ADM690 [ADI]

Microprocessor Supervisory Circuits; 微处理器监控电路
ADM690
型号: ADM690
厂家: ADI    ADI
描述:

Microprocessor Supervisory Circuits
微处理器监控电路

微处理器 监控
文件: 总16页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microprocessor  
Supervisory Circuits  
a
ADM690–ADM695  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAMS  
Superior Upgrade for MAX690–MAX695  
Specified Over Tem perature  
VBATT  
Low Pow er Consum ption (5 m W)  
Precision Voltage Monitor  
Reset Assertion Dow n to 1 V VCC  
Low Sw itch On-Resistance 1.5 Norm al,  
20 in Backup  
VOUT  
VCC  
RESET  
4.65V1  
GENERATOR2  
RESET  
High Current Drive (100 m A)  
Watchdog Tim er—100 m s, 1.6 s, or Adjustable  
600 nA Standby Current  
Autom atic Battery Backup Pow er Sw itching  
Extrem ely Fast Gating of Chip Enable Signals (5 ns)  
Voltage Monitor for Pow er Fail  
WATCHDOG  
TRANSITION DETECTOR  
(1.6s)  
WATCHDOG  
INPUT (WDI)  
ADM690  
ADM692  
ADM694  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
OUTPUT (PFO)  
APPLICATIONS  
1.3V  
Microprocessor System s  
Com puters  
1VOLTAGE DETECTOR = 4.65V (ADM690, ADM694)  
4.40V (ADM692)  
Controllers  
Intelligent Instrum ents  
Autom otive System s  
2RESET PULSE WIDTH = 50ms (ADM690, ADM692)  
200ms (ADM694)  
BATT ON  
VBATT  
GENERAL D ESCRIP TIO N  
T he ADM690–ADM695 family of supervisory circuits offers  
complete single chip solutions for power supply monitoring and  
battery control functions in microprocessor systems. T hese  
functions include µP reset, backup battery switchover, watchdog  
timer, CMOS RAM write protection, and power failure warn-  
ing. T he complete family provides a variety of configurations to  
satisfy most microprocessor system requirements.  
VOUT  
ADM691  
ADM693  
ADM695  
VCC  
CEIN  
CEOUT  
LOW LINE  
4.65V1  
RESET  
RESET  
T he ADM690, ADM692 and ADM694 are available in 8-pin  
DIP packages and provide:  
RESET &  
RESET  
OSC IN  
WATCHDOG  
GENERATOR  
OSC SEL  
TIMEBASE  
1. Power-on reset output during power-up, power-down and  
brownout conditions. T he RESET output remains opera-  
tional with VCC as low as 1 V.  
WATCHDOG  
TIMER  
WATCHDOG  
WATCHDOG  
INPUT (WDI)  
WATCHDOG  
OUTPUT (WDO)  
TRANSITION DETECTOR  
2. Battery backup switching for CMOS RAM, CMOS  
microprocessor or other low power logic.  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
OUTPUT (PFO)  
3. A reset pulse if the optional watchdog timer has not been  
toggled within a specified time.  
1.3V  
1VOLTAGE DETECTOR = 4.65V (ADM691, ADM695)  
4.40V (ADM693)  
4. A 1.3 V threshold detector for power fail warning, low battery  
detection, or to monitor a power supply other than +5 V.  
T he ADM690–ADM695 family is fabricated using an advanced  
epitaxial CMOS process combining low power consumption  
(5 mW), extremely fast Chip Enable gating (5 ns) and high reli-  
ability. RESET assertion is guaranteed with VCC as low as 1 V.  
In addition, the power switching circuitry is designed for mini-  
mal voltage drop thereby permitting increased output current  
drive of up to 100 mA without the need for an external pass  
transistor.  
T he ADM691, ADM693 and ADM695 are available in 16-pin  
DIP and small outline packages and provide three additional  
functions.  
1. Write protection of CMOS RAM or EEPROM.  
2. Adjustable reset and watchdog timeout periods.  
3. Separate watchdog timeout, backup battery switchover, and  
low VCC status outputs.  
REV. A  
© Analog Devices, Inc., 1996  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
BATT = +2.8 V, T = TMIN to  
ADM690–ADM695–SPECIFICATIONS (V = Full Operating Range, V  
TMAX unless otherwise noted)  
CC  
A
P aram eter  
Min  
Typ  
Max  
Units  
Test Conditions/Com m ents  
BAT T ERY BACKUP SWIT CHING  
VCC Operating Voltage Range  
ADM690, ADM691, ADM694, ADM695  
ADM692, ADM693  
4.75  
4.5  
5.5  
5.5  
V
V
VBAT T Operating Voltage Range  
ADM690, ADM691, ADM694, ADM695  
ADM692, ADM693  
2.0  
2.0  
4.25  
4.0  
V
V
VOUT Output Voltage  
VCC – 0.05 VCC – 0.025  
VCC – 0.5 VCC – 0.25  
V
V
IOUT = 1 mA  
IOUT 100 mA  
VOUT in Battery Backup Mode  
Supply Current (Excludes IOUT  
Supply Current in Battery Backup Mode  
Battery Standby Current  
VBAT T – 0.05 VBAT T – 0.02  
V
mA  
µA  
IOUT = 250 µA, VCC < VBAT T – 0.2 V  
IOUT = 100 mA  
VCC = 0 V, VBAT T = 2.8 V  
5.5 V > VCC > VBAT T + 0.2 V  
)
1
0.6  
1.95  
1
(+ = Discharge, – = Charge)  
–0.1  
–1.0  
70  
+0.02  
+0.02  
µA  
µA  
mV  
mV  
mV  
V
T A = +25°C  
Battery Switchover T hreshold  
VCC – VBAT T  
Battery Switchover Hysteresis  
BAT T ON Output Voltage  
BAT T ON Output Short Circuit Current  
Power Up  
Power Down  
50  
20  
0.3  
25  
ISINK = 3.2 mA  
BAT T ON = VOUT = 4.5 V Sink Current  
BAT T ON = 0 V Source Current  
35  
mA  
µA  
0.5  
1
RESET AND WAT CHDOG T IMER  
Reset Voltage T hreshold  
ADM690, ADM691, ADM694, ADM695  
ADM692, ADM693  
Reset T hreshold Hysteresis  
4.5  
4.25  
4.65  
4.4  
40  
4.73  
4.48  
V
V
mV  
Reset T imeout Delay  
ADM690, ADM691, ADM692, ADM693  
ADM694, ADM695  
Watchdog T imeout Period, Internal Oscillator  
35  
50  
70  
ms  
ms  
s
ms  
Cycles  
Cycles  
ns  
mV  
V
V
OSC SEL = HIGH, VCC = 5 V, TA = +25°C  
OSC SEL = HIGH, VCC = 5 V, TA = +25°C  
Long Period, VCC = 5 V, T A = +25°C  
Short Period, VCC = 5 V, T A = +25°C  
Long Period  
Short Period  
VIL = 0.4, VIH = 3.5 V  
ISINK = 10 µA, VCC = 1 V  
ISINK = 1.6 mA, VCC = 4.25 V  
ISOURCE = 1 µA, VCC = 5 V  
ISINK = 1.6 mA, VCC = 5 V  
ISOURCE = 1 µA, VCC = 4.25 V  
140  
1.0  
70  
3840  
768  
50  
200  
