ADM8693ARN [ADI]

Microprocessor Supervisory Circuits; 微处理器监控电路
ADM8693ARN
型号: ADM8693ARN
厂家: ADI    ADI
描述:

Microprocessor Supervisory Circuits
微处理器监控电路

电源电路 电源管理电路 微处理器 光电二极管 监控
文件: 总16页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microprocessor  
Supervisory Circuits  
a
ADM8690–ADM8695  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAMS  
Upgrade for ADM690/ ADM695, MAX690–MAX695  
Specified Over Tem perature  
Low Pow er Consum ption (0.7 m W)  
Precision Voltage Monitor  
V
BATT  
V
OUT  
Reset Assertion Dow n to 1 V VCC  
Low Sw itch On-Resistance 0.7 Norm al,  
7 in Backup  
V
CC  
RESET  
GENERATOR  
1
RESET  
4.65V  
High Current Drive (100 m A)  
2
Watchdog Tim er—100 m s, 1.6 s, or Adjustable  
400 nA Standby Current  
Autom atic Battery Backup Pow er Sw itching  
Extrem ely Fast Gating of Chip Enable Signals (3 ns)  
Voltage Monitor for Pow er Fail  
Available in TSSOP Package  
ADM8690  
ADM8692  
ADM8694  
WATCHDOG  
TRANSITION DETECTOR  
(1.6s)  
WATCHDOG  
INPUT (WDI)  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
OUTPUT (PFO)  
1.3V  
APPLICATIONS  
Microprocessor System s  
Com puters  
1
2
VOLTAGE DETECTOR = 4.65V (ADM8690, ADM8694)  
4.40V (ADM8692)  
RESET PULSE WIDTH = 50ms (AD8690, ADM8692)  
200ms (ADM8694)  
Controllers  
Intelligent Instrum ents  
Autom otive System s  
BATT ON  
V
BATT  
GENERAL D ESCRIP TIO N  
V
OUT  
T he ADM8690–ADM8695 family of supervisory circuits offers  
complete single chip solutions for power supply monitoring and  
battery control functions in microprocessor systems. T hese  
functions include µP reset, backup battery switchover, watchdog  
timer, CMOS RAM write protection and power failure warning.  
T he complete family provides a variety of configurations to sat-  
isfy most microprocessor system requirements.  
ADM8691  
ADM8693  
ADM8695  
V
CC  
CE  
IN  
CE  
OUT  
LOW LINE  
RESET  
1
4.65V  
OSC IN  
RESET AND  
RESET  
T he ADM8690, ADM8692 and ADM8694 are available in  
8-pin DIP packages and provide:  
WATCHDOG  
GENERATOR  
TIMEBASE  
RESET  
OSC SEL  
1. Power-on reset output during power-up, power-down and  
brownout conditions. T he RESET output remains opera-  
tional with VCC as low as 1 V.  
WATCHDOG  
INPUT (WDI)  
WATCHDOG  
TIMER  
WATCHDOG  
TRANSITION DETECTOR  
WATCHDOG  
OUTPUT (WDO)  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
2. Battery backup switching for CMOS RAM, CMOS  
microprocessor or other low power logic.  
OUTPUT (PFO)  
1.3V  
3. A reset pulse if the optional watchdog timer has not been  
toggled within a specified time.  
1
VOLTAGE DETECTOR = 4.65V (ADM8691, ADM8695)  
4.40V (ADM8693)  
4. A 1.3 V threshold detector for power fail warning, low battery  
detection or to monitor a power supply other than +5 V.  
T he ADM8690–ADM8695 family is fabricated using an ad-  
vanced epitaxial CMOS process combining low power con-  
sumption (0.7 mW), extremely fast Chip Enable gating (3 ns)  
and high reliability. RESET assertion is guaranteed with VCC as  
low as 1 V. In addition, the power switching circuitry is de-  
signed for minimal voltage drop thereby permitting increased  
output current drive of up to 100 mA without the need of an  
external pass transistor.  
T he ADM8691, ADM8693 and ADM8695 are available in  
16-pin DIP and small outline packages (including T SSOP) and  
provide three additional functions:  
1. Write protection of CMOS RAM or EEPROM.  
2. Adjustable reset and watchdog timeout periods.  
3. Separate watchdog timeout, backup battery switchover, and  
low VCC status outputs.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
(V = Full Operating Range, VBATT = +2.8 V, T = TMIN to  
CC  
A
T
MAX unless otherwise noted)  
ADM8690–ADM8695–SPECIFICATIONS  
P aram eter  
Min  
Typ  
Max  
Units  
Test Conditions/Com m ents  
BAT T ERY BACKUP SWIT CHING  
VCC Operating Voltage Range  
ADM8690, ADM8691, ADM8694, ADM8695  
ADM8692, ADM8693  
4.75  
4.5  
5.5  
5.5  
V
V
VBAT T Operating Voltage Range  
ADM8690, ADM8691, ADM8694, ADM8695  
ADM8692, ADM8693  
2.0  
2.0  
4.25  
4.0  
V
V
VOUT Output Voltage  
VCC – 0.005 VCC – 0.0025  
VCC – 0.2 VCC – 0.125  
V
V
IOUT = 1 mA  
IOUT 100 mA  
VOUT in Battery Backup Mode  
Supply Current (Excludes IOUT  
VBAT T – 0.005 VBAT T – 0.002  
V
µA  
µA  
IOUT = 250 µA, VCC < VBAT T – 0.2 V  
IOUT = 100 µA  
VCC = 0 V, VBAT T = 2.8 V  
5.5 V > VCC > VBAT T + 0.2 V  
T A = +25°C  
)
140  
0.4  
200  
1
Supply Current in Battery Backup Mode  
Battery Standby Current  
(+ = Discharge, – = Charge)  
Battery Switchover T hreshold  
VCC – VBAT T  
Battery Switchover Hysteresis  
BAT T ON Output Voltage  
BAT T ON Output Short Circuit Current  
–0.1  
+0.02  
µA  
70  
50  
20  
mV  
mV  
mV  
V
mA  
µA  
Power-Up  
Power-Down  
0.3  
25  
ISINK = 3.2 mA  
BAT T ON = VOUT = 4.5 V Sink Current  
BAT T ON = 0 V Source Current  
55  
0.5  
2.5  
RESET AND WAT CHDOG T IMER  
Reset Voltage T hreshold  
ADM8690, ADM8691, ADM8694, ADM8695  
ADM8692, ADM8693  
Reset T hreshold Hysteresis  
4.5  
4.25  
4.65  
4.4  
40  
4.73  
4.48  
V
V
mV  
Reset T imeout Delay  
ADM8690, ADM8691, ADM8692, ADM8693  
ADM8694, ADM8695  
Watchdog T imeout Period, Internal Oscillator  
35  
50  
200  
1.6  
100  
4064  
1011  
70  
ms  
ms  
s
OSC SEL = HIGH  
OSC SEL = HIGH  
Long Period  
