ADM8611N263ACBZ-R7 [ADI]

Ultralow Power Voltage Supervisor with Manual Reset;
ADM8611N263ACBZ-R7
型号: ADM8611N263ACBZ-R7
厂家: ADI    ADI
描述:

Ultralow Power Voltage Supervisor with Manual Reset

文件: 总17页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Power Supervisory ICs with  
Watchdog Timer and Manual Reset  
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
VCC  
Ultralow power consumption with ICC = 92 nA (typical)  
Continuous monitoring with no blank time  
Pretrimmed voltage monitoring threshold options  
10 options from 2 V to 4.63 V for the ADM8611  
20 options from 0.5 V to 1.9 V for the ADM8612/ADM8615  
5 options from 2.32 V to 4.63 V for the ADM8613/ADM8614  
1.3% threshold accuracy over full temperature range  
Manual reset input  
ADM8612  
RESET  
VIN  
MR  
RESET  
GENERATOR  
V
TH  
DEBOUNCE  
(ADM8611/ADM8612/ADM8613/ADM8615)  
200 ms (typical) reset timeout  
GND  
Figure 1. ADM8612 Functional Block Diagram  
Low voltage input monitoring down to 0.5 V (ADM8612/  
ADM8615)  
Watchdog timer (ADM8613/ADM8614/ADM8615)  
Watchdog function disable input (ADM8613/ADM8614 only)  
Watchdog timeout extension input (ADM8614 only)  
Active low, open-drain RESET output  
VCC  
ADM8614  
RESET  
RESET  
GENERATOR  
V
TH  
WATCHDOG  
DETECTOR  
Power supply glitch immunity  
WDI  
Available in a 1.46 mm × 0.96 mm WLCSP  
Operational temperature range: −40°C to +85°C  
GND  
WD_DIS  
WDT_SEL  
APPLICATIONS  
Figure 2. ADM8614 Functional Block Diagram  
Portable/battery-operated equipment  
Microprocessor systems  
Energy metering  
Energy harvesting  
GENERAL DESCRIPTION  
The ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
are voltage supervisory circuits that monitor power supply voltage  
levels and code execution integrity in microprocessor-based  
systems. Apart from providing power-on reset signals, an on-  
chip watchdog timer can reset the microprocessor if it fails to  
strobe within a preset timeout period. A reset signal can also be  
asserted by an external push-button through a manual reset input.  
both the ADM8613 and ADM8614. A separate supply input  
allows the ADM8612 and ADM8615 to monitor 20 different  
low voltage levels from 0.5 V to 1.9 V. Not all device options are  
available as standard models. See the Ordering Guide for details.  
The ADM8611, ADM8612, ADM8613, and ADM8615 can  
reset on demand through the manual reset input. The watchdog  
function on the ADM8613, ADM8614, and ADM8615 monitors  
the heartbeat of the microprocessor through the WDI pin. The  
ADM8613 and ADM8614 have a watchdog disable input, which  
allows the user to disable the watchdog function, if required. The  
ADM8614 also has a watchdog timeout extension input, allowing  
the watchdog timeout to be extended from 1.6 sec to 100 sec.  
The ultralow power consumption of these devices makes them  
suitable for power efficiency sensitive systems, such as battery-  
powered portable devices and energy meters.  
The features of each member of the device family are shown in  
Table 9. Each device subdivides into submodels with differences  
in factory preset voltage monitoring threshold options. In the  
range of 2 V to 4.63 V, 10 options are available for the ADM8611.  
In the range of 2.32 V to 4.63 V, five options are available for  
The ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
are available in a 6-ball, 1.46 mm × 0.96 mm WLCSP. These  
devices are specified over the temperature range of −40°C to +85°C.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
TABLE OF CONTENTS  
Data Sheet  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 12  
Voltage Monitoring Input.......................................................... 12  
VIN as an Adjustable Input....................................................... 12  
Transient Immunity ................................................................... 12  
Reset Output ............................................................................... 12  
Manual Reset Input .................................................................... 13  
Watchdog Timer......................................................................... 13  
