ADM1087AKS-R7 [ADI]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, MO-203AB, PLASTIC, SC70-6, Power Management Circuit;
ADM1087AKS-R7
型号: ADM1087AKS-R7
厂家: ADI    ADI
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, MO-203AB, PLASTIC, SC70-6, Power Management Circuit

光电二极管
文件: 总15页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Simple Sequencers™  
Preliminary Technical Data  
ADM1085/ADM1086/ADM1087/ADM1088  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
V
CC  
Provide time delays between enabling of regulators  
Can be cascaded with regulators for multiple supply  
sequencing  
ADM1085/ADM1086  
V
Power supply monitoring from 0.6 V  
Output stages  
CAPACITOR  
ADJUSTABLE  
DELAY  
IN  
ENOUT  
0.6V  
High voltage (up to 22 V) open-drain output  
(ADM1085/ADM1087)  
Push-pull output (ADM1086/ADM1088)  
Capacitor adjustable time delays  
High voltage (up to 22 V) enable input  
Low power consumption (15 µA)  
GND  
CEXT  
ENIN  
V
CC  
Specified over –40°C to +125°C temperature range  
6-lead SC70 package  
ADM1087/ADM1088  
V
CAPACITOR  
ADJUSTABLE  
DELAY  
IN  
ENOUT  
0.6V  
APPLICATIONS  
Desktop/notebook computers  
Routers  
GND  
CEXT  
ENIN  
GSM basestations  
Optical line cards  
Figure 1.  
GENERAL DESCRIPTION  
The ADM1085/ADM1086/ADM1087/ADM1088 are simple  
sequencing circuits that provide a time delay between the  
enabling of voltage regulators at power-up in multiple supply  
systems. When the output voltage of the first regulator reaches a  
preset threshold, a time delay is initiated before an enable signal  
allows subsequent regulators to power up. Any number of these  
devices can be cascaded with regulators to allow sequencing of  
multiple power supplies.  
All four models have a dedicated enable input pin that allows  
the output signal to the regulator to be controlled externally.  
This is an active high input (ENIN) for the ADM1085 and  
ENIN  
ADM1086, and an active low input (  
and ADM1088.  
) for the ADM1087  
The simple sequencers are specified over the extended –40°C to  
+125°C temperature range .With low current consumption of  
15 µA (typ) and 6-lead SC70 packaging, the parts are suitable  
for low power portable applications.  
Threshold levels can be set with a pair of external resistors in a  
voltage divider configuration. By choosing appropriate resistor  
values, the threshold can be adjusted to monitor voltages as low  
as 0.6 V.  
Table 1. Selection Table  
Output Stage  
Part No.  
Enable Input  
ENOUT  
ENOUT  
Open-Drain  
Push-Pull  
The ADM1086 and ADM1088 have push-pull output stages,  
ADM1085  
ADM1086  
ADM1087  
ADM1088  
ENIN  
ENIN  
ENIN  
ENIN  
ENOUT  
with active high (ENOUT) and active low (  
) logic  
outputs, respectively. Similarly, the ADM1085 has an active high  
(ENOUT) logic output and the ADM1087 has an active low  
Open-Drain  
Push-Pull  
ENOUT  
(
) output. Both the ADM1085 and ADM1087 have  
open-drain output stages that can be pulled up to voltage levels  
as high as 22 V through an external resistor. This level shifting  
property of the ADM0185 and ADM1087 ensures compatibility  
with enable input logic levels of different regulators and  
converters.  
Rev. PrG  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
TABLE OF CONTENTS  
Application Information................................................................ 11  
Specifications..................................................................................... 3  
ADM1085/ADM1086/ADM1087/ADM1088 Sequencing  
Circuits .................................................................................... 11  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations And Function Descriptions .......................... 5  
Typical Performance Characteristics ............................................. 6  
Circuit Information.......................................................................... 9  
Timing Characteristics and Truth Tables.................................. 9  
Capacitor Adjustable Delay Circuit ........................................... 9  
Open-Drain and Push-Pull Outputs ....................................... 10  
Dual LOFO Sequencing ............................................................ 13  
Simultaneous Enabling.............................................................. 13  
Power Good Signal Delays........................................................ 13  
Quad Supply Power Good Indicator ....................................... 14  
Sequencing with FET Switches................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
REVISION HISTORY  
Revision PrG—Preliminary Version  
Rev. PrG | Page 2 of 15  
Preliminary Technical Data  
ADM1085/ADM1086/ADM1087/ADM1088  
SPECIFICATIONS  
VCC = Full Operating Range, TA=-–40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
Supply  
VCC Operating Voltage Range  
VIN Operating Voltage Range  
Supply Current  
2.25  
0
3.6  
22  
20  
V
V
µA  
V
15  
0.6  
20  
VIN Rising Threshold, VTH_RISING  
VIN Hysteresis  
0.56  
125  
0.64  
VCC = 3.3 V  
mV  
ENOUT  
VIN to ENOUT/  
Delay  
VIN Rising (CEXT Floating)  
VIN Falling  
35  
20  
µs  
µs  
C = 20 pF  
VIN = VTH_FALLING to (VTH_FALLING – 100 mV)  
CEXT Charge Current  
250 375  
nA  
Threshold Temperature Coefficient  
30  
ppm/°C  
µs  
ENIN  
ENIN  
ENIN  
ENOUT  
TO ENOUT/  
0.5  
VIN > VTH_RISING  
ENIN/  
ENIN/  
ENIN/  
Propagation Delay  
0.25VCC − 0.2  
0.3  
V
V
V
Voltage Low  
Voltage High  
0.25VCC + 0.2  
0.8VCC  
ENOUT  
ENOUT/  
VIN < VTH_FALLING (ENOUT),  
Voltage Low  
ENOUT  
VIN > VTH_RISING  
SINK = 1.2 mA  
VIN > VTH_FALLING (ENOUT),  
ENOUT  
( ),  
I
ENOUT  
ENOUT/  
V
Voltage High  
(ADM1086/ADM1088)  
VIN < VTH_RISING  
(
),  
I
SOURCE = 500 µA  
ENOUT  
ENOUT/ Open-Drain Output Leakage  
Current (ADM1085/ADM1087)  
1
µA  
ENOUT  
ENOUT/ = 22 V  
Rev. PrG | Page 3 of 15  
 