140  
1.0  
70  
3840  
768  
50  
280  
2.25  
140  
4097  
1025  
ms  
Short Period  
Watchdog T imeout Period, External Clock  
Cycles Long Period  
Cycles Short Period  
ns  
mV  
V
Minimum WDI Input Pulse Width  
RESET Output Voltage @ VCC = +1 V  
RESET, LOW LINE Output Voltage  
VIL = 0.4, VIH = 3.5 V  
4
0.05  
20  
0.4  
ISINK = 10 µA, VCC = 1 V  
ISINK = 1.6 mA, VCC = 4.25 V  
ISOURCE = 1 µA  
3.5  
V
RESET, WDO Output Voltage  
0.4  
25  
V
V
µA  
mA  
ISINK = 1.6 mA  
ISOURCE = 1 µA  
3.5  
1
Output Short Circuit Source Current  
Output Short Circuit Sink Current  
WDI Input T hreshold  
Logic Low  
Logic High  
WDI Input Current  
10  
25  
Note 1  
0.8  
10  
V
V
µA  
µA  
3.5  
1
–1  
WDI = VOUT  
WDI = 0 V  
–10  
POWER FAIL DET ECT OR  
PFI Input T hreshold  
PFI Input Current  
1.25  
–25  
1.3  
±0.01  
1.35  
+25  
0.4  
V
nA  
V
VCC = +5 V  
PFO Output Voltage  
ISINK = 3.2 mA  
3.5  
1
V
µA  
mA  
ISOURCE = 1 µA  
PFI = Low, PFO = 0 V  
PFI = High, PFO = VOUT  
PFO Short Circuit Source Current  
PFO Short Circuit Sink Current  
3
25  
25  
CHIP ENABLE GAT ING  
CEIN T hreshold  
0.8  
0.4  
7
V
V
µA  
V
V
VIL  
VIH  
3.0  
CEIN Pull-Up Current  
CEOUT Output Voltage  
3
3
ISINK = 3.2 mA  
ISOURCE = 3.0 mA  
ISOURCE = 1 µA, VCC = 0 V  
VOUT – 1.5  
VOUT – 0.05  
V
ns  
CE Propagation Delay  
REV. 0  
–2–  
ADM8690–ADM8695  
P aram eter  
Min  
Typ  
Max  
Units  
Test Conditions/Com m ents  
OSCILLAT OR  
OSC IN Input Current  
±2  
µA  
OSC SEL Input Pull-Up Current  
OSC IN Frequency Range  
OSC IN Frequency with External Capacitor  
5
µA  
kHz  
kHz  
0
500  
OSC SEL = 0 V  
OSC SEL = 0 V, C OSC = 47 pF  
4
NOT E  
1WDI is a three level input which is internally biased to 38% of VCC and has an input impedance of approximately 5 M .  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
O RD ERING GUID E  
(T A = +25°C unless otherwise noted)  
Model  
Tem perature Range  
P ackage O ptions*  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
VBAT T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
All Other Inputs . . . . . . . . . . . . . . . . . . –0.3 V to VOUT + 0.5 V  
Input Current  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
VBAT T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Power Dissipation, N-8 DIP . . . . . . . . . . . . . . . . . . . . 400 mW  
ADM8690AN  
ADM8690ARN  
–40°C to +85°C  
–40°C to +85°C  
N-8  
SO-8  
ADM8691AN  
ADM8691ARN  
ADM8691ARW  
ADM8691ARU  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16A  
R-16  
RU-16  
ADM8692AN  
ADM8692ARN  
–40°C to +85°C  
–40°C to +85°C  
N-8  
SO-8  
θ
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 120°C/W  
Power Dissipation, N-16 DIP . . . . . . . . . . . . . . . . . . . 600 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 135°C/W  
Power Dissipation, RU-16 DIP . . . . . . . . . . . . . . . . . . 600 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 158°C/W  
Power Dissipation, R-16 SOIC . . . . . . . . . . . . . . . . . . 600 mW  
JA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 110°C/W  
ADM8693AN  
ADM8693ARN  
ADM8693ARW  
ADM8693ARU  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16A  
R-16  
θ
θ
RU-16  
ADM8694AN  
ADM8694ARN  
–40°C to +85°C  
–40°C to +85°C  
N-8  
SO-8  
θ
Operating T emperature Range  
ADM8695AN  
ADM8695ARW  
–40°C to +85°C  
–40°C to +85°C  
N-16  
R-16  
Industrial (A Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (S Version) . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . . +300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
*N = Plastic DIP; R = Small Outline (Wide); R = Small Outline (Narrow);  
RU = T hin Shrink Small Outline; SO = Small Outline.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum ratings for  
extended periods of time may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADM8690–ADM8695 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
ADM8690–ADM8695  
P IN FUNCTIO N D ESCRIP TIO N  
Mnem onic  
Function  
VCC  
Power Supply Input: +5 V Nominal.  
Backup Battery Input.  
VBAT T  
VOUT  
Output Voltage, VCC or VBAT T is internally switched to VOUT depending on which is at the highest potential. VOUT  
can supply up to 100 mA to power CMOS RAM. Connect VOUT to VCC if VOUT and VBAT T are not used.  
GND  
0 V. Ground reference for all signals.  
RESET  
Logic Output. RESET goes low if  
1. VCC falls below the Reset T hreshold  
2. T he watchdog timer is not serviced within its timeout period.  
The reset threshold is typically 4.65 V for the ADM8690/ADM8691/ADM8694/ADM8695 and 4.4 V for the ADM8692  
and ADM8693. RESET remains low for 50 ms (ADM8690/ADM8691/ADM8692/ADM8693) or 200 ms (ADM8694/  
ADM8695) after VCC returns above the threshold. RESET also goes low for 50 (200) ms if the watchdog timer is  
enabled but not serviced within its timeout period. The RESET pulse width can be adjusted on the ADM8691/ADM8693/  
ADM8695 as shown in T able I. T he RESET output has an internal 3 µA pull up, and can either connect  
to an open collector Reset bus or directly drive a CMOS gate without an external pull-up resistor.  
WDI  
Watchdog Input. WDI is a three level input. If WDI remains either high or low for longer than the watchdog timeout  
period, RESET pulses low and WDO goes low. T he timer resets with each transition on the WDI line. T he watchdog  