1.6  
100  
280  
2.25  
140  
4097  
1025  
Watchdog T imeout Period, External Clock  
Minimum WDI Input Pulse Width  
RESET Output Voltage @ VCC = +1 V  
RESET, LOW LINE Output Voltage  
4
200  
0.4  
3.5  
RESET, WDO Output Voltage  
0.4  
25  
V
V
µA  
mA  
3.5  
1
Output Short Circuit Source Current  
Output Short Circuit Sink Current  
WDI Input T hreshold  
Logic Low  
Logic High  
WDI Input Current  
3
25  
VCC = 5 V1  
0.8  
50  
V
V
µA  
µA  
3.5  
20  
–15  
WDI = VOUT, T A = +25°C  
WDI = 0 V, T A = +25°C  
–50  
POWER FAIL DET ECT OR  
PFI Input T hreshold  
PFI Input Current  
1.25  
–25  
1.3  
±0.01  
1.35  
+25  
0.4  
V
nA  
V
VCC = +5 V  
PFO Output Voltage  
ISINK = 3.2 mA  
3.5  
1
V
µA  
mA  
ISOURCE = 1 µA  
PFI = Low, PFO = 0 V  
PFI = High, PFO = VOUT  
PFO Short Circuit Source Current  
PFO Short Circuit Sink Current  
3
25  
25  
CHIP ENABLE GAT ING  
CEIN T hreshold  
0.8  
0.4  
9
V
V
µA  
V
V
VIL  
VIH  
3.0  
CEIN Pull-Up Current  
CEOUT Output Voltage  
3
5
ISINK = 3.2 mA  
ISOURCE = 3.0 mA  
ISOURCE = 1 µA, VCC = 0 V  
VOUT – 1.5  
VOUT – 0.05  
V
ns  
CE Propagation Delay  
REV. A  
–2–  
ADM690–ADM695  
P aram eter  
Min  
Typ  
Max  
Units  
Test Conditions/Com m ents  
OSCILLAT OR  
OSC IN Input Current  
±2  
µA  
OSC SEL Input Pull-Up Current  
OSC IN Frequency Range  
OSC IN Frequency with External Capacitor  
5
µA  
kHz  
kHz  
0
250  
OSC SEL = 0 V  
OSC SEL = 0 V, COSC = 47 pF  
4
NOT E  
1WDI is a three level input which is internally biased to 38% of VCC and has an input impedance of approximately 125 k.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
O RD ERING GUID E  
(T A = +25°C unless otherwise noted)  
Model  
Tem perature Range  
P ackage O ption  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
VBAT T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
All Other Inputs . . . . . . . . . . . . . . . . . . –0.3 V to VOUT + 0.5 V  
Input Current  
ADM690AN  
ADM690AQ  
ADM690SQ  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
N-8  
Q-8  
Q-8  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
VBAT T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Power Dissipation, N-8 DIP . . . . . . . . . . . . . . . . . . . . 400 mW  
ADM691AN  
ADM691AR  
ADM691AQ  
ADM691SQ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
N-16  
R-16  
Q-16  
Q-16  
ADM692AN  
ADM692AQ  
ADM692SQ  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
N-8  
Q-8  
Q-8  
θ
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 120°C/W  
Power Dissipation, Q-8 DIP . . . . . . . . . . . . . . . . . . . . 500 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 125°C/W  
Power Dissipation, N-16 DIP . . . . . . . . . . . . . . . . . . . 600 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 135°C/W  
Power Dissipation, Q-16 DIP . . . . . . . . . . . . . . . . . . . 600 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 100°C/W  
Power Dissipation, R-16 SOIC . . . . . . . . . . . . . . . . . . 600 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 110°C/W  
θ
ADM693AN  
ADM693AR  
ADM693AQ  
ADM693SQ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
N-16  
R-16  
Q-16  
Q-16  
θ
θ
ADM694AN  
ADM694AQ  
ADM694SQ  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
N-8  
Q-8  
Q-8  
θ
Operating T emperature Range  
Industrial (A Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (S Version) . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead T emperature (Soldering, 10 secs) . . . . . . . . . . . . +300°C  
Vapor Phase (60 secs) . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 secs) . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
ADM695AN  
ADM695AR  
ADM695AQ  
ADM695SQ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
N-16  
R-16  
Q-16  
Q-16  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those listed in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum ratings for extended periods of time may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADM690–ADM695 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–3–  
ADM690–ADM695  
P IN FUNCTIO N D ESCRIP TIO N  
Mnem onic  
Function  
VCC  
Power Supply Input: +5 V Nominal.  
VBAT T  
VOUT  
Backup Battery Input. Connect to Ground if a backup battery is not used.  
Output Voltage, VCC or VBAT T is internally switched to VOUT depending on which is at the highest potential. VOUT  
can supply up to 100 mA to power CMOS RAM. Connect VOUT to VCC if VOUT and VBAT T are not used.  
GND  
0 V. Ground reference for all signals.  
RESET  
Logic Output. RESET goes low if  
1. VCC falls below the Reset T hreshold  
2. VCC falls below VBAT T  
3. T he watchdog timer is not serviced within its timeout period.  
T he reset threshold is typically 4.65 V for the ADM690/ADM691/ADM694/ADM695 and 4.4 V for the ADM692 and  
ADM693. RESET remains low for 50 ms (ADM690/ADM691/ADM692/ADM693) or 200 ms (ADM694/ADM695)  
after VCC returns above the threshold. RESET also goes low for 50 (200) ms if the watchdog timer is enabled but not  
serviced within its timeout period. T he RESET pulse width can be adjusted on the ADM691/ADM693/ADM695 as  
shown in T able I. T he RESET output has an internal 3 µA pull up, and can either connect to an open collector  
Reset bus or directly drive a CMOS gate without an external pull-up resistor.  
WDI  
Watchdog Input. WDI is a three level input. If WDI remains either high or low for longer than the watchdog timeout  
period, RESET pulses low and WDO goes low. T he timer resets with each transition on the WDI line. T he watchdog  
