ADM2795ETRWZ-EP [ADI]

Robust 5 kV RMS Isolated RS-485/RS-422 Transceiver with Level 4 EMC and Full ±42 V Protection;
ADM2795ETRWZ-EP
型号: ADM2795ETRWZ-EP
厂家: ADI    ADI
描述:

Robust 5 kV RMS Isolated RS-485/RS-422 Transceiver with Level 4 EMC and Full ±42 V Protection

驱动 光电二极管 接口集成电路 驱动器
文件: 总17页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Robust 5 kV RMS Isolated RS-485 Transceiver with  
Level 4 DO-160G EMC and Full ±42 V Protection  
Enhanced Product  
ADM2795E-EP  
FEATURES  
APPLICATIONS  
5 kV rms isolated RS-485 transceiver  
Military and aerospace (MILA) avionics for sensors,  
42 V ac/dc peak fault protection on RS-485 bus pins  
DO-160G Section 25 ESD protection: 15 kV air discharge  
Fully certified DO-160G EMC protection on RS-485 bus pins  
Section 22 lightning protection Waveform 3, Waveform 4/  
Waveform 1, Waveform 5A Pin injection, Level 4  
protection  
RS-485 A, B pins HBM ESD protection: > 30 kV  
Safety and regulatory approvals  
CSA Component Acceptance Notice 5A, DIN V VDE V 0884-10,  
UL 1577, CQC11-471543-2012 (pending)  
TIA/EIA RS-485/RS-422 compliant over full supply range  
3 V to 5.5 V operating voltage range on VDD2  
1.7 V to 5.5 V operating voltage range on VDD1 logic supply  
Common-mode input range of −25 V to +25 V  
High common-mode transient immunity: >75 kV/μs  
Robust noise immunity (tested to the IEC 62132-4 standard)  
Passes EN55022 Class B radiated emissions by 6 dBµV/m margin  
Receiver short-circuit, open-circuit, and floating input fail-safe  
Supports 256 bus nodes (96 kΩ receiver input impedance)  
Glitch free power-up/power-down (hot swap)  
actuators, and engine control  
GENERAL DESCRIPTION  
The ADM2795E-EP is a 5 kV rms signal isolated RS-485 trans-  
ceiver that features up to 42 V of ac/dc peak bus overvoltage fault  
protection on the RS-485 bus pins. The device integrates Analog  
Devices, Inc., iCoupler® technology to combine a 3-channel  
isolator, RS-485 transceiver, and IEC electromagnetic compatibil-  
ity (EMC) transient protection in a single package. The  
ADM2795E-EP integrates fully certified DO-160G EMC protec-  
tion on the RS-485 bus pins, with Section 22 lightning protection.  
The ADM2795E-EP also provides Section 25 15 kV ESD air  
discharge protection. For Section 22 lightning, the ADM2795E-EP  
provides protection for Waveform 3, Waveform 4/ Waveform 1,  
and Waveform 5A to Level 4 using 33 Ω or 47 Ω current  
limiting resistors to GND2, or to Level 4 across the isolation  
barrier to GND1. This device has an extended common-mode  
input range of 25 V to improve data communication reliability in  
noisy environments. The ADM2795E-EP is capable of operating  
over wide power supply ranges, with a 1.7 V to 5.5 V VDD1 power  
supply range, allowing interfacing to low voltage logic supplies.  
The ADM2795E-EP is also fully TIA/EIA RS-485/RS-422  
compliant when operated over a 3 V to 5.5 V VDD2 power supply.  
The device is fully characterized over an extended operating  
temperature range of −55°C to +125°C, and is available in a  
16-lead, wide-body SOIC package.  
ENHANCED PRODUCT FEATURES  
Supports defense and aerospace applications (AQEC  
standard)  
Military −55°C to +125°C temperature range  
Controlled manufacturing baseline  
1 assembly/test site  
Additional application and technical information can be found  
in the ADM2795E data sheet.  
Enhanced product change notification  
Qualification data available on request  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD2  
DD1  
RS-485  
TRANSCEIVER  
ADM2795E-EP  
DIGITAL ISOLATOR  
RxD  
RE  
EMC  
A
B
TRANSIENT  
PROTECTION  
CIRCUIT  
DE  
TxD  
GND  
GND  
2
1
ISOLATION  
BARRIER  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADM2795E-EP  
Enhanced Product  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................7  
Thermal Resistance.......................................................................7  
ESD Caution...................................................................................7  
Pin Configuration and Function Descriptions..............................8  
Typical Performance Characteristics ..............................................9  
Test Circuits..................................................................................... 13  
Switching Characteristics.......................................................... 14  
Theory of Operation ...................................................................... 15  
RS-485 with Added DO-160G EMC Robustness .................. 15  
Certified DO-160G EMC Protection ...................................... 15  
DO-160G ADM2795E-EP Test Details................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Enhanced Product Features ............................................................ 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Insulation and Safety Related Specifications ............................ 5  
Package Characteristics ............................................................... 5  
Regulatory Information............................................................... 5  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 6  
REVISION HISTORY  
7/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 17  
 