timer may be disabled if WDI is left floating or is driven to midsupply.  
PFI  
Power Fail Input. PFI is the noninverting input to the Power Fail Comparator when PFI is less than 1.3 V, PFO  
goes low. Connect PFI to GND or VOUT when not used.  
PFO  
Power Fail Output. PFO is the output of the Power Fail Comparator. It goes low when PFI is less than 1.3 V. T he  
comparator is turned off and PFO goes low when VCC is below VBAT T  
.
CEIN  
Logic Input. T he input to the CE gating circuit. Connect to GND or VOUT if not used.  
CEOUT  
Logic Output. CEOUT is a gated version of the CEIN signal. CEOUT tracks CEIN when VCC is above the reset  
threshold. If VCC is below the reset threshold, CEOUT is forced high. See Figures 5 and 6.  
BAT T ON  
Logic Output. BAT T ON goes high when VOUT is internally switched to the VBAT T input. It goes low when VOUT  
is internally switched to VCC. T he output typically sinks 35 mA and can directly drive the base of an external  
PNP transistor to increase the output current above the 100 mA rating of VOUT  
.
LOW LINE Logic Output. LOW LINE goes low when VCC falls below the reset threshold. It returns high as soon as VCC rises  
above the reset threshold.  
RESET  
Logic Output. RESET is an active high output. It is the inverse of RESET.  
OSC SEL  
Logic Oscillator Select Input. When OSC SEL is unconnected (floating) or driven high, the internal oscillator sets  
the reset active time and watchdog timeout period. When OSC SEL is low, the external oscillator input, OSC IN,  
is enabled. OSC SEL has a 3 µA internal pull-up (see T able I).  
OSC IN  
Oscillator Logic Input. With OSC SEL low, OSC IN can be driven by an external clock signal or an external  
capacitor can be connected between OSC IN and GND. T his sets both the reset active pulse timing and the watch-  
dog timeout period (see T able I and Figure 4). With OSC SEL high or floating, the internal oscillator is enabled  
and the reset active time is fixed at 50 ms typ. (ADM8691/ADM8693) or 200 ms typ (ADM8695). In this mode the  
OSC IN pin selects between fast (100 ms) and slow (1.6 s) watchdog timeout periods. In both modes, the timeout  
period immediately after a reset is 1.6 s typical.  
WDO  
Logic Output. T he Watchdog Output, WDO, goes low if WDI remains either high or low for longer than the  
watchdog timeout period. WDO is set high by the next transition at WDI. If WDI is unconnected or at midsupply,  
the watchdog timer is disabled and WDO remains high. WDO also goes high when LOW LINE goes low.  
–4–  
REV. 0  
ADM8690–ADM8695  
P IN CO NFIGURATIO NS  
V
1
2
3
4
5
6
7
8
16 RESET  
RESET  
BATT  
V
V
BATT  
1
2
3
4
8
7
6
5
15  
OUT  
V
OUT  
ADM8690  
ADM8692  
ADM8694  
ADM8691  
ADM8693  
ADM8695  
TOP VIEW  
(Not to Scale)  
V
RESET  
WDI  
CC  
V
14 WDO  
CC  
GND  
PFI  
GND  
13 CE  
IN  
TOP VIEW  
(Not to Scale)  
PFO  
BATT ON  
CE  
OUT  
12  
11  
10  
9
WDI  
PFO  
PFI  
LOW LINE  
OSC IN  
OSC SEL  
P RO D UCT SELECTIO N GUID E  
P art  
Num ber  
Nom inal Reset  
Tim e  
Nom inal VCC  
Reset Threshold  
Nom inal Watchdog  
Tim eout P eriod  
Battery Backup  
Switching  
Base D rive  
Ext P NP  
Chip Enable  
Signals  
ADM8690  
ADM8691  
ADM8692  
ADM8693  
ADM8694  
ADM8695  
50 ms  
50 ms or ADJ  
50 ms  
50 ms or ADJ  
200 ms  
200 ms or ADJ  
4.65 V  
4.65 V  
4.4 V  
4.4 V  
4.65 V  
4.65 V  
1.6 s  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
100 ms, 1.6 s, ADJ  
1.6 s  
100 ms, 1.6 s, ADJ  
1.6 s  
100 ms, 1.6 s, ADJ  
CIRCUIT INFO RMATIO N  
Batter y Switchover Section  
If the continuous output current requirement at VOUT exceeds  
100 mA, or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel with  
the internal transistor. T he BAT T ON output (ADM8691/  
ADM8693/ADM8695) can directly drive the base of the exter-  
nal transistor.  
T he battery switchover circuit compares VCC to the VBAT T  
input, and connects VOUT to whichever is higher. Switchover  
occurs when VCC is 50 mV higher than VBAT T as VCC falls, and  
when VCC is 70 mV greater than VBAT T as VCC rises. T his  
20 mV of hysteresis prevents repeated rapid switching if VCC  
falls very slowly or remains nearly equal to the battery voltage.  
A 7 MOSFET switch connects the VBAT T input to VOUT dur-  
ing battery backup. T his MOSFET has very low input-to-out-  
put differential (dropout voltage) at the low current levels  
required for battery back up of CMOS RAM or other low power  
CMOS circuitry. T he supply current in battery back up is typi-  
cally 0.4 µA.  
V
CC  
V
OUT  
V
BATT  
T he ADM8690/ADM8691/ADM8694/ADM8695 operates with  
battery voltages from 2.0 V to 4.25 V, and the ADM8692/  
ADM8693 operates with battery voltages from 2.0 V to 4.0 V.  
High value capacitors, either standard electrolytic or the farad  
size double layer capacitors, can also be used for short-term  
memory backup. A small charging current of typically 10 nA  
(0.1 µA max) flows out of the VBAT T terminal. T his current is  
useful for maintaining rechargeable batteries in a fully charged  
condition. T his extends the life of the backup battery by com-  
pensating for its self discharge current. Also note that this cur-  
rent poses no problem when lithium batteries are used for  
