ADMV1014 [ADI]

24 GHz to 44 GHz, Wideband, Microwave Downconverter;
ADMV1014
型号: ADMV1014
厂家: ADI    ADI
描述:

24 GHz to 44 GHz, Wideband, Microwave Downconverter

文件: 总42页 (文件大小:2207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 GHz to 44 GHz,  
Wideband, Microwave Downconverter  
ADMV1014  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Wideband RF input frequency range: 24 GHz to 44 GHz  
2 downconversion modes  
Direct conversion from RF to baseband I/Q  
Image rejecting downconversion to complex IF  
LO input frequency range: 5.4 GHz to 10.25 GHz  
LO quadrupler for up to 41 GHz  
Matched 50 Ω, single-ended RF input, and complex IF outputs  
Option between matched 100 Ω balanced or 50 Ω single-  
ended LO inputs  
ADMV1014  
SEN  
I_P  
VCC_QUAD  
BG_RBIAS  
RST  
×4  
I_N  
100 Ω balanced baseband I/Q output impedance with  
adjustable output common-mode voltage level  
Image rejection optimization  
Square law power detector for setting mixer input power  
Variable attenuator for receiver power control  
Programmable via a 4-wire SPI interface  
32-terminal, 5 mm × 5 mm LGA package  
IF_I  
VCC_BG  
VCC_LNA_1P5  
GND  
90°  
0°  
GND  
IF_Q  
Q_N  
RF_IN  
GND  
Q_P  
DET  
APPLICATIONS  
Point to point microwave radios  
Radar, electronic warfare systems  
Instrumentation, automatic test equipment (ATE)  
Figure 1.  
GENERAL DESCRIPTION  
The ADMV1014 is a silicon germanium (SiGe), wideband,  
microwave downconverter optimized for point to point microwave  
radio designs operating in the 24 GHz to 44 GHz frequency range.  
provide two single-ended complex IF outputs anywhere between  
800 MHz and 6000 MHz. When used as an image rejecting  
downconverter, the unwanted image term is typically  
suppressed to better than 30 dBc below the wanted sideband.  
The ADMV1014 offers a flexible local oscillator (LO) system,  
including a frequency quadruple option allowing up to a 41 GHz  
range of LO input frequencies to cover a radio frequency (RF)  
input range as wide as 24 GHz to 44 GHz. A square law power  
detector is provided to allow monitoring of the power levels at  
the mixer inputs. The detector output provides closed-loop  
control of the RF input variable attenuator through an external  
op amp error integrator circuit option.  
The downconverter offers two modes of frequency translation.  
The device is capable of direct quadrature demodulation to  
baseband inphase (I)/quadrature (Q) output signals, as well as  
image rejection downconversion to a complex intermediate  
frequency (IF) output carrier frequency. The baseband outputs  
can be dc-coupled, or, more typically, the I/Q outputs are  
ac-coupled with a sufficiently low high-pass corner frequency  
to ensure adequate demodulation accuracy. The serial port  
interface (SPI) allows fine adjustment of the quadrature phase  
to allow the user to optimize I/Q demodulation performance.  