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCC  
VIN  
CEXT  
–0.3 V to +6 V  
–0.3 V to +25 V  
–0.3 V to +6 V  
–0.3 V to +25 V  
–0.3 V to +25 V  
–0.3 V to +6 V  
–40°C to +125°C  
–65°C to +150°C  
146°C/W  
ENIN  
ENIN,  
ENOUT  
ENOUT,  
ENOUT,  
Operating Temperature Range  
Storage Temperature Range  
θJA Thermal Impedance, SC70  
Lead Temperature  
(ADM1085, ADM1087)  
(ADM1086, ADM1088)  
ENOUT  
Soldering (10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
300°C  
215°C  
220°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrG | Page 4 of 15  
 
Preliminary Technical Data  
ADM1085/ADM1086/ADM1087/ADM1088  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADM1085/  
ENIN/ENIN  
1
2
3
6
5
4
V
CC  
ADM1086/  
ADM1087/  
ADM1088  
GND  
CEXT  
V
ENOUT/ENOUT  
TOP VIEW  
IN  
(Not to Scale)  
Figure 2. ADM1085/ADM1086/ADM1087/ADM1088 Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
Enable Input. Used to Control the Status of the Enable Output. Active high for ADM1085/ADM1086. Active low  
for ADM1087/ADM1088.  
Ground.  
ENIN  
1
2
ENIN,  
GND  
Input for Voltage Signal Being Monitored. The voltage applied at this pin is compared with a 0.6 V on-chip  
reference. This input can be biased via a voltage divider resistor network to customize the effective input  
threshold. Can be used to precisely monitor, for example, an analog power supply output signal and detect  
when it has powered up. With the 0.6 V reference, digital signals with various logic level thresholds can also be  
detected.  
Enable Output. This output is asserted when the voltage at VIN is above VTH_RISING and the time delay has  
elapsed, provided the enable input is asserted. Active high for the ADM1085/ADM1086. Active low for the  
ADM1087/ADM1088.  
3
4
VIN  
ENOUT  
ENOUT,  
External Capacitor Pin. The time delay on the enable output is determined by the capacitance on this pin. The  
5
6
CEXT  
VCC  
delay is only seen when the voltage at VIN rises past VTH_RISING, and not when it falls below VTH_FALLING  
.
Power Supply.  
Rev. PrG | Page 5 of 15  
 
