ADM1490EBRZ [ADI]

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers; 16 Mbps的ESD保护,全双工RS - 485收发器
ADM1490EBRZ
型号: ADM1490EBRZ
厂家: ADI    ADI
描述:

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
16 Mbps的ESD保护,全双工RS - 485收发器

文件: 总16页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 Mbps, ESD Protected,  
Full-Duplex RS-485 Transceivers  
ADM1490E/ADM1491E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
CC  
RS-485/RS-422 full-duplex transceiver for high speed motor  
control applications  
16 Mbps data rate  
ADM1490E  
A
B
8 ꢀV ESD protection on RS-485 input/output pins  
Complies with ANSI/TIA/EIA-485-A-1998  
Open circuit fail-safe  
Suitable for 5 V power supply applications  
32 nodes on the bus (1 unit load)  
Thermal shutdown protection  
Operating temperature range: −40°C to +85°C  
ADM1490E pacꢀages  
RO  
DI  
R
Z
Y
D
GND  
Narrow body, 8-lead SOIC  
8-lead MSOP  
ADM1491E pacꢀages  
Figure 1.  
V
CC  
Narrow-body, 14-lead SOIC  
10-lead MSOP  
ADM1491E  
A
B
RO  
R
APPLICATIONS  
RE  
DE  
RS-485/RS-422 interfaces  
Industrial field networꢀs  
High data rate motor control  
Multipoint data transmission systems  
Single-ended-to-differential signal conversion  
Z
Y
D
DI  
GND  
Figure 2.  
GENERAL DESCRIPTION  
The ADM1490E/ADM1491E are RS-485/RS-422 transceivers  
with 8 ꢀk ESD protection and are suitable for high speed, full-  
duplex communication on multipoint transmission lines. In  
particular, the ADM1490E/ADM1491E are designed for use in  
motor control applications requiring communications at data rates  
up to 16 Mbps.  
maximum output current to 250 mA during fault conditions.  
A thermal shutdown circuit senses if the die temperature rises  
above 150°C and forces the driver outputs into a high impedance  
state under this condition.  
The receiver of the ADM1490E/ADM1491E contains a fail-safe  
feature that results in a logic high output state if the inputs are  
unconnected (floating).  
The ADM1490E/ADM1491E are designed for balanced trans-  
mission lines and comply with TIA/EIA-485-A-98. The devices  
each have a 12 ꢀΩ receiver input impedance for unit load RS-  
485 operation, allowing up to 32 nodes on the bus.  
The ADM1490E/ADM1491E feature extremely fast and closely  
matched switching times. Minimal driver propagation delays  
permit transmission at data rates up to 16 Mbps, and low sꢀew  
minimizes EMI interference.  
The differential transmitter outputs and receiver inputs feature  
electrostatic discharge circuitry that provides protection to 8 ꢀk  
using the human body model (HBM).  
The ADM1490E/ADM1491E are fully specified over the  
commercial and industrial temperature ranges. The ADM1490E  
is available in two pacꢀages: a narrow body, 8-lead SOIC and an  
8-lead MSOP. The ADM1491E is also available in two pacꢀages:  
a narrow body, 14-lead SOIC and a 10-lead MSOP.  
The ADM1490E/ADM1491E operate from a single 5 k power  
supply. Excessive power dissipation caused by bus contention or  
output shorting is prevented by short-circuit protection and  
thermal circuitry. Short-circuit protection circuits limit the  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarꢀs and registeredtrademarꢀs arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved.  
 