Alternatively, the baseband I/Q outputs can be disabled, and the  
I/Q signals can be passed through an on-chip active balun to  
The ADMV1014 downconverter comes in a compact, thermally  
enhanced, 5 mm × 5 mm LGA package. The ADMV1014 operates  
over the −40°C to +85°C case temperature range.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADMV1014  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Image Rejection Downconversion........................................... 29  
Detector ....................................................................................... 29  
LO Input Path ............................................................................. 29  
Power-Down ............................................................................... 29  
Serial Port Interface (SPI) ......................................................... 30  
Applications Information.............................................................. 31  
Error Vector Magnitude (EVM) Performance ....................... 31  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Serial Port Register Timing......................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
I/Q Mode ....................................................................................... 9  
IF Mode........................................................................................ 17  
Output Detector Performance.................................................. 24  
Return Loss and Isolations........................................................ 25  
M × N Spurious Performance................................................... 27  
Theory of Operation ...................................................................... 28  
Start-Up Sequence...................................................................... 28  
Baseband Quadrature Demodulation (I/Q Mode)................ 28  
Baseband Quadrature Demodulation to Very Low  
Frequencies ................................................................................. 32  
Performance at Different Quad Filter Settings....................... 32  
VVA Temperature Compensation............................................ 33  
Performance Between Differential vs. Single-Ended LO Input  
....................................................................................................... 33  
Performance across RF Frequency at Fixed IF and Baseband  
Frequencies ................................................................................. 34  
Recommended Land Pattern.................................................... 35  
Evaluation Board Information ................................................. 35  
Register Summary .......................................................................... 36  
Register Details ............................................................................... 37  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
REVISION HISTORY  
4/2019—Rev. 0 to Rev. A  
Changes to Return Loss and Isolations Section, Figure 95, and  
Figure 97 .......................................................................................... 25  
Changes to Figure 99 and Figure 101 .......................................... 26  
Changes to Start-Up Sequence Section and Baseband  
Quadrature Demodulation (I/Q Mode) Section ....................... 28  
Changes to Image Rejection Downconversion Section  
and LO Input Path Section............................................................ 29  
Change to Serial Port Interface (SPI) Section............................. 30  
Changes to Figure 111 ................................................................... 32  
Changes to Table 18 and Table 19 ................................................ 41  
Changes to Figure 1.......................................................................... 1  
Changes to Table 3 and Thermal Resistance Section................... 6  
Changes to Figure 3 and Table 5..................................................... 7  
Changes to Figure 14...................................................................... 10  
Changes to Figure 19 Caption....................................................... 11  
Changes to Figure 27...................................................................... 12  
