14  
15  
16  
Figure 1.  
APPLICATIONS  
Multiband/multistandard cellular base station receivers  
Wideband radio link diversity downconverters  
Multimode cellular extenders and broadband receivers  
GENERAL DESCRIPTION  
The ADL5811 uses revolutionary new broadband, square  
wave limiting, local oscillator (LO) amplifiers to achieve an  
unprecedented radio frequency (RF) bandwidth of 700 MHz  
to 2800 MHz. Unlike conventional narrow-band sine wave LO  
amplifier solutions, this permits the LO to be applied either  
above or below the RF input over an extremely wide bandwidth.  
Because energy storage elements are not used, the dc current  
consumption also decreases with decreasing LO frequency.  
wideband applications where in-band blocking signals may  
otherwise result in the degradation of dynamic range. Blocker  
noise figure performance is comparable to narrow-band passive  
mixer designs. High linearity IF buffer amplifiers follow the  
passive mixer cores, yielding typical power conversion gains of  
7.5 dB, and can be used with a wide range of output  
impedances. For low voltage applications, the ADL5811 is  
capable of operation at voltages down to 3.6 V with  
substantially reduced current. Two logic bits are provided to  
power down (<1.5 mA) the circuit when desired.  
The ADL5811 uses highly linear, doubly balanced, passive  
mixer cores along with integrated RF and LO balancing circuits  
to allow single-ended operation. The ADL5811 incorporates  
programmable RF baluns, allowing optimal performance over a  
700 MHz to 2800 MHz RF input frequency. The balanced passive  
mixer arrangement provides outstanding LO-to-RF and LO-to-  
IF leakages, excellent RF-to-IF isolation, and excellent  
All features of the ADL5811 are controlled via a 3-wire serial  
port interface, resulting in optimum performance and  
minimum external components.  
The ADL5811 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 32-lead, 5mm × 5mm,  
LFCSP package and operates over a −40°C to +85°C  
intermodulation performance over the full RF bandwidth.  
The balanced mixer cores also provide extremely high input  
linearity, allowing the device to be used in demanding  
temperature range. An evaluation board is also available.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADL5811  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF Subsystem.............................................................................. 20  
LO Subsystem ............................................................................. 21  
Applications Information.............................................................. 22  
Basic Connections...................................................................... 22  
IF Port .......................................................................................... 22  
Bias Resistor Selection ............................................................... 22  
VGS Programming .................................................................... 22  
Low-Pass Filter Programming.................................................. 23  
RF Balun Programming ............................................................ 23  
Register Structure........................................................................... 24  
Evaluation Board ............................................................................ 25  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
3.6 V Performance...................................................................... 16  
Spurious Performance................................................................ 17  
Circuit Description......................................................................... 20  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
ADL5811  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings,  
unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB broadband via serial port  
15  
50  
dB  
Ω
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
700  
2800  
450  
Differential impedance, f = 200 MHz  
Externally generated  
260||1.0  
Ω||pF  
MHz  
V
30  
VS  
LO INTERFACE  
LO Power  
Return Loss  
−6  
0
13  
50  
+10  
dBm  
dB  
Ω
Input Impedance  
LO Frequency Range  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Low-side or high-side LO  
250  
2800  
MHz  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
7.5  
dB  
dB  
dB  
dB  
13.9  
10.7  
20.7  
SSB Noise Figure Under Blocking  
5 dBm blocker present 10 MHz from wanted RF input,  
LO source filtered  
Input Third-Order Intercept  
Input Second-Order Intercept  
fRF1 = 1900 MHz, fRF2 = 1901 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
fRF1 = 1900 MHz, fRF2 = 2000 MHz, fLO = 1697 MHz,  
each RF tone at −10 dBm  
27.5  
62  
dBm  
dBm  
Input 1 dB Compression Point  
LO-to-IF Output Leakage  
LO-to-RF Input Leakage  
RF-to-IF Output Isolation  
IF/2 Spurious  
12.7  
−40  
−25  
26  
−73  
−75  
dBm  
dBm  
dBm  
dB  
dBc  
dBc  
Unfiltered IF output  
−10 dBm input power  
−10 dBm input power  
IF/3 Spurious  
POWER INTERFACE  
Supply Voltage, VS  
3.6  
5
5.5  
V
Quiescent Current  
Power-Down Current  
Resistor programmable IF current  
185  
1.4  
mA  
mA  
1 Supply voltage must be applied from external circuit through choke inductors.  
Rev. 0 | Page 3 of 28  
 
 
ADL5811  
TIMING CHARACTERISTICS  
Low logic level ≤ 0.4 V, and high logic level ≥ 1.4 V.  
Table 2. Serial Interface Timing  
Parameter  
Limit  
Unit  
Test Conditions/Comments  
LE setup time  
DATA-to-CLK setup time  
DATA-to-CLK hold time  
CLK high duration  
CLK low duration  
CLK-to-LE setup time  
LE pulse width  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
20  
10  
10  
25  
25  
10  
20  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
DB22  
DATA  
LE  
(CONTROL BIT C2)  
t6  
t7  
t1  
Figure 2. Timing Diagram  
Rev. 0 | Page 4 of 28  
 
ADL5811  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
Supply Voltage, VPOS  
5.5 V  
CLK, DATA, LE  
5.5 V  
IF Output Bias  
6.0 V  
RF Input Power  
LO Input Power  
20 dBm  
13 dBm  
1.1 W  
25°C/W  
150°C  
ESD CAUTION  
Internal Power Dissipation  
θJA (Exposed Paddle Soldered Down)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
Rev. 0 | Page 5 of 28  
 
