ADM2491E [ADI]

High Speed, ESD-Protected, Half-/Full-Duplex, iCoupler Isolated RS-485 Transceiver; 高速, ESD保护,半/全双工, iCoupler隔离RS- 485收发器
ADM2491E
型号: ADM2491E
厂家: ADI    ADI
描述:

High Speed, ESD-Protected, Half-/Full-Duplex, iCoupler Isolated RS-485 Transceiver
高速, ESD保护,半/全双工, iCoupler隔离RS- 485收发器

文件: 总16页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, ESD-Protected, Half-/Full-Duplex,  
iCoupler Isolated RS-485 Transceiver  
ADM2491E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD1  
DD2  
Isolated, RS-485/RS-422 transceiver, configurable as half- or  
full-duplex  
8 kV ESD protection on RS-485 input/output pins  
16 Mbps data rate  
ADM2491E  
DE  
Complies with ANSI TIA/EIA RS-485-A-1998 and  
ISO 8482: 1987(E)  
Y
Z
TxD  
Suitable for 5 V or 3.3 V operation (VDD1  
)
High common-mode transient immunity: >25 kV/μs  
Receiver has open-circuit, fail-safe design  
32 nodes on the bus  
A
B
RxD  
RE  
Thermal shutdown protection  
Safety and regulatory approvals pending  
UL recognition: 5000 V rms isolation voltage  
for 1 minute, per UL 1577  
GND  
GND  
2
1
Figure 1.  
VDE certificate of conformity  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12  
Reinforced insulation, VIORM = 848 V peak  
Operating temperature range: −40°C to +85°C  
Wide body, 16-lead SOIC package  
APPLICATIONS  
Isolated RS-485/RS-422 interfaces  
Industrial field networks  
INTERBUS  
Multipoint data transmission systems  
GENERAL DESCRIPTION  
The ADM2491E is an isolated data transceiver with ±± k EꢁD  
protection and is suitable for high speed, half- or full-duplex  
communication on multipoint transmission lines. For half-  
duplex operation, the transmitter outputs and the receiver  
inputs share the same transmission line. Transmitter output Pin  
Y is linꢀed externally to receiver input Pin A, and transmitter  
output Pin Z to receiver input Pin B.  
The differential transmitter outputs and receiver inputs feature  
electrostatic discharge circuitry that provides protection to  
±± k using the human body model (HBM). The logic side of  
the device can be powered with either a 5 k or a 3.3 k supply,  
whereas the bus side requires an isolated 5 k supply.  
The device has current-limiting and thermal shutdown features  
to protect against output short circuits and situations where bus  
contention could cause excessive power dissipation.  
The ADM2491E is designed for balanced transmission lines  
and complies with ANꢁI TIA/EIA Rꢁ-4±5-A-199± and IꢁO  
±4±2: 19±7(E). The device employs Analog Devices, Inc.,  
iCoupler® technology to combine a 3-channel isolator, a three-  
state differential line driver, and a differential input receiver into  
a single pacꢀage.  
The ADM2491E is available in a wide body, 16-lead ꢁOIC  
pacꢀage and operates over the −40°C to +±5°C temperature  
range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADM2491E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ꢁwitching Characteristics .................................................................9  
Typical Performance Characteristics ........................................... 10  
Circuit Description......................................................................... 12  
Electrical Isolation...................................................................... 12  
Truth Tables................................................................................. 12  
Thermal ꢁhutdown .................................................................... 13  
Fail-ꢁafe Receiver Inputs ........................................................... 13  
Magnetic Field Immunity.......................................................... 13  
Applications Information.............................................................. 14  
Isolated Power ꢁupply Circuit .................................................. 14  
PCB Layout ................................................................................. 14  
Typical Applications................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Blocꢀ Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
ꢁpecifications..................................................................................... 3  
Timing ꢁpecifications .................................................................. 4  
Pacꢀage Characteristics ............................................................... 4  
Regulatory Information (Pending) ............................................ 4  
Insulation and ꢁafety-Related ꢁpecifications............................ 5  
kDE 0±±4 Insulation Characteristics (Pending)...................... 5  
Absolute Maximum Ratings............................................................ 6  
EꢁD Caution.................................................................................. 6  
Pin Configuration and Functional Descriptions.......................... 7  
Test Circuits....................................................................................... ±  
REVISION HISTORY  
10/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADM2491E  
SPECIFICATIONS  
All voltages are relative to their respective ground; 3.0 k ≤ kDD1 ≤ 5.5 k, 4.5 k ≤ kDD2 ≤ 5.5 k. All minimum/maximum specifications  
apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, kDD1 = kDD2  
5.0 k, unless otherwise noted.  
=
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
Power Supply Current, Logic Side  
TxD/RxD Data Rate = 2 Mbps  
TxD/RxD Data Rate = 16 Mbps  
IDD1  
IDD1  
3.0  
6
mA  
mA  
Unloaded output  
Half-duplex configuration,  
RTERMINATION = 120 Ω, see Figure 5  
Power Supply Current, Bus Side  
TxD/RxD Data Rate = 2 Mbps  
TxD/RxD Data Rate = 16 Mbps  
IDD2  
IDD2  
4.0  
50  
mA  
mA  
Unloaded output  
VDD2 = 5.5 V, half-duplex configuration,  
RTERMINATION = 120 Ω, see Figure 5  
DRIVER  
Differential Outputs  
Differential Output Voltage,  
Loaded  
|VOD|  
2.0  
5.0  
V
RL = 100 Ω (RS-422), see Figure 3  
1.5  
1.5  
5.0  
5.0  
0.2  
V
V
V
RL = 54 Ω (RS-485), see Figure 3  
−7 V ≤ VTEST1 ≤ 12 V, see Figure 4  
RL = 54 Ω or 100 Ω, see Figure 3  
∆|VOD| for Complementary  
Output States  
∆|VOD|  
Common-Mode Output Voltage VOC  
3.0  
0.2  
V
V
RL = 54 Ω or 100 Ω, see Figure 3  
RL = 54 Ω or 100 Ω, see Figure 3  
∆|VOC| for Complementary  
Output States  
∆|VOC|  
Output Leakage Current (Y, Z)  
IO  
IO  
IOS  
100  
250  
μA  
μA  
mA  
DE = 0 V, VDD2 = 0 V or 5 V, VIN = 12 V  
DE = 0 V, VDD2 = 0 V or 5 V, VIN = −7 V  
−100  
Short-Circuit Output Current  
Logic Inputs DE, RE, TxD  
Input Threshold Low  
Input Threshold High  
Input Current  
VILTxD  
VIHTRxD  
ITxD  
0.25 × VDD1  
−10  
V
V
μA  
0.7 × VDD1  
+10  
+0.01  
30  
RECEIVER  
Differential Inputs  
Differential Input Threshold  
Input Voltage Hysteresis  
Input Current (A, B)  
VTH  
VHYS  
II  
−0.2  
+0.2  
+1.0  
V
mV  
mA  
mA  
kΩ  
VOC = 0 V  
VOC = 12 V  
VOC = −7 V  
−0.8  
12  
Line Input Resistance  
Logic Outputs  
RIN  
Output Voltage Low  
Output Voltage High  
Short-Circuit Current  
Three-State Output Leakage  
VOLRxD  
VOHRxD  
0.2  
VDD1 − 0.2  
0.4  
V
V
IORxD = 1.5 mA, VA − VB = −0.2 V  
IORxD = −1.5 mA, VA − VB = 0.2 V  
VDD1 − 0.3  
100  
1
mA  
μA  
kV/μs  
IOZR  
VDD1 = 5.5 V, 0 V < VOUT < VDD1  
VCM = 1 kV, transient magnitude = 800 V  
COMMON-MODE TRANSIENT  
IMMUNITY1  
25  
1 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 3 of 16  
 