Watchdog Timeout Select Input............................................... 13  
Typical Application Circuits ..................................................... 13  
Low Power Design Techinques................................................. 14  
Device Options ............................................................................... 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
2/2018—Rev. E to Rev. F  
5/2016—Rev. B to Rev. C  
Changes to General Description Section ...................................... 1  
Added Note 1, Table 1...................................................................... 4  
Changed Device Options Section to Model Options Section......15  
Changes to Model Options Section.............................................. 15  
Added Table 15; Renumbered Sequentially ................................ 16  
Changes to Ordering Guide .......................................................... 17  
Changes to  
Pull-Up Resistance Parameter, Table 1...............4  
MR  
12/2015—Rev. A to Rev. B  
Changes to Watchdog Timeout Period Parameter, Table 1 .........4  
Changes to Ordering Guide.......................................................... 17  
4/2015—Rev. 0 to Rev. A  
Changes to Reset Threshold Hysteresis Parameter, Table 1 ........3  
12/2017—Rev. D to Rev. E  
Changes to Ordering Guide .......................................................... 17  
1/2015—Revision 0: Initial Version  
2/2017—Rev. C to Rev. D  
Changes to Ordering Guide .......................................................... 17  
Rev. F | Page 2 of 17  
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
SPECIFICATIONS  
VCC = 2 V to 5.5 V, VIN < VCC + 0.3 V, TA = −40°C to +85°C, unless otherwise noted. Typical values are at TA = 25°C.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
OPERATING VOLTAGE RANGE  
ADM8611, ADM8613, ADM8614  
ADM8612, ADM8615  
VCC  
0.9  
2
5.5  
5.5  
V
V
V
Guarantees valid RESET output  
Guarantees valid RESET output  
Guarantees RESET output low  
0.9  
UNDERVOLTAGE LOCKOUT (ADM8612,  
ADM8615)  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLORISE  
UVLOFALL 1.6  
UVLOHYS  
1.95  
V
V
mV  
90  
92  
INPUT CURRENT  
VCC Quiescent Current  
ICC  
190  
110  
nA  
nA  
VCC = 2 V to 5.5 V, RESET deasserts,  
VWDI = VCC  
VCC = 2 V to 5.5 V, RESET deasserts,  
VWDI = VCC, TA = 25°C  
VIN Average Input Current  
4
4
8.5  
32  
nA  
nA  
VIN = 2 V, VCC = 5.5 V  
VIN = 2 V, VCC = 2 V  
RESET THRESHOLD VOLTAGE1  
ADM8611, ADM8613, ADM8614  
ADM8612, ADM8615  
VTH  
Input falling  
VTH − 1.3% VTH  
VTH − 1.3% VTH  
VTH − 1.4% 1.1  
VTH + 1.3%  
VTH + 1.3%  
VTH + 1.4%  
VTH + 1.6%  
VTH + 1.6%  
VTH + 1.7%  
VTH + 1.8%  
VTH + 1.8%  
VTH + 1.9%  
VTH + 1.9%  
VTH + 2.0%  
VTH + 2.1%  
VTH + 2.1%  
VTH + 2.2%  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
See Table 10 and Table 12  
VTH ≥ 1.2 V, see Table 11  
1.1 V threshold option  
1 V threshold option  
0.95 V threshold option  
0.9 V threshold option  
0.85 V threshold option  
0.8 V threshold option  
0.75 V threshold option  
0.7 V threshold option  
0.65 V threshold option  
0.6 V threshold option  
0.55 V threshold option  
0.5 V threshold option  
VTH − 1.6%  
1
VTH − 1.6% 0.95  
VTH − 1.7% 0.9  
VTH − 1.8% 0.85  
VTH − 1.8% 0.8  
VTH − 1.9% 0.75  
VTH − 1.9% 0.7  
VTH − 2.0% 0.65  
VTH − 2.1% 0.6  
VTH − 2.1% 0.55  
VTH − 2.2% 0.5  
RESET THRESHOLD HYSTERESIS  
ADM8611, ADM8613, ADM8614  
ADM8612, ADM8615  
VHYST  
0.9% × VTH  
0.9% × VTH  
10.3  
V
V
mV  
ms  
VTH > 1 V  
VTH ≤ 1 V  
RESET TIMEOUT PERIOD  
tRP  
170  
200  
240  
PROPAGATION DELAY  
VCC to RESET  
tPD_VCC  
tPD_VIN  
ADM8611, ADM8613, ADM8614  
VIN to RESET  
18  
26  
23  
37  
35  
µs  
µs  
VCC falling with VTH × 10% overdrive  
VIN falling with VTH × 10% overdrive  
ADM8612, ADM8615  
INPUT GLITCH REJECTION  
VCC Glitch Rejection  
ADM8611, ADM8613, ADM8614  
VIN Glitch Rejection  
13.5  
tGR_VCC  
tGR_VIN  
13.5  
13.5  
23  
21  
32  
27  
µs  
µs  
VCC falling, with VTH × 10% overdrive  
VIN falling with VTH × 10% overdrive  
ADM8612, ADM8615  
Rev. F | Page 3 of 17  
 