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
700  
680  
660  
640  
T
= +85°C  
A
V
TH_RISING  
T
= +25°C  
A
620  
600  
580  
560  
540  
520  
500  
V
TH_FALLING  
T
= –40°C  
A
60  
40  
20  
0
0
2
4
6
8
10  
V
12  
(V)  
14  
16  
18  
20  
22  
3.60  
10  
–40  
25  
85  
TEMPERATURE (°C)  
IN  
Figure 3. VIN Threshold vs. Temperature  
Figure 6. VIN Leakage Current vs. VIN Voltage  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
200  
190  
180  
170  
160  
150  
140  
130  
120  
T
= +85°C  
A
T
T
= +85°C  
= +25°C  
A
A
T
T
= +25°C  
= –40°C  
A
9.0  
A
T
= –40°C  
A
8.5  
8.0  
2.25  
2.40  
2.70  
3.00  
3.30  
3.60  
2.25  
2.40  
2.70  
3.00  
3.30  
V
(V)  
V
(V)  
CC  
CC  
Figure 4. Supply Current vs. Supply Voltage  
Figure 7. VIN Leakage Current vs. VCC Voltage  
20  
18  
16  
14  
12  
10  
8
10000  
1000  
100  
10  
T
= +85°C  
A
T
= +25°C  
A
T
= –40°C  
A
6
4
1
2
0
0.1  
0
2
4
6
8
10  
V
12  
(V)  
14  
16  
18  
20  
22  
0.01  
0.1  
1
OUTPUT SINK CURRENT (mA)  
IN  
Figure 5. Supply Current vs. VIN Voltage  
Figure 8. Output Voltage vs. Output Sink Current  
Rev. PrG | Page 6 of 15  
 