backup since the maximum charging current (0.1 µA) is safe for  
even the smallest lithium cells.  
GATE DRIVE  
100  
mV  
BATT ON  
(ADM8690,  
ADM8695)  
INTERNAL  
SHUTDOWN SIGNAL  
WHEN  
700  
mV  
V
> (V + 0.7V)  
BATT  
CC  
Figure 1. Battery Switchover Schem atic  
During normal operation, with VCC higher than VBAT T, VCC is  
internally switched to VOUT via an internal PMOS transistor  
switch. T his switch has a typical on-resistance of 0.7 and can  
supply up to 100 mA at the VOUT terminal. VOUT is normally  
used to drive a RAM memory bank which may require instanta-  
neous currents of greater than 100 mA. If this is the case then a  
bypass capacitor should be connected to VOUT . T he capacitor  
will provide the peak current transients to the RAM. A capaci-  
tance value of 0.1 µF or greater may be used.  
If the battery switchover section is not used, VBAT T should be  
connected to GND and VOUT should be connected to VCC  
.
REV. 0  
–5–  
ADM8690–ADM8695  
P ower Fail RESET O utput  
Watchdog Tim er RESET  
RESET is an active low output that provides a RESET signal  
to the Microprocessor whenever VCC is at an invalid level.  
When VCC falls below the reset threshold, the RESET output  
is forced low. T he nominal reset voltage threshold is 4.65 V  
(ADM8690/ADM8691/ADM8694/ADM8695) or 4.4 V  
(ADM8692/ADM8693).  
T he watchdog timer circuit monitors the activity of the micro-  
processor in order to check that it is not stalled in an indefinite  
loop. An output line on the processor is used to toggle the  
Watchdog Input (WDI) line. If this line is not toggled within the  
selected timeout period, a RESET pulse is generated. T he  
nominal watchdog timeout period is preset at 1.6 seconds on the  
ADM8690/ADM8692/ADM8694. The ADM8691/ADM8693/  
ADM8695 may be configured for either a fixed “short” 100 ms  
or a “long” 1.6 second timeout period or for an adjustable  
timeout period. If the “short” period is selected, some systems  
may be unable to service the watchdog timer immediately after a  
reset, so the ADM8691/ADM8693/ADM8695 automatically se-  
lects the “long” timeout period directly after a reset is issued.  
T he watchdog timer is restarted at the end of reset, whether the  
reset was caused by lack of activity on WDI or by VCC falling be-  
low the reset threshold.  
V2  
V2  
V
V1  
V1  
CC  
t1  
t1  
RESET  
LOW LINE  
t1 = RESET TIME  
V1 = RESET VOLTAGE THRESHOLD LOW  
V2 = RESET VOLTAGE THRESHOLD HIGH  
HYSTERESIS = V2–V1  
T he normal (short) timeout period becomes effective following  
the first transition of WDI after RESET has gone inactive. T he  
watchdog timeout period restarts with each transition on the  
WDI pin. T o ensure that the watchdog timer does not time out,  
either a high-to-low or low-to-high transition on the WDI pin  
must occur at or less than the minimum timeout period. If WDI  
remains permanently either high or low, reset pulses will be  
issued after each “long” (1.6 s) timeout period. T he watchdog  
monitor can be deactivated by floating the Watchdog Input  
(WDI) or by connecting it to midsupply.  
Figure 2. Power Fail Reset Tim ing  
On power-up, RESET will remain low for 50 ms (200 ms for  
ADM8694 and ADM8695) after VCC rises above the appropri-  
ate reset threshold. T his allows time for the power supply and  
microprocessor to stabilize. On power-down, the RESET out-  
put remains low with VCC as low as 1 V. T his ensures that the  
microprocessor is held in a stable shutdown condition.  
This RESET active time is adjustable on the AD M 8691/  
ADM8693/ADM8695 by using an external oscillator or by  
connecting an external capacitor to the OSC IN pin. Refer to  
T able I and Figure 4.  
WDI  
T he guaranteed minimum and maximum thresholds of the  
ADM8690/ADM8691/ADM8694/ADM8695 are 4.5 V and  
4.73 V, while the guaranteed thresholds of the ADM8692/  
ADM8693 are 4.25 V and 4.48 V. The ADM8690/ADM8691/  
ADM8694/ADM8695 is, therefore, compatible with 5 V sup-  
plies with a +10%, –5% tolerance while the ADM8692/  
ADM8693 is compatible with 5 V ± 10% supplies. T he reset  
threshold comparator has approximately 50 mV of hysteresis.  
T he response time of the reset voltage comparator is less than 1  
µs. If glitches are present on the VCC line which could cause  
spurious reset pulses, then VCC should be decoupled close to  
the device.  
WDO  
t2  
t3  
RESET  
t1  
t1  
t1  
t1 = RESET TIME  
t2 = NORMAL (SHORT) WATCHDOG TIMEOUT PERIOD  
t3 = WATCHDOG TIMEOUT PERIOD IMMEDIATELY FOLLOWING A RESET  
Figure 3. Watchdog Tim eout Period and Reset Active  
Tim e  
In addition to RESET the ADM8691/ADM8693/ADM8695  
contain an active high RESET output. T his is the complement  
of RESET and is intended for processors requiring an active  
high RESET signal.  
–6–  
REV. 0  
ADM8690–ADM8695  
Table I. AD M8691, AD M8693, AD M8695 Reset P ulse Width and Watchdog Tim eout Selections  
Watchdog Tim eout P eriod  
Im m ediately  
Reset Active P eriod  
O SC SEL  
O SC IN  
Norm al  
After Reset  
AD M8691/AD M8693  
AD M8695  
Low  
Low  
External Clock Input  
External Capacitor  
1024 CLKS  
400 ms × C/47 pF  
100 ms  
4096 CLKS  
1.6 s × C/47 pF  
1.6 s  
512 CLKS  
200 ms × C/47 pF  
50 ms  
2048 CLKS  
520 ms × C/47 pF  
200 ms  
Floating or High Low  
Floating or High Floating or High  