 
ADM2491E  
TIMING SPECIFICATIONS  
TA = −40°C to +±5°C  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DRIVER  
Maximum Data Rate  
Propagation Delay  
16  
Mbps  
ns  
tPLH, tPHL  
tPWD, tPWD  
tR, tF  
45  
60  
7
RL = 54 Ω, CL1 = C L2 = 100 pF,  
see Figure 6 and Figure 10  
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 10  
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 10  
RL = 110 Ω, CL = 50 pF,  
Pulse Width Distortion,  
PWD = |tPYLH − tPYHL|, PWD = |tPZLH − tPZHL  
Single-Ended Output Rise/Fall Times  
ns  
ns  
ns  
ns  
|
20  
55  
55  
Enable Time  
see Figure 8 and Figure 11  
RL = 110 Ω, CL = 50 pF,  
Disable Time  
see Figure 8 and Figure 11  
RECEIVER  
Propagation Delay  
Pulse Width Distortion, PWD = |tPLH − tPHL  
Enable Time  
tPLH, tPHL  
tPWD  
60  
10  
13  
ns  
ns  
ns  
CL = 15 pF, see Figure 7 and Figure 12  
CL = 15 pF, see Figure 7 and Figure 12  
RL = 1 kΩ, CL = 15 pF,  
|
see Figure 9 and Figure 13  
Disable Time  
13  
ns  
RL = 1 kΩ, CL = 15 pF,  
see Figure 9 and Figure 13  
PACKAGE CHARACTERISTICS  
Table 3.  
Parameter  
Symbol  
RI-O  
CI-O  
Min  
Typ  
1012  
3
Max  
Unit  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
Ω
pF  
pF  
f = 1 MHz  
CI  
4
Input IC Junction-to-Case Thermal Resistance  
θJCI  
33  
°C/W  
Thermocouple located at center  
of package underside  
Output IC Junction-to-Case Thermal Resistance  
θJCO  
28  
°C/W  
1 Device considered a 2-terminal device: Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14, Pin 15,  
and Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION (PENDING)  
Table 4.  
UL1  
VDE2  
To be recognized under 1577 component recognition program1  
To be certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-122  
5000 V rms isolation voltage  
Reinforced insulation, 846 V peak  
1 In accordance with UL 1577, each ADM2491E is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 10 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADM2491E is proof tested by applying an insulation test voltage ≥ 1590 V peak for 1 second (partial discharge detection  
limit = 5 pC).  
Rev. 0 | Page 4 of 16  
 