 
Preliminary Technical Data  
ADM1085/ADM1086/ADM1087/ADM1088  
100  
90  
120  
T
= +85°C  
A
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
T
= +25°C  
A
T
= –40°C  
A
2.25  
2.40  
2.70  
3.00  
3.30  
3.60  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
SUPPLY VOLTAGE (V)  
ENIN (V)  
Figure 9. Output Low Voltage vs. Supply Voltage  
ENIN  
ENIN  
Voltage  
Figure 12. ENIN/  
Leakage Current vs. ENIN/  
110  
105  
100  
95  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
= +85°C  
= +25°C  
A
A
1mV/µs  
90  
10mV/µs  
T
= –40°C  
A
85  
80  
2.25  
2.40  
2.70  
3.00  
3.30  
3.60  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
V
(V)  
TEMPERATURE (°C)  
CC  
Figure 10. VCC Falling Propagation Delay vs. Temperature  
ENIN  
Figure 13. ENIN/  
Leakage Current vs. VCC Voltage  
10000  
1000  
100  
10  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1
0.1  
0
2.25  
0.562 2.390 5.02 22.9 53.2  
241  
520 2350 4480 26200  
2.40  
2.70  
3.00  
3.30  
3.60  
TIMEOUT DELAY (ms)  
SUPPLY VOLTAGE (V)  
Figure 14. CEXT Capacitance vs. Timeout Period  
Figure 11. Output Fall Time vs. Supply Voltage  
Rev. PrG | Page 7 of 15  
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
1
10  
100  
1000  
TEMPERATURE (°C)  
COMPARATOR OVERDRIVE (mV)  
Figure 15. CEXT Charge Current vs. Temperature  
Figure 17. Maximum VIN Transient Duration vs. Comparator Overdrive  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
TEMPERATURE (°C)  
ENOUT  
Figure 16. VIN to ENOUT/  
Propagation Delay (CEXT Floating) vs.  
Temperature  
Rev. PrG | Page 8 of 15  
Preliminary Technical Data  
ADM1085/ADM1086/ADM1087/ADM1088  
CIRCUIT INFORMATION  
When VIN reaches the upper threshold voltage, VTH_RISING, an  
internal circuit generates a delay, tEN, before the enable output is  
asserted. If VIN drops below the lower threshold voltage,  
TIMING CHARACTERISTICS AND TRUTH TABLES  
The enable outputs of the ADM1085/ADM1086/ADM1087/  
ADM1088 are related to the VIN and enable inputs by a simple  
AND function. The enable output is asserted only if the enable  
input is asserted and the voltage at VIN is above VTH_RISING, with  
the time delay elapsed. Table 5 and Table 6 show the enable  
output logic states for different VIN/enable input combinations  
when the capacitor delay has elapsed. The timing diagrams in  
Figure 18 and Figure 19 give a graphical representation of how  
the enable outputs of the ADM1085/ADM1086/ADM1087/  
ADM1088 respond to VIN and enable input signals.  
VTH_FALLING, the enable output is deasserted immediately.  
Similarly, if the enable input is disabled while VIN is above the  
threshold, the enable output deasserts immediately. Unlike VIN, a  
ENIN  
low-to-high transition on ENIN (or high-to-low on  
not yield a time delay on ENOUT.  
) does  
CAPACITOR ADJUSTABLE DELAY CIRCUIT  
Figure 4 shows the internal circuitry used to generate the time  
delay on the enable output. A 250 nA current source charges a  
small internal parasitic capacitance, CINT. When the capacitor  
voltage reaches 1.2 V, the enable output is asserted. The time  
taken for the capacitor to reach 1.2 V, in addition to the  
propagation delay of the comparator, constitutes the enable  
timeout, which is typically 35 µs.  
Table 5. ADM1085/ADM1086 Truth Table  
VIN  
ENIN  
ENOUT  
<VTH_FALLING  
<VTH_FALLING  
>VTH_RISING  
>VTH_RISING  
0
1
0
1
0
0
0
1
To minimize the delay between VIN falling below VTH_FALLING and  
the enable output deasserting, an NMOS transistor is connected  
in parallel with CINT. The output of the voltage detector is  
connected to the gate of this transistor so that when VIN falls  
below VTH_FALLING, the transistor switches on and CINT discharges  
quickly.  
Table 6. ADM1087/ADM1088 Truth Table  
ENIN  
ENOUT  
VIN  
<VTH_FALLING  
<VTH_FALLING  
>VTH_RISING  
>VTH_RISING  
1
0
1
0
1
1
1
0
V
CC  
250nA  
SIGNAL FROM  
VOLTAGE  
DETECTOR  
V
V
V
TH_FALLING  
IN  
TH_RISING  
TO AND GATE  
AND OUTPUT  
STAGE  
C
1.2V  
INT  
ENIN  
CEXT  
C
tEN  
ENOUT  
Figure 20. Capacitor Adjustable Delay Circuit  
Figure 18. ADM1085/ADM1086 Timing Diagram  
Connecting an external capacitor to the CEXT pin delays the  
rise time, and therefore the enable timeout, further. The  
relationship between the value of the external capacitor and the  
resulting timeout is characterized by the following equation:  
V
V
V
TH_FALLING  
IN  
TH_RISING  
ENIN  
t
EN = (C × 4.8 ×106) + 35 µs  
tEN  
ENOUT  
Figure 19. ADM1087/ADM1088 Timing Diagram  
Rev. PrG | Page 9 of 15  
 