1.6 s  
1.6 s  
50 ms  
200 ms  
NOT E  
With the OSC SEL pin low, OSC IN can be driven by an external clock signal, or an external capacitor can be connected between OSC IN and GND. T he nominal  
internal oscillator frequency is 10.24 kHz. T he nominal oscillator frequency with external capacitor is: F OSC (Hz) = 184,000/C (pF)  
On the ADM8690/ADM8692 the watchdog timeout period is  
fixed at 1.6 seconds and the reset pulse width is fixed at 50 ms.  
On the ADM8694 the watchdog timeout period is also 1.6 sec-  
onds but the reset pulse width is fixed at 200 ms. The ADM8691/  
ADM8693/ADM8695 allow these times to be adjusted as  
shown in T able I. Figure 4 shows the various oscillator configu-  
rations that can be used to adjust the reset pulse width and  
watchdog timeout period.  
8
7
OSC SEL  
ADM8691  
ADM8693  
ADM8695  
OSC IN  
C
OSC  
Figure 4b. External Capacitor  
T he internal oscillator is enabled when OSC SEL is high or  
floating. In this mode, OSC IN selects between the 1.6 second  
and 100 ms watchdog timeout periods. With OSC IN connected  
high or floating, the 1.6 second timeout period is selected; while  
with it connected low, the 100 ms timeout period is selected. In  
either case, immediately after a reset the timeout period is 1.6  
seconds. T his gives the microprocessor time to reinitialize the  
system. If OSC IN is low, then the 100 ms watchdog period be-  
comes effective after the first transition of WDI. T he software  
should be written such that the I/O port driving WDI is left in  
its power-up reset state until the initialization routines are com-  
pleted and the microprocessor is able to toggle WDI at the mini-  
mum watchdog timeout period of 70 ms.  
8
OSC SEL  
NC  
ADM8691  
ADM8693  
ADM8695  
7
OSC IN  
NC  
Figure 4c. Internal Oscillator (1.6 Second Watchdog)  
8
OSC SEL  
NC  
Watchdog O utput (WD O )  
T he Watchdog Output WDO (ADM8691/ADM8693/  
ADM8695) provides a status output which goes low if the  
watchdog timer “times out” and remains low until set high by  
the next transition on the Watchdog Input. WDO is also set  
high when VCC goes below the reset threshold.  
ADM8691  
ADM8693  
ADM8695  
7
OSC IN  
Figure 4d. Internal Oscillator (100 m s Watchdog)  
8
OSC SEL  
ADM8691  
ADM8693  
ADM8695  
CLOCK  
0 TO 500kHz  
7
OSC IN  
Figure 4a. External Clock Source  
REV. 0  
–7–  
ADM8690–ADM8695  
(PFI) is compared to an internal +1.3 V reference. T he Power  
Fail Output (PFO) goes low when the voltage at PFI is less than  
1.3 V. T ypically PFI is driven by an external voltage divider that  
senses either the unregulated dc input to the system’s 5 V regu-  
lator or the regulated 5 V output. T he voltage divider ratio can  
be chosen such that the voltage at PFI falls below 1.3 V several  
milliseconds before the +5 V power supply falls below the reset  
threshold. PFO is normally used to interrupt the microprocessor  
so that data can be stored in RAM and the shut down procedure  
executed before power is lost  
CE Gating and RAM Wr ite P r otection (AD M8691/AD M8693/  
AD M8695)  
T he ADM8691/ADM8693/ADM8695 products include  
memory protection circuitry which ensures the integrity of data  
in memory by preventing write operations when VCC is at an in-  
valid level. T here are two additional pins, CEIN and CEOUT  
,
which may be used to control the Chip Enable or Write inputs  
of CMOS RAM. When VCC is present, CEOUT is a buffered rep-  
lica of CEIN, with a 3 ns propagation delay. When VCC falls be-  
low the reset voltage threshold or VBAT T, an internal gate forces  
CEOUT high, independent of CEIN  
.
INPUT  
POWER  
ADM869x  
CEOUT typically drives the CE, CS or write input of battery  
backed up CMOS RAM. T his ensures the integrity of the data  
in memory by preventing write operations when VCC is at an in-  
valid level. Similar protection of EEPROMs can be achieved by  
using the CEOUT to drive the store or write inputs.  
R1  
R2  
1.3V  
POWER  
FAIL  
PFO  
OUTPUT  
POWER  
FAIL  
INPUT  
Figure 7. Power Fail Com parator  
Table II. Input and O utput Status In Battery Backup Mode  
ADM869x  
CE  
IN  
CE  
OUT  
Signal  
Status  
V
V
LOW = 0  
OK = 1  
CC  
CC  
VOUT  
VOUT is connected to VBAT T via an internal  
PMOS switch.  
Figure 5. Chip Enable Gating  
RESET  
Logic low.  
RESET  
Logic high. T he open circuit output voltage is  
V2  
V2  
equal to VOUT  
.
V
V1  
V1  
CC  
LOW LINE  
Logic low.  
BAT T ON  
Logic high. T he open circuit voltage is equal to  
VOUT.  
t1  
t1  
RESET  
WDI  
WDI is ignored. It is internally disconnected  
from the internal pull-up resistor and does not  
source or sink current as long as its input voltage  
is between GND and VOUT . T he input voltage  
does not affect supply current.  
LOW LINE  
WDO  
Logic high. T he open circuit voltage is equal  
to VOUT  
.
CE  
IN  
PFI  
T he Power Fail Comparator is turned off and  
has no effect on the Power Fail Output.  
PFO  
CEIN  
Logic low.  
CE  
OUT  
CEIN is ignored. It is internally disconnected  
from its internal pull-up and does not source or  
sink current as long as its input voltage is  
between GND and VOUT . T he input voltage  
does not affect supply current.  
t1 = RESET TIME  
V1 = RESET VOLTAGE THRESHOLD LOW  
V2 = RESET VOLTAGE THRESHOLD HIGH  