 
ADM2491E  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol  
Value  
5000  
7.7  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
V rms  
mm min  
1 minute duration  
Measured from input terminals to output  
terminals, shortest distance through air  
Measured from input terminals to output  
terminals, shortest distance along body  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
8.1  
mm min  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
0.017  
>175  
IIIa  
mm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89)  
VDE 0884 INSULATION CHARACTERISTICS (PENDING)  
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by  
means of protective circuits.  
An asterisꢀ (*) on a pacꢀage denotes kDE 0±±4 approval for ±4± k peaꢀ worꢀing voltage.  
Table 6.  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110 for Rated Mains Voltage  
≤300 V rms  
≤450 V rms  
≤600 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, see Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
VIORM × 1.875 = VPR, 100% Production Tested, tm = 1 sec, Partial Discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests, Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test, Subgroup 2/Subgroup 3  
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; see Figure 20)  
Case Temperature  
I to IV  
I to II  
I to II  
40/105/21  
2
VIORM  
VPR  
846  
1590  
V peak  
V peak  
VPR  
1357  
1018  
6000  
V peak  
V peak  
V peak  
VTR  
TS  
150  
265  
335  
>109  
°C  
Input Current  
Output Current  
Insulation Resistance at TS, VIO = 500 V  
IS, INPUT  
IS, OUTPUT  
RS  
mA  
mA  
Ω
Rev. 0 | Page 5 of 16  
 
ADM2491E  
ABSOLUTE MAXIMUM RATINGS  
TA = 25 °C, unless otherwise noted. Each voltage is relative to its  
respective ground.  
ꢁtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
Rating  
Storage Temperature  
Ambient Operating Temperature  
VDD1  
−55°C to +150°C  
−40°C to +85°C  
−0.5 V to +7 V  
−0.5 V to +6 V  
−0.5 V to VDD1 + 0.5 V  
−9 V to +14 V  
−0.5 V to VDD1 + 0.5 V  
35 mA  
Absolute maximum ratings apply individually only, not in  
combination.  
VDD2  
Logic Input Voltages  
Bus Terminal Voltages  
Logic Output Voltages  
Average Output Current, per Pin  
ESD CAUTION  
ESD (Human Body Model) on A, B, Y,  
and Z pins  
8 kV  
Rev. 0 | Page 6 of 16  
 