Enhanced Product  
SPECIFICATIONS  
ADM2795E-EP  
1.7 V ≤ VDD1 ≤ 5.5 V, 3 V ≤ VDD2 ≤ 5.5 V, TA = −55°C to +125°C. All min/max specifications apply over the entire recommended  
operation range, unless otherwise noted. All typical specifications at TA = 25°C, VDD1 = VDD2 = 5.0 V, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT  
Power Supply Current  
Logic Side  
IDD1  
IDD2  
10  
10  
12  
90  
130  
mA  
mA  
mA  
mA  
mA  
Unloaded output, DE = VDD1, RE = 0 V  
Unloaded output, DE = VDD1, RE = 0 V  
Unloaded output, DE = VDD1, RE = 0 V  
Unloaded output, DE = VDD1, RE = 0 V  
TxD/RxD Data Rate = 2.5 Mbps  
Bus Side  
TxD/RxD Data Rate = 2.5 Mbps  
DE = VDD1, RE = 0 V, VDD2 = 5.5 V,  
R = 27 Ω, see Figure 27  
94  
46  
mA  
mA  
mA  
DE = VDD1, RE = 0 V, VDD2 = 5.5 V,  
R = 27 Ω, see Figure 27  
DE = VDD1, RE = 0 V, VDD2 = 3.0 V,  
R = 27 Ω, see Figure 27  
Supply Current in Shutdown Mode  
DRIVER  
ISHDN  
10  
DE = 0 V, RE = VDD1  
Differential Outputs  
Differential Output Voltage  
|VOD  
|
1.5  
2.1  
1.5  
2.1  
5.0  
5.0  
5.0  
5.0  
0.2  
V
V
V
V
V
VDD2 ≥ 3.0 V, R = 27 Ω or 50 Ω,  
see Figure 27  
VDD2 ≥ 4.5 V, R = 27 Ω or 50 Ω,  
see Figure 27  
VDD2 ≥ 3.0 V, VCM = −25 V to +25 V,  
see Figure 28  
VDD2 ≥ 4.5 V, VCM = −25 V to +25 V,  
see Figure 28  
|VOD3  
|
Change in Differential Output  
Voltage for Complementary  
Output States  
∆|VOD  
|
R = 27 Ω or 50 Ω, see Figure 27  
Common-Mode Output Voltage  
VOC  
∆|VOC|  
3.0  
0.2  
V
V
R = 27 Ω or 50 Ω, see Figure 27  
R = 27 Ω or 50 Ω, see Figure 27  
Change in Common-Mode Output  
Voltage for Complementary  
Output States  
Short-Circuit Output Current  
VOUT = Low  
VOUT = High  
IOSL  
IOSH  
−250  
−250  
+250  
+250  
mA  
mA  
−42 V ≤ VSC ≤ +42 V1  
−42 V ≤ VSC ≤ +42 V1  
Logic Inputs (DE, RE, TxD)  
Input Threshold Low  
Input Threshold High  
Input Current  
VIL  
VIH  
ITxD  
0.33 × VDD1  
+1  
V
V
µA  
1.7 V ≤ VDD1 ≤ 5.5 V  
1.7 V ≤ VDD1 ≤ 5.5 V  
0 V ≤ VIN ≤ VDD1  
0.7 VDD1  
RECEIVER  
Differential Inputs  
Differential Input Threshold Voltage  
Input Voltage Hysteresis  
Input Current (A, B)  
VTH  
VHYS  
II  
−200  
−125 −30  
30  
mV  
mV  
mA  
mA  
pF  
−25 V ≤ VCM ≤ +25 V  
−25 V ≤ VCM ≤ +25 V  
DE = 0 V, VDD2 = 0 V/5 V, VIN  
DE = 0 V, VDD2 = 0 V/5 V, VIN  
TA = 25°C, see Figure 17  
−1.0  
−1.0  
+1.0  
+1.0  
=
=
25 V  
42 V  
Input Capacitance (A, B)  
Line Input Resistance  
CAB  
RIN  
150  
96  
kΩ  
−25 V ≤ VCM ≤ +25 V, up to  
256 nodes supported  
Rev. 0 | Page 3 of 17  
 
 
ADM2795E-EP  
Enhanced Product  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Logic Outputs  
Output Voltage Low  
Output Voltage High  
Short-Circuit Current  
Three-State Output Leakage Current  
VOLRxD  
VOHRxD  
0.2  
V
V
mA  
µA  
IORxD = 3.0 mA, VA − VB = −0.2 V  
IORxD = −3.0 mA, VA − VB = 0.2 V  
VOUT = GND or VDD1, RE = 0 V  
RE = VDD1, RxD = 0 V or VDD1  
VDD1 − 0.2  
100  
2
IOZR  
COMMON-MODE TRANSIENT IMMUNITY2  
75  
125  
kV/µs VCM ≥1 kV, transient magnitude  
≥800 V  
1 VSC is the short-circuit voltage at the RS-485 A or B bus pin.  
2 Common-mode transient immunity is the maximum common-mode voltage slew rate that can be sustained while maintaining specification compliant  
operation. VCM is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode  
is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
TIMING SPECIFICATIONS  
VDD1 = 1.7 V to 5.5 V, V DD2 = 3.0 V to 5.5 V, T A = TMIN to TMAX (−55°C to +125°C), unless otherwise noted.  
Table 2.  
Parameter  
DRIVER1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Maximum Data Rate  
Propagation Delay, tDPLH, tDPHL  
Differential Skew, tSKEW  
Rise/Fall Times, tR, tF  
Enable Time, tZH, tZL  
Disable Time, tHZ, tLZ  
RECEIVER2  
2.5  
Mbps  
ns  
ns  
ns  
ns  
30  
10  
40  
500  
500  
500  
50  
130  
2500  
2500  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 29 and Figure 33  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 29 and Figure 33  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 29 and Figure 33  
RL = 110 Ω, CL = 50 pF, see Figure 30 and Figure 35  
ns  
RL = 110 Ω, CL = 50 pF, see Figure 30 and Figure 35  
Propagation Delay, tPLH, tPHL  
120  
140  
4
10  
10  
200  
220  
40  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 31 and Figure 34, 10, VID ≥ 1.5 V  
CL = 15 pF, see Figure 31 and Figure 34, VID  
CL = 15 pF, see Figure 31 and Figure 34, VID  
600 mV  
1.5 V  
Skew, tSKEW  
Enable Time  
Disable Time  
RxD Pulse Width Distortion  
RL = 1 kΩ, CL = 15 pF, see Figure 32 and Figure 36  
RL = 1 kΩ, CL = 15 pF, see Figure 32 and Figure 36  
CL = 15 pF, see Figure 31 and Figure 34, VID ≥ 1.5 V  
40  
1 See Figure 29 for the definition of RLDIFF  
.
2 Receiver propagation delay, skew, and pulse width distortion specifications are tested with a receiver differential input voltage (VID) of ≥±600 mV or ≥±1.5 V, as noted.  
Rev. 0 | Page 4 of 17  
 
Enhanced Product  
ADM2795E-EP  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 3.  
Parameter  
Symbol  
Value  
5000  
7.8  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
V rms  
mm min  
1 minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance along body  
Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
L(I01)  
L(I02)  
L(PCB)  
Minimum External Tracking (Creepage)  
7.8  
8.3  
mm min  
mm min  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>400  
II  
µm min  
V
Minimum distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89)  
CTI  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
Ω
2.2  
4.0  
150  
59.7  
pF  
pF  
pF  
f = 1 MHz  
TA = 25°C, see Figure 17  
Input Capacitance, A and B Pins  
IC Junction to Ambient Thermal Resistance θJA  
CAB  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any digital input pin to ground.  
REGULATORY INFORMATION  
See Table 8 and the ADM2795E data sheet for details regarding recommended maximum working voltages for specific cross isolation  
waveforms and insulation levels.  
The ADM2795E-EP is approved or pending approval by the organizations listed in Table 5.  
Table 5. ADM2795E-EP Approvals  
UL  
CSA  
VDE  
CQC (Pending)  
Recognized Under UL 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice 5A  
Certified according to DIN V VDE V 0884-  
10 (VDE V 0884-10):2006-122  
Certified by  
CQC11-471543-2012,  
GB4943.1-2011  
Single Protection, 5000 V rms  
Isolation Voltage  
CSA 60950-1-07+A1+A2 and IEC 60950-1  
second edition +A1+A2:  
Reinforced insulation, VIORM = 849 V peak, Basic insulation at  
VIOSM = 8000 V peak  
780 V rms (1103 V peak)  
Basic insulation at 780 V rms  
(1103 V peak)  
Reinforced insulation at  
389 V rms (552 V peak)  
Reinforced insulation at 390 V rms  
(552 V peak)  
IEC 60601-1 Edition 3.1: basic insulation  
(two means of patient protection  
(MOPP)), 250 V rms (353 V peak)  
CSA 61010-1-12 and IEC 61010-1 third  
edition:  
Basic insulation at 300 V rms mains, 780 V  
secondary (1103 V peak)  
Reinforced insulation at 300 V rms mains,  
390 V secondary (552 V peak)  
File E214100  
File 70078455  
File 40011599  
File (pending)  
1 In accordance with UL 1577, each ADM2795E-EP is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADM2795E-EP is proof tested by applying an insulation test voltage ≥1592 V peak for 1 sec.  
Rev. 0 | Page 5 of 17  
 
 
 
 
 
ADM2795E-EP  
Enhanced Product  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured  
by means of protective circuits.  
An asterisk (*) on a package denotes VDE 0884 approval for a 849 V peak working voltage.  
Table 6.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110 for  
Rated Mains Voltage  
≤150 V rms  
≤300 V rms  
≤400 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, see Table 3)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
I to IV  
I to IV  
I to III  
40/125/21  
2
VIORM  
VPR  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production tested, tm  
1 sec, partial discharge < 5 pC  
=
Input to Output Test Voltage, Method a  
After Environmental Tests, Subgroup 1  
After Input and/or Safety Test,  
Subgroup 2/Subgroup 3  
VPR  
VIORM × 1.5 = VPR, tm = 60 sec, partial discharge < 5 pC  
VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
1274  
1019  
V peak  
V peak  
Highest Allowable Overvoltage  
Reinforced Surge Isolation Voltage  
Safety Limiting Values  
Transient overvoltage, tTR = 10 sec  
VPEAK = 12.8 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Maximum value allowed in the event of a failure,  
see Figure 2  
VIOTM  
VIOSM  
TS  
7000  
8000  
150  
V peak  
V peak  
°C  
Total Power Dissipation at TA = 25°C  
Insulation Resistance at TS  
PS  
RS  
1.80  
>109  
W
Ω
VIO = 500 V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
50  
100  
150  
AMBIENT TEMPERATURE (°C)  
Figure 2. Thermal Derating Curve for RW-16 Wide Body [SOIC_W] Package,  
Dependence of Safety Limiting Values with Ambient Temperature per  
DIN V VDE V 0884-10  
Rev. 0 | Page 6 of 17  
 
 
Enhanced Product  
ADM2795E-EP  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 8. Maximum Continuous Working Voltage1  
Parameter  
Max Unit  
Reference Standard2  
Table 7.  
AC Voltage  
Parameter  
Rating  
Bipolar Waveform  
Basic Insulation  
VDD1  
−0.5 V to +7 V  
849  
768  
V peak  
V peak  
50-year minimum  
insulation lifetime  
VDD2  
−0.5 V to +7 V  
Digital Input/Output Voltage (DE, RE,  
TxD, RxD)  
−0.3 V to VDD1 + 0.3 V  
Reinforced  
Insulation  
Lifetime limited by  
package creepage  
maximum approved  
working voltage per  
IEC 60950-1  
Driver Output/Receiver Input Voltage  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Continuous Total Power Dissipation  
Lead Temperature  
48 V  
−55°C to +125°C  
−65°C to +150°C  
150°C  
Unipolar Waveform  
Basic Insulation  
1698 V peak  
885 V peak  
50-year minimum  
insulation lifetime  
405 mW  
Reinforced  
Insulation  
Lifetime limited by  
package creepage  
maximum approved  
working voltage per  
IEC 60950-1  
Soldering (10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
300°C  
215°C  
220°C  
ESD (A, B Pins Tested to GND2)  
IEC 61000-4-2 Contact Discharge  
IEC 62000-4-2 Air Discharge  
EFT (A, B Pins Tested to GND2)  
IEC 61000-4-4 Level 4 EFT Protection  
Surge (A, B Pins Tested to GND2)  
8 kV  
15 kV  
DC Voltage  
Basic Insulation  
1092 V peak  
Lifetime limited by  
package creepage  
maximum approved  
working voltage per  
IEC 60950-1  
2 kV  
4 kV  
IEC 61000-4-5 Level 4 Surge  
Protection  
Reinforced  
Insulation  
543  
V peak  
Lifetime limited by  
package creepage  
maximum approved  
working voltage per  
IEC 60950-1  
EMC Performance from A, B Bus Pins  
Across the Isolation Barrier to GND1  
ESD  
IEC 61000-4-2 Contact Discharge  
IEC 61000-4-2 Air Discharge  
EFT  
IEC 61000-4-4  
Surge  
9 kV  
8 kV  
1 The maximum continuous working voltage refers to the continuous voltage  
magnitude imposed across the isolation barrier. See the ADM2795E data  
sheet for more details.  
2 Insulation lifetime for the specified test condition is greater than 50 years.  
2 kV  
THERMAL RESISTANCE  
IEC 61000-4-5  
Human Body Model (HBM) ESD  
Protection (A, B Pins Tested to GND2)  
HBM ESD Protection (All Pins)  
4 kV  
> 30 kV  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
6 kV  
θJA is the natural convection junction to ambient thermal resistance  
measured in a one cubic foot sealed enclosure. θJC is the junction to  
case thermal resistance.  
DO-160G Section 25 ESD Protection Air  
Discharge  
Field Induced Charged Device Model  
ESD (FICDM)  
15 kV  
1.25 kV  
Table 9. Thermal Resistance  
Package Type  
RW-16  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1
1
θJA  
59.7  
θJC  
28.3  
Unit  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with no vias. See JEDEC JESD51.  
ESD CAUTION  
Rev. 0 | Page 7 of 17  
 
 
 
 
ADM2795E-EP  
Enhanced Product  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADM2795E-EP  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND  
15 GND  
1
2
TxD  
DE  
14  
13  
B
V
DD2  
TOP VIEW  
(Not to Scale)  
RE  
12 GND  
11  
10 GND  
2
RxD  
NIC  
A
2
2
GND  
9 GND  
1
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Figure 3. Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
VDD1  
GND1  
TxD  
DE  
1.7 V to 5.5 V Flexible Logic Interface Supply.  
Ground 1, Logic Side.  
Transmit Data Input. Data to be transmitted by the driver is applied to this input.  
Driver Output Enable. A high level on this pin enables the driver differential outputs, A and B. A low level places  
them into a high impedance state.  
5
RE  
Receiver Enable Input. This pin is an active low input. Driving this input low enables the receiver, and driving it high  
disables the receiver.  
6
7
8
9
10  
11  
RxD  
NIC  
GND1  
GND2  
GND2  
A
Receiver Output Data. This output is high when (A – B) > −30 mV and low when (A – B) < –200 mV.  
Not Internally Connected. This pin is not internally connected.  
Ground 1, Logic Side.  
Isolated Ground 2, Bus Side.  
Isolated Ground 2, Bus Side.  
Noninverting Driver Output/Receiver Input. When the driver is disabled, or when VDD1 or VDD2 is powered down,  
Pin A is put into a high impedance state to avoid overloading the bus.  
12  
13  
14  
GND2  
VDD2  
B
Isolated Ground 2, Bus Side.  
3 V to 5.5 V Power Supply. Pin 13 must be connected externally to Pin 16.  
Inverting Driver Output/Receiver Input. When the driver is disabled, or when VDD1 or VDD2 is powered down, Pin B is  
put into a high impedance state to avoid overloading the bus.  
15  
16  
GND2  
VDD2  
Isolated Ground 2, Bus Side.  
3 V to 5.5 V Power Supply. Pin 16 must be connected externally to Pin 13.  
Rev. 0 | Page 8 of 17  
 
Enhanced Product  
ADM2795E-EP  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
1 = V 2 = 5.5V  
DD  
V
1 = V 2 = 5.5V  
DD  
DD  
DD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
2 54Ω LOAD  
DD  
I
2 120Ω LOAD  
DD  
I
2 NO LOAD  
DD  
I
1
DD  
–55  
–5  
45  
TEMPERATURE (°C)  
95  
–55  
–5  
45  
95  
TEMPERATURE (°C)  
Figure 4. Supply Current (ICC) vs. Temperature at RL = 54 Ω, 120 Ω, and No  
Load; Data Rate = 2.5 Mbps, VDD1 = 5.5 V, VDD2 = 5.5 V  
Figure 7. Driver Differential Output Voltage vs. Temperature  
60  
0
V
1 = 1.7V, V 2 = 3.0V  
DD  
DD  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
50  
40  
30  
20  
10  
0
I
2 54Ω LOAD  
V
= 1.7V, V  
= 1.7V, V  
= 5.5V, V  
= 5.5V, V  
= 3.0V  
= 3.0V  
= 5.5V  
= 5.5V  
DD  
DD1  
DD2  
DD2  
DD2  
DD2  
PIN A  
V
DD1  
PIN B  
V
I
2 120Ω LOAD  
DD1  
DD  
PIN A  
V
DD1  
PIN B  
I
2 NO LOAD  
DD  
I
1
DD  
–55  
–5  
45  
TEMPERATURE (°C)  
95  
DRIVER OUTPUT HIGH VOLTAGE (V)  
Figure 5. Supply Current (ICC) vs. Temperature at RL = 54 Ω, 120 Ω, and No  
Load; Data Rate = 2.5 Mbps, VDD1 = 1.7 V, VDD2 = 3.0 V  
Figure 8. Driver Output Current vs. Driver Output High Voltage  
0.01  
0.14  
V
V
= 1.7V,  
= 3.0V  
–0.04  
–0.09  
–0.14  
–0.19  
–0.24  
–0.29  
–0.34  
–0.39  
DD1  
DD2  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 1.7V, V  
= 1.7V, V  
= 5.5V, V  
= 5.5V, V  
= 3.0V  
= 3.0V  
= 5.5V  
= 5.5V  
DD1  
DD2  
DD2  
DD2  
DD2  
PIN A  
V
V
= 4.5V,  
DD1  
DD2  
V
DD1  
= 4.5V  
PIN B  
V
V
= 5.5V,  
= 5.5V  
V
DD1  
DD2  
DD1  
PIN A  
V
DD1  
PIN B  
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
DRIVER OUTPUT LOW VOLTAGE (V)  
Figure 6. Driver Output Current vs. Differential Output Voltage  
Figure 9. Driver Output Current vs. Driver Output Low Voltage  
Rev. 0 | Page 9 of 17  
 