ADL5811  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
RFCT  
NC  
RFIN  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
24 NC  
23  
22 NC  
21 LOIP  
20 LOIN  
NC  
ADL5811  
TOP VIEW  
(Not to Scale)  
19  
LE  
18 DATA  
17 CLK  
NOTES  
1. NC = NO CONNECT. CAN BE GROUNDED.  
2. EXPOSED PAD MUST BE CONNECTED  
TO GROUND.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 3, 5 to 8, 22 to 24, 27, 30  
2
4
NC  
RFCT  
RFIN  
No Connect. Can be grounded.  
RF Balun Center Tap (AC Ground).  
RF Input. Should be ac-coupled.  
9, 11, 13, 15  
10, 12, 14, 16, 25  
17, 18, 19  
20  
VLO4, VLO3, VLO2, VLO1  
Positive Supply Voltages for LO Amplifier.  
Ground.  
Serial Port Interface Control.  
COMM  
CLK, DATA, LE  
LOIN  
Ground Return for LO Input.  
21  
26  
LOIP  
IFGD  
LO Input. Should be ac-coupled.  
Supply Return for IF Amplifier. Must be grounded.  
28, 29  
IFOP, IFON  
IF Differential Open-Collector Outputs. Should be pulled up to VCC using  
external inductors.  
31  
32  
IFGM  
VPIF  
EPAD  
IF Amplifier Bias Control.  
Supply Voltage for IF Amplifier.  
Exposed pad must be connected to ground.  
Rev. 0 | Page 6 of 28  
 
ADL5811  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings,  
unless otherwise noted.  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
90  
80  
70  
60  
50  
40  
30  
20  
10  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 4. Supply Current vs. RF Frequency  
Figure 7. Input IP2 vs. RF Frequency  
20  
18  
16  
14  
12  
10  
8
10  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
8
7
6
5
6
4
4
3
2
0
2
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 8. Input P1dB vs. RF Frequency  
Figure 5. Power Conversion Gain vs. RF Frequency  
16  
15  
14  
13  
12  
11  
10  
9
45  
40  
35  
30  
25  
20  
15  
10  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
8
7
6
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 9. SSB Noise Figure vs. RF Frequency  
Figure 6. Input IP3 vs. RF Frequency  
Rev. 0 | Page 7 of 28  
 
ADL5811  
235  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
RF = 1900MHz  
RF = 1900MHz  
V
V
V
= 4.75V  
= 5.00V  
= 5.25V  
V
V
V
= 4.75V  
= 5.00V  
= 5.25V  
POS  
POS  
POS  
POS  
POS  
POS  
225  
215  
205  
195  
185  
175  
165  
155  
145  
135  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 10. Supply Current vs. Temperature  
Figure 13. Input IP2 vs. Temperature  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
20  
18  
16  
14  
12  
10  
8
RF = 1900MHz  
RF = 1900MHz  
V
V
V
= 4.75V  
= 5.00V  
= 5.25V  
V
V
V
= 4.75V  
= 5.00V  
= 5.25V  
POS  
POS  
POS  
POS  
POS  
POS  
6
4
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 14. Input P1dB vs. Temperature  
Figure 11. Power Conversion Gain vs. Temperature  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
15  
14  
13  
12  
11  
10  
9
RF = 1900MHz  
RF = 1900MHz  
V
V
V
= 4.75V  
= 5.00V  
= 5.25V  
V
V
V
= 4.75V  
= 5.00V  
= 5.25V  
POS  
POS  
POS  
POS  
POS  
POS  
8
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 12. Input IP3 vs. Temperature  
Figure 15. SSB Noise Figure vs. Temperature  
Rev. 0 | Page 8 of 28  
ADL5811  
200  
195  
190  
185  
180  
175  
170  
165  
160  
80  
70  
60  
50  
40  
30  
20  
10  
0
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
T
= 25°C  
T
= 25°C  
A
A
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
30  
80  
130  
180  
230  
280  
330  
380  
430  
30  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Supply Current vs. IF Frequency  
Figure 19. Input IP2 vs. IF Frequency  
11  
10  
9
18  
16  
14  
12  
10  
8
T
= 25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
T
= 25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
A
A
8
7
6
6
5
4
4
30  
2
30  
80  
130  
180  
230  
280  
330  
380  
430  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Power Conversion Gain vs. IF Frequency  
Figure 20. Input P1dB vs. IF Frequency  
30  
39  
28  
27  
26  
25  
24  
23  
22  
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
RF = 900MHz  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
T
= 25°C  
A
A
RF = 1900MHz  
RF = 2500MHz  
6
4
30  
30  
80  
130  
180  
230  
280  
330  
380  
430  
80  
130  
180  
230  
280  
330  
380  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 21. SSB Noise Figure vs. IF Frequency  
Figure 18. Input IP3 vs. IF Frequency  
Rev. 0 | Page 9 of 28  
ADL5811  
11  
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
T
= 25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
A
A
10  
9
8
7
6
5
4
6
3
4
6
4  
2  
0
2
4
6
8
10  
10  
10  
6  
4  
2  
0
2
4
6
8
10  
LO POWER (dBm)  
LO POWER (dBm)  
Figure 22. Power Conversion Gain vs. LO Power  
Figure 25. Input P1dB vs. LO Power  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
= 25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
A
A
A
A
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
–6  
–4  
–2  
0
2
4
6
8
RF FREQUENCY (MHz)  
LO POWER (dBm)  
Figure 23. Input IP3 vs. LO Power  
Figure 26. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm  
80  
70  
60  
50  
40  
30  
20  
10  
–55  
T
= 25°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
–60  
–65  
–70  
–75  
–80  
–85  
–90  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
6
4  
2  
0
2
4
6
8
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 24. Input IP2 vs. LO Power  
Figure 27. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm  
Rev. 0 | Page 10 of 28  
ADL5811  
500  
400  
300  
200  
100  
0
10  
100  
T
= 25°C  
RF = 900MHz  
MEAN: 7.5  
SD: 0.12%  
A
RF = 1900MHz  
RF = 2500MHz  
8
6
4
2
0
80  
60  
40  
20  
0
7.1  
7.3  
7.5  
7.7  
7.9  
30  
80  
130  
180  
230  
280  
330  
380  
430  
CONVERSION GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 28. Conversion Gain Distribution  
Figure 31. IF Output Impedance (R Parallel C Equivalent)  
100  
0
MEAN: 27.5  
SD: 0.36%  
T = +25°C  
A
–5  
80  
60  
40  
20  
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
700 900 1100 1300 1500 1700 1900 2100 2300 2500  
2700  
23.5  
25.5  
27.5  
29.5  
31.5  
RF FREQUENCY (MHz)  
INPUT IP3 (dBm)  
Figure 32. RF Port Return Loss, Fixed IF vs. RF Frequency  
Figure 29. Input IP3 Distribution  
0
–3  
100  
MEAN: 11.68  
SD: 0.36%  
T = 25°C  
A
80  
60  
40  
20  
0
–6  
–9  
–12  
–15  
–18  
–21  
–24  
10.5  
11.0  
11.5  
12.0  
12.5  
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500  
INPUT P1dB (dBm)  
LO FREQUENCY (MHz)  
Figure 33. LO Return Loss  
Figure 30. Input P1dB Distribution  
Rev. 0 | Page 11 of 28  
 