HYSTERESIS = V2–V1  
CEOUT  
Logic high. T he open circuit voltage is equal to  
Figure 6. Chip Enable Tim ing  
P ower Fail War ning Com par ator  
An additional comparator is provided for early warning of fail-  
ure in the microprocessor’s power supply. T he Power Fail Input  
VOUT  
.
OSC IN  
OSC IN is ignored.  
OSC SEL is ignored.  
OSC SEL  
–8–  
REV. 0  
Typical Performance Curves–ADM8690–ADM8695  
2.8  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
A4  
3.36 V  
2.798  
2.796  
2.794  
2.792  
2.79  
100  
90  
10  
0%  
2.788  
2.786  
1V  
1V  
500ms  
150 250 350 450 550 650 750 850 950 1050  
– µA  
10 20 30 40 50 60 70 80 90 100  
– mA  
I
I
OUT  
OUT  
Figure 10. Reset Output Voltage vs  
Supply Voltage  
Figure 8. VOUT vs. IOUT Norm al  
Operation  
Figure 9. VOUT vs. IOUT Battery  
Backup  
4.69  
1.315  
1.31  
53  
V
= +5V  
CC  
V
= +5V  
4.67  
4.65  
4.63  
4.61  
4.59  
4.57  
4.55  
CC  
52  
51  
50  
49  
1.305  
1.3  
1.295  
ADM8690  
ADM8691  
ADM8692  
ADM8693  
1.29  
1.285  
1.28  
–60  
–30  
0
30  
60  
90  
120  
–60  
–30  
0
30  
60  
90  
120  
20  
40  
60  
80  
100  
120  
TEMPERATURE –  
°
C
TEMPERATURE –  
°C  
TEMPERATURE –  
°C  
Figure 13. Reset Voltage Threshold  
vs. Tem perature  
Figure 11. PFI Input Threshold vs.  
Tem perature  
Figure 12. Reset Active Tim e vs.  
Tem perature  
6
6
6
V
T
= 5V  
CC  
= +25  
V
T
= 5V  
V
T
= 5V  
CC  
CC  
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
°
C
A
= +25°C  
= +25°C  
A
A
V
PFI  
+5V  
10kΩ  
30pF  
PFO  
1.3V  
30pF  
V
PFI  
V
PFO  
PFI  
1.3V  
PFO  
30pF  
1.3V  
1.35  
1.25  
1.35  
1.25  
1.35  
1.25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
TIME – µs  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
TIME – µs  
0
10 20 30 40 50 60 70 80 90  
TIME – µs  
Figure 16. Power Fail Com parator  
Response Tim e with Pull-Up Resistor  
Figure 14. Power Fail Com parator  
Response Tim e  
Figure 15. Power Fail Com parator  
Response Tim e  
REV. 0  
–9–  
ADM8690–ADM8695  
Monitor ing the Status of the Batter y  
+AP P LICATIO N INFO RMATIO N  
T he power fail comparator can be used to monitor the status of  
the backup battery instead of the power supply if desired. T his  
is shown in Figure 20. T he PFI input samples the battery volt-  
age and generates an active low PFO signal when the battery  
voltage drops below a chosen threshold. It may be necessary to  
apply a test load in order to determine the loaded battery volt-  
age. T his can be done under processor control using CEOUT .  
Since CEOUT is forced high during the battery backup mode, the  
test load will not be applied to the battery while it is in use, even  
if the microprocessor is not powered.  
Incr easing the D r ive Cur r ent  
If the continuous output current requirements at VOUT exceed  
100 mA, or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel  
with the internal transistor. T he BAT T ON output (ADM8691/  
ADM8693/ADM8695) can directly drive the base of the exter-  
nal transistor.  
PNP TRANSISTOR  
+5V INPUT  
POWER  
0.1µF  
0.1µF  
V
BATT  
ON  
V
OUT  
CC  
+5V INPUT  
POWER  
V
ADM8691  
ADM8693  
ADM8695  
BATT  
BATTERY  
V
CC  
V
BATT  
PFO  
BATTERY  
10MΩ  
10MΩ  
LOW BATTERY  
SIGNAL TO  
µP I/O PIN  
PFI  
ADM869x  
Figure 17. Increasing the Drive Current  
20kΩ  
OPTIONAL  
TEST LOAD  
CE  
IN  
Using a Rechar geable Batter y for Backup  
FROM µP I/O PIN  
APPLIES TEST LOAD  
TO BATTERY  
If a capacitor or a rechargeable battery is used for backup then  
the charging resistor should be connected to VOUT since this  
eliminates the discharge path that would exist during power-  
CE  
OUT  
down if the resistor is connected to VCC  
.
Figure 20. Monitoring the Battery Status  
V
– V  
BATT  
OUT  
Alter nate Watchdog Input D r ive Cir cuits  
I =  
R
+5V INPUT  
POWER  
T he watchdog feature can be enabled and disabled under pro-  
gram control by driving WDI with a three-state buffer (Figure  
21a). When three-stated, the WDI input will float, thereby dis-  
abling the watchdog timer.  
0.1µF  
R
0.1µF  
V
V
OUT  
CC  
V
BATT  
RECHARGEABLE  
BATTERY  
ADM869x  
WATCHDOG  
WDI  
STROBE  
ADM869x  
CONTROL  
INPUT  
Figure 18. Rechargeable Battery  
Adding H yster esis to the P ower Fail Com par ator  
Figure 21a. Program m ing the Watchdog Input  
For increased noise immunity, hysteresis may be added to the  
power fail comparator. Since the comparator circuit is nonin-  
verting, hysteresis can be added simply by connecting a resistor be-  
tween the PFO output and the PFI input as shown in Figure 19.  
When PFO is low, resistor R3 sinks current from the summing  
junction at the PFI pin. When PFO is high, the series combina-  
tion of R3 and R4 source current into the PFI summing junc-  
tion. T his results in differing trip levels for the comparator.  
T his circuit is not entirely foolproof, and it is possible that a  
software fault could erroneously three-state the buffer. T his  
would then prevent the ADM869x from detecting that the mi-  
croprocessor is no longer operating correctly. In most cases a  
better method is to extend the watchdog period rather than dis-  
abling the watchdog. T his may be done under program control  
using the circuit shown in Figure 21b. When the control input is  