timer may be disabled if WDI is left floating or is driven to midsupply.  
PFI  
Power Fail Input. PFI is the noninverting input to the Power Fail Comparator when PFI is less than 1.3 V, PFO  
goes low. Connect PFI to GND or VOUT when not used.  
PFO  
Power Fail Output. PFO is the output of the Power Fail Comparator. It goes low when PFI is less than 1.3 V. T he  
comparator is turned off and PFO goes low when VCC is below VBAT T  
.
CEIN  
Logic Input. T he input to the CE gating circuit. Connect to GND or VOUT if not used.  
CEOUT  
Logic Output. CEOUT is a gated version of the CEIN signal. CEOUT tracks CEIN when VCC is above the reset  
threshold. If VCC is below the reset threshold, CEOUT is forced high. See Figures 5 and 6.  
BAT T ON  
Logic Output. BAT T ON goes high when VOUT is internally switched to the VBAT T input. It goes low when VOUT  
is internally switched to VCC. T he output typically sinks 35 mA and can directly drive the base of an external  
PNP transistor to increase the output current above the 100 mA rating of VOUT  
.
LOW LINE Logic Output. LOW LINE goes low when VCC falls below the reset threshold. It returns high as soon as VCC rises  
above the reset threshold.  
RESET  
Logic Output. RESET is an active high output. It is the inverse of RESET.  
OSC SEL  
Logic Oscillator Select Input. When OSC SEL is unconnected (floating) or driven high, the internal oscillator sets  
the reset active time and watchdog timeout period. When OSC SEL is low, the external oscillator input, OSC IN,  
is enabled. OSC SEL has a 3 µA internal pull up, (see T able I).  
OSC IN  
Oscillator Logic Input. With OSC SEL low, OSC IN can be driven by an external clock signal or an external  
capacitor can be connected between OSC IN and GND. T his sets both the reset active pulse timing and the watch-  
dog timeout period (see T able I and Figure 4). With OSC SEL high or floating, the internal oscillator is enabled  
and the reset active time is fixed at 50 ms typ. (ADM691/ADM693) or 200 ms typ (ADM695). In this mode the  
OSC IN pin selects between fast (100 ms) and slow (1.6 s) watchdog timeout periods. In both modes, the timeout  
period immediately after a reset is 1.6 s typical.  
WDO  
Logic Output. T he Watchdog Output, WDO, goes low if WDI remains either high or low for longer than the  
watchdog timeout period. WDO is set high by the next transition at WDI. If WDI is unconnected or at midsupply,  
the watchdog timer is disabled and WDO remains high. WDO also goes high when LOW LINE goes low.  
–4–  
REV. A  
ADM690–ADM695  
P IN CO NFIGURATIO NS  
V
1
2
3
4
5
6
7
8
RESET  
16  
BATT  
V
15 RESET  
OUT  
ADM691  
ADM693  
ADM695  
V
14  
13  
12  
WDO  
V
OUT  
1
8
7
V
CC  
ADM690  
ADM692  
ADM694  
BATT  
GND  
BATT ON  
LOW LINE  
OSC IN  
V
CE  
IN  
RESET  
WDI  
2
3
CC  
TOP VIEW  
(Not to Scale)  
CE  
GND  
PFI  
6
5
OUT  
TOP VIEW  
(Not to Scale)  
11 WDI  
10 PFO  
PFO  
4
OSC SEL  
9
PFI  
P RO D UCT SELECTIO N GUID E  
P art  
Num ber  
Nom inal Reset  
Tim e  
Nom inal VCC  
Reset Threshold  
Nom inal Watchdog  
Tim eout P eriod  
Battery Backup  
Switching  
Base D rive  
Ext P NP  
Chip Enable  
Signals  
ADM690  
ADM691  
ADM692  
ADM693  
ADM694  
ADM695  
50 ms  
50 ms or ADJ  
50 ms  
50 ms or ADJ  
200 ms  
200 ms or ADJ  
4.65 V  
4.65 V  
4.4 V  
4.4 V  
4.65 V  
4.65 V  
1.6 s  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
100 ms, 1.6 s, ADJ  
1.6 s  
100 ms, 1.6 s, ADJ  
1.6 s  
100 ms, 1.6 s, ADJ  
CIRCUIT INFO RMATIO N  
Batter y Switchover Section  
If the continuous output current requirement at VOUT exceeds  
100 mA or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel  
with the internal transistor. T he BAT T ON output (ADM691/  
ADM693/ADM695) can directly drive the base of the external  
transistor.  
T he battery switchover circuit compares VCC to the VBAT T  
input, and connects VOUT to whichever is higher. Switchover  
occurs when VCC is 50 mV higher than VBAT T as VCC falls, and  
when VCC is 70 mV greater than VBAT T as VCC rises. T his  
20 mV of hysteresis prevents repeated rapid switching if VCC  
falls very slowly or remains nearly equal to the battery voltage.  
A 20 MOSFET switch connects the VBAT T input to VOUT  
during battery backup. T his MOSFET has very low input-to-  
output differential (dropout voltage) at the low current levels  
required for battery back up of CMOS RAM or other low  
power CMOS circuitry. T he supply current in battery back up  
is typically 0.6 µA.  
T he ADM690/ADM691/ADM694/ADM695 operates with  
battery voltages from 2.0 V to 4.25 V and the ADM692/ADM693  
operates with battery voltages from 2.0 V to 4.0 V. High value  
capacitors, either standard electrolytic or the farad size double  
layer capacitors, can also be used for short-term memory back  
up. A small charging current of typically 10 nA (0.1 µA max)  
flows out of the VBAT T terminal. T his current is useful for  
maintaining rechargeable batteries in a fully charged condition.  
T his extends the life of the back up battery by compensating  
for its self discharge current. Also note that this current poses  
no problem when lithium batteries are used for back up since  
the maximum charging current (0.1 µA) is safe for even the  
smallest lithium cells.  
Figure 1. Battery Switchover Schem atic  
During normal operation with VCC higher than VBAT T, VCC is in-  
ternally switched to VOUT via an internal PMOS transistor  
switch. T his switch has a typical on-resistance of 1.5 and can  
supply up to 100 mA at the VOUT terminal. VOUT is normally  
used to drive a RAM memory bank which may require instanta-  
neous currents of greater than 100 mA. If this is the case then a  
bypass capacitor should be connected to VOUT . T he capacitor  
will provide the peak current transients to the RAM. A capaci-  
tance value of 0.1 µF or greater may be used.  
If the battery-switchover section is not used, VBAT T should be  
connected to GND and VOUT should be connected to VCC  
.
REV. A  
–5–  
ADM690–ADM695  
P O WER FAIL RESET O UTP UT  
Watchdog Tim er RESET  
RESET is an active low output which provides a RESET signal  
to the Microprocessor whenever VCC is at an invalid level. When  
VCC falls below the reset threshold, the RESET output is forced  
low. T he nominal reset voltage threshold is 4.65 V (ADM690/  
ADM691/ADM694/ADM695) or 4.4 V (ADM692/ADM693).  
T he watchdog timer circuit monitors the activity of the micro-  
processor in order to check that it is not stalled in an indefinite  
loop. An output line on the processor is used to toggle the  
Watchdog Input (WDI) line. If this line is not toggled within the  
selected timeout period, a RESET pulse is generated. T he  
nominal watchdog timeout period is preset at 1.6 seconds on the  
ADM690/ADM692/ADM694. The ADM691/ADM693/ADM695  
may be configured for either a fixed “short” 100 ms or a “long”  
1.6 second timeout period or for an adjustable timeout period.  
If the “short” period is selected, some systems may be unable to  
service the watchdog timer immediately after a reset, so the  
ADM691/ADM693/ADM695 automatically selects the “long”  
timeout period directly after a reset is issued. T he watchdog  
timer is restarted at the end of reset, whether the reset was  
caused by lack of activity on WDI or by VCC falling below the  
reset threshold.  
V
V2  
V2  
CC  
V1  
V1  
t1  
t
1
RESET  
LOW LINE  
t1 = RESET TIME.  
T he normal (short) timeout period becomes effective following  
the first transition of WDI after RESET has gone inactive. T he  
watchdog timeout period restarts with each transition on the  
WDI pin. T o ensure that the watchdog timer does not time out,  
either a high-to-low or low-to-high transition on the WDI pin  
must occur at or less than the minimum timeout period. If WDI  
remains permanently either high or low, reset pulses will be  
issued after each “long” timeout period (1.6 s). T he watchdog  
monitor can be deactivated by floating the Watchdog Input  
(WDI) or by connecting it to midsupply.  
V1 = RESET VOLTAGE THRESHOLD LOW  
V2 = RESET VOLTAGE THRESHOLD HIGH  
HYSTERESIS = V2–V1  
Figure 2. Power Fail Reset Tim ing  
On power-up RESET will remain low for 50 ms (200 ms for  
ADM694 and ADM695) after VCC rises above the appropriate  
reset threshold. T his allows time for the power supply and mi-  
croprocessor to stabilize. On power-down, the RESET output  
remains low with VCC as low as 1 V. T his ensures that the  
microprocessor is held in a stable shutdown condition.  
WDI  
T his RESET active time is adjustable on the ADM691/ADM693/  
ADM695 by using an external oscillator or by connecting an  
external capacitor to the OSC IN pin. Refer to T able I and  
Figure 4.  
WDO  
T he guaranteed minimum and maximum thresholds of the  
ADM690/ADM691/ADM694/ADM695 are 4.5 V and 4.73 V,  
while the guaranteed thresholds of the ADM692/ADM693 are  
4.25 V and 4.48 V. The ADM690/ADM691/ADM694/ADM695  
is, therefore, compatible with 5 V supplies with a +10%, –5%  
tolerance while the ADM692/ADM693 is compatible with 5 V  
± 10% supplies. T he reset threshold comparator has approxi-  
mately 50 mV of hysteresis. T he response time of the reset volt-  
age comparator is less than 1 µs. If glitches are present on the  
VCC line which could cause spurious reset pulses, then VCC  
should be decoupled close to the device.  
t2  
t3  
RESET  
t1  
t1  
t1  
t
t
t
1 = RESET TIME.  
2 = NORMAL (SHORT) WATCHDOG TIMEOUT PERIOD.  
3 = WATCHDOG TIMEOUT PERIOD IMMEDIATELY FOLLOWING A RESET.  
In addition to RESET the ADM691/ADM693/ADM695 con-  
tain an active high RESET output. T his is the complement of  
RESET and is intended for processors requiring an active high  
RESET signal.  
Figure 3. Watchdog Tim eout Period and Reset Active  
Tim e  
–6–  
REV. A  
ADM690–ADM695  
Table I. AD M691, AD M693, AD M695 Reset P ulse Width and Watchdog Tim eout Selections  
Watchdog Tim eout P eriod  
Im m ediately  
Reset Active P eriod  
O SC SEL  
O SC IN  
Norm al  
After Reset  
AD M691/AD M693  
AD M695  
Low  
Low  
External Clock Input  
External Capacitor  
1024 CLKS  
260 ms × C/47 pF 1.04 s × C/47 pF  
100 ms  
1.6 s  
4096 CLKS  
512 CLKS  
130 ms × C/47 pF  
50 ms  
2048 CLKS  
520 ms × C/47 pF  
200 ms  
Floating or High Low  
Floating or High Floating or High  
1.6 s  
1.6 s  
50 ms  
200 ms  
NOT E  
With the OSC SEL pin low, OSC IN can be driven by an external clock signal, or an external capacitor can be connected between OSC IN and GND. T he nominal  
internal oscillator frequency is 10.24 kHz. T he nominal oscillator frequency with external capacitor is: F OSC (Hz) = 184,000/C (pF).  
T he watchdog timeout period is fixed at 1.6 seconds, and the  
reset pulse width is fixed at 50 ms on the ADM690/ADM692.  
8
OSC SEL  
On the ADM694 the watchdog timeout period is also 1.6 sec-  
ADM691  
onds but the reset pulse width is fixed at 200 ms. The ADM691/  
ADM693/ADM695 allow these times to be adjusted as shown  
in T able I. Figure 4 shows the various oscillator configurations  
which can be used to adjust the reset pulse width and watchdog  
timeout period.  
ADM693  
ADM695  
7
OSC IN  
COSC  
T he internal oscillator is enabled when OSC SEL is high or  
floating. In this mode, OSC IN selects between the 1.6 second  
and 100 ms watchdog timeout periods. With OSC IN connected  
high or floating, the 1.6 second timeout period is selected; while  
with it connected low, the 100 ms timeout period is selected. In  
either case, immediately after a reset, the timeout period is 1.6  
seconds. T his gives the microprocessor time to reinitialize the  
system. If OSC IN is low, then the 100 ms watchdog period be-  
comes effective after the first transition of WDI. T he software  
should be written such that the I/O port driving WDI is left in  
its power-up reset state until the initialization routines are com-  
pleted and the microprocessor is able to toggle WDI at the mini-  
mum watchdog timeout period of 70 ms.  
Figure 4b. External Capacitor  
8
NC  
NC  
OSC SEL  
ADM691  
ADM693  
ADM695  
7
OSC IN  
Watchdog O utput (WD O )  
Figure 4c. Internal Oscillator (1.6 Second Watchdog)  
T he Watchdog Output WDO (ADM691/ADM693/ADM695)  
provides a status output which goes low if the watchdog timer  
“times out” and remains low until set high by the next transition  
on the Watchdog Input. WDO is also set high when VCC goes  
below the reset threshold.  
8
NC  
OSC SEL  
ADM691  
ADM693  
ADM695  
8
OSC SEL  
ADM691  
ADM693  
ADM695  
7
OSC IN  
CLOCK  
0 TO 250kHz  
7
OSC IN  
Figure 4d. Internal Oscillator (100 m s Watchdog)  
Figure 4a. External Clock Source  
REV. A  
–7–  
ADM690–ADM695  
CE Gating and RAM Wr ite P r otection (AD M691/AD M693/  
AD M695)  
P ower Fail War ning Com par ator  
An additional comparator is provided for early warning of failure  
in the microprocessor’s power supply. T he Power Fail Input  
(PFI) is compared to an internal +1.3 V reference. T he Power  
Fail Output (PFO) goes low when the voltage at PFI is less than  
1.3 V. T ypically PFI is driven by an external voltage divider  
which senses either the unregulated dc input to the system’s 5 V  
regulator or the regulated 5 V output. T he voltage divider ratio  
can be chosen such that the voltage at PFI falls below 1.3 V sev-  
eral milliseconds before the +5 V power supply falls below the  
reset threshold. PFO is normally used to interrupt the micropro-  
cessor so that data can be stored in RAM and the shut down  
procedure executed before power is lost  
T he ADM691/ADM693/ADM695 products include memory  
protection circuitry which ensures the integrity of data in mem-  
ory by preventing write operations when VCC is at an invalid  
level. T here are two additional pins, CEIN and CEOUT , which  
may be used to control the Chip Enable or Write inputs of  
CMOS RAM. When VCC is present, CEOUT is a buffered replica  
of CEIN, with a 5 ns propagation delay. When VCC falls below  
the reset voltage threshold or VBAT T , an internal gate forces  
CEOUT high, independent of CEIN  
.
CEOUT typically drives the CE, CS, or write input of battery  
backed up CMOS RAM. T his ensures the integrity of the data  
in memory by preventing write operations when VCC is at an in-  
valid level. Similar protection of EEPROMs can be achieved by  
using the CEOUT to drive the store or write inputs.  
INPUT  
POWER  
R
1
If the 5 ns typical propagation delay of CEOUT is excessive, con-  
nect CEIN to GND and use the resulting CEOUT to control a  
high speed external logic gate.  
1.3V  
PFO  
POWER  
FAIL  
OUTPUT  
POWER  
FAIL  
INPUT  
R
ADM69x  
2
ADM69x  
CE  
IN  
CE  
OUT  
V
V
LOW = 0  
OK = 1  
CC  
CC  
Figure 7. Power Fail Com parator  
Table II. Input and O utput Status In Battery Backup Mode  
Signal  
Status  
Figure 5. Chip Enable Gating  
VOUT  
VOUT is connected to VBAT T via an internal  
PMOS switch.  
V
V2  
V2  
CC  
V1  
V1  
RESET  
Logic low.  
t1  
t
1
RESET  
RESET  
Logic high. T he open circuit output voltage is  
equal to VOUT  
.
LOW LINE  
Logic low.  
LOW LINE  
BAT T ON  
Logic high. T he open circuit voltage is equal to  
VOUT.  
WDI  
WDI is ignored. It is internally disconnected  
from the internal pull-up resistor and does not  
source or sink current as long as its input voltage  
is between GND and VOUT . T he input voltage  
does not affect supply current.  
CE  
IN  
WDO  
Logic high. T he open circuit voltage is equal  
to VOUT  
.
CE  
OUT  
PFI  
T he Power Fail Comparator is turned off and  
has no effect on the Power Fail Output.  
t1 = RESET TIME.  
PFO  
CEIN  
Logic low.  
V1 = RESET VOLTAGE THRESHOLD LOW  
V2 = RESET VOLTAGE THRESHOLD HIGH  
HYSTERESIS = V2–V1  
CEIN is ignored. It is internally disconnected  
from its internal pull-up and does not source or  
sink current as long as its input voltage is  
between GND and VOUT . T he input voltage  
does not affect supply current.  
Figure 6. Chip Enable Tim ing  
CEOUT  
Logic high. T he open circuit voltage is equal to  
VOUT  
.
OSC IN  
OSC IN is ignored.  
OSC SEL is ignored.  
OSC SEL  
–8–  
REV. A  
Typical Performance Curves–ADM690–ADM695  
5.00  
2.80  
V
T
= 5V  
= +25°C  
CC  
V
V
T
= 0V  
= +2.8V  
= +25°C  
A4  
3.36 V  
A
CC  
BATT  
100  
90  
4.95  
4.90  
4.85  
2.79  
2.78  
A
SLOPE = 1.5Ω  
SLOPE = 20Ω  
10  
2.77  
2.76  
0%  
1V  
1V  
500ms  
4.80  
0
20  
40  
60  
80  
100  
0
200  
400  
600  
800  
1000  
I
µA  
I
– mA  
OUT  
OUT  
Figure 10. Reset Output Voltage vs.  
Supply Voltage  
Figure 9. VOUT vs. IOUT Battery  
Backup  
Figure 8. VOUT vs. IOUT Norm al  
Operation  
4.70  
1.303  
53  
V
= +5V  
CC  
V
= +5V  
CC  
4.68  
4.66  
1.302  
1.301  
52  
51  
POWER-UP  
ADM690  
ADM691  
ADM694  
ADM695  
ADM690  
ADM691  
ADM692  
4.64  
4.62  
1.300  
1.299  
50  
49  
ADM693  
POWER-DOWN  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
20  
40  
60  
80  
100  
120  
TEMPERATURE – °C  
TEMPERATURE –  
°C  
TEMPERATURE –  
°C  
Figure 13. Reset Voltage Threshold  
vs. Tem perature  
Figure 12. Reset Active Tim e vs.  
Tem perature  
Figure 11. PFI Input Threshold vs.  
Tem perature  
6
6
6
VCC = 5V  
A = +25  
VCC = 5V  
5
V
T
= 5V  
= +25°C  
CC  
5
4
5
T
°
C
TA = +25°C  
A
4
4
+5V  
3
2
3
2
3
2
VPFI  
1.3V  
PFO  
V
10k  
PFI  
30pF  
VPFI  
PFO  
1
0
1.3V  
1
0
PFO  
1
0
30pF  
1.3V  
30pF  
1.35  
1.25  
0
1.35  
1.25  
1.35  
1.25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
0
10 20 30 40 50 60 70 80 90  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
TIME – µs  
TIME – µs  
TIME – µs  
Figure 16. Power Fail Com parator  
Response Tim e with Pull-Up Resistor  
Figure 15. Power Fail Com parator  
Response Tim e  
Figure 14. Power Fail Com parator  
Response Tim e  
REV. A  
–9–  
ADM690–ADM695  
+AP P LICATIO N INFO RMATIO N  
Incr easing the D r ive Cur r ent  
When PFO is low, resistor R3 sinks current from the summing  
junction at the PFI pin. When PFO is high, the series combina-  
tion of R3 and R4 source current into the PFI summing junc-  
tion. T his results in differing trip levels for the comparator.  
If the continuous output current requirements at VOUT exceed  
100 mA or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel  
with the internal transistor. T he BAT T ON output (ADM691/  
ADM693/ADM695) can directly drive the base of the external  
transistor.  
+5V  
7805  
+7V TO +15V  
INPUT  
V
POWER  
CC  
R
4
R
1
2
1.3V  
PNP TRANSISTOR  
PFO  
+5V  
TO  
µP NMI  
INPUT  
POWER  
0.1µF  
0.1µF  
PFI  
R
ADM69x  
BATT  
ON  
V
OUT  
V
CC  
R
3
V
BATT  
ADM691  
ADM693  
ADM695  
BATTERY  
5V  
Figure 17. Increasing the Drive Current  
PFO  
Using a Rechar geable Batter y for Back Up  
If a capacitor or a rechargeable battery is used for back up then  
the charging resistor should be connected to VOUT since this  
eliminates the discharge path that would exist during power  
0V  
V
V
H
0V  
L
V
IN  
down if the resistor is connected to VCC  
.
R
1
R
1
V
H
= 1.3V  
= 1.3V  
(
1+ ––– + –––  
)
R
R
VOUT – VBATT  
3
2
I =  
R
+5V  
INPUT  
POWER  
R
(5V – 1.3V)  
R
1
1
V
L
(
1+ ––– – –––––––––––––  
)
0.1µF  
R
1.3V (R R )  
2
3 +  
4
R
0.1µF  
ASSUMING R < <  
R THEN  
3
4
R
1
HYSTERESIS V – V = 5V  
(
–––  
)
H
L
R
2
V
V
OUT  
CC  
V
BATT  
Figure 19. Adding Hysteresis to the Power Fail Com parator  
RECHARGEABLE  
BATTERY  
ADM69x  
Monitor ing the Status of the Batter y  
T he power fail comparator can be used to monitor the status of  
the backup battery instead of the power supply if desired. T his  
is shown in Figure 20. T he PFI input samples the battery volt-  
age and generates an active low PFO signal when the battery  
voltage drops below a chosen threshold. It may be necessary to  
apply a test load in order to determine the loaded battery volt-  
age. T his can be done under processor control using CEOUT .  
Since CEOUT is forced high during the battery backup mode, the  
test load will not be applied to the battery while it is in use, even  
if the microprocessor is not powered.  
Figure 18. Rechargeable Battery  
Adding H yster esis to the P ower Fail Com par ator  
For increased noise immunity, hysteresis may be added to the  
power fail comparator. Since the comparator circuit is nonin-  
verting, hysteresis can be added simply by connecting a resistor be-  
tween the PFO output and the PFI input as shown in Figure 19.  
–10–  
REV. A  
ADM690–ADM695  
+5V INPUT  
POWER  
CONTROL  
INPUT*  
OSC SEL  
V
V
CC  
BATT  
PFO  
ADM69x  
D1  
D2  
LOW BATTERY  
SIGNAL TO  
µP I/O PIN  
10MΩ  
10MΩ  
BATTERY  
ADM69x  
PFI  
OSC IN  
CE  
IN  
20kΩ  
OPTIONAL  
TEST LOAD  
FROM µP I/O PIN  
APPLIES TEST LOAD  
TO BATTERY  
CE  
OUT  
*LOW = INTERNAL TIMEOUT  
HIGH = EXTERNAL TIMEOUT  
Figure 21b. Program m ing the Watchdog Input  
Figure 20. Monitoring the Battery Status  
Replacing the Backup Batter y  
Alter nate Watchdog Input D r ive Cir cuits  
When changing the backup battery with system power on, spuri-  
ous resets can occur when the battery is removed. T his occurs  
because the leakage current flowing out of the VBAT T pin will  
charge up the stray capacitance. If the voltage on VBAT T reaches  
within 50 mV of VCC, a reset pulse is generated.  
T he watchdog feature can be enabled and disabled under pro-  
gram control by driving WDI with a 3-state buffer (Figure 21a).  
When three-stated, the WDI input will float thereby disabling  
the watchdog timer.  
WATCHDOG  
STROBE  
WDI  
If spurious resets during battery replacement are acceptable,  
then no action is required. If not, then one of the following  
solutions should be considered:  
ADM69x  
CONTROL  
INPUT  
1. A capacitor from VBAT T to GND. T his gives time while the  
capacitor is charging up to replace the battery. T he leakage  
current will charge up the external capacitor towards the VCC  
level. T he time taken is related to the charging current, the  
size of external capacitor and the voltage differential between  
the capacitor and the charging voltage supply.  
Figure 21a. Program m ing the Watchdog Input  
T his circuit is not entirely foolproof, and it is possible that a  
software fault could erroneously 3-state the buffer. T his would  