 
 
 
 
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
V
(22V)  
CC  
OPEN-DRAIN AND PUSH-PULL OUTPUTS  
ADM1085/ADM1087  
The ADM1085 and ADM1087 have open-drain output stages  
that require an external pull-up resistor in order to provide a  
logic high voltage level. The geometry of the NMOS transistor is  
such that the output can be pulled up to voltage levels as high as  
22 V.  
LOGIC  
Figure 21. Open-Drain Output Stage  
The ADM1086 and ADM1088 have push-pull (CMOS) output  
stages that require no external components to drive other logic  
circuits. An internal PMOS pull-up transistor provides the logic  
high voltage level.  
ADM1086/ADM1088  
V
CC  
LOGIC  
Figure 22. Push-Pull Output Stage  
Rev. PrG | Page 10 of 15  
 
Preliminary Technical Data  
APPLICATION INFORMATION  
ADM1085/ADM1086/ADM1087/ADM1088  
In Figure 23, three ADM1085s are used to sequence four  
supplies on power-up. Separate capacitors on the CEXT pins of  
the ADM1085s determine the time delays between enabling of  
the 3.3 V, 2.5 V, 1.8 V, and 1.2 V supplies. Because the dc/dc  
converters and ADM1085s are connected in cascade, and  
because the output of any converter is dependant on that of the  
previous one, an external controller can disable all four supplies  
simultaneously by simply disabling the first dc/dc converter in  
the chain.  
ADM1085/ADM1086/ADM1087/ADM1088  
SEQUENCING CIRCUITS  
The ADM1085/ADM1086/ADM1087/ADM1088 are  
compatible with voltage regulators and dc-to-dc converters that  
have active high or active low enable or shutdown inputs, with a  
choice of open-drain or push-pull output stages. Figure 23 to  
Figure 25 illustrate how each of the ADM1085/ADM1086/  
ADM1087/ADM1088 simple sequencers can be used in  
multiple-supply systems, depending on which regulators are  
used and which output stage is preferred.  
For power-down sequencing, an external controller can dictate  
when the supplies are switched off by accessing the ENIN  
inputs individually.  
12V  
3.3V  
3.3V  
3.3V  
IN  
IN  
IN  
IN  
EN  
OUT  
EN  
OUT  
EN  
OUT  
EN  
OUT  
DC/DC  
3.3V  
DC/DC  
2.5V  
DC/DC  
1.8V  
DC/DC  
1.2V  
3.3V  
3.3V  
3.3V  
V
V
V
CC  
CC  
CC  
ENABLE  
CONTROL  
V
V
V
ENOUT  
ENOUT  
ENOUT  
IN  
IN  
IN  
ADM1085  
ADM1085  
ADM1085  
ENIN  
CEXT  
ENIN  
CEXT  
ENIN  
CEXT  
12V  
3.3V  
2.5V  
1.8V  
1.2V  
tEN1  
tEN2  
tEN3  
EXTERNAL  
DISABLE  
Figure 23. Typical ADM1085 Applications Circuit  
Rev. PrG | Page 11 of 15  
 