Changes to Figure 51 Caption and Figure 52 Caption .............. 17  
Changes to Figure 63 Caption and Figure 64 Caption .............. 19  
Changes to Figure 69 Caption and Figure 70 Caption .............. 20  
Changes to Figure 75...................................................................... 21  
Changes to Figure 79...................................................................... 22  
10/2018—Revision 0: Initial Version  
Rev. A | Page 2 of 42  
 
Data Sheet  
ADMV1014  
SPECIFICATIONS  
RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA =  
VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B set to 0x727C, Register 0x03, Bits[12:13] set to 11, and  
ambient temperature (TA) = 25°C, unless otherwise noted.  
Measurements are in IF mode, performed with a 90° hybrid, Register 0x03, Bit 11 = 0, and Register 0x03, Bit 8 = 1, unless otherwise noted.  
Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (VCM) = 1.15 V,  
Register 0x03, Bit 11 = 1, and Register 0x03, Bit 8 = 0, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGES  
RF Input  
24  
44  
GHz  
LO Input  
LO Quadrupler  
IF Output  
Baseband (BB) I/Q Output  
LO AMPLITUDE RANGE  
I/Q DEMODULATOR PERFORMANCE  
Conversion Gain  
5.4  
21.6  
0.8  
DC  
−6  
10.25 GHz  
41  
GHz  
GHz  
GHz  
dBm  
6.0  
6.0  
+6  
0
At maximum gain  
24 GHz to 42 GHz  
42 GHz to 44 GHz  
Voltage Variable Attenuator (VVA) Control Range  
Single Sideband (SSB) Noise Figure  
24 GHz to 42 GHz  
42 GHz to 44 GHz  
Input Third-Order Intercept (IP3)  
24 GHz to 42 GHz  
12.5  
12.5  
17  
17  
19  
dB  
dB  
dB  
At maximum gain  
At maximum gain  
5.5  
6
8
8.5  
dB  
dB  
0
−1  
45  
dBm  
dBm  
dBm  
42 GHz to 44 GHz  
Input Second-Order Intercept (IP2)  
Input 1 dB Compression Point (P1dB)  
24 GHz to 42 GHz  
42 GHz to 44 GHz  
Amplitude Balance  
24 GHz to 44 GHz, at maximum gain  
At maximum gain  
−14  
−15  
−10  
−11  
0.5  
1
2
4
dBm  
dBm  
dB  
Degrees  
Degrees  
Degrees  
Phase Balance  
DC < baseband frequency (fBB) < 2 GHz  
2 GHz < fBB < 4 GHz  
4 GHz < fBB < 6 GHz  
Image Rejection  
Uncalibrated  
Calibrated  
24 GHz to 44 GHz, at maximum gain  
45  
52  
dBc  
dBc  
IF DOWNCONVERTER PERFORMANCE  
Conversion Gain  
24 GHz to 42 GHz  
42 GHz to 44 GHz  
VVA Control Range  
SSB Noise Figure  
24 GHz to 42 GHz  
42 GHz to 44 GHz  
Input IP3  
At maximum gain  
12.5  
11.5  
17  
16  
19  
dB  
dB  
dB  
At maximum gain  
At maximum gain  
5.5  
6
8
8.5  
dB  
dB  
24 GHz to 42 GHz  
42 GHz to 44 GHz  
0
0.5  
dBm  
dBm  
Rev. A | Page 3 of 42  
 
ADMV1014  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Input P1dB  
At maximum gain  
24 GHz to 42 GHz  
−14  
−15  
−9  
dBm  
dBm  
dB  
Degrees  
Degrees  
Degrees  
42 GHz to 44 GHz  
Amplitude Balance  
Phase Balance  
−10  
−0.5  
0.5  
1
800 MHz < IF frequency (fIF) < 2 GHz  
2 GHz < fIF < 4 GHz  
4 GHz < fIF < 6 GHz  
2.5  
Image Rejection  
Uncalibrated  
Calibrated  
30  
35  
dBc  
dBc  
RECEIVER (Rx) POWER DETECTOR PERFORMANCE  
Input Level  
1 dB dynamic range  
Minimum  
Maximum  
1 dB Dynamic Range  
Output Voltage  
Maximum DC Output  
RETURN LOSS  
−35  
−14  
20  
dBm  
dBm  
dB  
3.3  
V
RF Input  
LO Input  
IF Output  
BB Output  
BB I/Q Output Impedance  
LEAKAGE  
50 Ω single-ended  
100 Ω differential  
50 Ω single-ended  
100 Ω differential  
−13  
−10  
−12  
−15  
100  
dB  
dB  
dB  
dB  
Ω
At maximum gain  
Fundamental LO to RF  
4 × LO to RF  
Fundamental LO to IF  
Fundamental LO to I/Q  
LOGIC INPUTS  
−70  
−70  
−60  
−60  
dBm  
dBm  
dBm  
dBm  
Input Voltage Range  
High, VINH  
Low, VINL  
DVDD − 0.4  
0
1.8  
0.4  
V
V
Input Current, IINH/IINL  
Input Capacitance, CIN  
LOGIC OUTPUTS  
Output Voltage Range  
High, VOH  
Low, VOL  
Output High Current, IOH  
POWER INTERFACE  
100  
3
μA  
pF  
DVDD − 0.4  
0
1.8  
0.4  
500  
V
V
μA  
VCC_IF_BB, VCC_VGA, VCC_LNA_3P3, VCC_MIXER,  
VCC_BG, VCC_QUAD  
3.15  
3.3  
3.45  
V
3.3 V Supply Current  
DVDD, VCC_VVA  
1.8 V Supply Current  
VCC_LNA_1P5  
1.5 V Supply Current  
Total Power Consumption  
Power-Down  
437  
1.8  
4.2  
1.5  
33  
mA  
V
mA  
V
mA  
W
mW  
1.7  
1.9  
1.43  
1.57  
1.5  
96  
125  
Rev. A | Page 4 of 42  
Data Sheet  
ADMV1014  
SERIAL PORT REGISTER TIMING  
Table 2.  
