ADM3485EAN [ADI]

ESD Protected, EMC Compliant, 3.3 V, 20 Mbps, EIA RS-485 Transceiver; ESD保护,符合EMC , 3.3 V , 20 Mbps的EIA RS- 485收发器
ADM3485EAN
型号: ADM3485EAN
厂家: ADI    ADI
描述:

ESD Protected, EMC Compliant, 3.3 V, 20 Mbps, EIA RS-485 Transceiver
ESD保护,符合EMC , 3.3 V , 20 Mbps的EIA RS- 485收发器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管 信息通信管理
文件: 总11页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESD Protected, EMC Compliant, 3.3 V,  
20 Mbps, EIA RS-485 Transceiver  
a
ADM3485E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Operates with +3.3 V Supply  
ESD Protection: 8 kV Meets IEC1000-4-2  
EFT Protection: 2 kV Meets IEC1000-4-4  
ADM3485E  
EIA RS-422 and RS-485 Compliant Over Full CM Range  
19 kInput Impedance  
Up to 50 Transceivers on Bus  
20 Mbps Data Rate  
R
RO  
Short Circuit Protection  
Specified Over Full Temperature Range  
Thermal Shutdown  
Interoperable with 5 V Logic  
1 mA Supply Current  
2 nA Shutdown Current  
B
A
RE  
DE  
DI  
D
8 ns Skew  
APPLICATIONS  
Telecommunications  
DTE-DCE Interface  
Packet Switching  
Local Area Networks  
Data Concentration  
Data Multiplexers  
Integrated Services Digital Network (ISDN)  
AppleTalk  
Industrial Controls  
GENERAL DESCRIPTION  
Excessive power dissipation caused by bus contention or by  
output shorting is prevented by a thermal shutdown circuit.  
This feature forces the driver output into a high impedance  
state if, during fault conditions, a significant temperature  
increase is detected in the internal driver circuitry.  
The ADM3485E is a low power differential line transceiver  
designed to operate using a single +3.3 V power supply. Low  
power consumption makes it ideal for power sensitive applica-  
tions. It is suitable for communication on multipoint bus trans-  
mission lines. Internal protection against electrostatic discharge  
(ESD) and electrical fast transient (EFT) allows operation in  
electrically harsh environments.  
The receiver contains a fail-safe feature that results in a  
logic high output state if the inputs are unconnected  
(floating).  
It is intended for balanced data transmission and complies with  
both EIA Standards RS-485 and RS-422. It contains a differen-  
tial line driver and a differential line receiver, and is suitable for  
half duplex data transfer.  
The ADM3485E is fabricated on BiCMOS, an advanced  
mixed technology process combining low power CMOS  
with fast switching bipolar technology.  
The ADM3485E is fully specified over the industrial tem-  
perature range and is available in 8-lead DIP and SOIC  
packages.  
The input impedance is 19 kallowing up to 50 transceivers to  
be connected on the bus.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(V = +3.3 V 0.3 V. All specifications TMIN to TMAX unless otherwise noted.)  
ADM3485E–SPECIFICATIONS  
CC  
Parameter  
Min  
Typ Max  
Units Test Conditions/Comments  
DRIVER  
Differential Output Voltage, VOD  
2.0  
1.5  
1.5  
V
V
V
V
V
V
V
RL = 100 , Figure 1, VCC > 3.1 V  
RL = 54 , Figure 1  
RL = 60 , Figure 2, –7 V < VTST < +12 V  
R = 54 or 100 , Figure 1  
R = 54 or 100 , Figure 1  
R = 54 or 100 , Figure 1  
|VOD| for Complementary Output States  
Common-Mode Output Voltage VOC  
|VOC| for Complementary Output States  
CMOS Input Logic Threshold Low, VINL  
0.2  
3
0.2  
0.8  
CMOS Input Logic Threshold High, VINH 2.0  
Logic Input Current (DE, DI, RE)  
Output Short Circuit Current  
V
µA  
mA  
1.0  
250  
VO = –7 V or +12 V  
RECEIVER  
Differential Input Threshold Voltage, VTH –0.2  
+0.2  
V
–7 V < VCM < +12 V  
VCM = 0 V  
–7 V < VCM < +12 V  
VIN = +12 V  
Input Voltage Hysteresis, VTH  
Input Resistance  
50  
19  
+1  
–0.8  
1
mV  
kΩ  
mA  
mA  
µA  
V
12  