ADM1490E/ADM1491E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Test Circuits........................................................................................9  
Theory of Operation ...................................................................... 10  
Truth Tables................................................................................. 10  
ESD Transient Protection Scheme ........................................... 10  
Applications Information.............................................................. 12  
Differential Data......................................................................... 12  
Cable and Data Rate................................................................... 12  
Typical Applications................................................................... 12  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Blocꢀ Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
7/09—Rev. A to Rev. B  
Added ADM1490E, 8-Lead SOIC, and 8-Lead MSOP.......Universal  
Changes to Table 4.....................................................................................5  
Added Figure 8; Renumbered Sequentially..........................................6  
Changes to Table 5.....................................................................................6  
Changes to Typical Applications Section ............................................12  
Changes to Figure 28...............................................................................12  
Added Figure 29.......................................................................................13  
Updated Outline Dimensions ...............................................................14  
Changes to Ordering Guide...................................................................15  
2/09—Rev. 0 to Rev. A  
Change to Table 9 ........................................................................... 11  
12/08—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
ADM1490E/ADM1491E  
SPECIFICATIONS  
4.75 k ≤ kCC ≤ 5.25 k; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise  
noted. All typical specifications are at TA = 25°C, kCC = 5.0 k, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Min  
Typ Max Unit Test Conditions  
SUPPLY CURRENT  
Outputs Enabled  
Outputs Disabled  
DRIVER  
ICC1  
ICC2  
1.2  
0.8  
2.0  
1.5  
mA  
mA  
Outputs unloaded, digital inputs = VCC or GND  
Outputs unloaded, digital inputs = VCC or GND  
Differential Outputs  
Differential Output Voltage, Loaded  
|VOD2  
|
|
2.0  
1.5  
1.5  
5.0  
5.0  
5.0  
0.2  
3.0  
0.2  
100  
V
V
V
V
V
V
μA  
μA  
mA  
RL = 100 Ω (RS-422), see Figure 21  
RL = 54 Ω (RS-485), see Figure 21  
−7 V ≤ VTEST ≤ +12 V, see Figure 22  
RL = 54 Ω or 100 Ω, see Figure 21  
RL = 54 Ω or 100 Ω, see Figure 21  
RL = 54 Ω or 100 Ω, see Figure 21  
DE = 0 V, VDD = 0 V or 5 V, VIN = 12 V  
DE = 0 V, VDD = 0 V or 5 V, VIN = −7 V  
−7 V < VOUT < +12 V  
|VOD3  
∆|VOD| for Complementary Output States  
Common-Mode Output Voltage  
∆|VOC| for Complementary Output States  
Output Leakage Current (Y, Z)  
∆|VOD2  
VOC  
∆|VOC|  
IO  
IO  
IOS  
|
−100  
Output Short-Circuit Current  
Logic Inputs DE, RE, DI  
Input Low Voltage  
250  
0.8  
VIL  
VIH  
II  
V
DE, RE, DI  
DE, RE, DI  
DE, RE, DI  
Input High Voltage  
Input Current  
2.0  
−1  
V
+1  
μA  
RECEIVER  
Differential Inputs  
Differential Input Threshold Voltage  
Input Voltage Hysteresis  
Input Current (A, B)  
VTH  
VHYS  
II  
−0.2  
+0.2  
1.0  
V
−7 V < VCM < +12 V  
VCM = 0 V  
VCM = 12 V  
VCM = −7 V  
−7 V ≤ VCM ≤ +12 V  
30  
30  
mV  
mA  
mA  
kΩ  
−0.8  
12  
Line Input Resistance  
Logic Outputs  
RIN  
Output Voltage Low  
VOL  
VOH  
0.4  
V
V
mA  
μA  
IOUT = +4.0 mA, VA − VB = −0.2 V  
IOUT = −4.0 mA, VA − VB = +0.2 V  
Output Voltage High  
Short-Circuit Current  
Three-State Output Leakage Current  
4.0  
85  
1
IOZR  
VCC = 5.25 V, 0.4 V < VOUT < 2.4 V  
Rev. B | Page 3 of 16  
 