 
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
12V  
IN  
IN  
IN  
IN  
EN  
OUT  
EN  
OUT  
EN  
OUT  
EN  
OUT  
DC/DC  
3.3V  
DC/DC  
2.5V  
DC/DC  
1.8V  
DC/DC  
1.2V  
3.3V  
3.3V  
3.3V  
V
V
V
CC  
CC  
CC  
V
V
V
ENOUT  
ENOUT  
ENOUT  
IN  
IN  
IN  
ADM1086  
ADM1086  
ADM1086  
ENIN  
CEXT  
ENIN  
CEXT  
ENIN  
CEXT  
ENABLE  
CONTROL  
12V  
3.3V  
2.5V  
1.8V  
1.2V  
tEN1  
tEN2  
tEN3  
EXTERNAL  
DISABLE  
Figure 24. Typical ADM1086 Applications Circuit  
12V  
12V  
IN  
ADP3334  
IN  
IN  
IN  
SD  
OUT  
SD  
OUT  
SD  
OUT  
SD  
OUT  
3.3V  
ADP3334  
2.5V  
ADP3334  
3.3V  
ADP3334  
2.5V  
3.3V  
3.3V  
V
V
CC  
ENOUT  
CC  
ENOUT  
V
V
IN  
IN  
ADM1087  
ADM1088  
ENIN  
CEXT  
ENIN  
CEXT  
Figure 25. Typical ADM1087 Application Circuit Using ADP3334 Voltage  
Regulators  
Figure 26. Typical ADM1088 Application Circuit using ADP3334 Voltage  
Regulators  
Rev. PrG | Page 12 of 15  
Preliminary Technical Data  
ADM1085/ADM1086/ADM1087/ADM1088  
DUAL LOFO SEQUENCING  
SIMULTANEOUS ENABLING  
A power sequencing solution for a portable device, such as a  
PDA, is shown in Figure 29. The requirement is for the micro-  
processors power supply to turn on before the LCD displays,  
and for the display to power-down before the microprocessor.  
That is to say, the last power supply to turn on is the first one to  
turn off (LOFO).  
The enable output can drive multiple enable or shutdown  
regulator inputs simultaneously.  
12V  
3.3V  
IN  
IN  
SD  
OUT  
SD  
OUT  
ADP3333  
ADP3333  
3.3V  
2.5V  
3.3V  
SD  
An RC network connected between the battery and the  
input of the ADP3333 voltage regulator causes power-up and  
SD  
V
CC  
ENOUT  
power-down transients to appear at the  
input when the  
V
IN  
12V  
battery is connected and disconnected. Because capacitor C1  
charges up to 9 V on power-up and charges down from 9 V on  
ADM1085  
IN  
ENIN  
CEXT  
SD  
OUT  
ADP3333  
SD  
power-down, and because the  
pin has logic high and logic  
1.8V  
low input levels of 2 V and 0.4 V, this causes the 3.3 V micro-  
processor supply to turn on quickly on power-up and turn off  
slowly on power-down.  
ENABLE  
CONTROL  
Figure 28. Enabling a Pair of Regulators from a Single ADM1085  
For the display power sequencing, the ADM1085 is equipped  
with capacitor C2, which creates the delay between the micro-  
processor and display power turning on. When the system is  
powered down, the ADM1085 turns off the display power  
immediately, while the 3.3 V regulator waits for C1 to discharge  
to 0.4 V before switching off.  
POWER GOOD SIGNAL DELAYS  
For scenarios where sequencing is performed by asserting  
power good signals when the voltage regulators are already on,  
rather than sequencing the power supplies directly, a simple  
sequencer IC can provide variable delays so that enabling  
separate circuit blocks can be staggered in time.  
9V  
SYSTEM  
POWER SWITCH  
For example, in a notebook PC application, a dedicated  
microcomputer asserts a power good signal for North Bridge™  
and South Bridge™ ICs. The ADM1086 delays the south bridges  
signal so it is enabled after the north bridge.  
SD  
2.5V  
MICROPROCESSOR  
POWER  
ADP3333  
C1  
3.3V  
9V  
9V  
9V  
V
IN  
SD  
5V  
DISPLAY  
POWER  
ADP3333  
ENOUT  
ADM1085  
5V  
5V  
ENIN  
CEXT  
POWER_GOOD  
EN  
MICROCOMPUTER  
C2  
NORTH  
BRIDGE  
IC  
9V  
SYSTEM  
POWER  
3.3V  
5V  
0V  
9V  
V
V
C1  
ENOUT  
EN  
IN  
SOUTH  
BRIDGE  
IC  
0V  
ADM1088  
2.5V  
ENIN  
CEXT  
MICROPROCESSOR  
POWER  
0V  
5V  
DISPLAY  
POWER  
Figure 29. Power Good Delays  
0V  
Figure 27. Dual Last-On First-Off Power Supply Sequencing  
Rev. PrG | Page 13 of 15  
 