ADL5811  
0
T
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
= –40°C  
= +25°C  
= +85°C  
2LO-TO-IF  
2LO-TO-RF  
T
= 25°C  
A
T
T
A
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 34. RF-to-IF Isolation vs. RF Frequency  
Figure 37. 2XLO Leakage vs. LO Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T = 25°C  
A
3LO-TO-IF  
3LO-TO-RF  
A
A
A
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500  
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 38. 3XLO Leakage vs. LO Frequency  
Figure 35. LO-to-IF Leakage vs. LO Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
T = +25°C  
A
A
A
A
NOISE FIGURE  
8
7
GAIN  
6
8
5
7
VGS = 0  
VGS = 1  
VGS = 2  
VGS = 3  
VGS = 4  
VGS = 5  
VGS = 6  
VGS = 7  
4
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 36. LO-to-RF Leakage vs. LO Frequency  
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency  
for All VGS Settings  
Rev. 0 | Page 12 of 28  
 
ADL5811  
35  
30  
25  
20  
15  
10  
5
27  
24  
21  
18  
15  
12  
9
240  
220  
200  
180  
160  
140  
120  
100  
VGS = 0  
VGS = 1  
VGS = 2  
VGS = 3  
VGS = 4  
VGS = 5  
VGS = 6  
VGS = 7  
T = 25°C  
A
T
= +25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
A
INPUT IP3  
INPUT P1dB  
0
6
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800  
IF BIAS RESISTOR VALUE ()  
Figure 40. Input IP3 and Input P1dB vs. RF Frequency for All VGS Settings  
Figure 42. Supply Current vs. IF Bias Resistor Value  
35  
20  
18  
16  
14  
12  
10  
8
32  
RF = 900MHz  
T
= 25°C  
RF = 900MHz  
RF = 1900MHz  
RF = 2500MHz  
A
RF = 1900MHz  
RF = 2500MHz  
30  
INPUT IP3  
28  
24  
20  
16  
12  
8
25  
20  
15  
10  
5
NOISE FIGURE  
GAIN  
6
4
T
= +25°C  
5 10  
A
4
0
0
30  
25  
20  
15  
10  
5  
0
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800  
BLOCKER POWER (dBm)  
IF BIAS RESISTOR VALUE ()  
Figure 41. SSB Noise Figure vs. 10 MHz Offset Blocker Level  
Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.  
IF Bias Resistor Value  
Rev. 0 | Page 13 of 28  
 
 
 
ADL5811  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
11  
RFB = 0  
RFB = 0  
RFB = 1  
RFB = 2  
RFB = 3  
RFB = 4  
RFB = 5  
RFB = 6  
RFB = 7  
T
= +25°C  
T
= +25°C  
A
A
RFB = 1  
RFB = 2  
RFB = 3  
RFB = 4  
RFB = 5  
RFB = 6  
RFB = 7  
10  
9
8
7
6
5
4
3
2
1
8
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 46. Input P1dB vs. RF Frequency for All RFB Settings  
Figure 44. Conversion Gain vs. RF Frequency for All RFB Settings  
16  
32  
RFB = 0  
T
= +25°C  
RFB = 0  
A
T
= +25°C  
RFB = 1  
RFB = 2  
RFB = 3  
RFB = 4  
RFB = 5  
RFB = 6  
RFB = 7  
A
RFB = 1  
RFB = 2  
RFB = 3  
RFB = 4  
RFB = 5  
RFB = 6  
RFB = 7  
15  
14  
13  
12  
11  
10  
9
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
8
7
6
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 47. SSB Noise Figure vs. RF Frequency for All RFB Settings  
Figure 45. Input IP3 vs. RF Frequency for All RFB Settings  
Rev. 0 | Page 14 of 28  
 