Parameter  
tSDI, SETUP  
tSDI, HOLD  
tSCLK, HIGH  
tSCLK, LOW  
tSCLK,  
Min  
Typ  
Max  
Unit  
ns  
ns  
%
%
escription  
Data to clock setup time  
Data to clock hold time  
Clock high duration  
Clock low duration  
Clock to SEN setup time  
10  
10  
40 to 60  
40 to 60  
30  
ns  
_SETUP  
SEN  
tSCLK, DOT  
tSCLK, DOV  
tSCLK,  
Clock to data out transition time  
Clock to data out valid time  
Clock to SEN inactive  
10  
10  
ns  
ns  
ns  
20  
80  
_INACTIVE  
SEN  
tSEN  
Inactive SEN (between two operations)  
ns  
_INACTIVE  
Timing Diagram  
tSCLK, HIGH  
tSCLK, LOW  
SCLK  
tSCLK, SEN_SETUP  
tSEN_INACTIVE  
SEN  
tSCLK, DOT  
tSCLK, SEN_INACTIVE  
tSCLK, DOV  
SDO  
tSDI, HOLD  
tSDI, SETUP  
SDI  
Figure 2. Serial Port Register Timing Diagram  
Rev. A | Page 5 of 42  
 
ADMV1014  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
TJ = (P × ѰJT) + TTOP  
where:  
TOP is package top temperature (°C). TTOP is measured at the  
top center of the package.  
ѰJT is the junction to top thermal characterization number.  
P is the total power dissipation in the chip (W).  
(1)  
Parameter  
Rating  
T
Supply Voltage  
VCC_IF_BB, VCC_VGA, VCC_LNA_3P3,  
VCC_MIXER, VCC_BG, VCC_QUAD, DVDD  
4.3 V  
VCC_VVA, VCC_LNA_1P5  
RF Input Power  
LO Input Power  
Maximum Junction Temperature  
Maximum Power Dissipation1  
Lifetime at Maximum Junction Temperature (TJ) 1 ×106 hours  
2.3 V  
0 dBm  
9 dBm  
125°C  
2.17 W  
TJ = (P × ѰJB) + TBOARD  
(2)  
where:  
T
BOARD is the board temperature measured on the midpoint of  
the longest side of the package no more than 1 mm from the  
edge of the package body (°C).  
Operating Case Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
Moisture Sensitivity Level (MSL) Rating2  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
−40°C to +85°C  
−55°C to +125°C  
260°C  
ѰJB is the junction to board thermal characterization number.  
P is the total power dissipation in the chip (W).  
As stated in JEDEC51-12, only use Equation 1 and Equation 2  
when no heat sink or heat spreader is present. When a heat sink  
or heat spreader is added, use θJC_TOP to estimate or calculate the  
junction temperature.  
MSL3  
3000 V  
750 V  
Field Induced Charged Device Model  
(FICDM)  
Table 4. Thermal Resistance  
1 The maximum power dissipation is a theoretical number calculated by  
Package  
(TJ − 85°C)/θJC_TOP  
.
2
3
4
5
6
Type1  
θJA  
33.6  
θJC_TOP  
18.4  
θJB  
13.3  
ΨJT  
ΨJB  
12.6  
Unit  
2 Based on IPC/JEDEC J-STD-20 MSL classifications.  
CC-32-6  
4.9  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
1 The thermal resistance values specified in Table 4 are simulated based on  
JEDEC specifications, unless specified otherwise, and must be used in  
compliance with JESD51-12.  
2 θJA is the junction to ambient thermal resistance in a natural convection,  
JEDEC environment.  
3 θJC_TOP is the junction to case (top) JEDEC thermal resistance.  
4 θJB is the junction to board JEDEC thermal resistance.  
5 ΨJT is the junction to top JEDEC thermal characterization parameter.  