 
ADM1085/ADM1086/ADM1087/ADM1088  
Preliminary Technical Data  
QUAD SUPPLY POWER GOOD INDICATOR  
SEQUENCING WITH FET SWITCHES  
The enable output of the simple sequencers is equivalent to an  
AND function of VIN and ENIN. Only when the voltage at VIN is  
above the threshold and the enable input (ENIN) is high will  
ENOUT be high. Although ENIN is a digital input, it can  
tolerate voltages as high as 22 V and can serve to detect if a  
supply is present. Therefore, a simple sequencer can monitor  
two supplies and assert what can be interpreted as a power good  
signal when both supplies are present. The outputs of two  
ADM1085s can be wire-ANDed together to make a quad  
supply power-good indicator.  
The open-drain outputs of the ADM1085 and ADM1087 can be  
used to drive external FET transistors, which can be used to  
switch on power supply rails. All that is needed is a pull-up  
resistor to a voltage source that is high enough to turn on  
the FET.  
12V  
3.3V  
V
ENOUT  
IN  
3.3V  
3.3V  
ADM1085  
ENIN  
CEXT  
9V  
5V  
POWER_GOOD  
V
ENOUT  
IN  
ADM1085  
2.5V  
ENIN  
Figure 31. Sequencing with FET Switch  
3.3V  
2.5V  
1.8V  
V
ENOUT  
IN  
ADM1085  
ENIN  
Figure 30. Quad Supply Power Good Indicator  
Rev. PrG | Page 14 of 15  
 
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADM1085/ADM1086/ADM1087/ADM1088  
2.00 BSC  
6
5
2
4
3
2.10 BSC  
1.25 BSC  
1
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
1.10 MAX  
0.22  
0.08  
0.46  
0.36  
0.26  
8°  
4°  
0°  
0.30  
0.15  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AB  
Figure 32. 6-Lead Plastic Surface-Mount Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Quantity  
3k  
Package Type  
SC70-6  
Branding  
M0V  
ADM1085AKS-R7  
ADM1085AKS-RL  
ADM1086AKS-R7  
ADM1086AKS-RL  
ADM1087AKS-R7  
ADM1087AKS-RL  
ADM1088AKS-R7  
ADM1088AKS-RL  
10k  
3k  
10k  
3k  
10k  
3k  
10k  
SC70-6  
SC70-6  
SC70-6  
SC70-6  
SC70-6  
SC70-6  
SC70-6  
M0V  
M0W  
M0W  
M0X  
M0X  
M0Y  
M0Y  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR04591–0–2/04(PrG)  
Rev. PrG | Page 15 of 15  
 

相关型号:

ADM1087AKS-REEL7

Simple Sequencers in 6-Lead SC70
ADI

ADM1087AKS-RL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, MO-203AB, PLASTIC, SC70-6, Power Management Circuit
ADI

ADM1087AKSZ-REEL7

Simple Sequencers in 6-Lead SC7
ADI

ADM1088

Simple Sequencers in 6-Lead SC70
ADI

ADM1088AKS-REEL7

Simple Sequencers in 6-Lead SC70
ADI

ADM1088AKS-RL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, MO-203AB, PLASTIC, SC70-6, Power Management Circuit
ADI

ADM1088AKSZ-REEL7

Simple Sequencers in 6-Lead SC7
ADI

ADM1166

Super Sequencer with Margining Control and Nonvolatile Fault Recording
ADI

ADM1166ACPZ

Super Sequencer with Margining Control and Nonvolatile Fault Recording
ADI

ADM1166ACPZ-REEL

Super Sequencer with Margining Control and Nonvolatile Fault Recording
ADI

ADM1166ASUZ

Super Sequencer with Margining Control and Nonvolatile Fault Recording
ADI

ADM1166ASUZ-REEL

Super Sequencer with Margining Control and Nonvolatile Fault Recording
ADI