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
WATCHDOG INPUT, WDI (ADM8613,  
ADM8614, ADM8615)  
Watchdog Timeout Period1  
ADM8613, ADM8615  
ADM8614  
tWD  
tWD − 13% tWD  
tWD − 13% tWD  
tWD − 13% tWD  
tWD + 19%  
tWD + 19%  
tWD + 19%  
5
sec  
sec  
sec  
nA  
Base period, WD_SEL low  
Extended period, WD_SEL high  
VWDI = VCC = 5.5 V  
Leakage Current  
Input Threshold  
High  
0.9  
V
Low  
0.4  
V
WDI Pulse Width  
tWPR  
tWPF  
85  
300  
ns  
ns  
ns  
High pulse  
Low pulse  
WDI Glitch Rejection  
RESET OUTPUT  
60  
Output Voltage Low  
VRST_OL  
0.4  
0.4  
0.4  
0.4  
5
V
V
V
V
VCC > 4.25 V, ISINK = 6.5 mA  
VCC > 2.5 V, ISINK = 6 mA  
V
V
CC > 1.2 V, ISINK = 4.6 mA  
CC > 0.9 V, ISINK = 0.9 mA  
Leakage Current  
nA  
VRESET = VCC = 5.5 V  
MANUAL RESET INPUT, MR (ADM8611,  
ADM8612, ADM8613, ADM8615)  
VIL  
0.4  
V
VIH  
0.9  
1
V
MR Minimum Input Pulse Width  
µs  
µs  
µs  
kΩ  
MR Glitch Rejection  
MR To Reset Delay  
MR Pull-Up Resistance  
0.4  
0.65  
tD_MR  
300  
600  
900  
WATCHDOG TIMEOUT DISABLE INPUT,  
WD_DIS (ADM8613, ADM8614)  
VIL  
VIH  
0.4  
+5  
V
V
nA  
µs  
0.9  
−5  
Leakage Current  
Glitch Rejection  
VWD_DIS = 0 V to VCC  
0.1  
WATCHDOG TIMEOUT SELECTION  
INPUT, WDT_SEL (ADM8614)  
VIL  
VIH  
0.4  
+5  
V
V
nA  
0.9  
−5  
Leakage Current  
VWDT_SEL = 0 V to VCC  
1 Not all device options are available as standard models. See the Ordering Guide for details.  
Rev. F | Page 4 of 17  
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for a device soldered on an FR4 board with a  
minimum footprint.  
Parameter  
Rating  
VCC  
WD_DIS  
RESET  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
10 mA  
Table 3.  
Package Type  
θJA  
Unit  
VIN  
MR  
6-Ball WLCSP  
105.6  
°C/W  
WDI  
WDT_SEL  
Input/Output Current  
Storage Temperature Range  
Operating Temperature Range  
ESD CAUTION  
−40°C to +150°C  
−40°C to +85°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. F | Page 5 of 17  
 
 
 
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
Data Sheet  
BALL A1  
INDICATOR  
1
2
VCC  
GND  
A
B
C
GND  
DNC  
MR  
RESET  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
DNC = DO NOT CONNECT.  
DO NOT CONNECT TO THIS PIN.  
Figure 3. ADM8611 Pin Configuration  
Table 4. ADM8611 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
A1  
VCC  
Power Supply Input. The voltage on the VCC pin is monitored on the ADM8611. It is recommended to place a  
0.1 μF decoupling capacitor as close as possible to the device between the VCC pin and the GND pin.  
A2  
B1  
B2  
C1  
C2  
GND  
DNC  
GND  
MR  
Ground. Both GND pins on the ADM8611 must be grounded.  
Do Not Connect. Do not connect to this pin.  
Ground. Both GND pins on the ADM8611 must be grounded.  
Manual Reset Input, Active Low.  
RESET  
Active Low, Open-Drain RESET Output.  
BALL A1  
INDICATOR  
1
2
VCC  
GND  
A
B
C
GND  
MR  
VIN  
RESET  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 4. ADM8612 Pin Configuration  
Table 5. ADM8612 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
A1  
VCC  
Power Supply Input. The voltage on the VCC pin is not monitored on the ADM8612. It is recommended to place a  
0.1 μF decoupling capacitor as close as possible to the device between the VCC pin and the GND pin.  
A2  
B1  
B2  
C1  
GND  
MR  
Ground. Both GND pins on the ADM8612 must be grounded.  
Manual Reset Input, Active Low.  
GND  
VIN  
Ground. Both GND pins on the ADM8612 must be grounded.  
Low Voltage Monitoring Input. This separate supply input allows the ADM8612 to monitor low voltages on the  
VIN pin to 0.5 V.  
C2  
RESET  
Active Low, Open-Drain RESET Output.  
Rev. F | Page 6 of 17  
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
BALL A1  
INDICATOR  
1
2
VCC  
GND  
A
B
C
WD_DIS  
RESET  
WDI  
MR  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 5. ADM8613 Pin Configuration  
Table 6. ADM8613 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
A1  
VCC  
Power Supply Input. The voltage on the VCC pin is monitored on the ADM8613. It is recommended to place a  
0.1 μF decoupling capacitor as close as possible to the device between the VCC pin and the GND pin.  
A2  
B1  
B2  
GND  
WDI  
WD_DIS  
Ground.  
Watchdog Timer Input.  
Watchdog Function Disable Input. Tie this pin high to disable the watchdog function of the device. Connect  
this pin to ground if it is not used.  
C1  
C2  
MR  
Manual Reset Input, Active Low.  
RESET  
Active Low, Open-Drain RESET Output.  
BALL A1  
INDICATOR  
1
2
VCC  
GND  
A
B
C
WD_DIS  
RESET  
WDI  
WDT_SEL  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 6. ADM8614 Pin Configuration  
Table 7. ADM8614 Pin Function Descriptions  
Pin No. Mnemonic Description  
A1  
VCC  
Power Supply Input. The voltage on the VCC pin is monitored on the ADM8614. It is recommended to place a  
0.1 μF decoupling capacitor as close as possible to the device between the VCC pin and the GND pin.  
A2  
B1  
B2  
GND  
WDI  
WD_DIS  
Ground.  
Watchdog Timer Input.  
Watchdog Function Disable Input. Tie this pin high to disable the watchdog function of the device. Connect this  
pin to ground if it is not used.  
C1  
C2  
WDT_SEL  
RESET  
Watchdog Timeout Selection Input. Pull this pin high to extend the watchdog timeout period of the ADM8614 to  
100 sec. Pull this pin low to return the watchdog timeout period to its base value. Toggling WDT_SEL resets the  
watchdog timer.  
Active Low, Open-Drain RESET Output.  
Rev. F | Page 7 of 17  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
Data Sheet  
BALL A1  
INDICATOR  
1
2
VCC  
GND  
A
B
C
MR  
VIN  
WDI  
RESET  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 7. ADM8615 Pin Configuration  
Table 8. ADM8615 Pin Function Descriptions  
Pin No. Mnemonic Description  
A1  
VCC  
Power Supply Input. The voltage on the VCC pin is not monitored on the ADM8615. It is recommended to place a  
0.1 μF decoupling capacitor as close as possible to the device between the VCC pin and the GND pin.  
A2  
B1  
B2  
C1  
GND  
MR  
Ground.  
Manual Reset Input, Active Low.  
Watchdog Timer Input.  
Low Voltage Monitoring Input. This separate supply input allows the ADM8615 to monitor low voltages on the VIN  
pin to 0.5 V.  
WDI  
VIN  
C2  
RESET  
Active Low, Open-Drain RESET Output.  
Rev. F | Page 8 of 17  
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
TYPICAL PERFORMANCE CHARACTERISTICS  
120  
600  
500  
400  
300  
200  
100  
0
V
V
V
= 2V  
CC  
CC  
CC  
= 3.3V  
= 5.5V  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
LOGIC INPUT PIN VOLTAGE (V)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE ( °C)  
Figure 11. Supply Current (ICC) vs. Logic Input Pin Voltage, with the Exception  
Figure 8. Supply Current (ICC) vs. Temperature  
MR  
of the  
Pin  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
180  
160  
140  
120  
100  
80  
V
FALLING  
CC  
V
RISING  
CC  
60  
40  
20  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
200  
400  
600  
800  
1000  
SUPPLY VOLTAGE (V)  
WDI TOGGLING FREQUENCY (Hz)  
Figure 12. Average Supply Current (ICC) vs. WDI Toggling Frequency, Using a  
Square Pulse Signal with a Duty Cycle of 50%  
Figure 9. Supply Current (ICC) vs. Supply Voltage, VCC < 2V  
8
120  
110  
100  
90  
I
I
I
, V = 0V  
VIN CC  
, V = 2V  
VIN CC  
7
6
, V = 2V  
CC CC  
5
4
3
2
80  
1
0
70  
–1  
–2  
60  
2.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
SUPPLY VOLTAGE (V)  
IN  
Figure 10. Supply Current (ICC) vs. Supply Voltage  
Figure 13. VIN Pin and VCC Pin Input Current vs. VIN  
Rev. F | Page 9 of 17  
 
 
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
Data Sheet  
8
7
6
5
4
3
2
1
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
V
V
V
= 5.5V  
= 3.3V  
= 2V  
CC  
CC  
CC  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 17. Normalized Reset Timeout Period vs. Temperature  
Figure 14. VIN Leakage Current vs. Temperature  
1.5  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
V
V
V
V
= 0.6V  
= 2.0V  
= 3.3V  
= 4.7V  
TH  
TH  
TH  
TH  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Normalized Watchdog Timeout Period vs. Temperature  
Figure 15. Normalized Falling Threshold vs. Temperature  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
350  
300  
250  
200  
150  
100  
50  
–0.05  
–0.10  
–0.15  
–0.20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
RESET PIN VOLTAGE (V)  
1
10  
100  
INPUT OVERDRIVE (mV)  
Figure 16. Maximum Transient Duration vs. Input Overdrive,  
CC and VIN Falling  
RESET  
RESET  
Pin Voltage  
Figure 19.  
Pin Leakage vs.  
V
Rev. F | Page 10 of 17  
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
R
R
= 10k  
PULLUP  
PULLUP  
= 100kΩ  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
V
CC  
RESET  
RESET  
Timeout Delay With VCC and VIN Rising  
Figure 20.  
Pin Voltage vs. Voltage on VCC  
Figure 22.  
RESET  
(with the  
Pin Pulled Up to the VCC Pin Through RPULLUP  
)
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
V
= 0.9V  
= 1.2V  
= 2.5V  
= 4.25V  
CC  
CC  
CC  
CC  
1
2
3
4
5
6
7
8
9
I
10 11 12 13 14 15 16 17 18 19 20  
(mA)  
SINK  
RESET  
RESET  
Figure 21.  
Output Low Voltage (VRST_OL) vs. Sink Current (ISINK)  
Figure 23.  
Timeout Delay With VCC and VIN Falling  
Rev. F | Page 11 of 17  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
THEORY OF OPERATION  
Data Sheet  
The ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
low power voltage supervisors protect the integrity of system  
operation by ensuring the proper operation during power-up,  
power-down, and brownout conditions. These devices monitor  
the input voltage level and compare it against an internal reference.  
VOLTAGE MONITORING INPUT  
The VCC pin of the ADM8611/ADM8613/ADM8614 acts as  
both a device power input node and a voltage monitoring input  
node. The ADM8612 uses separate pins for supply and voltage  
monitoring to achieve a low voltage monitoring threshold to 0.5 V.  
It is recommended to place a 0.1 µF decoupling capacitor as close  
as possible to the device between the VCC pin and the GND pin.  
RESET  
The  
is below the reference threshold, keeping the processor in a reset  
RESET  
output asserts whenever the monitored voltage level  
state. The  
output deasserts if the monitored voltage rises  
VIN AS AN ADJUSTABLE INPUT  
above the threshold reference for a minimum period, the active  
reset timeout period. This ensures that the supply voltage for  
the processor is raised to an adequate level and stable before  
exiting reset.  
Due to the low leakage nature of the VIN pin, the ADM8612 or  
ADM8615 can be used as devices with an adjustable threshold. Use  
an external resistor divider circuit to program the desired voltage  
monitoring threshold based on the VIN threshold, as shown in  
Figure 27.  
The ultralow supply current makes the ADM8611/ADM8612/  
ADM8613/ADM8614/ADM8615 devices particularly suitable  
for use in low power, portable equipment.  
VCC  
3.3V  
12V  
V
IO  
VCC  
ADM8611  
RESET  
RESET  
RESET  
MICROPROCESSOR  
OUTPUT  
ADM8615  
RESET  
VIN  
MR  
WDI  
GENERATOR  
V
TH  
GND  
MR  
DEBOUNCE  
Figure 27. ADM8615 Typical Application Circuit  
GND  
TRANSIENT IMMUNITY  
Figure 24. ADM8611 Functional Block Diagram  
VCC  
To avoid unnecessary resets caused by fast power supply transients,  
an input glitch filter is added to the VCC pin of the ADM8611/  
ADM8613/ADM8614 and the VIN pin of the ADM8612 and  
ADM8615 to filter out the transient glitches on these pins.  
ADM8613  
RESET  
RESET  
GENERATOR  
V
TH  
Figure 16 shows the comparator overdrive (that is, the maximum  
magnitude of negative going pulses with respect to the typical  
threshold) vs. the pulse duration without a reset.  
WATCHDOG  
DETECTOR  
MR  
DEBOUNCE  
RESET OUTPUT  
GND  
WDI  
WD_DIS  
The ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
devices all have an active low, open-drain reset output. For the  
ADM8611/ADM8613/ADM8614, the state of the output is  
guaranteed to be valid as soon as VCC is greater than 0.9 V. For  
the ADM8612 and ADM8615, the output is guaranteed to be  
held low from when VCC = 0.9 V to when the device exits ULVO.  
Figure 25. ADM8613 Functional Block Diagram  
VCC  
ADM8615  
RESET  
VIN  
MR  
RESET  
GENERATOR  
V
TH  
When the monitored voltage falls below its associated  
WATCHDOG  
DETECTOR  
DEBOUNCE  
RESET  
threshold,  
Asserting  
is asserted within 23 µs to 26 µs (typical).  
RESET  
this quickly ensures that the entire system can  
GND  
WDI  
be reset at once before any part of the system voltage falls below its  
recommended operating voltage. This system reset can avoid  
dangerous and/or erroneous operation of a microprocessor-  
based system.  
Figure 26. ADM8615 Functional Block Diagram  
Rev. F | Page 12 of 17  
 
 
 
 
 
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
MANUAL RESET INPUT  
WATCHDOG TIMEOUT SELECT INPUT  
The ADM8611, ADM8612, ADM8613, and ADM8615 feature a  
MR MR  
Pulling the watchdog timeout select input (WDT_SEL) on the  
ADM8614 high allows the device to extend its watchdog timeout  
period from 1.6 sec (typical) to 100 sec (typical). This function  
allows processors to have a long initialization time during startup.  
manual reset input ( ). Drive  
low to assert the reset output.  
transitions from low to high, the reset remains asserted  
for the duration of the reset timeout period before deasserting.  
MR  
MR  
When  
The  
input has a 600 kΩ internal pull-up resistor so that the  
MR  
The long timeout period also enables the processor to stay in  
low power mode for a long period and work only intermittently,  
reducing overall system power consumption.  
input is always high when unconnected. To drive the  
input,  
use an external signal or a push-button switch to ground; debounce  
circuitry is integrated on-chip for this purpose. Noise immunity is  
TYPICAL APPLICATION CIRCUITS  
MR  
provided on the  
input, and fast, negative going transients of  
3.3V  
up to 0.4 µs (typical) are ignored. If required, a 0.1 μF capacitor  
MR  
between the  
immunity.  
pin and ground provides additional noise  
V
CORE  
VCC  
MR  
RESET  
RESET  
MICROPROCESSOR  
ADM8611  
V
VCC  
TH  
GND  
tRP  
tRP  
RESET  
MR  
Figure 30. ADM8611 Typical Application Circuit  
0.8V  
MR EXTERNALLY  
DRIVEN LOW  
3.3V  
tD_MR  
V
V
CORE  
IO  
VCC  
Figure 28. Manual Reset Timing  
RESET  
INPUT  
MICROPROCESSOR  
WATCHDOG TIMER  
ADM8612  
MR  
VIN  
The ADM8613/ADM8614/ADM8615 feature a watchdog timer  
that monitors microprocessor activity. A timer circuit is cleared  
with every low to high or high to low logic transition on the watch-  
dog input pin (WDI), which detects pulses as short as 85 ns. If  
the timer counts through the preset watchdog timeout period (tWD),  
GND  
Figure 31. ADM8612 Typical Application Circuit  
2.5V  
RESET  
a
output is asserted. The microprocessor must toggle the  
WDI pin to avoid being reset. Failure of the microprocessor to  
toggle the WDI pin within the timeout period indicates a code  
execution error, and the reset pulse generated restarts the  
microprocessor in a known state.  
VCC  
MR  
V
IO  
RESET  
RESET  
MICROPROCESSOR  
OUTPUT  
ADM8613  
WDI  
WD_DIS  
In addition to logic transitions on WDI, the watchdog timer  
is also cleared by a reset assertion caused by an undervoltage  
GND  
MR  
condition on the VCC pin, WDT_SEL toggling, or  
being  
is asserted, the watchdog timer is  
RESET  
Figure 32. ADM8613 Typical Application Circuit  
RESET  
pulled low. When  
cleared and does not begin counting again until the  
2.5V  
output is deasserted. The watchdog timer can be disabled by  
driving the watchdog disable input (WD_DIS) high.  
V
IO  
RESET  
VCC  
RESET  
MICROPROCESSOR  
ADM8614  
V
TH  
V
CC  
OUTPUT  
OUTPUT  
OUTPUT  
WDI  
WD_DIS  
WDT_SEL  
RESET  
WDI  
tRP  
tWD  
tRP  
GND  
0V  
0V  
Figure 33. ADM8614 Typical Application Circuit  
Figure 29. Watchdog Timer Timing  
Rev. F | Page 13 of 17  
 
 
 
 
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
Data Sheet  
If the watchdog input is driven by a push-pull output with a logic  
high level near the minimum logic high specification of the digital  
input, then a logic high input may cause CMOS shoot through  
and increase the bias current (ICC) of the ADM8613/ADM8614/  
ADM8615. To minimize the power loss in this setup, use short  
positive pulses to drive the WDI pin. The ideal pulse width is as  
small as possible but greater than the required minimum pulse  
width of the WDI input. One pulse within the watchdog timeout  
period is sufficient to prevent the watchdog timer from generating  
a reset output.  
LOW POWER DESIGN TECHINQUES  
With their ultralow power consumption level, the ADM8611/  
ADM8612/ADM8613/ADM8614/ADM8615 are ideal for battery-  
powered, low power applications where every bit of power matters.  
In addition to using low power ICs, good circuit design practices  
can help the user further reduce the overall system power loss.  
Digital Inputs  
The digital inputs of the ADM8611/ADM8612/ADM8613/  
ADM8614/ADM8615 voltage supervisors are designed with  
CMOS technology to minimize power consumption. The nature of  
the CMOS structure leads to an increase of the device ICC, while  
the voltage level on the input approaches its undefined logic range,  
as shown in Figure 11. To minimize this effect, follow these  
recommendations:  
HIGH  
LOW  
2.5V  
VCC  
1.5V  
V
IO  
WATCHDOG  
OUTPUT  
WDI  
PUSH-PULL  
OUTPUT  
If the digital input does not need to be toggled in a particular  
design, tie it directly to the VCC or GND pin of the device.  
Push-pull outputs with logic high levels close to the VCC of the  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615 are  
the ideal choice for driving the digital signal line.  
Using push-pull outputs with a logic high level near the  
minimum logic high specification of the digital input is  
usually not recommended. One exception is if the input is  
required to be driven high only infrequently for a relatively  
short period.  
MICROPROCESSOR  
ADM8614  
Figure 34. Using a Push-Pull Output with a Lower Logic High Level to VCC,  
Driving the WDI Pin with Short Positive Pulse to Reduce ICC  
Similarly, if an open-drain input/output with a pull-up resistor  
to VCC is used to drive WDI, a logic low input causes additional  
current flowing through the pull-up resistor. A short negative  
pulse technique can minimize the long-term current consumption.  
2.5V  
Open-drain outputs with a pull-up resistor to VCC can be  
used to drive digital signal lines. Open-drain outputs are  
best suited for driving lines that are required to be driven  
low only infrequently for a relatively short period.  
The leakage current on both the digital input and the open-  
drain output determines the size of the pull-up resistor  
needed and, in turn, decides the power loss through the  
resistor while driving the input low.  
VCC  
OPEN-DRAIN  
OUTPUT  
WDI  
WATCHDOG  
OUTPUT  
MICROPROCESSOR  
ADM8614  
HIGH  
LOW  
Figure 35. Short Negative Pulse on the WDI Pin to Reduce Leakage Current  
Through the Pull-Up Resistor  
MR  
The  
pin on the ADM8611, ADM8612, ADM8613, and  
ADM8615 features an internal pull-up resistor. The infrequent  
usage of this pin makes its power loss while driven to logic  
low negligible.  
WD_DIS Input  
For the ADM8613 and ADM8614, the watchdog disable input  
(WD_DIS) disables the watchdog function during system  
prototyping or during power-up to allow extra time for  
processor initialization.  
WDI Input  
When the watchdog input (WDI) is driven by a push-pull  
input/output with a logic high level near the VCC level of the  
ADM8613/ADM8614/ADM8615, neither a high nor a low input  
logic causes the system to consume additional current. To reduce  
the total current consumption, increase the speed of the input  
transition to the number of transitions. One high to low or low  
to high transition within the watchdog timeout period is sufficient  
to prevent the watchdog timer from generating a reset output.  
To disable the watchdog timer function during power-up after a  
reset deassertion, the processor configures its input/output and  
drives WD_DIS high within the watchdog timeout period. If  
there is not enough time to configure the input/output or if an  
open-drain input/output is used to drive WD_DIS, an external  
pull-up resistor is required to keep the watchdog function disabled  
during power-up. Extra current is consumed through the pull-up  
resistor to enable the watchdog function. The leakage current  
on both WD_DIS and the input/output that drives it determines  
the size of the pull-up resistor needed and, in turn, determines  
the power loss through the resistor while driving the input low.  
Rev. F | Page 14 of 17  
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
DEVICE MODEL OPTIONS  
The ADM8611/ADM8612/ADM8613/ADM8614/ADM8615 include many device options; however, not all options are released for sale.  
Released options are called standard models and are listed in the Ordering Guide. For the most up to date list of standard models, refer to  
the Analog Devices website at www.analog.com/supervisory. Contact an Analog Devices sales representative for information on nonstandard  
models, and be aware that samples and production units have long lead times.  
Table 9. Selection Table  
Device  
Number  
Low Voltage  
Monitoring  
Manual  
Reset  
Watchdog  
Timer  
Watchdog Disable  
Input  
Watchdog Timeout  
Selection Input  
ADM8611  
ADM8612  
ADM8613  
ADM8614  
ADM8615  
No  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
Yes  
No  
Yes  
Table 10. ADM8611 VCC Reset Threshold Voltage (VTH) Options (TA = −40°C to +85°C)  
Reset Threshold Number  
Min  
Typ  
Max  
Unit  
200  
220  
232  
263  
280  
293  
300  
308  
440  
463  
1.974  
2.171  
2.290  
2.596  
2.764  
2.892  
2.961  
3.040  
4.343  
4.570  
2
2.2  
2.026  
2.229  
2.350  
2.664  
2.836  
2.968  
3.039  
3.120  
4.457  
4.690  
V
V
V
V
V
V
V
V
V
V
2.32  
2.63  
2.8  
2.93  
3
3.08  
4.4  
4.63  
Table 11. ADM8612 and ADM8615 VIN Reset Threshold Voltage (VTH) Options (TA = −40°C to +85°C)  
Reset Threshold Number  
Min  
Typ  
0.5  
0.55  
0.6  
0.65  
0.7  
0.75  
0.8  
0.85  
0.9  
0.95  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
Max  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
050  
055  
060  
065  
070  
075  
080  
085  
090  
095  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
0.489  
0.538  
0.588  
0.637  
0.686  
0.736  
0.785  
0.835  
0.885  
0.935  
0.984  
1.084  
1.184  
1.283  
1.382  
1.481  
1.579  
1.678  
1.777  
1.875  
0.511  
0.562  
0.612  
0.663  
0.714  
0.764  
0.815  
0.865  
0.915  
0.965  
1.016  
1.116  
1.216  
1.317  
1.418  
1.520  
1.621  
1.722  
1.823  
1.925  
V
V
V
V
Rev. F | Page 15 of 17  
 
 
 
 
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
Data Sheet  
Table 12. ADM8613 and ADM8614 VCC Reset Threshold Voltage (VTH) Options (TA = −40°C to +85°C)  
Reset Threshold Number  
Min  
Typ  
2.32  
2.63  
2.93  
3.08  
4.63  
Max  
Unit  
V
V
V
V
232  
263  
293  
308  
463  
2.290  
2.596  
2.892  
3.040  
4.570  
2.350  
2.664  
2.968  
3.120  
4.690  
V
Table 13. ADM8613 and ADM8615 Watchdog Timeout Options (TA = −40°C to +85°C)  
Watchdog Timeout Period Code  
Min  
Typ  
Max  
Unit  
Test Condition/Comments  
WD_DIS low  
WD_DIS low  
Y
Z
1.4  
22.3  
1.6  
25.6  
1.9  
30.5  
sec  
sec  
Table 14. ADM8614 Watchdog Timeout Options (TA = −40°C to +85°C)  
Watchdog Timeout Period Code  
Min  
1.4  
87  
Typ  
Max  
Unit  
sec  
sec  
Test Condition/Comments  
WD_DIS low, WDT_SEL low  
WD_DIS low, WDT_SEL high  
Y
1.6  
100  
1.9  
119  
Table 15. Standard Models  
Model  
Reset Threshold (V)  
Watchdog Timeout (sec)  
ADM8611N263ACBZ-R7  
ADM8611N293ACBZ-R7  
ADM8612N110ACBZ-R7  
ADM8613Y232ACBZ-R7  
ADM8613Z232ACBZ-R7  
ADM8614Y263ACBZ-R7  
ADM8615Y100ACBZ-R7  
ADM8615Z050ACBZ-R7  
2.63  
2.93  
1.1  
2.32  
2.32  
2.63  
1
N/A  
N/A  
N/A  
1.6  
25.6  
1.6  
1.6  
25.6  
0.5  
ADM861_ _ _ _ _A_ _Z-R7  
GENERIC NUMBER  
(1 TO 5)  
PACKING MATERIAL  
R7 = 7" TAPE AND REEL  
(3000 PIECE QUANTITY)  
WATCHD  
OG TIME  
OUT PE  
RIOD COD  
E
Z = LEAD-FREE  
Y:1.6s (T  
YP)  
Z: 25.6s (  
TYP)  
PACKAGE DESIGNATON  
CB: WLCSP  
N: NO W  
ATCH DO  
G FUNCT  
ION  
RESET T  
HRESHO  
LD NUM  
BER  
TEMPERAT  
URE RANG  
E
(050 TO 463)  
A: –40°C T  
O +85°C  
Figure 36. Ordering Code Structure  
Rev. F | Page 16 of 17  
 
 
Data Sheet  
ADM8611/ADM8612/ADM8613/ADM8614/ADM8615  
OUTLINE DIMENSIONS  
1.000  
0.960  
0.920  
BOTTOM VIEW  
(BALL SIDE UP)  
2
1
A
B
BALL A1  
IDENTIFIER  
1.500  
1.460  
1.420  
1.00  
REF  
C
0.50  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
0.50 BSC  
0.390  
0.360  
0.330  
0.660  
0.600  
0.540  
SIDE VIEW  
COPLANARITY  
0.04  
0.360  
0.320  
0.280  
0.270  
0.240  
0.210  
SEATING  
PLANE  
Figure 37. 6-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-6-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2, 3  
Temperature Range Package Description  
Package Option Marking Code  
ADM8611N263ACBZ-R7 −40°C to +85°C  
ADM8611N293ACBZ-R7 −40°C to +85°C  
ADM8612N110ACBZ-R7 −40°C to +85°C  
ADM8613Y232ACBZ-R7 −40°C to +85°C  
ADM8613Z232ACBZ-R7 −40°C to +85°C  
ADM8614Y263ACBZ-R7 −40°C to +85°C  
ADM8615Y100ACBZ-R7 −40°C to +85°C  
ADM8615Z050ACBZ-R7 −40°C to +85°C  
ADM8611-EVALZ  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
6-Ball Ball Wafer Level Chip Scale Package [WLCSP] CB-6-17  
Evaluation Board  
DJ  
ES  
DV  
DQ  
ED  
DR  
DS  
EG  
ADM8612-EVALZ  
Evaluation Board  
ADM8613-EVALZ  
Evaluation Board  
ADM8614-EVALZ  
Evaluation Board  
ADM8615-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 The ADM8611/ADM8612/ADM8613/ADM8614/ADM8615 include many device options; however, not all options are released for sale. Released options are called  
standard models and are listed in the Ordering Guide. For the most up to date list of standard models, refer to the Analog Devices website at www.analog.com/supervisory.  
Contact an Analog Devices sales representative for information on nonstandard models, and be aware that samples and production units have long lead times.  
3 If ordering nonstandard models, complete the ordering code shown in Figure 36 by inserting the model number, reset threshold, and watchdog timeout.  
©2015–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12782-0-2/18(F)  
Rev. F | Page 17 of 17  
 
 

相关型号:

ADM8611RABKS-RL

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611RABKS-RL7

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611RABKSZ-RL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO4, PLASTIC, EIAJ SC82, SC70, 4 PIN, Power Management Circuit
ADI

ADM8611SABKS-RL

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611SABKS-RL7

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611TABKS-RL

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611TABKS-RL7

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611TABKSZ-RL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO4, PLASTIC, EIAJ SC82, SC70, 4 PIN, Power Management Circuit
ADI

ADM8611TABKSZ-RL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO4, PLASTIC, EIAJ SC82, SC70, 4 PIN, Power Management Circuit
ADI

ADM8611VABKS-RL

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611VABKS-RL7

Low-Voltage Manual Reset & Watchdog Supervisory Circuits in 4-Lead SC70
ADI

ADM8611VABKSZ-RL7

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO4, PLASTIC, EIAJ SC82, SC70, 4 PIN, Power Management Circuit
ADI