then prevent the ADM69x from detecting that the microproces-  
sor is no longer operating correctly. In most cases a better  
method is to extend the watchdog period rather than disabling  
the watchdog. T his may be done under program control using  
the circuit shown in Figure 21b. When the control input is high,  
the OSC SEL pin is low and the watchdog timeout is set by the  
external capacitor. A 0.01 µF capacitor sets a watchdog timeout  
delay of 100 seconds. When the control input is low, the OSC  
SEL pin is driven high, selecting the internal oscillator. T he  
100 ms or the 1.6 s period is chosen, depending on which diode  
in Figure 21b is used. With D1 inserted the internal timeout is  
set at 100 ms, while with D2 inserted the timeout is set at 1.6 s.  
t = CEXT × VDIFF/I  
T he maximum leakage (charging) current is 1 µA over tem-  
perature and VDIFF = VCC–VBAT T. T herefore, the capacitor  
size should be chosen such that sufficient time is available to  
make the battery replacement.  
CEXT = TREQD (1 µA/(VCCVBATT))  
If a replacement time of 5 seconds is allowed and assuming a  
VCC of 4.5 V and a VBAT T of 3 V  
CEXT = 3.33 µF  
VBATT  
CEXT  
BATTERY  
ADM69x  
Figure 22a. Preventing Spurious RESETS During  
Battery Replacem ent  
2. A resistor from VBAT T to GND. T his will prevent the voltage  
on VBAT T from rising to within 50 mV of VCC during battery  
replacement.  
REV. A  
–11–  
ADM690–ADM695  
R =(VCC – 50 mV)/1 µA  
+5V  
Note that the resistor will discharge the battery slightly. With a  
VCC supply of 4.5 V, a suitable resistor is 4.3 M. With a 3 V  
battery this will draw around 700 nA. T his will be negligible in  
most cases.  
R1  
VCC  
µP POWER  
CMOS RAM  
VOUT  
PFI  
POWER  
ADM690  
ADM692  
ADM694  
0.1µF  
µP SYSTEM  
R2  
V
BATT  
µP RESET  
µP NMI  
RESET  
PFO  
BATTERY  
R
VBATT  
+
ADM69x  
BATTERY  
I/O LINE  
WDI  
GND  
Figure 23a. ADM690/ADM692/ADM694 Typical Application  
Circuit A  
Figure 22b. Preventing Spurious RESETS During Battery  
Replacem ent  
Figure 23b shows a similar application but in this case the PFI  
input monitors the unregulated input to the 7805 voltage regu-  
lator. T his gives an earlier warning of an impending power fail-  
ure. It is useful with processors operating at low speeds or  
TYP ICAL AP P LICATIO NS  
AD M690, AD M692 AND AD M694  
Figure 23 shows the ADM690/ADM692/ADM694 in a typical  
power monitoring, battery backup application. VOUT powers the  
CMOS RAM. Under normal operating conditions with VCC  
present, VOUT is internally connected to VCC. If a power failure  
occurs, VCC will decay and VOUT will be switched to VBAT T  
thereby maintaining power for the CMOS RAM. A RESET  
pulse is also generated when VCC falls below 4.65 V for the  
ADM690/ADM694 or 4.4 V for the ADM692. RESET will  
remain low for 50 ms (200 ms for ADM694) after VCC returns  
to 5 V.  
where there are a significant number of housekeeping tasks to be  
completed before the power is lost.  
+5V  
7805  
INPUT  
POWER  
V > 8V  
0.1µF  
R
1
2
V
µP POWER  
CMOS RAM  
CC  
V
OUT  
PFI  
POWER  
ADM690  
ADM692  
ADM694  
0.1µF  
µP SYSTEM  
R
T he watchdog timer input (WDI) monitors an I/O line from the  
µP system. T his line must be toggled once every 1.6 seconds to  
verify correct software execution. Failure to toggle the line indi-  
cates that the µP system is not correctly executing its program  
and may be tied up in an endless loop. If this happens, a reset  
pulse is generated to initialize the processor.  
µP RESET  
µP NMI  
RESET  
V
BATT  
PFO  
BATTERY  
I/O LINE  
WDI  
GND  
If the watchdog timer is not needed, the WDI input should be  
left floating.  
Figure 23b. ADM690/ADM692/ADM694 Typical Application  
Circuit B  
T he Power Fail Input, PFI, monitors the input power supply via  
a resistive divider network. T he voltage on the PFI input is com-  
pared with a precision 1.3 V internal reference. If the input volt-  
age drops below 1.3 V, a power fail output (PFO) signal is  
generated. T his warns of an impending power failure and may  
be used to interrupt the processor so that the system may be  
shut down in an orderly fashion. T he resistors in the sensing  
network are ratioed to give the desired power fail threshold  
voltage VT .  
AD M691, AD M693, AD M695  
A typical connection for the ADM691/ADM693/ADM695 is  
shown in Figure 24. CMOS RAM is powered from VOUT . When  
5 V power is present this is routed to VOUT . If VCC fails then  
VBAT T is routed to VOUT . VOUT can supply up to 100 mA from  
VCC, but if more current is required, an external PNP transistor  
can be added. When VCC is higher than VBAT T , the BAT T ON  
output goes low, providing up to 25 mA of base drive for the  
external transistor. A 0.1 µF capacitor is connected to VOUT to  
supply the transient currents for CMOS RAM. When VCC is  
lower than VBAT T , an internal 20 MOSFET connects the  
VT = (1.3 R1/R2) + 1.3 V  
R1/R2 = (VT/1.3) – 1  
backup battery to VOUT  
.
–12–  
REV. A  
ADM690–ADM695  
INPUT POWER  
+5V  
RAM Wr ite P r otection  
T he ADM691/ADM693/ADM695 CEOUT line drives the Chip  
Select inputs of the CMOS RAM. CEOUT follows CEIN as long  
as VCC is above the 4.65 V (4.4 V for ADM693) reset threshold.  
0.1µF  
0.1µF  
V
V
BATT  
ON  
OUT  
CC  
CMOS  
RAM  
If VCC falls below the reset threshold, CEOUT goes high, inde-  
pendent of the logic level at CEIN. T his prevents the micropro-  
cessor from writing erroneous data into RAM during power-up,  