high, the OSC SEL pin is low and the watchdog timeout is set  
by the external capacitor. A 0.01 µF capacitor sets a watchdog  
timeout delay of 100 seconds. When the control input is low,  
the OSC SEL pin is driven high, selecting the internal oscillator.  
The 100 ms or the 1.6 s period is chosen, depending on which di-  
ode in Figure 21b is used. With D1 inserted, the internal timeout is  
set at 100 ms; with D2 inserted the timeout is set at 1.6 s.  
+5V  
+7V TO +15V  
7805  
INPUT  
POWER  
R
V
4
CC  
R
1
2
1.3V  
PFO  
TO µP NMI  
PFI  
ADM869x  
R
R
3
CONTROL  
OSC SEL  
INPUT*  
R
R
R
1
1
5V  
V
V
= 1.3V  
= 1.3V  
(
1+  
+
)
ADM869x  
H
D 1  
D 2  
R
2
3
OSC IN  
R
R
R
(5V – 1.3V)  
1
1
PFO  
(1+  
)
4
L
1.3V (R + R )  
2
3
*LOW = INTERNAL TIMEOUT  
HIGH = EXTERNAL TIMEOUT  
ASSUMING R < < R THEN  
4
3
0V  
R
R
0V  
V
V
H
1
L
HYSTERESIS V – V = 5V  
(
)
H
L
V
IN  
2
Figure 21b. Program m ing the Watchdog Input  
Figure 19. Adding Hysteresis to the Power Fail Com parator  
–10–  
REV. 0  
ADM8690–ADM8695  
TYP ICAL AP P LICATIO NS  
AD M8690, AD M8692 and AD M8694  
Figure 22b shows a similar application but in this case the PFI  
input monitors the unregulated input to the 7805 voltage regu-  
lator. T his gives an earlier warning of an impending power fail-  
ure. It is useful with processors operating at low speeds or where  
there are a significant number of housekeeping tasks to be com-  
pleted before the power is lost.  
Figure 22a shows the ADM8690/ADM8692/ADM8694 in a  
typical power monitoring, battery backup application. VOUT  
powers the CMOS RAM. Under normal operating conditions  
with VCC present, VOUT is internally connected to VCC. If a  
power failure occurs, VCC will decay and VOUT will be switched  
to VBAT T thereby maintaining power for the CMOS RAM. A  
RESET pulse is also generated when VCC falls below 4.65 V for  
the ADM8690/ADM8694 or 4.4 V for the ADM8692. RESET  
will remain low for 50 ms (200 ms for ADM8694) after VCC re-  
turns to 5 V.  
INPUT  
POWER  
V > 8V  
+5V  
7805  
0.1µF  
0.1µF  
R
1
2
µP POWER  
CMOS RAM  
V
CC  
V
PFI  
OUT  
POWER  
R
ADM8690  
ADM8692  
ADM8694  
µP SYSTEM  
T he watchdog timer input (WDI) monitors an I/O line from the  
µP system. T his line must be toggled once every 1.6 seconds to  
verify correct software execution. Failure to toggle the line indi-  
cates that the µP system is not correctly executing its program  
and may be tied up in an endless loop. If this happens, a reset  
pulse is generated to initialize the processor.  
µP RESET  
RESET  
PFO  
V
BATT  
µP NMI  
+
BATTERY  
I/O LINE  
WDI  
GND  
Figure 22b. ADM8690/ADM8692/ADM8694 Typical Applica-  
tion Circuit B  
If the watchdog timer is not needed, the WDI input should be  
left floating.  
AD M8691, AD M8693 and AD M8695  
A typical connection for the ADM8691/ADM8693/ADM8695  
is shown in Figure 23. CMOS RAM is powered from VOUT  
T he Power Fail Input, PFI, monitors the input power supply via  
a resistive divider network. T he voltage on the PFI input is com-  
pared with a precision 1.3 V internal reference. If the input volt-  
age drops below 1.3 V, a power fail output (PFO) signal is  
generated. T his warns of an impending power failure and may  
be used to interrupt the processor so that the system may be  
shut down in an orderly fashion. T he resistors in the sensing  
network are ratioed to give the desired power fail threshold  
voltage VT .  
.
When 5 V power is present this is routed to VOUT . If VCC fails  
then VBAT T is routed to VOUT . VOUT can supply up to 100 mA  
from VCC, but if more current is required, an external PNP tran-  
sistor can be added. When VCC is higher than VBAT T, the BAT T  
ON output goes low, providing up to 25 mA of base drive for  
the external transistor. A 0.1 µF capacitor is connected to VOUT  
to supply the transient currents for CMOS RAM. When VCC is  
lower than VBAT T, an internal 20 MOSFET connects the  
VT = (1.3 R1/R2) + 1.3 V  
R1/R2 = (VT/1.3) – 1  
backup battery to VOUT  
.
INPUT POWER  
+5V  
+5V  
R
R
1
V
CC  
µP POWER  
CMOS RAM  
0.1µF  
0.1µF  
V
PFI  
OUT  
V
V
BATT  
ON  
CC  
OUT  
POWER  
CMOS  
RAM  
ADM8690  
ADM8692  
ADM8694  
0.1µF  
CE  
3V  
2
OUT  
V
BATT  
BATTERY  
µP SYSTEM  
ADM8691  
ADM8693  
ADM8695  
ADDRESS  
DECODE  
R
R
CE  
1
IN  
µP RESET  
RESET  
V
BATT  
PFI  
µP NMI  
PFO  
A0–A15  
I/O LINE  
+
GND  
BATTERY  
WDI  
I/O LINE  
2
WDI  
GND  
µP  
NC  
OSC IN  
PFO  
NMI  
OSC SEL  
RESET  
RESET  
LOW LINE WDO  
RESET  
Figure 22a. ADM8690/ADM8692/ADM8694 Typical Applica-  
tion Circuit A  
0.1µF  
SYSTEM STATUS  
INDICATORS  
Figure 23. ADM8691/ADM8693/ADM8695 Typical  
Application  
REV. 0  
–11–  
ADM8690–ADM8695  
RESET O utput  
RAM Wr ite P r otection  
T he internal voltage detector monitors VCC and generates a  
RESET output to hold the microprocessor’s Reset line low  
when VCC is below 4.65 V (4.4 V for ADM8693). An internal  
timer holds RESET low for 50 ms (200 ms for the ADM8695)  
after VCC rises above 4.65 V (4.4 V for ADM8693). T his pre-  
vents repeated toggling of RESET even if the 5 V power drops  
out and recovers with each power line cycle.  
T he ADM8691/ADM8693/ADM8695 CEOUT line drives the  
Chip Select inputs of the CMOS RAM. CEOUT follows CEIN as  
long as VCC is above the 4.65 V (4.4 V for ADM8693) reset  
threshold.  
If VCC falls below the reset threshold, CEOUT goes high, inde-  
pendent of the logic level at CEIN. T his prevents the micropro-  
cessor from writing erroneous data into RAM during power-up,  
power-down, brownouts and momentary power interruptions.  
T he crystal oscillator normally used to generate the clock for  
microprocessors can take several milliseconds to stabilize. Since  
most microprocessors need several clock cycles to reset, RESET  
must be held low until the microprocessor clock oscillator has  
started. T he power-up RESET pulse lasts 50 ms (200 ms for the  
ADM8695) to allow for this oscillator start-up time. If a differ-  
ent reset pulse width is required, then a capacitor should be  
connected to OSC IN or an external clock may be used. Please  
refer to T able I and Figure 4. T he manual reset switch and the  
0.1 µF capacitor connected to the reset line can be omitted if a  
manual reset is not needed. An inverted, active high, RESET  
output is also available.  
Watchdog Tim er  
T he microprocessor drives the Watchdog Input (WDI) with an  
I/O line. When OSC IN and OSC SEL are unconnected, the  
microprocessor must toggle the WDI pin once every 1.6 seconds  
to verify proper software execution. If a hardware or software  
failure occurs such that WDI is not toggled, the ADM8691/  
ADM8693 will issue a 50 ms (200 ms for ADM8695) RESET  
pulse after 1.6 seconds. T his typically restarts the micro-  
processor’s power-up routine. A new RESET pulse is issued  
every 1.6 seconds until WDI is again strobed. If a different  
watchdog timeout period is required, then a capacitor should be  
connected to OSC IN or an external clock may be used. Please  
refer to T able I and Figure 4.  
P ower Fail D etector  
T he +5 V VCC power line is monitored via a resistive potential  
divider connected to the Power Fail Input (PFI). When the  
voltage at PFI falls below 1.3 V, the Power Fail Output (PFO)  
drives the processor’s NMI input low. If for example a Power  
Fail threshold of 4.8 V is set with resistors R1 and R2, the micro-  
processor will have the time when VCC falls from 4.8 V to 4.65 V  
to save data into RAM. An earlier power fail warning can be gen-  
erated if the unregulated dc input to the 5 V regulator is avail-  
able for monitoring. T his will allow more time for micro-  
processor housekeeping tasks to be completed before power is  
lost.  
T he Watchdog Output (WDO) goes low if the watchdog timer  
is not serviced within its timeout period. Once WDO goes low,  
it remains low until a transition occurs at WDI. T he watchdog  
timer feature can be disabled by leaving WDI unconnected.  
T he RESET output has an internal 3 µA pull-up, and can either  
connect to an open collector reset bus or directly drive a CMOS  
gate without an external pull-up resistor.  
–12–  
REV. 0  
ADM8690–ADM8695  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-P in P lastic D IP  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
4
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.150  
(3.81)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.008 (0.204)  
16-Lead P lastic D IP  
(N-16)  
0.840 (21.33)  
0.745 (18.93)  
16  
1
9
8
0.280 (7.11)  
0.240 (6.10)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
0.150  
(3.81)  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.070 (1.77) SEATING  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
0.045 (1.15)  
REV. 0  
–13–  
ADM8690–ADM8695  
8-Lead Sm all O utline  
(SO -8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
16-Lead Sm all O utline (Wide Body)  
(R-16)  
0.413 (10.50)  
16  
9
8
0.419  
(10.65)  
0.299  
(7.60)  
1
0.104  
(2.65)  
PIN 1  
0.030 (0.75)  
0.013 (0.32)  
0.012  
(0.3)  
0.042 (1.07)  
0.05 (1.27)  
BSC  
0.019 (0.49)  
SEATING  
PLANE  
16-Lead Sm all O utline (Narrow Body)  
(R-16A)  
0.3937 (10.00)  
0.3859 (9.80)  
16  
1
9
8
0.1574 (4.00)  
0.1497 (5.80)  
0.2550 (6.20)  
0.2284 (5.80)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
0.0138 (0.35)  
–14–  
REV. 0  
ADM8690–ADM8695  
16-Lead Thin Shr ink Sm all O utline  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
1
8
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
REV. 0  
–15–  
–16–  

相关型号:

ADM8693ARN-REEL

IC 2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, MS-012AC, SOIC-16, Power Management Circuit
ADI

ADM8693ARU

Microprocessor Supervisory Circuits
ADI

ADM8693ARU

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, MO-153AB, TSSOP-16
ROCHESTER

ADM8693ARUZ

IC 2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16, Power Management Circuit
ADI

ADM8693ARW

Microprocessor Supervisory Circuits
ADI

ADM8693ARWZ

IC 2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16, Power Management Circuit
ADI

ADM8693_15

Microprocessor Supervisory Circuits
ADI

ADM8694

Microprocessor Supervisory Circuits
ADI

ADM8694AN

Microprocessor Supervisory Circuits
ADI

ADM8694AN

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, PLASTIC, MS-001BA, DIP-8
ROCHESTER

ADM8694ANZ

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, LEAD FREE, PLASTIC, MS-001BA, DIP-8
ROCHESTER

ADM8694ANZ

IC 2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, LEAD FREE, PLASTIC, MS-001BA, DIP-8, Power Management Circuit
ADI