 
ADL5811  
21  
19  
17  
15  
13  
11  
9
12  
10  
8
LPF = 0  
LPF = 1  
LPF = 2  
LPF = 3  
LPF = 0  
LPF = 1  
LPF = 2  
LPF = 3  
T
= +25°C  
T
= +25°C  
A
A
RFB0  
RFB0  
6
RFB7  
4
2
RFB7  
0
7
5
–2  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 50. Input P1dB vs. RF Frequency for All LPF Settings at RFB7 and RFB0  
Figure 48. Conversion Gain vs. RF Frequency for All LPF Settings at  
RFB7 and RFB0  
20  
35  
LPF = 0  
LPF = 1  
LPF = 2  
LPF = 3  
T
= +25°C  
T
= +25°C  
A
A
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
18  
16  
14  
12  
10  
8
RFB0  
RFB0  
RFB7  
RFB7  
6
LPF = 0  
LPF = 1  
LPF = 2  
LPF = 3  
4
2
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 51. SSB Noise Figure vs. RF Frequency for  
All LPF Settings at RFB7 and RFB0  
Figure 49. Input IP3 vs. RF Frequency for All LPF Settings at RFB7 and RFB0  
Rev. 0 | Page 15 of 28  
 
 
ADL5811  
3.6 V PERFORMANCE  
VS = 3.6 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 800 Ω, ZO = 50 Ω, optimum SPI settings,  
unless otherwise noted.  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
70  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 52. Supply Current vs. RF Frequency at 3.6 V  
Figure 55. Input IP2 vs. RF Frequency at 3.6 V  
14  
12  
10  
8
24  
21  
18  
15  
12  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
6
4
6
2
3
0
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 56. Input P1dB vs. RF Frequency at 3.6 V  
Figure 53. Power Conversion Gain vs. RF Frequency at 3.6 V  
24  
21  
18  
15  
12  
9
35  
30  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
6
3
0
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 57. SSB Noise Figure vs. RF Frequency at 3.6 V  
Figure 54. Input IP3 vs. RF Frequency at 3.6 V  
Rev. 0 | Page 16 of 28  
 
ADL5811  
SPURIOUS PERFORMANCE  
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in  
dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement  
system = −100 dBm.  
5 V Performance  
VS = 5 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.  
Table 5. RF = 900 MHz, LO = 697 MHz  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−54.2  
0.0  
−31.4  
−38.7  
−69.6  
−41.5  
−19.6  
−53.4  
−29.4  
−51.6  
−72.5  
−58.5  
−38.0  
−82.3  
−49.3  
−62.9  
−93.5  
−70.5  
−52.4  
−97.4  
−52.9  
−70.2  
−93.0  
1
−37.8  
−65.0  
−94.0  
−57.9  
−98.8  
2
−54.4  
−86.7  
<−100 <−100  
3
<−100 −91.0  
<−100 −95.3  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
Table 6. RF = 1900 MHz, LO = 1697 MHz  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−34.9  
0.0  
−30.7 −66.0  
−56.6 −51.3  
−71.5 −85.2  
1
−33.2  
−75.0  
−77.8  
−80.3  
−94.8  
2
−78.5  
<−100  
3
<−100 <−100 <−100 −89.5  
<−100 <−100 <−100  
<−100  
<−100 <−100  
4
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
Rev. 0 | Page 17 of 28  
 
ADL5811  
Table 7. RF = 2500 MHz, LO = 2297 MHz  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−28.6  
0.0  
−45.7  
−53.0  
−60.5  
1
−32.5  
−91.2  
−52.4  
−80.8  
2
−82.8  
−97.3  
3
<−100 <−100 −87.7  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100  
4
5
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
3.6 V Performance  
VS = 3.6 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.  
Table 8. RF = 900 MHz, LO = 697 MHz  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−45.5  
0.0  
−35.1  
−37.3  
−78.2  
−44.1  
−18.9  
−54.8  
−30.2  
−54.8  
−62.8  
−89.6  
−49.9  
−40.4  
−83.1  
−79.4  
−48.7  
−62.4  
−78.3  
−66.6  
−53.2  
−96.1  
−66.5  
−73.0  
−79.5  
1
−41.0  
−59.2  
−90.0  
−66.8  
−96.2  
2
−54.7  
−81.9  
−96.2  
<−100  
3
<−100 −73.9  
<−100 −95.3  
<−100 <−100 <−100 <−100 <−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
Rev. 0 | Page 18 of 28  
ADL5811  
Table 9. RF = 1900 MHz, LO = 1697 MHz  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−46.6  
0.0  
−30.5  
−57.0  
−69.2  
−78.5  
−53.8  
−72.8  
1
−33.4  
−68.9  
−79.5  
−75.2  
−94.0  
2
−77.2  
<−100  
3
<−100 <−100 <−100 −74.4  
<−100 <−100  
4
<−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
5
6
7
N
8
9
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
Table 10. RF = 2500 MHz, LO = 2297 MHz  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
−30.0  
0.0  
−51.1  
−53.6  
−65.5  
1
−32.1  
−89.0  
−51.7  
−72.9  
2
−78.0  
−88.2  
3
<−100 <−100 −73.5  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100  
4
5
6
7
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
Rev. 0 | Page 19 of 28  
ADL5811  
CIRCUIT DESCRIPTION  
The ADL5811 consists of two primary components: the RF  
subsystem and the LO subsystem. The combination of design,  
process, and packaging technology allows the functions of these  
subsystems to be integrated into a single die, using mature  
packaging and interconnection technologies to provide a high  
performance device with excellent electrical, mechanical, and  
thermal properties. The wideband frequency response and  
flexible frequency programming simplifies the receiver design,  
saves on-board space, and minimizes the need for external  
components.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input in accordance with the output of the  
LO subsystem. The passive mixer is essentially a balanced, low  
loss switch that adds minimum noise to the frequency translation.  
The only noise contribution from the mixer is due to the resistive  
loss of the switches, which is in the order of a few ohms.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the input  
of the IF amplifier, where high peak signal levels can compromise  
the compression and intermodulation performance of the  
system. This termination is accomplished by the addition of a  
programmable low-pass filter network between the IF amplifier  
and the mixer and in the feedback elements in the IF amplifier.  
The RF subsystem consists of an integrated, tunable, low loss RF  
balun; a double balanced, passive MOSFET mixer; a tunable sum  
termination network; and an IF amplifier.  
The LO subsystem consists of a multistage limiting LO amplifier.  
The purpose of the LO subsystem is to provide a large, fixed  
amplitude, balanced signal to drive the mixer independent of  
the level of the LO input. A block diagram of the device is  
shown in Figure 58.  
The IF amplifier is a balanced feedback design that simultaneously  
provides the desired gain, noise figure, and input impedance  
that is required to achieve the overall performance. The balanced  
open-collector output of the IF amplifier, with an impedance  
modified by the feedback within the amplifier, permits the  
output to be connected directly to a high impedance filter, a  
differential amplifier, or an analog-to-digital converter (ADC)  
input while providing optimum second-order intermodulation  
suppression. The differential output impedance of the IF amplifier  
is approximately 200 Ω. If operation in a 50 Ω system is desired,  
the output can be transformed to 50 Ω by using a 4:1 transformer  
or an LC impedance matching network.  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NC  
RFCT  
NC  
NC  
NC  
ADL5811  
NC  
RFIN  
NC  
LOIP  
LOIN  
LE  
NC  
SERIAL  
PORT  
INTERFACE  
BIAS  
GEN  
NC  
DATA  
CLK  
The intermodulation performance of the design is generally  
limited by the IF amplifier. The IP3 performance can be optimized  
by adjusting the low-pass filter between the mixer and the IF  
amplifier. Further optimization can be made by adjusting the IF  
current with an external resistor. Figure 42 and Figure 43  
illustrate how various IF resistors affect the performance with a 5 V  
supply. Additionally, dc current can be saved by increasing the  
IF resistor. It is permissible to reduce the IF amplifiers dc  
supply voltage to as low as 3.3 V, further reducing the dissipated  
power of the part. (Note that no performance enhancement is  
obtained by reducing the value of these resistors, and excessive  
dc power dissipation may result.)  
NC  
9
10  
11  
12  
13  
14  
15  
16  
Figure 58. Block Diagram  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a tunable, low loss, unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, it is recommended that a blocking capacitor be  
used to avoid running excessive dc current through the part.  
The RF balun can easily support an RF input frequency range of  
700 MHz to 2800 MHz. This balun is tuned over the frequency  
range by SPI controlled switched capacitor networks at the  
input and output of the RF balun.  
Because the mixer is bidirectional, the tuning of the RF and IF  
ports is linked and it is possible for the user to optimize gain,  
noise figure, IP3, and impedance match via the SPI. This feature  
permits high performance operation and is achieved entirely  
using SPI control. Additionally, the performance of the mixer can  
be improved by setting the optimum gate voltage on the passive  
mixer, which is also controlled by the SPI to enable optimum  
performance of the part. See the Applications Information  
section for examples of this tuning.  
Rev. 0 | Page 20 of 28  
 
 
ADL5811  
obtained with a 0 dBm input level; however, the circuit continues to  
function at considerably lower levels of LO input power.  
LO SUBSYSTEM  
The LO amplifier is designed to provide a large signal level to  
the mixer to obtain optimum intermodulation and compression  
performance. The resulting LO amplifier provides very high  
performance over a wide range of LO input frequencies.  
The performance of this amplifier is critical in achieving a high  
intercept passive mixer without degrading the noise floor of the  
system. This is a critical requirement in an interferer rich  
environment, such as cellular infrastructure, where blocking  
interferers can limit mixer performance. Blocking dynamic  
range can benefit from a higher level of LO drive, which pushes  
the LO amplifier stages harder into compression and causes them  
to switch harder and to limit the small signal gain of the chain.  
Both of these conditions are beneficial to low noise figure under  
blocking. NF under blocking can be improved several decibels  
for LO input power levels above 0 dBm.  
The ideal waveshape for switching the passive mixer is a square  
wave at the LO frequency to cause the mixer to switch through  
its resistive region (from on to off and off to on) as rapidly as  
possible. While it has always been possible to generate such a  
square wave, the amount of dc current required to generate a  
large amplitude square wave at high frequencies has made it  
impractical to create such a mixer. Novel circuitry within the  
ADL5811 permits the generation of a near-square wave output  
at frequencies of up to 2800 MHz with dc current that compares  
favorably with that employed by narrow-band passive mixers.  
The LO amplifier topology inherently minimizes the dc current  
based on the LO operating voltage and the LO operating frequency.  
It is permissible to reduce the LO supply voltage down as low as  
3.6 V, which drops the dc current rapidly. The mixer dynamic  
range varies accordingly with the LO supply voltage. No external  
biasing resistor is required for optimizing the LO amplifier.  
The input stages of the LO amplifier provide common-mode  
rejection, permitting the LO input to be driven either single ended  
or balanced. For a single-ended input, either LOIP or LOIN can  
be grounded. It is desirable to dc block the LO inputs to avoid  
damaging the part by the accidental application of a large dc  
voltage to the part. In addition, the LO inputs are internally dc  
blocked.  
In addition, the ADL5811 has a power-down mode that can be  
used with any supply voltage applied to the part.  
All of the SPI inputs are designed to work with any logic family that  
provides a Logic 0 input level of less than 0.4 V and a Logic 1 input  
level that exceeds 1.4 V.  
Because the LO amplifier is inherently wideband, the ADL5811  
can be driven with either high-side or low-side LO by simply  
setting the optimum RF balun and LPF inputs to the SPI.  
All pins, including the RF pins, are ESD protected and have been  
tested up to a level of 2000 V HBM and 1250 V CDM.  
The LO amplifier converts a variable level, single or balanced input  
signal (−6 dBm to +10 dBm) to a hard voltage limited, balanced  
signal internally to drive the mixer. Excellent performance can be  
Rev. 0 | Page 21 of 28  
 
ADL5811  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
BIAS RESISTOR SELECTION  
An external resistor, R1, is used to adjust the bias current of the  
integrated amplifier at the IF terminal. It is necessary to have a  
sufficient amount of current to bias both the internal IF amplifier to  
optimize dc current vs. optimum input IP3 performance. Figure 42  
and Figure 43 provide the reference for the bias resistor selection  
when lower power consumption is considered at the expense of  
conversion gain and input IP3 performance.  
The ADL5811 mixer is designed to downconvert radio  
frequencies (RF) primarily between 700 MHz and 2800 MHz  
to lower intermediate frequencies (IF) between 30 MHz and  
450 MHz. Figure 59 depicts the basic connections of the mixer.  
It is recommended to ac couple RF and LO input ports to  
prevent nonzero dc voltages from damaging the RF balun or LO  
input circuit. A RFIN capacitor value of 22 pF is recommended.  
VGS PROGRAMMING  
IF PORT  
The ADL5811 allows programmability for internal gate-to-source  
voltages for optimizing mixer performance over the desired  
frequency bands. The ADL5811 defaults the VGS setting to 0.  
Power conversion gain, input IP3, NF, and input P1dB can be  
optimized, as shown in Figure 39 and Figure 40.  
The mixer differential IF interface requires pull-up choke inductors  
to bias the open-collector outputs and to set the output match.  
The shunting impedance of the choke inductors used to couple  
dc current into the IF amplifier should be selected to provide  
the desired output return loss.  
The real part of the output impedance is approximately 200 Ω,  
as seen in Figure 31, which matches many commonly used SAW  
filters without the need for a transformer. This results in a voltage  
conversion gain that is approximately 6 dB higher than the power  
conversion gain. When a 50 Ω output impedance is needed, use a  
4:1 impedance transformer, as shown in Figure 59.  
L1  
C3  
T1  
IFOP  
IFON  
120pF  
470nH  
TC4-1W+  
VCC  
L2  
470nH  
R20  
C1  
0.1µF  
OPEN  
C5  
120pF  
C4  
120pF  
C2  
0.1µF  
R21  
0  
R1  
910ꢀ  
C8  
0.1µF  
PAD  
C7  
1
24  
23  
22  
21  
20  
19  
18  
17  
NC  
RFCT  
NC  
RFIN  
NC  
NC  
NC  
NC  
NC  
LOIP  
LOIN  
LE  
DATA  
CLK  
100pF  
2
3
4
5
6
7
8
C17  
22pF  
LOIP  
RFIN  
ADL5811  
C6  
22pF  
LE  
DATA  
CLK  
NC  
NC  
VCC  
C23  
10pF  
VCC  
VCC  
C18  
10pF  
C19  
10pF  
VCC  
C20  
10pF  
AGND  
VPOS  
BLK  
RED  
VCC  
Figure 59. Basic Connections  
Rev. 0 | Page 22 of 28  
 
 
 
ADL5811  
LOW-PASS FILTER PROGRAMMING  
RF BALUN PROGRAMMING  
The ADL5811 allows programmability for the low-pass filter  
terminating the mixer output. This filter helps to block sum term  
mixing products at the expense of some noise figure and gain  
and can significantly increase input IP3. The ADL5811 defaults the  
LPF setting to 0. Power conversion gain, input IP3, NF, and input  
P1dB can be optimized, as shown in Figure 48 to Figure 51.  
The ADL5811 allows programmability for the RF balun by  
allowing capacitance to be switched into both the input and the  
output, which allows the balun to be tuned to cover the entire  
frequency band (700 MHz to 2800 MHz). Under most circum-  
stances, the input and output can be tuned together though  
sometimes it may be advantageous for matching reasons to tune  
them separately. The ADL5811 defaults the RFB setting to 0. Power  
conversion gain, input IP3, NF, and input P1dB can be optimized,  
as shown in Figure 44 to Figure 47.  
Rev. 0 | Page 23 of 28  
 
ADL5811  
REGISTER STRUCTURE  
Figure 60 illustrates the register map of the ADL5811. The  
ADL5811 only uses Register 5. Because of this, set all of the  
control bits to 5. When set to 0, the ENBL bit, DB7, enables the  
part. By setting this bit to 1, the mixer is powered down. The  
RFB IN CAP DAC and RFB OUT CAP DAC bits are used to tune  
the RF balun. In most cases, they are tuned together with the  
higher settings, 7, tuning for the low frequencies, and with the  
lower settings, 0, tuning for the high frequencies. There are  
times where it becomes advantageous to tune the input and  
output of the RF balun separately and that ability is provided.  
The LPF bits control the low-pass filter settings at the IF output.  
The ability to tune the low-pass filter allows some trade-off  
between gain, noise figure, and input IP3 with higher settings,  
7, providing higher input IP3 at the cost of some gain and noise  
figure, and lower settings, 0, providing higher gain and lower  
NF at the cost of lower input IP3. The VGS bits control the VGS  
settings of the mixer core and allow further tuning of the device.  
Table 11 lists the optimum settings characterized for each  
frequency band. All register bits default to 0.  
RESERVED  
VGS  
LPF  
RFB OUT CAP DAC  
RFB IN CAP DAC  
ENBL  
RESERVED  
CONTROL BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6  
DB5 DB4 DB3 DB2 DB1 DB0  
C3(1) C2(0) C1(1)  
0
0
VGS2 VGS1 VGS0 LPF1 LPF0  
0
CDO2 DCDO1 CDO0  
0
CDI2 CDI1 CDI0  
0
EN  
0
0
0
0
VGS2 VGS1 VGS0  
VGS SETTING  
0
'
0
'
0
'
0
'
1
1
1
7
MEN  
0
1
MAIN ENABLE  
DEVICE ENABLED  
DEVICE DISABLED  
LPF1 LPF0 LOW PASS FILTER SETTING  
0
'
0
'
0
'
CDI2 CDI1 CDI0 RF BALUN INTPUT TUNING  
1
1
3
0
'
0
'
0
'
0
'
1
1
1
7
CDO2 CDO1 CDO0 RF BALUN OUTPUT TUNING  
0
'
0
'
0
'
0
'
1
1
1
7
Figure 60. ADL5811 Register Maps  
Table 11. Optimum Settings  
RF Frequency (MHz)  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
LO Frequency (MHz)  
497  
597  
697  
797  
897  
997  
1097  
1197  
1297  
1397  
1497  
1597  
1697  
1797  
1897  
1997  
2097  
2197  
2297  
2397  
2497  
2597  
VGS  
3
1
2
1
3
3
3
3
3
3
3
3
3
3
3
2
LPF  
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
2
2
3
2
2
2
RFB OUT CAP DAC  
RFB IN CAP DAC  
7
6
6
4
7
5
5
4
4
3
3
3
2
2
1
2
2
2
1
2
2
1
7
6
6
4
7
5
5
4
4
3
3
3
2
2
1
2
2
2
1
2
2
1
3
2
3
3
1
3
Rev. 0 | Page 24 of 28  
 
 
 
ADL5811  
EVALUATION BOARD  
An evaluation board is available for the ADL5811. The standard  
evaluation board schematic is presented in Figure 61. The USB  
interface circuitry schematic is presented in Figure 64. The  
evaluation board layout is shown in Figure 62 and Figure 63.  
The evaluation board is fabricated using Rogers® 3003 material.  
Table 12 details the configuration for the mixer characterization.  
The evaluation board software is available on www.analog.com.  
C3  
L1  
T1  
IFOP  
IFON  
120pF  
470nH  
TC4-1W+  
VCC  
3
4
L2  
470nH  
R20  
C1  
0.1µF  
2
1
OPEN  
6
C5  
120pF  
C4  
120pF  
C2  
0.1µF  
R21  
0  
R1  
910ꢀ  
C8  
0.1µF  
PAD  
C7  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
NC  
RFCT  
NC  
RFIN  
NC  
NC  
NC  
NC  
NC  
LOIP  
LOIN  
LE  
DATA  
CLK  
100pF  
C17  
22pF  
LOIP  
RFIN  
ADL5811  
C6  
22pF  
LE  
DATA  
CLK  
NC  
NC  
VCC  
C23  
10pF  
VCC  
VCC  
C18  
10pF  
C19  
10pF  
VCC  
C20  
10pF  
AGND  
VPOS  
BLK  
RED  
VCC  
Figure 61. Evaluation Board Schematic  
Table 12. Evaluation Board Configuration  
Components Description  
C1, C2, C8, C18, C19, Power supply decoupling. Nominal supply decoupling consists of a  
Default Conditions  
C1, C2 = 0.1 μF (size 0402),  
C20, C23  
0.1 μF capacitor to ground in parallel with a 10 pF capacitor to  
ground positioned as close to the device as possible.  
C8, C18, C19, C20, C23 = 10 pF (size 0402)  
C6, C7, RFIN  
RF input interface. The input channel is ac-coupled through C6.  
C7 provides bypassing for the center tap of the RF input balun.  
C6 = 22 pF (size 0402), C7 = 100 pF (size 0402)  
C3, C4, C5, L1, L2,  
R20, R21, T1, IFOP,  
IFON  
IF output interface. The open-collector IF output interfaces are  
biased through pull-up choke inductors, L1 and L2. T1 is a 4:1  
impedance transformer used to provide a single-ended IF output  
interface, with C5 providing center-tap bypassing. Remove R21 for  
balanced output operation.  
C3, C4, C5 = 120 pF (size 0402),  
L1, L2 = 470 nH (size 0603),  
R20 = open,  
R21 = 0 Ω (size 0402),  
T1 = TC4-1W+ (Mini-Circuits®)  
C17, LOIP  
R1  
LO interface. C17 provides ac coupling for the LOIP local oscillator input.  
Bias control. R1 sets the bias point for the internal IF amplifier.  
C17 = 22 pF (size 0402)  
R1 = 910 Ω (size 0402)  
Rev. 0 | Page 25 of 28  
 