ADM2795E-EP  
Enhanced Product  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
1 = V 2 = 5.5V  
DD  
V
= V  
= 5V  
DD  
DD1  
DD2  
tDPLH  
tDPHL  
0
–55  
–5  
45  
95  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
RECEIVER OUTPUT LOW VOLTAGE (V)  
Figure 10. Driver Differential Propagation Delay vs. Temperature  
Figure 13. Receiver Output Current vs. Receiver Output Low Voltage  
6
TxD  
V
V
= 5.0V,  
= 5.0V  
I
= –1mA  
DD1  
DD2  
RxD  
5
4
3
2
1
C1  
V
OD  
M1  
V
V
= 1.8V,  
= 3.3V  
DD1  
DD2  
0
–55  
B
C1 2.0V/DIV 1MΩ  
: 500M  
A
CH1  
2.12V  
W
–25  
5
35  
65  
95  
125  
M1 2.00V  
100ns  
TEMPERATURE (°C)  
Figure 11. Driver Propagation Delay (Oscilloscope)  
Figure 14. Receiver Output High Voltage vs. Temperature  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
60  
50  
40  
30  
20  
10  
0
I
= 1mA  
RO  
V
= V  
= 5V  
DD2  
DD1  
V
V
= 1.8V,  
= 3.3V  
= 5V,  
= 5V  
DD1  
DD2  
V
V
DD1  
DD2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
125  
95  
65  
35  
5
–25  
–55  
RECEIVER OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 12. Receiver Output Current vs. Receiver Output High Voltage  
Figure 15. Receiver Output Low Voltage vs. Temperature  
Rev. 0 | Page 10 of 17  
Enhanced Product  
ADM2795E-EP  
140  
120  
100  
80  
tPLH  
tPHL  
A
B
2
V
OD  
M1  
60  
RxD  
40  
20  
3
0
–55  
B
C1 2.0V/DIV 1MΩ  
C2 2.0V/DIV 1MΩ  
C3 2.0V/DIV 1MΩ  
: 500M  
: 500M  
: 500M  
A
CH3  
2.56V  
W
W
W
–25  
5
35  
65  
95  
125  
100ns/DIV  
1.0ns/pt  
B
B
TEMPERATURE (°C)  
M1 1.4V  
100ns  
Figure 19. Receiver Propagation Delay vs. Temperature  
Figure 16. Receiver Propagation Delay (Oscilloscope)  
250  
200  
150  
100  
50  
A
B
2
PIN B  
PIN A  
V
OD  
M1  
RxD  
3
0
B
B
B
C1 1.0V  
C2 1.0V  
1MΩ  
1MΩ  
: 500M OFFSET: 25.0V  
: 500M OFFSET: 25.0V  
: 500M  
A
CH3  
2.56V  
15  
JUNCTION TEMPERATURE (°C)  
W
W
W
–55 –40 –25 –5  
35 55 75 95 115 125 130 140  
100ns/DIV  
1.0ns/pt  
C3 2.0V/DIV 1MΩ  
M1 600mV 100ns  
Figure 20. Receiver Performance with Input Common-Mode Voltage of 25 V  
Figure 17. Input Capacitance (A, B) vs. Junction Temperature  
80  
0.14  
0.12  
0.10  
0.08  
70  
60  
50  
40  
30  
20  
10  
0
EN55022  
EN55022B  
V
= 1.7V, V  
= 1.7V, V  
= 5.5V, V  
= 5.5V, V  
= 3.0V  
= 3.0V  
= 5.5V  
= 5.5V  
DD1  
DD2  
DD2  
DD2  
DD2  
0.06  
0.04  
0.02  
0
PIN A  
V
DD1  
PIN B  
V
DD1  
PIN A  
V
DD1  
PIN B  
30M  
100M  
FREQUENCY (Hz)  
1G  
PIN VOLTAGE (V)  
Figure 18. Radiated Emissions Profile with 120 pF Capacitor to GND1 on the  
RxD Pin (Horizontal Scan, Data Rate = 2.5 Mbps, VDD1 = VDD2 = 5.0 V)  
Figure 21. Short-Circuit Current over Fault Voltage Range  
Rev. 0 | Page 11 of 17  
 
ADM2795E-EP  
Enhanced Product  
45  
40  
35  
30  
25  
20  
15  
10  
5
700  
600  
500  
400  
300  
200  
100  
0
0
100k  
1M  
10M  
100M  
1G  
0
0.25  
0.50  
1.00  
2.00  
2.50  
DPI FREQUENCY (Hz)  
SIGNALING RATE (Mbps)  
Figure 22. DPI IEC 62132-4 Noise Immunity with 100 nF and 10 µF  
Decoupling on VDD1  
Figure 25. Receiver Input Differential Voltage (VID) vs. Signaling Rate  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
FALL TIME  
40  
RISE TIME  
30  
20  
10  
0
0
100k  
1M  
10M  
100M  
1G  
10  
100  
1000  
DPI FREQUENCY (Hz)  
LOAD CAPACITANCE (pF)  
Figure 26. Receiver Output (RxD) Rise/Fall Time vs. Load Capacitance  
Figure 23. DPI IEC 62132-4 Noise Immunity with 100 nF Decoupling on VDD1  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
100k  
1M  
10M  
100M  
1G  
DPI FREQUENCY (Hz)  
Figure 24. DPI IEC 62132-4 Noise Immunity with 100 nF and Decoupling on VDD2  
Rev. 0 | Page 12 of 17  
Enhanced Product  
TEST CIRCUITS  
ADM2795E-EP  
V
V
DD2  
OUT  
R
R
A
B
R
L
110Ω  
V
OD  
TxD  
DE  
S2  
S1  
C
L
V
OC  
50pF  
Figure 30. Driver Enable/Disable  
Figure 27. Driver Voltage Measurement  
375Ω  
A
V
OUT  
V
CM  
V
RE  
OD3  
B
60Ω  
C
L
375Ω  
Figure 31. Receiver Propagation Delay  
Figure 28. Driver Voltage Measurement over Common-Mode Voltage Range  
+1.5V  
–1.5V  
V
DD1  
A
S1  
C
C
L1  
R
L
S2  
R
LDIFF  
RE  
C
V
OUT  
L
L2  
B
RE IN  
Figure 29. Driver Propagation Delay  
Figure 32. Receiver Enable/Disable  
Rev. 0 | Page 13 of 17  
 
 
 
 
 
 
 
ADM2795E-EP  
Enhanced Product  
SWITCHING CHARACTERISTICS  
V
V
DD1  
DD1  
DE  
TxD  
0.5V  
DD1  
0.5V  
DD1  
0.5V  
tZL  
0.5V  
DD1  
DD1  
0V  
B
0V  
tPHL  
tPLH  
tLZ  
1/2V  
OD  
V
OD  
0.5V  
DD2  
A, B  
A, B  
V
+ 0.5V  
– 0.5V  
OL  
A
V
V
OL  
tSKEW  
= |tPLH tPHL|  
tZH  
tHZ  
+V  
O
O
90% POINT  
OH  
90% POINT  
V
OH  
V
0.5V  
DIFF  
DD2  
10% POINT  
10% POINT  
–V  
0V  
tR  
tF  
Figure 33. Driver Propagation Delay, Rise/Fall Timing  
Figure 35. Driver Enable/Disable Timing  
V
DD1  
RE  
0.5V  
tZL  
0.5V  
DD1  
DD1  
0V  
tLZ  
A, B  
0V  
0V  
0.5V  
DD1  
RxD  
V
+ 0.5V  
OL  
tPLH  
tPHL  
OUTPUT LOW  
V
OL  
tHZ  
tZH  
OUTPUT HIGH  
V
OH  
V
– 0.5V  
0.5V  
0.5V  
DD1  
RxD  
0V  
OH  
DD1  
RxD  
0.5V  
DD1  
tSKEW  
=
|tPLH  
tPHL  
|
Figure 36. Receiver Enable/Disable Timing  
Figure 34. Receiver Propagation Delay  
Rev. 0 | Page 14 of 17  
 
 
 
 
 
Enhanced Product  
ADM2795E-EP  
THEORY OF OPERATION  
the high amounts of energy associated with the DO-160G  
RS-485 WITH ADDED DO-160G EMC ROBUSTNESS  
Section 22 lightning standard, the ADM2795E-EP was tested  
using external 33 Ω or 47 Ω A pin and B pin bus current  
limiting resistors for testing to GND2. These resisters were  
required in addition to the ADM2795E-EP integrated EMC  
protection circuitry. However, when testing to GND1, no  
current limiting resistors are required. The ADM2795E-EP  
iCoupler isolation technology protects the device in the  
presence of these extreme transients.  
The ADM2795E-EP is a 3 V to 5.5 V RS-485 transceiver with  
added robustness that reduces system failures when operating  
in harsh application environments such as military and aerospace  
(MILA) avionics for sensors, actuators, and engine control.  
Lightning strikes to jet airliners are common, about once every  
1000 flight hours. The DO-160G standard, Environmental  
Conditions and Test Procedures for Airborne Equipment, is a  
standard for the environmental testing of avionics hardware.  
Many airplane manufacturers specify DO-160G Section 22,  
lightning induced transient susceptibility, as a requirement for  
critical systems, like guidance, radars, communications, engine  
control, and heat and air controls. Aircraft radome, wing tips,  
fin tips, nacelles, and landing gear are areas most likely to be hit  
by lightning strikes.  
800  
DO-160G SECTION 22  
WAVEFORM 5A  
700  
600  
500  
400  
300  
200  
100  
0
The ADM2795E-EP integrates fully certified DO-160G EMC  
protection on the RS-485 bus pins, with Section 22 lightning  
protection. The ADM2795E-EP also provides Section 25 15 kV  
ESD air discharge protection. For Section 22 lightning, the  
ADM2795E-EP provides protection against Waveform 3,  
Waveform 4/Waveform 1, and Waveform 5A to Level 4 using  
33 Ω or 47 Ω current limiting resistors to GND2, or to Level 4  
across the isolation barrier to GND1.  
DO-160G SECTION 22  
WAVEFORM 1  
IEC 61000-4-5 SURGE  
0
20  
40  
60  
80  
100  
120  
TIME (µs)  
Figure 37. DO-160G Section 22 Waveform 1 and Waveform 5A, and IEC61000-4-5  
Surge Waveform  
CERTIFIED DO-160G EMC PROTECTION  
DO-160G ADM2795E-EP TEST DETAILS  
Table 11 details the open circuit voltage (VOC) and short-circuit  
current (ISC) as specified in the DO-160G Section 22 lightning  
induced transient susceptibility standard for Waveform 3,  
Waveform 4/Waveform 1, and Waveform 5A for pin injection  
testing. The peak currents for the DO-160G Level 4 tests are  
much greater than standard industrial surge IEC 61000-4-5  
peak currents. The waveform shape and rise/decay times for the  
DO-160G standard are significantly longer than those specified  
by the IEC 61000-4-5 standard, as shown in Figure 37. Due to  
Figure 38 and Figure 39 show the Waveform 3 test setup  
coupling/decoupling network (CDN) and the Waveform 5A,  
Waveform 4/Waveform 1 CDN, respectively. For testing to  
RS-485 bus side, GND2, an additional 33 Ω or 47 Ω current  
limiting resistance is added on both A and B bus pins. DO-160G  
Section 22 testing is performed on one pin at a time. The test is  
not performed in common mode. Table 12 and Table 13 show a  
summary of the ADM2795E-EP certified test results.  
Table 11. DO-160G Section 22 Pin Injection Level 4 and Level 3 Compared to IEC 61000-4-5 Lightning Level 4 and Level 3  
Level  
DO-160G Waveform 3  
DO-160G Waveform 4/Waveform 1  
DO-160G Waveform 5A  
IEC 61000-4-5  
4
3
1500 V, 60 A  
600 V, 24 A  
750 V, 150 A  
300 V, 60 A  
750 V, 750 A  
300 V, 300 A  
4000 V, 49 A  
2000 V, 24.5 A  
Table 12. DO-160G Section 22 Pin Injection Level 4 Certified Test Results  
Testing to Current Limiting  
DO-160 Waveform 3;  
1500 V, 60 A  
DO-160 Waveform 4/ Waveform 1;  
750 V, 150 A  
DO-160 Waveform 5A;  
750 V ,750 A  
GNDx  
GND1  
GND2  
Resistor  
None  
47 Ω or 33 Ω  
Pass  
Pass with 47 Ω  
Pass  
Pass with 33 Ω  
Pass  
Pass with 33 Ω  
Table 13. DO-160G Section 22 Pin Injection Level 3 Certified Test Results  
Testing to Current Limiting  
DO-160 Waveform 3;  
600 V, 24 A  
DO-160 Waveform 4/ Waveform 1;  
300 V, 60 A  
DO-160 Waveform 5A;  
300 V ,300 A  
GNDx  
GND1  
GND2  
Resistor  
None  
33 Ω  
Pass  
Pass  
Pass  
Pass  
Pass  
Pass  
Rev. 0 | Page 15 of 17  
 
 
 
 
 
 
 
 
ADM2795E-EP  
Enhanced Product  
V
V
DD2  
DD1  
RS-485  
TRANSCEIVER  
DIGITAL ISOLATOR  
ADM2795E-EP  
RxD  
RE  
CDN  
40µF  
A
B
EMC  
TRANSIENT  
PROTECTION  
CIRCUIT  
DE  
TxD  
GND  
GND  
2
1
ISOLATION  
BARRIER  
GND2  
GND1  
Figure 38. DO-160G Section 22 Waveform 3 Test Setup CDN  
V
V
DD2  
DD1  
RS-485  
TRANSCEIVER  
DIGITAL ISOLATOR  
ADM2795E-EP  
RxD  
RE  
CDN  
A
B
EMC  
TRANSIENT  
PROTECTION  
CIRCUIT  
DE  
TRANSORB  
TxD  
GND  
GND  
2
1
ISOLATION  
BARRIER  
GND2  
GND1  
Figure 39. DO-160G Section 22 Waveform 5A, Waveform 4/Waveform 1 Test Setup CDN  
Rev. 0 | Page 16 of 17  
 
 
Enhanced Product  
ADM2795E-EP  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 40. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Ordering  
Quantity  
Model1  
Package Description  
ADM2795ETRWZ-EP  
ADM2795ETRWZ-EP-R7 −55°C to +125°C  
EVAL-ADM2795EEPBZ  
−55°C to +125°C  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W], 7Reel  
Evaluation Board  
RW-16  
RW-16  
400  
1 Z = RoHS Compliant Part.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15664-0-7/17(0)  
Rev. 0 | Page 17 of 17  
 
 

相关型号:

ADM2795ETRWZ-EP-R7

Robust 5 kV RMS Isolated RS-485/RS-422 Transceiver with Level 4 EMC and Full ±42 V Protection
ADI

ADM2914

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-1ARQZ

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-1ARQZ-RL7

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-1SRQZEP

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-1SRQZEP-R7

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-2ARQZ

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-2ARQZ

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, ROHS COMPLIANT, MO-137AB, QSOP-16
ROCHESTER

ADM2914-2ARQZ-RL7

Quad UV/OV Positive/Negative Voltage Supervisor
ADI

ADM2914-2ARQZ-RL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, ROHS COMPLIANT, MO-137AB, QSOP-16
ROCHESTER

ADM2914_10

Quad UV/OV Positive/Negative
ADI
ETC