ADM2491E  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
GND  
15 GND  
1
2
RxD  
RE  
14  
13  
12  
11  
A
B
Z
ADM2491E  
TOP VIEW  
(Not to Scale)  
DE  
TxD  
NC  
Y
10 NC  
GND  
GND  
9
1
2
NC = NO CONNECT  
Figure 2. ADM2491E Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VDD1  
Power Supply (Logic Side). Decoupling capacitor to GND1 required; capacitor value should be between  
0.01 μF and 0.1 μF.  
2
3
4
GND1  
RxD  
RE  
Ground (Logic Side).  
Receiver Output.  
Receiver Enable Input. Active low logic input. When this pin is low, the receiver is enabled; when high, the  
receiver is disabled.  
5
DE  
Driver Enable Input. Active high logic input. When this pin is high, the driver (transmitter) is enabled;  
when low, the driver is disabled.  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
TxD  
NC  
GND1  
GND2  
NC  
Y
Transmit Data.  
No Connect. This pin must be left floating.  
Ground (Logic Side).  
Ground (Bus Side).  
No Connect. This pin must be left floating.  
Driver Noninverting Output.  
Driver Inverting Output.  
Receiver Inverting Input.  
Receiver Noninverting Input.  
Ground (Bus Side).  
Z
B
A
GND2  
VDD2  
Power Supply (Bus Side). Decoupling capacitor to GND2 required; capacitor value should be between  
0.01 μF and 0.1 μF.  
Rev. 0 | Page 7 of 16  
 
ADM2491E  
TEST CIRCUITS  
R
L
2
C
C
Y
Z
L1  
V
OD  
R
LDIFF  
R
L
V
2
OC  
L2  
Figure 3. Driver Voltage Measurement  
Figure 6. Driver Propagation Delay  
375  
A
V
V
TEST  
OD  
60Ω  
V
OUT  
B
C
L
375Ω  
Figure 7. Receiver Propagation Delay  
Figure 4. Driver Voltage Measurement  
V
V
CC  
DD1  
V
DD2  
V
OUT  
Y
Z
R
L
ADM2491E  
S1  
S2  
0V OR 3V  
DE  
DE  
C
L
Y
Z
R
Figure 8. Driver Enable/Disable  
TERMINATION  
TxD  
A
B
V
CC  
V
OUT  
S1  
RxD  
RE  
+1.5V  
–1.5V  
R
A
B
L
S2  
RE  
C
L
RE IN  
GND  
GND  
2
1
Figure 9. Receiver Enable/Disable  
Figure 5. Supply Current Measurement Test Circuit  
Rev. 0 | Page 8 of 16  
 
 
 
 
 
 
ADM2491E  
SWITCHING CHARACTERISTICS  
V
DD1  
TxD  
0V  
1.5V  
1.5V  
A, B  
0V  
0V  
tPLH  
tPHL  
Z
Y
1/2V  
OUT  
V
OUT  
tPLH  
tPHL  
VOH  
tPWD = |tPLH  
tPHL|  
RxD  
1.5V  
1.5V  
V
OH  
90% POINT  
90% POINT  
Y, Z  
VOL  
10% POINT  
10% POINT  
V
OL  
tR  
tF  
Figure 10. Driver Propagation Delay, Rise/Fall Timing  
Figure 12. Receiver Propagation Delay  
V
DD1  
V
DD1  
DE  
RE  
0.5V  
tZL  
0.5V  
DD1  
0.5V  
tZL  
0.5V  
DD1  
DD1  
DD1  
0V  
0V  
tLZ  
tLZ  
2.3V  
2.3V  
1.5V  
1.5V  
RxD  
Y, Z  
Y, Z  
V
+ 0.5V  
– 0.5V  
V
OL  
+ 0.5V  
– 0.5V  
OL  
OUTPUT LOW  
OUTPUT HIGH  
V
V
OL  
OL  
tZH  
tHZ  
tZH  
tHZ  
V
V
OH  
OH  
V
V
OH  
OH  
RxD  
0V  
0V  
0V  
Figure 11. Driver Enable/Disable Delay  
Figure 13. Receiver Enable/Disable Delay  
Rev. 0 | Page 9 of 16  
 
 
 