 
 
ADL5811  
Figure 62. Evaluation Board Top Layer  
Figure 63. Evaluation Board Bottom Layer  
Rev. 0 | Page 26 of 28  
 
ADL5811  
Y2  
24.000000MHZ  
1
3
5V_USB  
C41  
CASE  
22PF  
2
4
C40  
22PF  
DGND  
DGND  
DGND  
J6  
C34  
1
2
3
4
5
3V3_USB  
10PF  
C35  
3V3_USB  
C36  
U7  
8
DGND  
0.1UF  
5
G1  
G2  
G3  
G4  
10PF  
C37  
VCC  
1
R7  
2K  
R8  
2K  
A0  
A1  
GND  
PINS  
2
3
6
7
3V3_USB  
VCC  
A2  
SCL  
DGND  
0.1UF  
SDA  
897-43-005-00-100001  
DGND  
WC_N  
GND  
U6  
P1  
4
AVCC  
24LC64-I-SN  
4
8
9
13  
54  
29  
30  
31  
1
2
3
XTALOUT  
DPLUS  
DMINUS  
IFCLK  
SAMTECTSW10608GS3PIN  
LE  
DGND  
CLKOUT  
CTL0_FLAGA  
CTL1_FLAGB  
CTL2_FLAGC  
R11  
0
R17  
0
15  
16  
SCL  
33  
34  
35  
36  
37  
38  
39  
40  
PA0_INT0_N  
PA1_INT1_N  
PA2_SLOE  
R12  
0
R18  
0
SDA  
DATA  
R9  
3V3_USB  
R10  
100K  
PA3_WU2  
100K  
PA4_FIFOADR0  
PA5_FIFOADR1  
PA6_PKTEND  
5
R13  
R19  
0
XTALIN  
RESET_N  
CLK  
42  
C38  
0.1UF  
C39  
0.1UF  
0
PA7_FLAGD_SLCS_N  
C49  
C50  
R15  
1K  
18  
19  
20  
21  
22  
23  
24  
25  
45  
46  
47  
48  
49  
50  
51  
52  
R14  
1K  
R16  
1K  
C51  
TBD0402  
330PF  
PB0_FD0  
PB1_FD1  
PB2_FD2  
PB3_FD3  
PB4_FD4  
PB5_FD5  
PB6_FD6  
PB7_FD7  
PD0_FD8  
PD1_FD9  
PD2_FD10  
PD3_FD11  
PD4_FD12  
PD5_FD13  
PD6_FD14  
PD7_FD15  
TBD0402  
330PF  
DNI  
TBD0402  
330PF  
DNI  
44  
14  
WAKEUP  
RESERVED  
DGND  
DNI  
DNI  
DNI  
DNI  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
1
2
RDY0_SLRD  
RDY1_SLWR  
DGND  
DGND  
AGND  
GND  
PAD  
CY7C68013A-56LTXC  
DGND  
3V3_USB  
5V_USB  
3P3V  
ORG  
3V3_USB  
1
DNI  
U5  
DECOUPLING FOR U6  
C31  
1.0UF  
C33  
1.0UF  
R4  
2K  
C32  
1000PF  
R6  
140K  
R3  
7
8
6
1
2
3
IN1  
OUT1  
0
DGND  
IN2 OUT2  
DGND  
A
SD_N  
PAD  
FB  
GND  
DGND  
AGND  
C42  
0.1UF  
C43  
0.1UF  
C44  
0.1UF  
C45  
0.1UF  
C46  
0.1UF  
C47  
0.1UF  
C48  
0.1UF  
PAD  
5
D1  
C
R5  
78.7K  
DGND  
DGND  
1
BLK  
DGND  
DNI  
DGND  
DGND  
DGND  
ADP3334ACPZ  
Figure 64. USB Interface Circuitry on the Evaluation Board  
Rev. 0 | Page 27 of 28  
 
ADL5811  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
3.45  
3.30 SQ  
3.15  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 65. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad (CP-32-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Quantity  
ADL5811ACPZ-R7  
ADL5811-EVALZ  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-32-13  
1500  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09912-0-7/11(0)  
Rev. 0 | Page 28 of 28  
 
 

相关型号:

ADL5811-EVALZ

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5811ACPZ-R7

High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812-EVALZ

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5812ACPZ-R7

Dual High IP3, 700 MHz to 2800 MHz, Double Balanced, Passive Mixer, IF Amplifier, and Wideband LO Amplifier
ADI

ADL5902

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5902-EVALZ

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5902ACPZ-R2

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5902ACPZ-R7

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5902ACPZ-WP

50 MHz to 9 GHz 65 dB TruPwr Detector
ADI

ADL5903

200 MHz to 6 GHz 35 dB TruPwr™ Detector
ADI

ADL5903-EVALZ

200 MHz to 6 GHz 35 dB TruPwr™ Detector
ADI