6 ΨJB is the junction to board JEDEC thermal characterization parameter  
THERMAL RESISTANCE  
ESD CAUTION  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Only use θJA and θJC to compare the thermal performance of  
different packages when all test conditions listed are similar to  
JEDEC specifications. Otherwise, use ѰJT and ѰJB to calculate  
the device junction temperature using the following equations:  
Rev. A | Page 6 of 42  
 
 
 
 
Data Sheet  
ADMV1014  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADMV1014  
TOP VIEW  
(Not to Scale)  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
SEN  
I_P  
VCC_QUAD  
BG_RBIAS  
RST  
I_N  
IF_I  
VCC_BG  
GND  
IF_Q  
Q_N  
Q_P  
20 VCC_LNA_1P5  
19 GND  
18 RF_IN  
GND  
17  
9
10 11 12 13 14 15 16  
NOTES  
1. EXPOSED PAD. SOLDER THE EXPOSED PAD  
TO A LOW IMPEDANCE GROUND PLANE.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
SPI Serial Enable. SEN is a high impedance pin with a logic of 1.8 V.  
1
SEN  
2, 3  
Negative (I_N) and Positive (I_P) Differential BB I Outputs. These pins are dc-coupled.  
I_P, I_N  
4, 6  
IF_I, IF_Q  
IF I and IF Q Single-Ended Complex Quadrature Outputs. These pins are dc-coupled to GND, and  
each pin is matched to 50 Ω.  
5, 13, 17, 19, 25, 28  
7, 8  
GND  
Ground.  
Positive (Q_P) and Negative (Q_N) Differential Baseband Q Outputs. These pins are dc-coupled.  
Q_N, Q_P  
9
SDO  
SPI Serial Data Output.  
10  
VCC_IF_BB  
3.3 V Power Supply for BB and IF Section. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this  
pin.  
11  
12  
14  
VDET  
VCC_VGA  
VCTRL  
Square Law Detector Output Voltage.  
3.3 V Power Supply for RF Amplifier. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.  
RF VVA Control Voltage. The voltage on this pin ranges from 1.8 V (minimum gain) to 0 V (maximum  
gain). Refer to the ADMV1014-EVALZ user guide for the external component requirements.  
15  
VCC_VVA  
1.8 V Power Supply for VVA Control Circuit. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to  
this pin.  
16  
18  
VCC_LNA_3P3 3.3 V Power Supply for LNA. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.  
RF_IN  
RF Input. This pin is dc-coupled internally with a choke to GND, and matched to 50 Ω, single-  
ended. A dc input above 0 V requires external ac coupling.  
20  
21  
VCC_LNA_1P5 1.5 V Power Supply for Low Noise Amplifier (LNA). Place a 100 pF, 0.01 μF, and a 10 μF capacitor  
close to this pin.  
VCC_BG  
3.3 V Power Supply for Band Gap Circuit. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this  
pin.  
22  
23  
RST  
BG_RBIAS  
SPI Reset. Connect this pin to logic high for normal operation.  
Bang Gap Circuit External High Precision Resistor. Place a 1.1 kΩ, high precision resistor shunt to  
ground close to this pin.  
24  
VCC_QUAD  
3.3 V Power Supply for Quadruple. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.  
Rev. A | Page 7 of 42  
 
ADMV1014  
Data Sheet  
Pin No.  
Mnemonic  
Description  
26, 27  
LO_N, LO_P  
Negative (LO_N) and Positive (LO_P) Differential Local Oscillator Input. These pins are dc-coupled  
internally with a choke to GND and matched to 100 Ω differential or 50 Ω single-ended. A dc input  
above 0 V requires external ac coupling. When using the LO input as single-ended, terminate the  
unused LO port with a 50 Ω impedance to ground.  
29  
30  
31  
32  
VCC_MIXER  
DVDD  
SCLK  
3.3 V Power Supply for the Mixer. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.  
1.8 V SPI Digital Supply. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.  
SPI Clock Digital Input. SCLK is a high impedance pin.  
SDI  
SPI Serial Data Input. SDI is a high impedance pin.  
EPAD  
Exposed Pad. Solder the exposed pad to a low impedance ground plane.  