ADM1490E/ADM1491E  
TIMING SPECIFICATIONS  
TA = −40°C to +85°C.  
Table 2.  
Parameter  
Symbol  
Min Typ  
Max Unit  
Test Conditions  
DRIVER  
Maximum Data Rate  
Propagation Delay  
Driver Output Skew  
16  
11  
0.5  
Mbps  
ns  
ns  
tDPLH, tDPHL  
tSKEW  
17  
2
RL = 54 Ω, CL = 100 pF, see Figure 23 and Figure 3  
RL = 54 Ω, CL = 100 pF, see Figure 23 and Figure 3,  
t
SKEW = |tDPLH − tDPHL|  
Rise Time/Fall Time  
Enable Time  
Disable Time  
tDR, tDF  
tZH, tZL  
tHZ, tLZ  
8
15  
20  
20  
ns  
ns  
ns  
RL = 54 Ω, CL = 100 pF, see Figure 23 and Figure 3  
RL = 110 Ω, CL = 50 pF, see Figure 24 and Figure 5  
RL = 110 Ω, CL = 50 pF, see Figure 24 and Figure 5  
RECEIVER  
Propagation Delay  
tPLH, tPHL  
tSKEW  
tZH, tZL  
tHZ, tLZ  
12  
0.4  
20  
2
13  
13  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 25 and Figure 4  
CL = 15 pF, see Figure 25 and Figure 4  
RL = 1 kΩ, CL = 15 pF, see Figure 26 and Figure 6  
RL = 1 kΩ, CL = 15 pF, see Figure 26 and Figure 6  
Skew |tPLH − tPHL  
|
Enable Time  
Disable Time  
Timing Diagrams  
Switching Characteristics  
CC  
V
V
CC  
0.5V  
tZL  
0.5V  
CC  
V
/2  
V
/2  
CC  
CC  
CC  
DE  
0V  
0V  
Z
tLZ  
tDPLH  
tDPHL  
2.3V  
2.3V  
1/2V  
O
Y, Z  
Y, Z  
V
V
+ 0.5V  
– 0.5V  
OL  
V
O
V
V
OL  
OH  
tZH  
tHZ  
Y
OH  
+V  
O
90% POINT  
90% POINT  
V
= V – V  
(Y) (Z)  
DIFF  
0V  
V
DIFF  
–V  
10% POINT  
10% POINT  
O
tDR  
tDF  
Figure 5. Driver Enable/Disable Timing  
Figure 3. Driver Propagation Delay Rise/Fall Timing  
0.7V  
CC  
CC  
A – B  
0.5V  
0.5V  
CC  
CC  
0V  
0V  
RE  
0.3V  
tZL  
tLZ  
tPLH  
tPHL  
V
V
OH  
1.5V  
1.5V  
RO  
V
V
+ 0.5V  
OL  
OH  
OUTPUT LOW  
OUTPUT HIGH  
V
V
OL  
OH  
RO  
1.5V  
1.5V  
tSKEW = |tPLH  
tPHL|  
tZH  
tHZ  
OL  
– 0.5V  
RO  
0V  
Figure 6. Receiver Enable/Disable Timing  
Figure 4. Receiver Propagation Delay Timing  
Rev. B | Page 4 of 16  
 
 
 
ADM1490E/ADM1491E  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
TA = 25°C, unless otherwise noted.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount pacꢀages.  
Table 3.  
Parameter  
Rating  
Table 4. Thermal Resistance  
VCC to GND  
−0.3 V to +7 V  
Digital I/O Voltage (DE, RE)  
Driver Input Voltage (DI)  
Receiver Output Voltage (RO)  
Driver Output/Receiver Input Voltage  
(A, B, Y, Z)  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−9 V to +14 V  
Pacꢀage Type  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead SOIC  
121  
86  
133  
133  
14-Lead SOIC  
8-Lead MSOP  
10-Lead MSOP  
Operating Temperature Range  
Storage Temperature Range  
ESD (HBM) on A, B, Y, and Z  
−40°C to +85°C  
−55°C to +150°C  
8 kV  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 5 of 16  
 