power-down, brownouts and momentary power interruptions.  
3V  
BATTERY  
V
CE  
BATT  
OUT  
R
1
ADM691  
ADM693  
ADM695  
ADDRESS  
DECODE  
CE  
IN  
PFI  
A0–A15  
I/O LINE  
GND  
Watchdog Tim er  
WDI  
PFO  
R
2
T he microprocessor drives the Watchdog Input (WDI) with an  
I/O line. When OSC IN and OSC SEL are unconnected, the  
microprocessor must toggle the WDI pin once every 1.6 sec-  
onds to verify proper software execution. If a hardware or soft-  
ware failure occurs such that WDI not toggled, the ADM691/  
ADM693 will issue a 50 ms (200 ms for ADM695) RESET  
pulse after 1.6 seconds. T his typically restarts the micro-  
processor’s power-up routine. A new RESET pulse is issued  
every 1.6 seconds until WDI is again strobed. If a different  
watchdog timeout period is required, then a capacitor should be  
connected to OSC IN or an external clock may be used. Please  
refer to T able I and Figure 4.  
OSC IN  
µP  
NC  
NMI  
OSC SEL  
RESET  
RESET  
LOW LINE WDO  
RESET  
0.1µF  
SYSTEM STATUS  
INDICATORS  
Figure 24. ADM691/ADM693/ADM695 Typical Application  
Reset O utput  
T he internal voltage detector monitors VCC and generates a  
RESET output to hold the microprocessor’s Reset line low  
when VCC is below 4.65 V (4.4 V for ADM693). An internal  
timer holds RESET low for 50 ms (200 ms for the ADM695)  
after VCC rises above 4.65 V (4.4 V for ADM693). T his prevents  
repeated toggling of RESET even if the 5 V power drops out  
and recovers with each power line cycle.  
T he WAT CHDOG OUT PUT (WDO) goes low if the watch-  
dog timer is not serviced within its timeout period. Once WDO  
goes low, it remains low until a transition occurs at WDI. T he  
watchdog timer feature can be disabled by leaving WDI  
unconnected.  
T he crystal oscillator normally used to generate the clock for mi-  
croprocessors can take several milliseconds to stabilize. Since  
most microprocessors need several clock cycles to reset, RESET  
must be held low until the microprocessor clock oscillator has  
started. T he power-up RESET pulse lasts 50 ms (200 ms for the  
ADM695) to allow for this oscillator start-up time. If a different  
reset pulse width is required, then a capacitor should be con-  
nected to OSC IN or an external clock may be used. Please refer  
to T able I and Figure 4. T he manual reset switch and the 0.1 µF  
capacitor connected to the reset line can be omitted if a manual  
reset is not needed. An inverted, active high, RESET output is  
also available.  
T he RESET output has an internal 3 µA pull-up, and can either  
connect to an open collector reset bus or directly drive a CMOS  
gate without an external pull-up resistor.  
P ower Fail D etector  
T he +5 V VCC power line is monitored via a resistive potential  
divider connected to the Power Fail Input (PFI). When the  
voltage at PFI falls below 1.3 V, the Power Fail Output (PFO)  
drives the processor’s NMI input low. If for example a Power  
Fail threshold of 4.8 V is set with resistors R1 and R2, the micro-  
processor will have the time when VCC falls from 4.8 V to 4.65 V  
to save data into RAM. An earlier power fail warning can be  
generated if the unregulated dc input to the 5 V regulator is  
available for monitoring. T his will allow more time for micro-  
processor housekeeping tasks to be completed before power is  
lost.  
REV. A  
–13–  
ADM690–ADM695  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-P in P lastic D IP (N-8)  
8
5
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
SEATING  
PLANE  
0.100  
(2.54)  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
BSC  
16-Lead P lastic D IP (N-16)  
16  
1
9
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
8
0.325 (8.25)  
0.300 (7.62)  
0.840 (21.33)  
0.745 (18.93)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
0.150  
(3.81)  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
8-P in Cerdip (Q-8)  
5
8
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
0.320 (8.13)  
0.420 (10.67)  
MAX  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.100 (2.54)  
BSC  
0.070 (1.78)  
0.30 (0.76)  
–14–  
REV. A  
ADM690–ADM695  
16-Lead Cerdip (Q-16)  
9
16  
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
8
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.100 (2.54)  
BSC  
0.070 (1.78)  
0.30 (0.76)  
16-Lead SO IC (R-16)  
16  
9
0.419  
(10.65)  
0.299  
(7.60)  
1
8
0.030  
(0.75)  
0.413 (10.50)  
0.012  
(0.3)  
0.104  
(2.65)  
0.042  
(1.07)  
0.05 (1.27)  
REF  
0.019 (0.49)  
0.013  
(0.32)  
REV. A  
–15–  
–16–  

相关型号:

ADM690-ADM695

Microprocessor Supervisory Circuits
ETC

ADM690A

Microprocessor Supervisory Circuits
ADI

ADM690AAN

Microprocessor Supervisory Circuits
ADI

ADM690AAN

3-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, PLASTIC, DIP-8
ROCHESTER

ADM690AANZ

3-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
ROCHESTER

ADM690AARM

Microprocessor Supervisory Circuits
ADI

ADM690AARM-REEL

IC 3-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, MICRO, SOIC-8, Power Management Circuit
ADI

ADM690AARMZ

3-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, ROHS COMPLIANT, MICRO, SOIC-8
ROCHESTER

ADM690AARMZ-REEL

&#181;P Supervisor with Backup Battery Switchover, Watchdog Feature, Power Fail Warning, 4.65V Threshold Voltage, Active Low Reset
ADI

ADM690AARN

Microprocessor Supervisory Circuits
ADI

ADM690AARN

3-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, SOIC-8
ROCHESTER

ADM690AARN-REEL

3-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, SOIC-8
ADI