Rev. A | Page 8 of 42  
Data Sheet  
ADMV1014  
TYPICAL PERFORMANCE CHARACTERISTICS  
I/Q MODE  
RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA =  
VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, and TA = 25°C, unless otherwise noted. Register 0x0B is set to 0x727C,  
Register 0x03, Bits[13:12] are set to 11, VCM = 1.15 V, Register 0x03, Bit 11 = 1, Register 0x03, Bit 8 = 0, and measurements are a composite  
of the I and Q channels. VATT is the attenuation voltage at the VCTRL pin. VATT = 0 V, unless otherwise specified.  
25  
25  
20  
15  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
20  
15  
10  
5
10  
5
0
–5  
+85°C AT 1.8V  
+25°C AT 1.8V  
–40°C AT 1.8V  
+85°C AT 0.8V  
+25°C AT 0.8V  
–40°C AT 0.8V  
+85°C AT 0V  
+25°C AT 0V  
–40°C AT 0V  
–10  
–15  
–20  
–25  
–30  
0
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 4. Conversion Gain vs. RF Frequency at Three Different Gain Settings  
for Various Temperatures, fBB = 100 MHz (Upper Sideband)  
Figure 7. Conversion Gain vs. VATT for Various RF Frequencies (fRF),  
fBB = 100 MHz at fRF = 28 GHz and 39 GHz  
25  
20  
15  
10  
25  
20  
15  
10  
5
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
0
–5  
5
0
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Conversion Gain vs. RF Frequency for Various Supply Voltages,  
fBB = 100 MHz  
Figure 8. Conversion Gain vs. Baseband Frequency at fRF = 28 GHz and  
39 GHz (Upper Sideband)  
25  
20  
15  
10  
5
25  
20  
15  
10  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
0
–5  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
5
0
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 6. Conversion Gain vs. RF Frequency for Various LO Inputs, fBB = 100 MHz  
Rev. A | Page 9 of 42  
Figure 9. Conversion Gain vs. Baseband Frequency at fRF = 28 GHz and  
39 GHz (Lower Sideband)  
 
 
ADMV1014  
Data Sheet  
10  
8
10.0  
7.5  
5.0  
2.5  
0
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–2.5  
–5.0  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 13. Input IP3 vs. VATT for Various RF Frequencies (fRF),  
RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper  
Sideband) at fRF = 28 GHz and 39 GHz  
Figure 10. Input IP3 vs. RF Frequency at Maximum Gain for Various  
Temperatures, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
fBB = 100 MHz (Upper Sideband)  
10.0  
10  
8
6
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
7.5  
5.0  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
4
2.5  
2
0
0
–2  
–4  
–6  
–8  
–10  
–2.5  
–5.0  
–7.5  
–10.0  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Input IP3 vs. RF Frequency at Maximum Gain for Various Supply  
Voltages, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
fBB = 100 MHz (Upper Sideband)  
Figure 14. Input IP3 vs. Baseband Frequency at Maximum Gain, RF  
Amplitude = −30 dBm per Tone at 20 MHz Spacing at fRF = 28 GHz and  
39 GHz, Upper Sideband and Lower Sideband  
10  
5
8
6
4
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
3
4
2
1
2
0
0
–2  
–4  
–6  
–8  
–10  
–1  
–2  
–3  
–4  
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
–30 –29 –28 –27 –26 –25 –24 –23 –22 –21 –20  
RF FREQUENCY (GHz)  
INPUT POWER (dBm)  
Figure 12. Input IP3 vs. RF Frequency at Maximum Gain for Various LO  
Inputs, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz  
(Upper Sideband)  
Figure 15. Input IP3 vs. Input Power for Various RF Frequencies (fRF) at 20 MHz  
Spacing, fBB = 100 MHz, fRF = 28 GHz and 39 GHz  
Rev. A | Page 10 of 42  
Data Sheet  