Input Current (A, B)  
VIN = –7 V  
Logic Enable Input Current (RE)  
Output Voltage Low, VOL  
Output Voltage High, VOH  
0.4  
IOUT = +2.5 mA  
IOUT = –1.5 mA  
VCC – 0.4 V  
V
Short Circuit Output Current  
Three-State Output Leakage Current  
60  
1.0  
mA  
µA  
VOUT = GND or VCC  
VCC = 3.6 V, 0 V < VOUT < VCC  
POWER SUPPLY CURRENT  
ICC  
Outputs Unloaded,  
DE = VCC, RE = 0 V  
DE = 0 V, RE = 0 V  
DE = 0 V, RE = VCC  
1
1
1.2  
1.2  
1
mA  
mA  
µA  
Supply Current in Shutdown  
0.002  
ESD/EFT IMMUNITY  
ESD Protection  
EFT Protection  
8
2
kV  
kV  
IEC1000-4-2 A, B Pins Contact Discharge  
IEC1000-4-4, A, B Pins  
Specifications subject to change without notice.  
–2–  
REV. A  
ADM3485E  
TIMING SPECIFICATIONS (VCC = +3.3 V, TA = +25C)  
Parameter  
Min  
Typ  
Max  
Units Test Conditions/ Comments  
DRIVER  
Differential Output Delay TDD  
Differential Output Transition Time  
Propagation Delay Input to Output TPLH, TPHL  
Driver O/P to O/P TSKEW  
1
1
7
35  
15  
35  
8
ns  
ns  
ns  
ns  
RL = 60 , CL1 = CL2 = 15 pF, Figure 3  
RL = 60 , CL1 = CL2 = 15 pF, Figure 3  
RL = 27 , CL1 = CL2 = 15 pF, Figure 7  
RL = 54 , CL1 = CL2 = 15 pF, Figure 3  
8
22  
ENABLE/DISABLE  
Driver Enable to Output Valid  
Driver Disable Timing  
45  
40  
650  
90  
80  
110  
ns  
ns  
ns  
RL = 110 , CL = 50 pF, Figure 2  
RL = 110 , CL = 50 pF, Figure 2  
RL = 110 , CL = 15 pF, Figure 2  
Driver Enable from Shutdown  
RECEIVER  
Time to Shutdown  
Propagation Delay Input to Output TPLH, TPHL  
Skew TPLH–TPHL  
Receiver Enable TEN  
Receiver Disable TDEN  
Receiver Enable from Shutdown  
80  
25  
190  
65  
300  
90  
10  
50  
45  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, Figure 8  
CL = 15 pF, Figure 8  
CL = 15 pF, Figure 6  
CL = 15 pF, Figure 6  
CL = 15 pF, Figure 6  
25  
25  
500  
Specifications subject to change without notice.  
(V = +3.3 V 0.3 V, T = TMIN to TMAX  
)
TIMING SPECIFICATIONS  
CC  
A
Parameter  
Min  
Typ  
Max  
Units Test Conditions/ Comments  
DRIVER  
Differential Output Delay TDD  
Differential Output Transition Time  
Propagation Delay Input to Output TPLH, TPHL  
Driver O/P to O/P TSKEW  
1
2
7
70  
15  
70  
10  
ns  
ns  
ns  
ns  
RL = 60 , CL1 = CL2 = 15 pF, Figure 3  
RL = 60 , CL1 = CL2 = 15 pF, Figure 3  
RL = 27 , CL1 = CL2 = 15 pF, Figure 7  
RL = 54 , CL1 = CL2 = 15 pF, Figure 3  
8
22  
ENABLE/DISABLE  
Driver Enable to Output Valid  
Driver Disable Timing  
Driver Enable from Shutdown  
45  
40  
650  
110  
110  
110  
ns  
ns  
ns  
RL = 110 , CL = 50 pF, Figure 2  
RL = 110 , CL = 50 pF, Figure 2  
RL = 110 , CL = 15 pF, Figure 2  
RECEIVER  
Time to Shutdown  
Propagation Delay Input to Output TPLH, TPHL  
Skew TPLH–TPHL  
Receiver Enable TEN  
Receiver Disable TDEN  
Receiver Enable from Shutdown  
50  
25  
190  
65  
500  
115  
20  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, Figure 8  
CL = 15 pF, Figure 8  
CL = 15 pF, Figure 6  
CL = 15 pF, Figure 6  
CL = 15 pF, Figure 6  
25  
25  
600  
Specifications subject to change without notice.  
REV. A  
–3–  
ADM3485E  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C unless otherwise noted)  
Operating Temperature Range  
Industrial (A Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
ESD Rating: Air (Human Body Model, All Pins) . . . . . >4 kV  
ESD Rating: IEC1000-4-2 Contact (A, B Pins) . . . . . . >8 kV  
EFT Rating: IEC1000-4-4 (A, B Pins) . . . . . . . . . . . . . >2 kV  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
Inputs  
Driver Input (DI) . . . . . . . . . . . . . . . . –0.3 V to VCC + 0.3 V  
Control Inputs (DE, RE) . . . . . . . . . . –0.3 V to VCC + 0.3 V  
Receiver Inputs (A, B) . . . . . . . . . . . . . . . –7.5 V to +12.5 V  