ADM2491E  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
50  
40  
30  
20  
10  
0
2.58  
NO LOAD  
2.56  
2.54  
tPLH  
tPHL  
2.52  
100LOAD  
2.50  
2.48  
54LOAD  
2.46  
2.44  
2.42  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Receiver Propagation Delay vs. Temperature  
Figure 14. IDD1 Supply Current vs. Temperature  
60  
50  
40  
30  
20  
10  
0
Δ: 2.12V  
@: 7.72V  
TxD  
54LOAD  
1
Z
Y
100LOAD  
3
4
RxD  
NO LOAD  
CH1 2V  
CH3 2V  
CH2 2V  
CH4 2V  
M20ns  
48ns  
A CH1  
2.32V  
–40  
–20  
0
20  
40  
60  
80  
T
TEMPERATURE (°C)  
Figure 18. Driver/Receiver Propagation Delay, Low to High  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
Figure 15. IDD2 Supply Current vs. Temperature  
60  
50  
40  
30  
20  
10  
0
Δ: 2.12V  
@: 7.72V  
tPZHL  
tPYLH  
tPZLH  
TxD  
1
tPYHL  
Z
Y
3
4
RxD  
CH1 2V  
CH3 2V  
CH2 2V  
CH4 2V  
M20ns  
48ns  
A CH1  
3.24V  
–40  
–20  
0
20  
40  
60  
80  
T
TEMPERATURE (°C)  
Figure 19. Driver/Receiver Propagation Delay, High to Low  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
Figure 16. Driver Propagation Delay vs. Temperature  
Rev. 0 | Page 10 of 16  
 
ADM2491E  
350  
300  
250  
200  
150  
100  
50  
4.76  
4.75  
4.74  
4.73  
4.72  
4.71  
4.70  
4.69  
4.68  
4.67  
4.66  
4.65  
SIDE 2  
SIDE 1  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 20. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per VDE 0884  
Figure 23. Receiver Output High Voltage vs. Temperature,  
IRxD = −4 mA  
0
–2  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–4  
–6  
–8  
–10  
–12  
–14  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
–40  
–20  
0
20  
40  
60  
80  
RECEIVER OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 21. Output Current vs. Receiver Output High Voltage  
Figure 24. Receiver Output Low Voltage vs. Temperature,  
RxD = –4 mA  
I
16  
14  
12  
10  
8
6
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
RECEIVER OUTPUT VOLTAGE (V)  
Figure 22. Output Current vs. Receiver Output Low Voltage  
Rev. 0 | Page 11 of 16  
 
ADM2491E  
CIRCUIT DESCRIPTION  
ELECTRICAL ISOLATION  
TRUTH TABLES  
In the ADM2491E, electrical isolation is implemented on the  
logic side of the interface. Therefore, the part has two main  
sections: a digital isolation section and a transceiver section  
(see Figure 25). The driver input signal, which is applied to the  
TxD pin and referenced to logic ground (GND1), is coupled  
across an isolation barrier to appear at the transceiver section  
referenced to isolated ground (GND2). ꢁimilarly, the receiver  
input, which is referenced to isolated ground in the transceiver  
section, is coupled across the isolation barrier to appear at the  
RxD pin referenced to logic ground.  
The truth tables in this section use the abbreviations shown in  
Table 9.  
Table 9. Truth Table Abbreviations  
Letter  
Description  
H
L
High level  
Low level  
I
X
Z
Indeterminate  
Irrelevant  
High impedance (off)  
Disconnected  
NC  
iCoupler Technology  
The digital signals are transmitted across the isolation barrier  
using iCoupler technology. This technique uses chip scale  
transformer windings to couple the digital signals magnetically  
from one side of the barrier to the other. Digital inputs are  
encoded into waveforms that are capable of exciting the  
primary transformer winding. At the secondary winding, the  
induced waveforms are decoded into the binary value that was  
originally transmitted.  
Table 10. Transmitting  
Supply Status  
Inputs  
TxD  
Outputs  
VDD1  
On  
On  
On  
On  
Off  
Off  
VDD2  
On  
On  
On  
Off  
On  
Off  
DE  
H
H
L
X
L
Y
H
L
Z
Z
Z
Z
Z
L
H
L
X
X
L
H
Z
Z
Z
Z
V
V
DD1  
DD2  
X
X
ISOLATION  
BARRIER  
DE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
ENCODE  
Table 11. Receiving  
Supply Status  
Inputs  
Output  
Y
Z
RE  
RxD  
H
L
VDD1  
On  
On  
On  
On  
On  
On  
Off  
VDD2  
On  
On  
On  
On  
On  
Off  
Off  
A − B (V)  
>0.2  
TxD  
D
L or NC  
L or NC  
L or NC  
L or NC  
H
<−0.2  
A
B
−0.2 < A − B < +0.2  
I
RxD  
RE  
R
Inputs open  
H
Z
X
X
X
DIGITAL ISOLATION  
TRANSCEIVER  
L or NC  
L or NC  
H
L
GND  
GND  
2
1
Figure 25. ADM2491E Digital Isolation and Transceiver Sections  
Rev. 0 | Page 12 of 16  
 