ADM1490E/ADM1491E  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADM1491E  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
NC  
RO  
CC  
CC  
ADM1490E  
ADM1491E  
A
RE  
TOP VIEW  
(Not to Scale)  
B
DE  
RO  
RE  
1
2
3
4
5
10  
9
V
CC  
V
1
2
3
4
8
7
6
5
A
B
Z
CC  
Z
DI  
1
A
B
Z
RO  
DI  
TOP VIEW  
(Not to Scale)  
Y
GND  
GND  
DE  
8
TOP VIEW  
(Not to Scale)  
8
NC  
DI  
7
GND  
Y
GND  
6
Y
NC = NO CONNECT  
Figure 8. 14-Lead, Narrow Body SOIC  
Pin Configuration  
Figure 7. 8-Lead MSOP and 8-Lead SOIC  
Pin Configuration  
Figure 9. 10-Lead MSOP  
Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
8-Lead SOIC,  
8-Lead MSOP 14-Lead SOIC 10-Lead MSOP Mnemonic Description  
N/A1  
2
N/A1  
1
2
3
N/A1  
1
2
NC  
RO  
RE  
No Connect. This pin is available on the 14-lead SOIC only.  
Receiver Output.  
Receiver Output Enable. A low level enables the receiver output, whereas  
a high level places the receiver output in a high impedance state.  
Driver Output Enable. A logic high enables the differential driver outputs,  
A and B, whereas a logic low places the differential driver outputs in a  
high impedance state.  
Driver Input. When the driver is enabled, a logic low on DI forces Pin A low  
and Pin B high, whereas a logic high on DI forces Pin A high and Pin B low.  
N/A1  
4
5
3
4
DE  
DI  
3
4
6
7
8
9
5
GND  
GND  
NC  
Y
Ground.  
N/A1  
N/A1  
N/A1  
6
Ground. This pin is available on the 14-lead SOIC only.  
No Connect. This pin is available on the 14-lead SOIC only.  
Noninverting Driver Output Y.  
N/A1  
5
6
7
8
1
10  
11  
12  
13  
14  
7
8
9
10  
N/A1  
Z
B
A
VCC  
VCC  
Inverting Driver Output Z.  
Inverting Receiver Input B.  
Noninverting Receiver Input A.  
Power Supply (5 V 5ꢀ).  
N/A1  
Power Supply (5 V 5ꢀ). This pin is available on the 14-lead SOIC only.  
1 N/A indicates not applicable.  
Rev. B | Page 6 of 16  
 
ADM1490E/ADM1491E  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
30  
25  
20  
15  
10  
5
0
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
–50  
–25  
0
25  
50  
75 85  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. Output Current vs. Receiver Output Low Voltage  
Figure 13. Receiver Output Low Voltage vs. Temperature (IOUT = 8 mA)  
0
80  
70  
60  
50  
–5  
–10  
40  
30  
20  
–15  
–20  
10  
–25  
–30  
0
–10  
3.50  
3.75  
4.00  
4.25  
4.50  
4.75  
5.00  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11. Output Current vs. Receiver Output High Voltage  
Figure 14. Output Current vs. Driver Differential Output Voltage  
4.75  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
4.70  
4.65  
4.60  
4.55  
4.50  
–50  
–25  
0
25  
50  
75 85  
–50  
–25  
0
25  
50  
75 85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Receiver Output High Voltage vs. Temperature (IOUT = 8 mA)  
Figure 15. Driver Differential Output Voltage vs. Temperature (RL = 56.3 Ω)  
Rev. B | Page 7 of 16  
 
ADM1490E/ADM1491E  
80  
70  
60  
50  
40  
30  
1
3
20  
10  
0
CH1 5V  
CH3 2V  
CH2 2V  
M200ns  
A CH1  
1.6V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT VOLTAGE (V)  
Figure 19. Unloaded Driver Differential Outputs  
Figure 16. Output Current vs. Driver Output Low Voltage  
0
–10  
1
–20  
–30  
–40  
–50  
3
–60  
–70  
–80  
CH1 5V  
CH3 2V  
CH2 2V  
M200ns  
A CH1  
1.6V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT VOLTAGE (V)  
Figure 17. Output Current vs. Driver Output High Voltage  
Figure 20. Loaded Driver Differential Outputs  
(RL Differential = 54 Ω, CL = 100 pF)  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
DRIVER ENABLED  
DRIVER DISABLED  
–50  
–25  
0
25  
50  
75 85  
TEMPERATURE (°C)  
Figure 18. Output Current vs. Temperature  
Rev. B | Page 8 of 16  
ADM1490E/ADM1491E  
TEST CIRCUITS  
Y
R
L
2
DI  
V
OD2  
V
V
CC  
OUT  
R
2
L
Y
Z
R
110  
L
Z
V
OC  
DI  
S1  
S2  
C
L
50pF  
DE  
Figure 21. Driver Voltage Measurements  
Figure 24. Driver Enable/Disable Timing  
Y
375  
A
DI  
V
60Ω  
OD3  
V
375Ω  
OUT  
V
TEST  
Z
RE  
B
C
L
Figure 22. Driver Voltage Measurements  
Figure 25. Receiver Propagation Delay  
+1.5V  
–1.5V  
V
CC  
S1  
Y
R
L
C
C
L
S2  
RE  
DI  
R
L
C
V
L
OUT  
L
Z
RE  
Figure 23. Driver Propagation Delay  
Figure 26. Receiver Enable/Disable Timing  
Rev. B | Page 9 of 16  
 
 
 
 
 
 
ADM1490E/ADM1491E  
THEORY OF OPERATION  
The ADM1490E/ADM1491E are RS-422/RS-485 transceivers that  
operate from a single 5 k 5% power supply. The ADM1490E/  
ADM1491E are intended for balanced data transmission and  
comply with both TIA/EIA-485-A and TIA/EIA-422-B. Each  
device contains a differential line driver and a differential line  
receiver and is suitable for full-duplex data transmission.  
ESD TRANSIENT PROTECTION SCHEME  
The ADM1490E/ADM1491E use protective clamping  
structures on their inputs and outputs to clamp the voltage to a  
safe level and dissipate the energy present in ESD (electrostatic).  
The protection structure achieves ESD protection up to 8 ꢀk  
human body model (HBM).  
The input impedance of the ADM1490E/ADM1491E is 12 ꢀΩ,  
allowing up to 32 transceivers on the differential bus. A thermal  
shutdown circuit prevents excessive power dissipation caused by  
bus contention or by output shorting. This feature forces the driver  
output into a high impedance state if, during fault conditions, a  
significant temperature increase is detected in the internal  
driver circuitry.  
ESD Testing  
Two coupling methods are used for ESD testing: contact dis-  
charge and air gap discharge. Contact discharge calls for a direct  
connection to the unit being tested; air gap discharge uses a higher  
test voltage but does not maꢀe direct contact with the unit under  
test. With air discharge, the discharge gun is moved toward the  
unit under test, developing an arc across the air gap; therefore,  
the term air discharge. This method is influenced by humidity,  
temperature, barometric pressure, distance, and rate of closure  
of the discharge gun. The contact discharge method, though  
less realistic, is more repeatable and is gaining acceptance and  
preference over the air gap method.  
The receiver contains a fail-safe feature that results in a logic  
high output state if the inputs are unconnected (floating).  
The ADM1490E/ADM1491E feature very low propagation  
delay, ensuring maximum baud rate operation. The balanced  
driver ensures distortion-free transmission.  
Although very little energy is contained within an ESD pulse,  
the extremely fast rise time, coupled with high voltages, can cause  
failures in unprotected semiconductors. Catastrophic destruction  
can occur immediately because of arcing or heating. Even if cata-  
strophic failure does not occur immediately, the device can suffer  
from parametric degradation, resulting in degraded performance.  
The cumulative effects of continuous exposure can eventually  
lead to complete failure.  
Another important specification is a measure of the sꢀew  
between the complementary outputs. Excessive sꢀew impairs  
the noise immunity of the system and increases the amount  
of electromagnetic interference (EMI).  
TRUTH TABLES  
Table 6. Abbreviations in Truth Tables  
Letter  
Description  
H
I
L
X
Z
High level  
Indeterminate  
Low level  
Irrelevant  
High impedance (off)  
HIGH  
R2  
VOLTAGE  
GENERATOR  
DEVICE  
C1  
UNDER TEST  
NOTES  
1. THE ESD TEST METHOD USED IS THE  
HUMAN BODY MODEL (±8kV) WITH  
R2 = 1500AND C1 = 100pF.  
Table 7. Transmitting  
Figure 27. ESD Generator  
Inputs  
Outputs  
DE  
H
H
DI  
H
L
Z
L
H
Z
Y
H
L
I/O lines are particularly vulnerable to ESD damage. Simply  
touching or plugging in an I/O cable may result in a static dis-  
charge that can damage or destroy the interface product connected  
to the I/O port. It is, therefore, extremely important to have high  
levels of ESD protection on the I/O lines.  
L
X
Z
Table 8. Receiving  
The ESD discharge can induce latch-up in the device under test.  
Therefore, it is important to conduct ESD testing on the I/O pins  
while power is applied to the device. This type of testing is more  
representative of a real-world I/O discharge in which the equip-  
ment is operating normally when the discharge occurs.  
Inputs  
Output  
RE  
A − B  
RO  
L
L
L
L
H
≥ +0.2 V  
≤ −0.2 V  
−0.2 V ≤ A − B ≤ +0.2 V  
Inputs open  
X
H
L
I
H
Z
Rev. B | Page 10 of 16  
 
ADM1490E/ADM1491E  
100%  
90%  
36.8%  
10%  
TIME (t)  
tDL  
tRL  
Figure 28. Human Body Model ESD Current Waveform  
Table 9. ADM1490E/ADM1491E ESD Test Results  
ESD Test Method  
Input/Output Pins  
Other Pins  
Human Body Model  
8 kV  
4 kV  
Rev. B | Page 11 of 16  
ADM1490E/ADM1491E  
APPLICATIONS INFORMATION  
DIFFERENTIAL DATA  
CABLE AND DATA RATE  
Differential data transmission reliably transmits data at high  
rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts  
and noise signals that appear as common-mode voltages on the  
line. There are two main standards approved by the Electronics  
Industries Association (EIA) that specify the electrical char-  
acteristics of transceivers used in differential data transmission.  
Twisted pair is the transmission line of choice for RS-485  
communications. Twisted pair cable tends to cancel common-  
mode noise and causes cancellation of the magnetic fields  
generated by the current flowing through each wire, thereby  
reducing the effective inductance of the pair.  
An RS-485 transmission line can have as many as 32 trans-  
ceivers on the bus. Only one driver can transmit at a time, but  
multiple receivers may be enabled simultaneously.  
The RS-422 standard specifies data rates of up to 10 MBaud and  
line lengths of up to 4000 feet. A single driver can drive a trans-  
mission line with as many as 10 receivers.  
As with any transmission line, it is important to minimize  
reflections. This can be achieved by terminating the extreme  
ends of the line using resistors equal to the characteristic  
impedance of the line. Keep stub lengths of the main line as  
short as possible. A properly terminated transmission line  
appears purely resistive to the driver.  
The RS-485 standard addresses true multipoint communications.  
This standard meets or exceeds all of the requirements of RS-422,  
and it allows as many as 32 drivers and 32 receivers to connect  
to a single bus. An extended common-mode range of −7 k to  
+12 k is defined. The most significant difference between the  
RS-422 and the RS-485 is that the drivers with RS-485 can be  
disabled, allowing more than one driver to be connected to a  
single line, with as many as 32 drivers connected to a single line.  
Only one driver should be enabled at a time, but the RS-485  
standard contains additional specifications to guarantee device  
safety in the event of line contention.  
TYPICAL APPLICATIONS  
Figure 29 shows a typical configuration for a full-duplex point-  
to-point application using the ADM1490E. Figure 30 shows a  
typical configuration for a full-duplex multipoint application  
using the ADM1491E. To minimize reflections, the lines must  
be terminated at the receiving end in its characteristic impedance,  
and stub lengths off the main line must be ꢀept as short as possible.  
V
V
CC  
CC  
V
CC  
ADM1490E  
ADM1490E  
A
B
Z
Y
Z
R
RO  
DI  
D
R
T
V
CC  
B
A
R
T
D
DI  
R
RO  
Y
GND  
GND  
NOTES  
1. MAXIMUM NUMBER OF NODES = 32.  
Figure 29. Typical Point-to-Point Full-Duplex Application  
Rev. B | Page 12 of 16  
 
 
ADM1490E/ADM1491E  
MAXIMUM NUMBER OF NODES = 32  
V
T
CC  
MASTER  
R
SLAVE  
A
B
Z
Y
RO  
RE  
DE  
DI  
D
DI  
R
Z
DE  
RE  
RO  
V
CC  
B
A
R
T
D
R
Y
ADM1491E  
ADM1491E  
A
B
Z
Y
A
B
Z
Y
SLAVE  
SLAVE  
ADM1491E  
ADM1491E  
R
R
D
D
RO RE DE DI  
RO RE DE DI  
NOTES  
1. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.  
T
Figure 30. Typical RS-485 Full-Duplex Application  
Rev. B | Page 13 of 16  
 
ADM1490E/ADM1491E  
OUTLINE DIMENSIONS  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 31. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 32. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. B | Page 14 of 16  
 
ADM1490E/ADM1491E  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 33. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 34. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Pacꢀage  
Option  
Model  
ADM1490EBRZ1  
Pacꢀage Description  
Branding  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package, Narrow Body [SOIC_N]  
8-Lead Standard Small Outline Package, Narrow Body [SOIC_N]  
8-Lead Mini Small Outline Package [MSOP]  
R-8  
R-8  
RM-8  
RM-8  
ADM1490EBRZ-REEL71  
ADM1490EBRMZ1  
ADM1490EBRMZ-REEL71  
ADM1491EBRZ1  
ADM1491EBRZ-REEL71  
ADM1491EBRMZ1  
ADM1491EBRMZ-REEL71  
F0E  
F0E  
8-Lead Mini Small Outline Package [MSOP]  
14-Lead Standard Small Outline Package, Narrow Body [SOIC_N] R-14  
14-Lead Standard Small Outline Package, Narrow Body [SOIC_N] R-14  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
RM-10  
RM-10  
F0D  
F0D  
1 Z = RoHS Compliant Part.  
Rev. B | Page 15 of 16  
 
ADM1490E/ADM1491E  
NOTES  
©2008–2009 Analog Devices, Inc. All rights reserved. Trademarꢀs and  
registered trademarꢀs are the property of their respective owners.  
D07430-0-7/09(B)  
Rev. B | Page 16 of 16  

相关型号:

ADM1490EBRZ-REEL7

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
ADI

ADM1491E

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
ADI

ADM1491EBRMZ

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
ADI

ADM1491EBRMZ-REEL7

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
ADI

ADM1491EBRZ

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
ADI

ADM1491EBRZ

LINE TRANSCEIVER, PDSO14, ROHS COMPLIANT, MS-012AB, SOIC-14
ROCHESTER

ADM1491EBRZ-REEL7

16 Mbps, ESD Protected, Full-Duplex RS-485 Transceivers
ADI
ETC
ETC
ETC
ETC
ETC