Outputs  
Driver Outputs . . . . . . . . . . . . . . . . . . . . . –7.5 V to +12.5 V  
Receiver Output . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Power Dissipation 8-Lead DIP . . . . . . . . . . . . . . . . . 800 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 140°C/W  
Power Dissipation 8-Lead SOIC . . . . . . . . . . . . . . . . 650 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 115°C/W  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum ratings for  
extended periods of time may affect device reliability.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Options  
ADM3485EAN  
ADM3485EAR  
–40°C to +85°C  
–40°C to +85°C  
Plastic DIP  
Small Outline (SOIC)  
N-8  
SO-8  
PIN CONFIGURATION  
DIP/SOIC  
1
2
3
4
8
7
6
5
RO  
V
CC  
ADM3485E  
B
RE  
DE  
DI  
TOP VIEW  
(Not to Scale)  
A
GND  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
Pin  
DIP/  
SOIC Function  
RO  
RE  
1
2
Receiver Output. High when A > B by 200 mV or low when A < B by 200 mV.  
Receiver Output Enable. With RE low, the receiver output RO is enabled. With RE high, the output goes  
high impedance. If RE is high and DE low, the ADM3485E enters a shutdown state.  
DE  
DI  
3
4
Driver Output Enable. A high level enables the driver differential outputs, A and B. A low level places it in a  
high impedance state.  
Driver Input. When the driver is enabled, a logic low on DI forces A low and B high, while a logic high on DI  
forces A high and B low.  
GND  
A
B
5
6
7
8
Ground Connection, 0 V.  
Noninverting Receiver Input A/Driver Output A.  
Inverting Receiver Input B/Driver Output B.  
Power Supply, 3.3 V 0.3 V.  
VCC  
REV. A  
–4–  
ADM3485E  
Test Circuits  
375ꢀ  
R/2  
R/2  
V
OD  
V
R
V
OD3  
L
TST  
V
OC  
V
CC  
375ꢀ  
Figure 1. Driver Voltage Measurement Test Circuit  
Figure 5. Driver Voltage Measurement Test Circuit 2  
V
CC  
V
CC  
+1.5V  
–1.5V  
R
S1  
L
R
L
0V OR 3V  
DE IN  
S1  
S2  
S2  
DE  
C
V
RE  
L
C
V
L
OUT  
OUT  
RE IN  
Figure 2. Driver Enable/DisableTest Circuit  
Figure 6. Receiver Enable/Disable Test Circuit  
V
OM  
R
L
V
OUT  
C
C
S1  
L1  
DE  
DI  
IN  
C
D
RL  
DIFF  
L
V
OUT  
L2  
V
CC  
Figure 3. Driver Differential Output Delay Test Circuit  
Figure 7. Driver Propagation Delay Test Circuit  
3V  
0V  
A
B
C
C
L1  
V
DI  
OUT  
RO  
V
D
RL  
R
ID  
DIFF  
RE  
C
RE  
L2  
L
+1.5V  
Figure 4. Driver/Receiver Propagation Delay Test Circuit  
Figure 8. Receiver Propagation Delay Test Circuit  
REV. A  
–5–  
ADM3485E  
Switching Characteristics  
3V  
1.5V  
tPLH  
1.5V  
3V  
0V  
0V  
1.5V  
tZL  
1.5V  
DE  
tPLH  
B
tLZ  
1/2 VO  
VO  
A
1.5V  
1.5V  
D
O/P  
V
V
+ 0.25V  
OL  
tSKEW  
tSKEW  
LOW  
V
V
OL  
VO  
90% POINT  
90% POINT  
tZH  
tHZ  
0V  
OH  
O/P  
HIGH  
D
10% POINT  
10% POINT  
0.25V  
OH  
VO  
tR  
tF  
0V  
Figure 9. Driver Propagation Delay, Rise/Fall Timing  
Figure 11. Driver Enable/Disable Timing  
3V  
0V  
1.5V  
tZL  
1.5V  
RE  
0V  
0V  
AB  
tLZ  
tPLH  
tPLH  
1.5V  
1.5V  
R
O/P  
V
V
+ 0.25V  
OL  
LOW  
V
V
OL  
tZH  
tHZ  
V
OH  
OH  
O/P  
HIGH  
R
1.5V  
1.5V  
0.25V  
OH  
RO  
V
OL  
0V  
Figure 10. Receiver Propagation Delay  
Figure 12. Receiver Enable/Disable Timing  
REV. A  
–6–  
Typical Performance Characteristics–ADM3485E  
12  
14  
12  
10  
8
10  
8
6
4
6
4
2
0
2
0
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
OUTPUT LOW VOLTAGE V  
OUTPUT HIGH VOLTAGE V  
Figure 13. Output Current vs. Receiver Output Low  
Voltage  
Figure 16. Output Current vs. Receiver Output High  
Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
30  
50  
10  
10  
30  
50  
70  
90  
110  
30  
50  
10  
10  
30  
50  
70  
90  
110  
TEMPERATURE –  
C
TEMPERATURE C  