 
 
ADM2491E  
100  
10  
THERMAL SHUTDOWN  
The ADM2491E contains thermal shutdown circuitry that  
protects the part from excessive power dissipation during fault  
conditions. ꢁhorting the driver outputs to a low impedance  
source can result in high driver currents. The thermal sensing  
circuitry detects the increase in die temperature under this  
condition and disables the driver outputs. This circuitry is  
designed to disable the driver outputs when a die temperature  
of 150°C is reached. As the device cools, the drivers are  
re-enabled at a temperature of 140°C.  
1
0.1  
0.01  
0.001  
FAIL-SAFE RECEIVER INPUTS  
1k  
10k  
100k  
1M  
10M  
100M  
The receiver inputs include a fail-safe feature that guarantees a  
logic high on the RxD pin when the A and B inputs are floating  
or open circuited.  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 26. Maximum Allowable External Magnetic Flux Density  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 ꢀgauss induces a  
voltage of 0.25 k at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
ꢁimilarly, if such an event occurs during a transmitted pulse and  
is the worst-case polarity, it reduces the received pulse from  
>1.0 k to 0.75 k—still well above the 0.5 k sensing threshold of  
the decoder.  
MAGNETIC FIELD IMMUNITY  
Because iCoupler devices use a coreless technology, no magnetic  
components are present and the problem of magnetic saturation  
of the core material does not exist. Therefore, iCoupler devices  
have essentially infinite dc field immunity. The following analysis  
defines the conditions under which this may occur. The 3 k  
operating condition of the ADM2491E is examined because it  
represents the most susceptible mode of operation.  
Figure 27 shows the magnetic flux density values in terms of  
more familiar quantities, such as maximum allowable current  
flow, at given distances away from the ADM2491E transformers.  
1000  
The limitation on the ac magnetic field immunity of the  
iCoupler is set by the condition that induced an error voltage in  
the receiving coil (the bottom coil in this case) that was large to  
either falsely set or reset the decoder. The voltage induced  
across the bottom coil is given by  
DISTANCE = 1m  
100  
dβ  
2
V = −  
πr ; n =1, 2, . . . , N  
DISTANCE = 5mm  
10  
n
dt  
where (if the pulses at the transformer output are greater than  
1.0 k in amplitude):  
DISTANCE = 100mm  
1
β is the magnetic flux density (gauss).  
N is the number of turns in receiving coil.  
0.1  
rn is the radius of nth turn in receiving coil (cm).  
The decoder has a sensing threshold of about 0.5 k; therefore,  
there is a 0.5 k margin in which induced voltages can be  
tolerated.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 27. Maximum Allowable Current for  
Various Current-to-ADM2491E Spacings  
Given the geometry of the receiving coil and an imposed  
requirement that the induced voltage is, at most, 50% of the  
0.5 k margin at the decoder, a maximum allowable magnetic  
field is calculated, as shown in Figure 26.  
With combinations of strong magnetic field and high frequency,  
any loops formed by printed circuit board traces could induce  
error voltages large enough to trigger the thresholds of succeeding  
circuitry. Care should be taꢀen in the layout of such traces to  
avoid this possibility.  
Rev. 0 | Page 13 of 16  
 
 
 