ADMV1014  
12  
25  
20  
15  
10  
5
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
10  
8
6
4
2
0
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 16. Noise Figure vs. RF Frequency at Maximum Gain for Various  
Temperatures, fBB = 100 MHz  
Figure 19. Noise Figure vs. VATT for Various RF Frequencies and Temperatures,  
fBB = 100 MHz at fRF = 28 GHz and 39 GHz  
12  
9
8
7
6
5
4
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
10  
3.1V UPPER SIDEBAND  
8
6
4
2
0
3
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
2
1
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Noise Figure vs. RF Frequency for Various Supply Voltages,  
BB = 100 MHz  
Figure 20. Noise Figure vs. Baseband Frequency at fRF = 28 GHz and 39 GHz  
(Upper Sideband)  
f
12  
10  
8
9
8
7
6
5
4
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
6
4
3
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
2
2
1
0
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Noise Figure vs. RF Frequency for Various LO Inputs, fBB = 100 MHz  
Figure 21. Noise Figure vs. Baseband Frequency at fRF = 28 GHz and 39 GHz  
(Lower Sideband)  
Rev. A | Page 11 of 42  
ADMV1014  
Data Sheet  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF INPUT FREQUENCY (GHz)  
RF INPUT FREQUENCY (GHz)  
Figure 22. Image Rejection vs. RF Input Frequency at Maximum Gain for  
Various Temperatures, fBB = 100 MHz, Uncalibrated  
Figure 25. Image Rejection vs. RF Input Frequency for Various LO Inputs,  
fBB = 100 MHz  
80  
80  
+85°C UPPER SIDEBAND  
70  
70  
60  
50  
40  
30  
20  
10  
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
60  
50  
40  
30  
20  
10  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF INPUT FREQUENCY (GHz)  
V
ATT  
Figure 23. Image Rejection vs. RF Input Frequency at Maximum Gain for  
Various Temperatures, fBB = 100 MHz, Calibrated  
Figure 26. Image Rejection vs. VATT for Various RF Frequencies (fRF),  
fBB = 100 MHz at fRF = 28 GHz and 39 GHz  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
30  
3.5V UPPER SIDEBAND  
20  
10  
0
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
1
2
3
4
5
6
7
RF INPUT FREQUENCY (GHz)  
BASEBAND FREQUENCY (GHz)  
Figure 24. Image Rejection vs. RF Input Frequency for Various Supply  
Voltages, fBB = 100 MHz  
Figure 27. Image Rejection vs. Baseband Frequency at fRF = 28 GHz and  
39 GHz (Upper Sideband and Lower Sideband)  
Rev. A | Page 12 of 42  
Data Sheet  
ADMV1014  
60  
50  
40  
30  
60  
50  
40  
30  
20  
10  
0
+85°C UPPER SIDEBAND  
20  
10  
0
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 28. Input IP2 vs. RF Frequency at Maximum Gain for Various  
Temperatures, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
fBB = 100 MHz (Upper Sideband)  
Figure 31. Input IP2 vs. VATT for Various RF Frequencies (fRF), RF Amplitude = −30  
dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper Sideband) at  
fRF = 28 GHz and 39 GHz  
60  
50  
40  
30  
55  
50  
45  
40  
35  
30  
25  
20  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
20  
10  
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
15  
10  
5
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 32. Input IP2 vs. Baseband Frequency at Maximum Gain, RF  
Amplitude = −30 dBm per Tone at 20 MHz Spacing at fRF = 28 GHz and  
39 GHz, Upper Sideband  
Figure 29. Input IP2 vs. RF Frequency (fRF) at Maximum Gain for Various  
Supply Voltages, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
fBB = 100 MHz (Upper Sideband)  
55  
50  
45  
40  
35  
30  
25  
60  