Figure 14. Receiver Output Low Voltage vs. Temperature  
Figure 17. Receiver Output High Voltage vs. Temperature  
120  
100  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
80  
60  
40  
2.0  
1.9  
1.8  
1.7  
1.6  
20  
0
0.5  
0
1.0  
1.5  
2.0  
2.5  
3.0  
30  
50  
10  
10  
30  
50  
70  
90  
110  
DIFFERENTIAL OUTPUT VOLTAGE V  
TEMPERATURE C  
Figure 15. Driver Output Current vs. Differential  
Output Voltage  
Figure 18. Driver Differential Output Voltage vs. Temperature  
–7–  
REV. A  
ADM3485E  
100  
90  
1.20  
1.15  
80  
70  
1.10  
1.05  
I
(mA) DE = V , RE = X  
CC  
CC  
60  
50  
40  
1.00  
0.95  
0.90  
I
(mA) RE = LO, DE = LO  
CC  
0.85  
30  
0.80  
0.75  
20  
10  
I
(mA)  
60  
CC  
0
40  
0.70  
50  
30  
20  
10  
10  
30  
50  
70  
90  
110  
0
20  
40  
80  
TEMPERATURE C  
TEMPERATURE C  
Figure 19. Supply Current vs. Temperature  
Figure 20. Shutdown Current vs. Temperature  
Table I. Comparison of RS-422 and RS-485 Interface Standards  
ESD/EFT TRANSIENT PROTECTION SCHEME  
The ADM3485E uses protective clamping structures on its  
inputs and outputs that clamp the voltage to a safe level and  
dissipate the energy present in ESD (Electrostatic) and EFT  
(Electrical Fast Transients) discharges.  
Specification  
RS-422  
RS-485  
Transmission Type  
Maximum Data Rate  
Differential  
10 MB/s  
4000 ft.  
2 V  
100 Ω  
4 kmin  
200 mV  
Differential  
10 MB/s  
4000 ft.  
1.5 V  
54 Ω  
12 kmin  
200 mV  
Maximum Cable Length  
Minimum Driver Output Voltage  
Driver Load Impedance  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
The protection structure achieves ESD protection up to 8 kV  
according to IEC1000-4-2, and EFT protection up to 2 kV on  
all I-O lines.  
ESD TESTING  
Two coupling methods are used for ESD testing, contact dis-  
charge and air-gap discharge. Contact discharge calls for a di-  
rect connection to the unit being tested. Air-gap discharge uses  
a higher test voltage but does not make direct contact with the  
unit under test. With air discharge, the discharge gun is moved  
toward the unit under test, developing an arc across the air gap,  
hence the term air-discharge. This method is influenced by hu-  
midity, temperature, barometric pressure, distance and rate of  
closure of the discharge gun. The contact-discharge method,  
while less realistic, is more repeatable and is gaining acceptance  
and preference over the air-gap method.  
–7 V to +7 V –7 V to +12 V  
No. of Drivers/Receivers Per Line 1/10  
32/32  
Table II. Transmitting Truth Table  
Transmitting  
DI  
Inputs  
DE  
Outputs  
RE  
B
A
X
X
0
1
1
0
0
1
0
X
X
0
1
Hi-Z  
Hi-Z  
1
0
Hi-Z  
Hi-Z  
Although very little energy is contained within an ESD pulse,  
the extremely fast rise time, coupled with high voltages, can  
cause failures in unprotected semiconductors. Catastrophic  
destruction can occur immediately as a result of arcing or heat-  
ing. Even if catastrophic failure does not occur immediately, the  
device may suffer from parametric degradation, which may  
result in degraded performance. The cumulative effects of con-  
tinuous exposure can eventually lead to complete failure.  
1
Table III. Receiving Truth Table  
Receiving  
Inputs  
Outputs  
RO  
RE  
DE  
A–B  
I-O lines are particularly vulnerable to ESD damage. Simply  
touching or plugging in an I-O cable can result in a static dis-  
charge that can damage or completely destroy the interface  
product connected to the I-O port.  
0
0
0
1
X
X
X
X
> +0.2 V  
< –0.2 V  
Inputs O/C  
X
1
0
1
Hi-Z  
It is extremely important, therefore, to have high levels of ESD  
protection on the I-O lines.  
It is possible that the ESD discharge could induce latchup in the  
device under test, so it is important that ESD testing on the I-O  
pins be carried out while device power is applied. This type of  
testing is more representative of a real-world I-O discharge  
where the equipment is operating normally when the discharge  
occurs.  
REV. A  
–8–  
ADM3485E  
Four severity levels are defined in terms of an open-circuit volt-  
age as a function of installation environment. The installation  
environments are defined as  
100%  
90%  
1. Well-Protected  
2. Protected  
3. Typical Industrial  
4. Severe Industrial  
36.8%  
10%  
V
t
TIME t  
tDL  
tRL  
300ms  
16ms  
Figure 21. Human Body Model Current Waveform  
V
5ns  
Table IV. ESD Test Results  
50ns  
ESD Test Method  
I-O Pins  
t
IEC1000-4-2: Contact  
8 kV  
0.2/0.4ms  
100%  
90%  
Figure 23. IEC1000-4-4 Fast Transient Waveform  
Table V shows the peak voltages for each of the environments.  
Table V. Peak Voltages  
Level  
V PEAK (kV) PSU  
VPEAK (kV) I-O  
1
2
3
4
0.5  
1
2
0.25  
0.5  
1
10%  
0.1 TO 1ns  
4
2
TIME  
t
30ns  
60ns  
A simplified circuit diagram of the actual EFT generator is  
illustrated in Figure 24.  
Figure 22. IEC1000-4-2 ESD Current Waveform  
FAST TRANSIENT BURST IMMUNITY (IEC1000-4-4)  
IEC1000-4-4 (previously 801-4) covers electrical fast-transient/  
burst (EFT) immunity. Electrical fast transients occur as a  
result of arcing contacts in switches and relays. The tests simu-  
late the interference generated when, for example, a power relay  
disconnects an inductive load. A spark is generated due to the  
well known back EMF effect. In fact, the spark consists of a  
burst of sparks as the relay contacts separate. The voltage ap-  
pearing on the line, therefore, consists of a burst of extremely  
fast transient impulses. A similar effect occurs when switching  
on fluorescent lights.  
C
D
R
R
L
HIGH  
VOLTAGE  
SOURCE  
M
C
50ꢀ  
OUTPUT  
C
Z
C
S
Figure 24. EFT Generator  
These transients are coupled onto the signal lines using an EFT  
coupling clamp. The clamp is 1 m long and completely sur-  
rounds the cable, providing maximum coupling capacitance  
(50 pF to 200 pF typ) between the clamp and the cable. High  
energy transients are capacitively coupled onto the signal lines.  
Fast rise times (5 ns) as specified by the standard result in very  
effective coupling. This test is very severe since high voltages are  
coupled onto the signal lines. The repetitive transients can often  
cause problems, where single pulses do not. Destructive latchup  
may be induced due to the high energy content of the transients.  
Note that this stress is applied while the interface products are  
powered up and are transmitting data. The EFT test applies  
hundreds of pulses with higher energy than ESD. Worst case  
transient current on an I-O line can be as high as 40 A.  
The fast transient burst test, defined in IEC1000-4-4, simulates  
this arcing and its waveform is illustrated in Figure 23. It con-  
sists of a burst of 2.5 kHz to 5 kHz transients repeating at  
300 ms intervals. It is specified for both power and data lines.  
REV. A  
–9–  
ADM3485E  
Test results are classified according to the following  
Cable and Data Rate  
The transmission line of choice for RS-485 communications is a  
twisted pair. Twisted pair cable tends to cancel common-mode  
noise and also causes cancellation of the magnetic fields gener-  
ated by the current flowing through each wire, thereby reducing  
the effective inductance of the pair.  
1. Normal performance within specification limits.  
2. Temporary degradation or loss of performance that is self-  
recoverable.  
3. Temporary degradation or loss of function or performance  
that requires operator intervention or system reset.  
4. Degradation or loss of function that is not recoverable due to  
damage.  
The ADM3485E is designed for bidirectional data communica-  
tions on multipoint transmission lines. A typical application  
showing a multipoint transmission network is illustrated in  
Figure 23. Only one driver can transmit at a particular time, but  
multiple receivers may be enabled simultaneously.  
APPLICATIONS INFORMATION  
Differential Data Transmission  
Differential data transmission is used to reliably transmit data at  
high rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts  
and noise signals that appear as common-mode voltages on the  
line.  
As with any transmission line, it is important that reflections are  
minimized. This may be achieved by terminating the extreme  
ends of the line using resistors equal to the characteristic imped-  
ance of the line. Stub lengths of the main line should also be  
kept as short as possible. A properly terminated transmission  
line appears purely resistive to the driver.  
Two main standards are approved by the Electronics Industries  
Association (EIA) which specify the electrical characteristics of  
transceivers used in differential data transmission. The RS-422  
standard specifies data rates up to 10 MBaud and line lengths  
up to 4000 ft. A single driver can drive a transmission line with  
up to 10 receivers.  
Receiver Open-Circuit Fail-Safe  
The receiver input includes a fail-safe feature that guarantees a  
logic high on the receiver when the inputs are open circuit or  
floating.  
The RS-485 standard was defined to cater to true multipoint  
communications. This standard meets or exceeds all the re-  
quirements of RS-422, but also allows multiple drivers and  
receivers to be connected to a single bus. An extended common-  
mode range of –7 V to +12 V is defined.  
Table VI. Comparison of RS-422 and RS-485 Interface  
Standards  
Specification  
RS-422  
RS-485  
Transmission Type  
Differential Differential  
Maximum Cable Length  
Minimum Driver Output Voltage 2 V  
Driver Load Impedance  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
4000 ft.  
4000 ft.  
1.5 V  
The most significant difference between RS-422 and RS-485 is  
the fact that the drivers may be disabled thereby allowing more  
than one to be connected to a single line. Only one driver should  
be enabled at a time, but the RS-485 standard contains addi-  
tional specifications to guarantee device safety in the event of  
line contention.  
100 Ω  
54 Ω  
4 kmin  
12 kmin  
200 mV  
200 mV  
–7 V to +7 V –7 V to +12 V  
REV. A  
–10–  
ADM3485E  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢂ  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8ꢂ  
0ꢂ  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
REV. A  
–11–  

相关型号:

ADM3485EANZ

IC LINE TRANSCEIVER, PDIP8, MO-095AA, PLASTIC, DIP-8, Line Driver or Receiver
ADI

ADM3485EAR

ESD Protected, EMC Compliant, 3.3 V, 20 Mbps, EIA RS-485 Transceiver
ADI

ADM3485EAR-REEL

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485EAR-REEL7

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485EARZ

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485EARZ-REEL

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485EARZ-REEL7

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485E_10

±15 kV ESD-Protected, 3.3 V,12 Mbps, EIA RS-485/RS-422 Transceiver
ADI

ADM3485_15

Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3486E

3.3 V, 【15 kV ESD-Protected, Half- and Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3486EARZ

3.3 V, 【15 kV ESD-Protected, Half- and Full-Duplex, RS-485/RS-422 Transceivers
ADI

ADM3486EARZ-REEL7

3.3 V, 【15 kV ESD-Protected, Half- and Full-Duplex, RS-485/RS-422 Transceivers
ADI