ADM2491E  
APPLICATIONS INFORMATION  
ISOLATED POWER SUPPLY CIRCUIT  
PCB LAYOUT  
The ADM2491E requires isolated power capable of 5 k at up to  
approximately 75 mA (this current is dependant on the data  
rate and termination resistors used) to be supplied between the  
kDD2 and the GND2 pins. A transformer driver circuit with a  
center-tapped transformer and LDO can be used to generate the  
isolated 5 k supply, as shown in Figure 2±. The center-tapped  
transformer provides electrical isolation of the 5 k power  
supply. The primary winding of the transformer is excited with  
a pair of square waveforms that are 1±0° out of phase with each  
other. A pair of ꢁchottꢀy diodes and a smoothing capacitor are  
used to create a rectified signal from the secondary winding.  
The ADP3330 linear voltage regulator provides a regulated  
power supply to the bus-side circuitry (kDD2) of the  
The ADM2491E isolated Rꢁ-4±5 transceiver requires no external  
interface circuitry for the logic interfaces. Power supply bypass-  
ing is required at the input and output supply pins (see Figure 29).  
Bypass capacitors are conveniently connected between Pin 1  
and Pin 2 for kDD1 and between Pin 15 and Pin 16 for kDD2. The  
capacitor value should be between 0.01 μF and 0.1 μF. The total  
lead length between both ends of the capacitor and the input  
power supply pin should not exceed 20 mm. Bypassing between  
Pin 1 and Pin ± and between Pin 9 and Pin 16 should also be  
considered unless the ground pair on each pacꢀage side is  
connected close to the pacꢀage.  
V
V
DD1  
GND  
DD2  
GND  
A
B
1
2
RxD  
RE  
ADM2491E.  
ADM2491E  
DE  
Z
ISOLATION  
BARRIER  
TxD  
NC  
Y
NC  
GND  
V
CC  
SD103C  
GND  
1
2
5V  
IN  
OUT  
ADP3330  
NC = NO CONNECT  
+
+
22µF  
SD  
ERR  
NR  
10µF  
Figure 29. Recommended Printed Circuit Board Layout  
V
TRANSFORMER  
DRIVER  
CC  
In applications involving high common-mode transients, care  
should be taꢀen to ensure that board coupling across the isola-  
tion barrier is minimized. Furthermore, the board layout should  
be designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the absolute  
maximum ratings of the device, thereby leading to latch-up or  
permanent damage.  
GND  
78253  
SD103C  
V
CC  
V
V
DD2  
DD1  
ADM2491E  
GND  
GND  
2
1
Figure 28. Isolated Power Supply Circuit  
Rev. 0 | Page 14 of 16  
 
 
 
ADM2491E  
and stub lengths off the main line must be ꢀept as short as  
TYPICAL APPLICATIONS  
possible. For half-duplex operation, this means that both ends  
of the line must be terminated, because either end can be the  
receiving end.  
Figure 30 and Figure 31 show typical applications of the  
ADM2491E in half-duplex and full-duplex Rꢁ-4±5 networꢀ  
configurations. Up to 32 transceivers can be connected to the  
Rꢁ-4±5 bus. To minimize reflections, the line must be  
terminated at the receiving end in its characteristic impedance,  
V
MAXIMUM NUMBER OF TRANSCEIVERS ON BUS = 32  
CC  
ADM2491E  
ADM2491E  
A
B
A
B
R1  
RxD  
RxD  
R
R
RE  
DE  
RE  
R
R
T
T
DE  
Z
Y
Z
Y
TxD  
D
TxD  
D
R2  
A
B
Z
Y
A
B
Z
Y
R
R
D
D
ADM2491E  
ADM2491E  
RxD RE DE TxD  
NOTES  
RxD  
DE TxD  
RE  
1. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.  
T
2. ISOLATION NOT SHOWN.  
Figure 30. ADM2491E Typical Half-Duplex RS-485 Network  
MAXIMUM NUMBER OF NODES = 32  
V
T
DD  
R1  
MASTER  
R
SLAVE  
D
A
B
Z
Y
Z
RxD  
RE  
TxD  
R
DE  
V
DD  
R1  
R
R2  
B
A
RE  
DE  
T
D
TxD  
RxD  
R
Y
R2  
ADM2491E  
ADM2491E  
A
B
Z
Y
A
B
Z
Y
SLAVE  
SLAVE  
R
R
D
D
ADM2491E  
ADM2491E  
RxD RE DE TxD  
RxD RE DE TxD  
NOTES  
1. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.  
T
Figure 31. ADM2491E Typical Full -Duplex RS-485 Network  
Rev. 0 | Page 15 of 16  
 
 
 
ADM2491E  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
0.25 (0.  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 32. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
ADM2491EBRWZ1  
ADM2491EBRWZ–REEL71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RW-16  
RW-16  
16-Lead Standard Small Outline Package, Wide Body [SOIC_W]  
16-Lead Standard Small Outline Package, Wide Body [SOIC_W]  
1 Z = RoHS Compliant Part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06985-0-10/07(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

ADM2491EBRWZ

High Speed, ESD-Protected, Half-/Full-Duplex Coupler Isolated RS-485 Transceiver
ADI

ADM2491EBRWZ-REEL7

High Speed, ESD-Protected, Half-/Full-Duplex Coupler Isolated RS-485 Transceiver
ADI
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC