ADM8697_15 [ADI]

Microprocessor Supervisory Circuits;
ADM8697_15
型号: ADM8697_15
厂家: ADI    ADI
描述:

Microprocessor Supervisory Circuits

文件: 总13页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microprocessor  
Supervisory Circuits  
a
ADM8696/ADM8697  
FUNCTIO NAL BLO CK D IAGRAMS  
FEATURES  
Upgrade for ADM696/ ADM697, MAX696/ MAX697  
Specified Over Tem perature  
BATT ON  
V
Adjustable Low Line Voltage Monitor  
Pow er OK/ Reset Tim e Delay  
BATT  
V
OUT  
Reset Assertion Dow n to 1 V VCC  
Watchdog Tim er—100 m s, 1.6 s, or Adjustable  
Low Sw itch On Resistance  
0.7 Norm al, 7 in Backup  
400 nA Standby Current  
Autom atic Battery Backup Sw itching (ADM8696)  
Fast On-Board Gating of Chip Enable Signals (ADM8697)  
Voltage Monitor for Pow er Fail or Low Battery Warning  
Also Available in TSSOP Package  
Qualified for Automotive Applications  
V
CC  
LL  
IN  
LOW LINE  
RESET  
RESET GENERATOR  
RESET  
OSC IN  
TIMEBASE FOR RESET  
AND WATCHDOG  
OSC SEL  
WATCHDOG  
OUTPUT (WDO)  
WATCHDOG  
TIMER  
APPLICATIONS  
Microprocessor Systems  
Computers  
Controllers  
Intelligent Instruments  
Automotive Systems  
Critical µP Power Monitoring  
WATCHDOG  
INPUT (WDI)  
WATCHDOG  
TRANSITION DETECTOR  
ADM8696  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
OUTPUT (PFO)  
1.3V  
GENERAL D ESCRIP TIO N  
CE  
LL  
IN  
CE  
T he ADM8696/ADM8697 supervisory circuits offer complete  
single chip solutions for power supply monitoring and battery  
control functions in microprocessor systems. T hese functions  
include µP reset, backup battery switchover, watchdog timer,  
CMOS RAM write protection and power failure warning.  
OUT  
IN  
LOW LINE  
RESET  
RESET GENERATOR  
RESET  
T he ADM8696/ADM8697 are available in 16-pin DIP and small  
outline packages (including T SSOP) and provide the following  
functions:  
OSC IN  
TIMEBASE FOR RESET  
AND WATCHDOG  
OSC SEL  
WATCHDOG  
OUTPUT (WDO)  
WATCHDOG  
TIMER  
1. Power-On Reset output during power-up, power-down and  
brownout conditions. T he RESET voltage threshold is  
adjustable using an external voltage divider. T he RESET out-  
put remains operational with VCC as low as 1 V.  
WATCHDOG  
INPUT (WDI)  
WATCHDOG  
TRANSITION DETECTOR  
ADM8697  
POWER FAIL  
INPUT (PFI)  
POWER FAIL  
OUTPUT (PFO)  
2. A Reset pulse if the optional watchdog timer has not been  
toggled within specified time.  
1.3V  
3. Separate watchdog timeout and low line status outputs.  
4. Adjustable reset and watchdog timeout periods.  
T he ADM8696/ADM8697 is fabricated using an advanced  
epitaxial CMOS process combining low power consumption  
(0.7 mW), extremely fast Chip Enable gating (2 ns) and high re-  
liability. RESET assertion is guaranteed with VCC as low as 1 V.  
In addition, the power switching circuitry is designed for mini-  
mal voltage drop thereby permitting increased output current drive  
of up to 100 mA without the need for an external pass transistor.  
5. A 1.3 V threshold detector for power fail warning, low battery  
detection or to monitor a power supply other than VCC  
.
6. Battery backup switching for CMOS RAM, CMOS micro-  
processor or other low power logic (ADM8696).  
7. Write protection of CMOS RAM or EEPROM (ADM8697).  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
©1997-2010 Analog Devices, Inc. All rights reserved.  
(V = Full Operating Range, VBATT = +2.8 V, T = TMIN to T  
MAX  
CC  
A
ADM8696/ADM8697–SPECIFICATIONS unless otherwise noted.)  
P
aram eter  
Min  
Typ  
Max  
Units Test Conditions/Com m ents  
VCC Operating Voltage Range  
VBAT T Operating Voltage Range  
3.0  
2.0  
5.5  
VCC – 0 3  
V
V
BAT T ERY BACKUP SWITCHING (ADM8696)  
VOUT Output Voltage  
VCC – 0.005  
VCC – 0.2  
VCC – 0.0025  
VCC – 0.125  
V
V
IOUT = 1 mA  
IOUT 100 mA  
VOUT in Battery Backup Mode  
Supply Current (Excludes IOUT  
Supply Current in Battery Backup Mode  
Battery Standby Current  
VBAT T – 0.005 VBAT T – 0.002  
V
µA  
µA  
IOUT = 250 µA, VCC < VBAT T – 0.2 V  
IOUT = 100 mA  
VCC = 0 V, VBAT T = 2.8 V  
5.5 V > VCC > VBAT T + 0.2 V  
)
115  
0.4  
200  
1
(+ = Discharge, – = Charge)  
Battery Switchover T hreshold  
VCC – VBAT T  
Battery Switchover Hysteresis  
BAT T ON Output Voltage  
BAT T ON Output Short Circuit Current  
–0.1  
+0.02  
µA  
70  
50  
20  
mV  
mV  
mV  
V
mA  
µA  
Power-Up  
Power-Down  
0.3  
25  
ISINK = 3.2 mA  
BAT T ON = VOUT = 2.4 V Sink Current  
BAT T ON = VOUT, VCC = 0 V, Source Current  
30  
2.5  
0.5  
RESET AND WAT CHDOG T IMER  
Low Line T hreshold (LLIN  
Reset T imeout Delay  
)
1.25  
35  
1.0  
70  
4032  
960  
50  
1.3  
50  
1.6  
100  
4063  
1011  
1.35  
70  
2.25  
140  
4097  
1025  
V
ms  
s
OSC SEL = HIGH  
Long Period  
Short Period  
Watchdog T imeout Period, Internal Oscillator  
Watchdog T imeout Period, External Clock  
Minimum WDI Input Pulse Width  
ms  
Cycles Long Period  
Cycles Short Period  
ns  
ns  
ns  
mV  
V
V
V
V
V
VIL = 0.8, VIH = 3.75 V, VCC = 5 V  
100  
VIL = 0.8, VIH = 3.5 V, VCC = 5 V  
VIL = 0.8, VIH = 2.6 V, VCC = 3 V  
ISINK = 10 µA, VCC = 1 V  
ISINK = 400 µA, VCC = 2 V, VBAT T = 0 V  
ISINK = 3.2 mA, 3 V < VCC < 5.5 V  
ISOURCE = 1 µA, VCC = 5 V  
ISOURCE = 1 µA, VCC = 3 V  
ISINK = 3.2 mA,  
100  
4
0.1  
0.1  
RESET Output Voltage @ VCC = +1 V  
RESET , RESET Output Voltage  
20  
0.4  
0.4  
3.5  
2.7  
LOW LINE, WDO Output Voltage  
0.4  
3.5  
1
V
V
µA  
ISOURCE = 1 µA, VCC = 5 V  
ISOURCE = 1 µA, VCC = 3 V  
VCC = 5 V  
2.7  
10  
Output Short Circuit Source Current  
WDI Input T hreshold1  
Logic Low  
25  
0.8  
V
Logic High  
3.5  
V
V
µA  
µA  
VCC = 5 V  
VCC = 3 V  
WD1 = VOUT, (VCC  
WD1 = 0 V  
1.2  
1
–1  
WDI Input Current  
10  
)
–10  
POWER FAIL DET ECT OR  
PFI Input T hreshold  
1.2  
1.3  
1.4  
V
PFI–LLIN T hreshold Difference  
PFI Input Current  
LLIN Input Current  
–50  
–25  
–50  
±15  
±0.01  
±0.01  
+50  
+25  
+50  
0.4  
mV  
nA  
nA  
V
PFO Output Voltage  
ISINK = 3.2 mA  
3.5  
1
V
V
µA  
ISOURCE = 1 µA  
ISOURCE = 1 µA, VCC = 3 V  
PFI = Low, PFO = 0 V  
2.7  
10  
PFO Short Circuit Source Current  
25  
CHIP ENABLE GAT ING (ADM8697)  
CEIN T hreshold  
0.8  
V
VIL  
3.0  
V
VIH  
1.2  
3
V
µA  
V
V
ns  
ns  
VCC = 3 V  
CEIN Pull-Up Current  
CEOUT Output Voltage  
0.4  
7
ISINK = 3.2 mA  
ISOURCE = 800 µA  
VCC = 5.0 V  
VCC – 0.5  
CE Propagation Delay  
2
4
VCC = 3.0 V  
OSCILLAT OR  
OSC IN Input Current  
±2  
µA  
µA  
kHz  
kHz  
OSC SEL Input Pull-Up Current  
OSC IN Frequency Range  
OSC IN Frequency with Ext. Capacitor  
5
0
500  
OSC SEL = 0 V  
OSC SEL = 0 V, COSC = 47 pF  
4
NOT E  
1WDI is a three-level input internally biased to 38% of VCC and has an input impedance of approximately 5 M .  
Specifications subject to change without notice.  
REV. A  
–2–  
ADM8696/ADM8697  
Power Dissipation, R-16 SOIC . . . . . . . . . . . . . . . . . . 600 mW  
θJA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 110°C/W  
Operating T emperature Range  
Industrial (A Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . . +300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum ratings for  
extended periods of time may affect device reliability.  
ABSO LUTE MAXIMUM RATINGS*  
(T A = +25°C unless otherwise noted)  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
VBAT T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
All Other Inputs . . . . . . . . . . . . . . . . . . –0.3 V to VOUT + 0.5 V  
Input Current  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
VBAT T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Power Dissipation, N-16 DIP . . . . . . . . . . . . . . . . . . . 600 mW  
θJA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 135°C/W  
Power Dissipation, RU-16 T SSOP . . . . . . . . . . . . . . . 500 mW  
θJA T hermal Impedance . . . . . . . . . . . . . . . . . . . . . 158°C/W  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADM8696/ADM8697 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
P IN CO NFIGURATIO NS  
1
2
3
4
5
6
16  
15  
14  
V
RESET  
RESET  
WDO  
BATT  
V
OUT  
V
CC  
ADM8696  
TOP VIEW  
(Not to Scale)  
GND  
LL  
IN  
13  
12  
11  
10  
9
NC  
BATT ON  
LOW LINE  
WDI  
PFO  
PFI  
7
8
OSC IN  
OSC SEL  
16  
15  
14  
13  
TEST  
NC  
1
RESET  
RESET  
WDO  
2
3
4
5
6
7
8
V
CC  
ADM8697  
TOP VIEW  
(Not to Scale)  
LL  
IN  
CE  
IN  
12  
11  
10  
9
CE  
GND  
OUT  
LOW LINE  
WDI  
PFO  
PFI  
OSC IN  
OSC SEL  
REV. A  
–3–  
ADM8696/ADM8697  
P IN FUNCTIO N D ESCRIP TIO N  
P in No.  
Mnem onic AD M8696 AD M8697 Function  
VCC  
3
1
2
3
Power Supply Input +3 V to +5 V.  
Backup Battery Input.  
VBAT T  
VOUT  
Output Voltage, VCC or VBAT T is internally switched to VOUT depending on which is at  
the highest potential. When VCC is higher than VBAT T and LLIN is higher than the reset  
threshold, VCC is switched to VOUT . When VCC is lower than VBAT T and LLIN is below the  
reset threshold, VBAT T is switched to VOUT . VOUT can supply up to 100 mA to power CMOS  
RAM. Connect VOUT to VCC if VOUT and VBAT T are not used.  
GND  
4
5
0 V. Ground reference for all signals.  
RESET  
15  
15  
Logic Output. RESET goes low whenever LLIN falls below 1.3 V and remains low for 50 ms  
after LLIN goes above 1.3 V. RESET also goes low for 50 ms if the watchdog timer is en-  
abled but not serviced within its timeout period. T he RESET pulse width can be adjusted as  
shown in T able I.  
WDI  
11  
11  
Watchdog Input, WDI is a three level input. If WDI remains either high or low for longer  
than the watchdog timeout period, RESET pulses low and WDO goes low. T he timer resets  
with each transition at the WDI input. T he watchdog timer is disabled when WDI is left  
floating or is driven to midsupply.  
PFI  
9
9
Power Fail Input. PFI is the noninverting input to the Power Fail Comparator when PFI is  
less than 1.3 V, PFO goes low. Connect PFI to GND or VOUT when not used. See Figure 1.  
PFO  
10  
10  
Power Fail Output. PFO is the output of the Power Fail Comparator. It goes low when PFI  
is less than 1.3 V. T he comparator is turned off and PFO goes low when VCC is below  
VBAT T  
.
CEIN  
13  
12  
Logic Input. T he input to the CE gating circuit. Connect to GND or VOUT if not used.  
CEOUT  
Logic Output. CEOUT is a gated version of the CEIN signal. CEOUT tracks CEIN when LLIN  
is above 1.3 V. If LLIN is below 1.3 V, CEOUT is forced high.  
BAT T ON  
5
Logic Output. BAT T ON goes high when VOUT is internally switched to the VBAT T input.  
It goes low when VOUT is internally switched to VCC. T he output typically sinks 7 mA and  
can directly drive the base of an external PNP transistor to increase the output current above  
the 100 mA rating of VOUT  
.
LOW LINE  
6
6
Logic Output. LOW LINE goes low when LLIN falls below 1.3 V. It returns high as soon as  
LLIN rises above 1.3 V.  
RESET  
16  
8
16  
8
Logic Output. RESET is an active high output. It is the inverse of RESET.  
OSC SEL  
Logic Oscillator Select Input. When OSC SEL is unconnected or driven high, the internal  
oscillator sets the reset time delay and watchdog timeout period. When OSC SEL is low, the  
external oscillator input, OSC IN, is enabled. OSC SEL has a 3 µA internal pull-up. See  
T able I and Figure 4.  
OSC IN  
7
7
Logic Oscillator Input. When OSC SEL is low, OSC IN can be driven by an external clock  
to adjust both the reset delay and the watchdog timeout period. T he timing can also be  
adjusted by connecting an external capacitor to this pin. See Table I and Figure 4. When  
OSC SEL is high or floating, OSC IN selects between fast and slow watchdog timeout periods.  
WDO  
14  
14  
Logic Output. T he Watchdog Output, WDO, goes low if WDI remains either high or low  
for longer than the watchdog timeout period. WDO is set high by the next transition at  
WDI. If WDI is unconnected or at midsupply, WDO remains high. WDO also goes high  
when LOW LINE goes low.  
NC  
12  
13  
2
4
No Connect. It should be left open.  
LLIN  
Voltage Sensing Input. T he voltage on the low line input, LLIN, is compared with a 1.3 V  
reference voltage. T his input is normally used to monitor the power supply voltage. T he  
output of the comparator generates a LOW LINE output signal. It also generates a  
RESET /RESET output. The comparator output also controls the battery switchover circuitry.  
T EST  
1
T his is a special test pin using during device manufacture. It should be connected to GND.  
REV. A  
–4–  
ADM8696/ADM8697  
CIRCUIT INFO RMATIO N  
Batter y Switchover Section (AD M8696)  
Low Line RESET O UTP UT  
RESET is an active low output that provides a RESET signal to  
the microprocessor whenever the Low Line Input (LLIN) is be-  
low 1.3 V. T he LLIN input is normally used to monitor the  
power supply voltage. An internal timer holds RESET low for  
50 ms after the voltage on LLIN rises above 1.3 V. T his is in-  
tended as a power-on RESET signal for the processor. It allows  
time for the power supply and microprocessor to stabilize. On  
power-down, the RESET output remains low, with VCC as low  
as 1 V. T his ensures that the microprocessor is held in a stable  
shutdown condition.  
The battery switchover circuit is designed to switch over to  
battery backup in the event of a power failure. When LLIN  
is below the reset threshold and VCC is below VBAT T , then  
VBAT T is switched to VOUT  
.
During normal operation, with VCC higher than VBAT T, VCC is  
internally switched to VOUT via an internal PMOS transistor  
switch. T his switch has a typical on resistance of 0.7 and can  
supply up to 100 mA at the VOUT terminal. VOUT is normally  
used to drive a RAM memory bank which may require instanta-  
neous currents of greater than 100 mA. If this is the case, then  
a bypass capacitor should be connected to VOUT . T he capacitor  
will provide the peak current transients to the RAM. A capaci-  
tance value of 0.1 µF or greater may be used.  
T he LLIN comparator has approximately 12 mV of hysteresis  
for enhanced noise immunity.  
In addition to RESET, an active high RESET output is also  
available. T his is the complement of RESET and is useful for  
processors requiring an active high RESET .  
If the continuous output current requirement at VOUT exceeds  
100 mA or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel  
with the internal transistor. T he BAT T ON output can directly  
drive the base of the external transistor.  
V2  
V2  
LLIN  
V1  
V1  
A 7 MOSFET switch connects the VBAT T input to VOUT dur-  
ing battery backup. T his MOSFET has very low input-to-out-  
put differential (dropout voltage) at the low current levels  
required for battery backup of CMOS RAM or other low power  
CMOS circuitry. T he supply current in battery backup is typi-  
cally 0.4 µA.  
t1  
t
1
RESET  
LOW LINE  
t1 = RESET TIME  
V1 = RESET VOLTAGE THRESHOLD LOW  
V2 = RESET VOLTAGE THRESHOLD HIGH  
HYSTERESIS = V2–V1  
T he ADM8696 operates with battery voltages from 2.0 V to  
VCC–0.3 V). High value capacitors, either standard electrolytic  
or the farad-size double layer capacitors, can also be used for  
short-term memory backup. A small charging current of typi-  
cally 10 nA (0.1 µA max) flows out of the VBAT T terminal. T his  
current is useful for maintaining rechargeable batteries in a fully  
charged condition. T his extends the life of the backup battery  
by compensating for its self-discharge current. Also note that  
this current poses no problem when lithium batteries are used  
for backup since the maximum charging current (0.1 µA) is safe  
for even the smallest lithium cells.  
Figure 2. Power-Fail Reset Tim ing  
Watchdog Tim er RESET  
T he watchdog timer circuit monitors the activity of the micro-  
processor in order to check that it is not stalled in an indefinite  
loop. An output line on the processor is used to toggle the  
Watchdog Input (WDI) line. If this line is not toggled within  
the selected timeout period, a RESET pulse is generated. T he  
ADM8696/ADM8697 may be configured for either a fixed  
“short” 100 ms or a “long” 1.6 second timeout period or for an  
adjustable timeout period. If the “short” period is selected,  
some systems may be unable to service the watchdog timer im-  
mediately after a reset, so a “long” timeout is automatically ini-  
tiated directly after a reset is issued. T he watchdog timer is  
restarted at the end of Reset, whether the Reset was caused by  
lack of activity on WDI or by LLIN falling below the reset  
threshold.  
If the battery switchover section is not used, VBAT T should be  
connected to GND and VOUT should be connected to VCC  
.
V
CC  
V
OUT  
V
BATT  
GATE DRIVE  
100  
T he normal (short) timeout period becomes effective following  
the first transition of WDI after RESET has gone inactive. T he  
watchdog timeout period restarts with each transition on the  
WDI pin. T o ensure that the watchdog timer does not time out,  
either a high-to-low or low-to-high transition on the WDI pin  
must occur at or less than the minimum timeout period. If WDI  
remains permanently either high or low, reset pulses will be is-  
sued after each timeout period (1.6 s). T he watchdog monitor  
can be deactivated by floating the Watchdog Input (WDI) or by  
connecting it to midsupply.  
mV  
BATT ON  
(ADM8691, ADM8693,  
ADM8695, ADM8696)  
700  
mV  
INTERNAL  
SHUTDOWN SIGNAL  
WHEN  
V
> (V + 0.7V)  
BATT  
CC  
Figure 1. Battery Switchover Schem atic  
REV. A  
–5–  
ADM8696/ADM8697  
Table I. AD M8696, AD M8697 Reset P ulse Width and Watchdog Tim eout Selections  
Watchdog Tim eout P eriod  
Im m ediately After Reset  
Reset Active P eriod  
O SC SEL  
O SC IN  
Norm al  
Low  
Low  
Floating or High  
Floating or High  
External Clock Input  
External Capacitor  
Low  
1024 CLKS  
400 ms × C/47 pF  
100 ms  
4096 CLKS  
1.6 s × C/47 pF  
1.6 s  
512 CLKS  
200 ms × C/47 pF  
50 ms  
Floating or High  
1.6 s  
1.6 s  
50 ms  
NOT E  
With the OSC SEL pin low, OSC IN can be driven by an external clock signal, or an external capacitor can be connected between OSC IN and GND. T he nominal  
internal oscillator frequency is 10.24 kHz. T he nominal oscillator frequency with external capacitor is: F OSC (Hz) = 184,000/C (pF).  
WDI  
8
7
OSC SEL  
OSC IN  
ADM869x  
WDO  
COSC  
t3  
t2  
Figure 4b. External Capacitor  
RESET  
t1  
t1  
1 = RESET TIME  
2 = NORMAL (SHORT) WATCHDOG TIMEOUT PERIOD  
3 = WATCHDOG TIMEOUT PERIOD IMMEDIATELY FOLLOWING A RESET  
t1  
NC  
8
7
OSC SEL  
OSC IN  
t
t
t
ADM869x  
NC  
Figure 3. Watchdog Tim eout Period and Reset Active Tim e  
T he watchdog timeout period defaults to 1.6 s and the reset  
pulse width defaults to 50 ms, but these times to be adjusted as  
shown in T able I. Figure 4 shows the various oscillator configu-  
rations that can be used to adjust the reset pulse width and  
watchdog timeout period.  
Figure 4c. Internal Oscillator (1.6 s Watchdog)  
NC  
8
7
OSC SEL  
OSC IN  
ADM869x  
T he internal oscillator is enabled when OSC SEL is high or  
floating. In this mode, OSC IN selects between the 1.6 second  
and 100 ms watchdog timeout periods. In either case, immedi-  
ately after a reset the timeout period is 1.6 s. T his gives the mi-  
croprocessor time to reinitialize the system. If OSC IN is low,  
the 100 ms watchdog period becomes effective after the first  
transition of WDI. T he software should be written such that the  
I/O port driving WDI is left in its power-up reset state until the  
initialization routines are completed and the microprocessor is  
able to toggle WDI at the minimum watchdog timeout period of  
70 ms.  
Figure 4d. Internal Oscillator (100 m s Watchdog)  
Watchdog O utput (WDO)  
T he Watchdog Output WDO provides a status output that goes  
low if the watchdog timer “times out” and remains low until set  
high by the next transition on the watchdog input. WDO is also  
set high when LLIN goes below the reset threshold.  
8
7
OSC SEL  
OSC IN  
ADM869x  
CLOCK  
0 TO 500kHz  
Figure 4a. External Clock Source  
REV. A  
–6–  
ADM8696/ADM8697  
CE Gating and RAM Wr ite P r otection (AD M8697)  
can be chosen such that the voltage at PFI falls below 1.3 V  
several milliseconds before the +5 V power supply falls below  
the reset threshold. PFO is normally used to interrupt the  
microprocessor so that data can be stored in RAM and the shut-  
down procedure executed before power is lost.  
T he ADM8697 contains memory protection circuitry that  
ensures the integrity of data in memory by preventing write  
operations when LLIN is below the threshold voltage. When  
LLIN is greater than 1.3 V, CEOUT is a buffered replica of CEIN  
,
with a 2 ns propagation delay. When LLIN falls below the 1.3 V  
threshold, an internal gate forces CEOUT high, independent of  
INPUT  
ADM869x  
POWER  
CEIN  
.
R1  
1.3V  
PFO  
CEOUT typically drives the CE, CS or Write input of battery  
backed up CMOS RAM. T his ensures the integrity of the data  
in memory by preventing write operations when VCC is at an in-  
valid level.  
POWER  
FAIL  
OUTPUT  
POWER  
FAIL  
INPUT  
R2  
Figure 7. Power Fail Com parator  
Table II. Input and O utput Status In Battery Backup Mode  
ADM8697  
CE  
IN  
CE  
OUT  
LL LOW = 0  
IN  
Signal  
Status  
LL OK = 1  
IN  
VOUT  
(ADM8696) VOUT is connected to VBAT T via an  
internal PMOS switch.  
Figure 5. Chip Enable Gating  
RESET  
Logic low.  
RESET  
Logic high. T he open circuit output voltage is  
V2  
V2  
LL  
V1  
equal to VOUT  
.
IN  
V1  
LOW LINE Logic low.  
t1  
t
1
RESET  
BAT T ON  
WDI  
(ADM8696) Logic high. T he open circuit volt-  
age is equal to VOUT  
.
WDI is ignored. It is internally disconnected  
from the internal pull-up resistor and does not  
source or sink current as long as its input voltage  
is between GND and VOUT . T he input voltage  
does not affect supply current.  
LOW LINE  
CE  
IN  
WDO  
Logic high. T he open circuit voltage is equal to  
VOUT  
.
CE  
PFI  
T he Power Fail Comparator is turned off and  
has no effect on the Power Fail Output.  
OUT  
t1 = RESET TIME  
PFO  
CEIN  
Logic low.  
V1 = RESET VOLTAGE THRESHOLD LOW  
V2 = RESET VOLTAGE THRESHOLD HIGH  
HYSTERESIS = V2–V1  
CEIN is ignored. It is internally disconnected  
from its internal pull-up and does not source or  
sink current as long as its input voltage is be-  
tween GND and VOUT . T he input voltage does  
not affect supply current.  
Figure 6. Chip Enable Tim ing  
P ower Fail War ning Com par ator  
An additional comparator is provided for early warning of fail-  
ure in the microprocessor’s power supply. T he Power Fail Input  
(PFI) is compared to an internal +1.3 V reference. T he Power  
CEOUT  
Logic high. T he open circuit voltage is equal to  
VOUT  
.
Fail Output (PFO) goes low when the voltage at PFI is less than  
1.3 V. T ypically PFI is driven by an external voltage divider  
which senses either the unregulated dc input to the system’s 5 V  
regulator or the regulated 5 V output. T he voltage divider ratio  
OSC IN  
OSC IN is ignored.  
OSC SEL is ignored.  
OSC SEL  
REV. A  
–7–  
ADM8696/ADM8697–Typical Performance Curves  
5
53  
V
CC  
= +5V  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
52  
51  
50  
49  
10  
20  
30  
40  
50  
I
60  
70  
80  
90  
100  
– mA  
20  
40  
60  
80  
100  
120  
OUT  
TEMPERATURE –  
°C  
Figure 8. VOUT vs. IOUT Norm al Operation  
Figure 11. RESET Active Tim e vs. Tem perature  
2.8  
A4  
3.36 V  
2.798  
100  
90  
2.796  
2.794  
2.792  
2.79  
10  
2.788  
2.786  
0%  
150  
250  
350  
450  
550  
I
650  
– µA  
750  
850  
950 1050  
1V  
500ms  
1V  
OUT  
Figure 9. VOUT vs. IOUT Battery Backup  
Figure 12. RESET Output Voltage vs. Supply Voltage  
1.32  
1.31  
1.30  
1.29  
5.5  
T
= +25°C  
A
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
20  
40  
60  
80  
100  
120  
10  
100  
1000  
10000  
TEMPERATURE –  
°
C
TIME DELAY – ms  
Figure 10. PFI Input Threshold vs. Tem perature  
Figure 13. RESET Tim eout Delay vs. VCC  
REV. A  
–8–  
ADM8696/ADM8697  
AP P LICATIO NS INFO RMATIO N  
Incr easing the D r ive Cur r ent (AD M8696)  
T his circuit is not entirely foolproof and it is possible a software  
fault could erroneously three-state the buffer. T his would pre-  
vent the ADM869x from detecting that the microprocessor is no  
longer operating correctly. In most cases, a better method is to  
If the continuous output current requirements at VOUT exceeds  
100 mA or if a lower VCC–VOUT voltage differential is desired,  
an external PNP pass transistor may be connected in parallel  
with the internal transistor. The BATT ON output (ADM8696)  
can directly drive the base of the external transistor.  
+7V TO +15V  
INPUT  
+5V  
7805  
POWER  
PNP  
TRANSISTOR  
V
CC  
R4  
+5V  
INPUT  
POWER  
R1  
R2  
1.3V  
PFO  
TO  
µP NMI  
0.1µF  
0.1µF  
PFI  
V
V
BATT  
ON  
OUT  
CC  
ADM869x  
V
BATT  
R3  
ADM8696  
BATTERY  
R
R
1
1
V
H
= 1.3V (1+ ––– + ––– )  
R
R
R
3
2
R
(5V – 1.3V)  
Figure 14. Increasing the Drive Current  
1
1
V
L
= 1.3V (1+ ––– – ––––––––––––– )  
R
1.3V (R R )  
2
3 +  
4
Using a Rechar geable Batter y for Backup (AD M8696)  
If a capacitor or a rechargeable battery is used for backup, the  
charging resistor should be connected to VOUT since this elimi-  
nates the discharge path that would exist during power-down if  
ASSUMING R < < R THEN  
4
3
R
1
HYSTERESIS V – V = 5V (––– )  
H
L
R
2
Figure 16. Adding Hysteresis to the Power Fail Com parator  
the resistor is connected to VCC  
.
extend the watchdog period rather than disabling the watchdog.  
T his may be done under program control using the circuit  
shown in Figure 17b. When the control input is high, the OSC  
SEL pin is low and the watchdog timeout is set by the external  
capacitor. A 0.01 µF capacitor sets a watchdog timeout delay of  
100 s. When the control input is low, the OSC SEL pin is  
driven high, selecting the internal oscillator. T he 100 ms or the  
1.6 s period is chosen, depending on which diode in Fig-  
ure 17b is used. With D1 inserted, the internal timeout is set at  
100 ms while with D2 inserted the timeout is set at 1.6 s.  
VOUT – VBATT  
I =  
R
+5V  
INPUT  
POWER  
R
0.1µF  
0.1µF  
VCC  
VBATT  
VOUT  
RECHARGABLE  
BATTERY  
ADM8696  
WATCHDOG  
Figure 15. Rechargeable Battery  
WDI  
STROBE  
ADM869x  
Adding H yster esis to the P ower Fail Com par ator  
CONTROL  
INPUT  
For increased noise immunity, hysteresis may be added to the  
power fail comparator. Since the comparator circuit is nonin-  
verting, hysteresis can be added by connecting a resistor be-  
tween the PFO output and the PFI input as shown in Fig-  
ure 16. When PFO is low, resistor R3 sinks current from the  
summing junction at the PFI pin. When PFO is high, the series  
combination of R3 and R4 source current into the PFI summing  
junction. T his results in differing trip levels for the comparator.  
Figure 17a. Program m ing the Watchdog Input  
CONTROL  
OSC SEL  
INPUT*  
ADM869x  
D1  
D2  
OSC IN  
Alter nate Watchdog Input D r ive Cir cuits  
T he watchdog feature can be enabled and disabled under pro-  
gram control by driving WDI with a three-state buffer (Figure  
17a). When three-stated, the WDI input will float, thereby dis-  
abling the watchdog timer.  
*LOW = INTERNAL TIMEOUT  
HIGH = EXTERNAL TIMEOUT  
Figure 17b. Program m ing the Watchdog Input  
REV. A  
–9–  
ADM8696/ADM8697  
TYP ICAL AP P LICATIO NS  
AD M8696  
Figure 18b shows a similar application for the ADM8696 but in  
this case the PFI input monitors the unregulated input to the  
7805 voltage regulator. T his gives an earlier warning of an im-  
pending power failure. It is useful with processors operating at  
low speeds or where there are a significant number of house-  
keeping tasks to be completed before the power is lost.  
Figure 18 shows the ADM8696 in a typical power monitoring,  
battery backup application. VOUT powers the CMOS RAM.  
Under normal operating conditions with VCC present, VOUT is  
internally connected to VCC. If a power failure occurs, VCC will  
decay and VOUT will be switched to VBAT T, thereby maintaining  
power for the CMOS RAM.  
INPUT  
POWER  
7805  
P ower Fail RESET  
T he VCC power supply is also monitored by the Low Line In-  
put, LLIN. A RESET pulse is generated when LLIN falls below  
1.3 V. RESET will remain low for 50 ms after LLIN returns  
above 1.3 V. T his allows for a power-on reset and prevents re-  
peated toggling of RESET if the VCC power supply is unstable.  
Resistors R3 and R4 should be chosen to give the desired VCC  
reset threshold.  
0.1µF  
0.1µF  
V
BATT  
ON  
V
OUT  
CC  
3V  
BATTERY  
V
CC  
V
BATT  
CMOS RAM  
R1  
R2  
ADM8696  
PFI  
µP  
POWER  
A0–A15  
I/O LINE  
NMI  
GND  
WDI  
Watchdog Tim er  
R3  
R4  
OSC IN  
PFO  
µP  
T he Watchdog T imer Input (WDI) monitors an I/O line from  
the µP system. T his line must be toggled once every 1.6 s to  
verify correct software execution. Failure to toggle the line indi-  
cates that the µP system is not correctly executing its program  
and may be tied up in an endless loop. If this happens, a reset  
pulse is generated to initialize the processor.  
NC  
OSC SEL  
RESET  
RESET  
LL  
IN  
RESET  
LOW LINE WDO  
SYSTEM STATUS  
INDICATORS  
If the watchdog timer is not needed the WDI input should be  
left floating.  
Figure 18b. ADM8696 Typical Application Circuit B  
P ower Fail D etector  
T his application also shows an optional external transistor that  
T he Power Fail Input, PFI, monitors the input power supply via  
a resistive divider network R1 and R2. T his input is intended as  
an early warning power fail input. T he voltage on the PFI input  
is compared with a precision 1.3 V internal reference. If the in-  
put voltage drops below 1.3 V, a power fail output (PFO) signal  
is generated. T his warns of an impending power failure and may  
be used to interrupt the processor so that the system may be  
shut down in an orderly fashion. T he resistors in the sensing  
network are ratioed to give the desired power fail threshold volt-  
age VT . T he threshold should be set at a higher voltage than the  
RESET threshold so there is sufficient time available to com-  
plete the shutdown procedure before the processor is RESET  
and power is lost.  
may be used to provide in excess of 100 mA current on VOUT  
When VCC is higher than VBAT T, the BAT T ON output goes  
low, providing 25 mA of base drive for the external PNP transis-  
tor. T he maximum current available is dependent on the power  
rating of the external transistor.  
.
RAM Wr ite P r otection  
T he ADM8697 CEOUT line drives the Chip Select inputs of the  
CMOS RAM. CEOUT follows CEIN as long as LLIN is above the  
reset threshold. If LLIN falls below the reset threshold, CEOUT  
goes high, independent of the logic level at CEIN. T his prevents  
the microprocessor from writing erroneous data into RAM dur-  
ing power-up, power-down, brownouts and momentary power  
interruptions.  
+5V  
R1  
R3  
µP POWER  
V
CC  
CMOS RAM  
POWER  
V
PFI  
LL  
OUT  
IN  
RESET  
µP SYSTEM  
R2  
R4  
ADM8696  
RESET  
µP RESET  
µP NMI  
PFO  
WDI  
V
BATT  
+
I/O LINE  
BATTERY  
GND  
Figure 18a. ADM8696 Typical Application Circuit A  
REV. A  
–10–  
ADM8696/ADM8697  
OUTLINE DIMENSIONS  
0.800 (20.32)  
0.790 (20.07)  
0.780 (19.81)  
5.10  
5.00  
4.90  
16  
1
9
8
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
1
0.060 (1.52)  
MAX  
0.210 (5.33)  
MAX  
PIN 1  
1.20  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
PLANE  
SEATING  
PLANE  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
COPLANARITY  
0.10  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
COMPLIANT TO JEDEC STANDARDS MS-001-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 19. 16-Lead Plastic Dual In-Line Package [PDIP]  
Figure 20. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Narrow Body  
(N-16)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
45°  
1.27 (0.0500)  
BSC  
2.65 (0.1043)  
0.25 (0.  
0098)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. A | Page 11 of 13  
ADM8696/ADM8697  
ORDERING GUIDE  
Model1,2  
Notes  
Temperature Range  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
−40°C to + 85°C  
Package Description  
Package Option  
N-16  
N-16  
RW-16  
RW-16  
RW-16  
RW-16  
RU-16  
RU-16  
N-16  
ADM8696AN  
ADM8696ANZ  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
ADM8696ARW  
ADM8969ARW-REEL  
ADM8696ARWZ  
ADM8696ARWZ-REEL  
ADM8696ARU  
ADM8696ARU-REEL  
ADM8697AN  
ADM8697ANZ  
ADM8697ARW  
ADM8697ARW-REEL  
ADM8697ARWZ  
ADM8697ARU  
N-16  
RW-16  
RW-16  
RW-16  
RU-16  
RU-16  
3
3
ADM8697ARU-REEL  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Contact sales for availability and quotation.  
AUTOMOTIVE PRODUCTS  
The ADM8696/ADM8697 models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available  
for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information  
and to obtain the specific Automotive Reliability reports for these models.  
12 of 13  
Rev. A | Page 12 of 13  
ADM8696/ADM8697  
REVISION HISTORY  
6/10—Rev. 0 to Rev. A  
Changes to Ordering Guide...........................................................12  
©1997-2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09139-0-6/10(A)  
13 of 13  
Rev. A | Page  

相关型号:

ADM8698

Microprocessor Supervisory Circuits
ADI

ADM8698AN

Microprocessor Supervisory Circuits
ADI

ADM8698ANZ

Microprocessor Supervisory Circuit with 4.65V Threshold Voltage, Low Supply Current and Active Low Reset Output. Upgrade for ADM698
ADI

ADM8698ARN

Microprocessor Supervisory Circuits
ADI

ADM8698ARN-REEL

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8
ROCHESTER

ADM8698ARNZ

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8, Power Management Circuit
ADI

ADM8698ARW

Microprocessor Supervisory Circuits
ADI

ADM8698_15

Microprocessor Supervisory Circuits
ADI

ADM8699

Microprocessor Supervisory Circuits
ADI

ADM8699AN

Microprocessor Supervisory Circuits
ADI

ADM8699ANZ

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, PLASTIC, DIP-8
ROCHESTER

ADM8699ARN

Microprocessor Supervisory Circuits
ADI