50  
40  
30  
20  
20  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
15  
10  
5
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
10  
0
0
23  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 33. Input IP2 vs. Baseband Frequency for Various RF Frequencies (fRF  
at 20 MHz Spacing, fBB = 100 MHz, fRF = 28 GHz and 39 GHz  
)
Figure 30. Input IP2 vs. RF Frequency at Maximum Gain for Various LO  
Inputs, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz  
(Upper Sideband)  
Rev. A | Page 13 of 42  
ADMV1014  
Data Sheet  
0
–2  
0
–2  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
–4  
–4  
–6  
–8  
–6  
–10  
–12  
–14  
–16  
–18  
–20  
–8  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
–10  
–12  
–14  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 34. Input P1dB vs. RF Frequency at Maximum Gain for Various  
Temperatures, fBB = 100 MHz  
Figure 37. Input P1dB vs. VATT for Various RF Frequencies (fRF),  
fBB = 100 MHz at fRF = 28 GHz and 39 GHz  
0
0
–2  
–2  
–4  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
39GHz UPPER SIDEBAND  
–14  
28GHz UPPER SIDEBAND  
–16  
–18  
–20  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 35. Input P1dB vs. RF Frequency for Various Supply Voltages,  
fBB = 100 MHz  
Figure 38. Input P1dB vs. Baseband Output Frequency at  
f
RF = 28 GHz and 39 GHz (Upper Sideband)  
0
0
–2  
–2  
–4  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 36. Input P1dB vs. RF Frequency for Various LO Inputs, fBB = 100 MHz  
Figure 39. Input P1dB vs. Baseband Output Frequency at  
fRF = 28 GHz and 39 GHz (Lower Sideband)  
Rev. A | Page 14 of 42  
Data Sheet  
ADMV1014  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
BB I_N +85°C  
BB I_N +25°C  
BB I_N –40°C  
BB Q_N +85°C  
BB Q_N +25°C  
BB Q_N –40°C  
BB Q_P +85°C  
BB Q_P +25°C  
BB Q_P –40°C  
BB I_N +85°C  
BB I_N +25°C  
BB I_N –40°C  
BB Q_N +85°C  
BB Q_N +25°C  
BB Q_N –40°C  
BB Q_P +85°C  
BB Q_P +25°C  
BB Q_P –40°C  
–0.8  
–1.0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
BASEBAND OUTPUT FREQUENCY (GHz)  
BASEBAND OUTPUT FREQUENCY (GHz)  
Figure 40. Magnitude Error vs. Baseband Output Frequency, Referenced to  
I_P Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain  
Figure 42. Magnitude Error vs. Baseband Output Frequency, Referenced to  
I_P Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain  
8
6
8
6
4
4
2
2
0
0
–2  
–4  
–2  
–4  
BB I_N +85°C  
BB I_N +25°C  
BB I_N –40°C  
BB Q_N +85°C  
BB Q_N +25°C  
BB Q_N –40°C  
BB Q_P +85°C  
BB Q_P +25°C  
BB Q_P –40°C  
BB I_N +85°C  
BB I_N +25°C  
BB I_N –40°C  
BB Q_N +85°C  
BB Q_N +25°C  
BB Q_N –40°C  
BB Q_P +85°C  
BB Q_P +25°C  
BB Q_P –40°C  
–6  
–8  
–6  
–8  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
BASEBAND OUTPUT FREQUENCY (GHz)  
BASEBAND OUTPUT FREQUENCY (GHz)  
Figure 41. Phase Error vs. Baseband Output Frequency, Referenced to I_P  
Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain  
Figure 43. Phase Error vs. Baseband Output Frequency, Referenced to I_P  
Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain  
Rev. A | Page 15 of 42  
ADMV1014  
Data Sheet  
25  
20  
15  
10  
5
12  
10  
8
6
4
0
1
2
3
0
1
2
3
2
0
23  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Conversion Gain vs. RF Frequency at Four Different  
BB_AMP_GAIN_CTRL (Register 0x0A, Bits[2:1]) Settings, fBB = 100 MHz  
(Upper Sideband)  
Figure 46. Noise Figure vs. RF Frequency Four Different BB_AMP_GAIN_CTRL  
(Register 0x0A, Bits[2:1]) Settings, fBB = 100 MHz (Upper Sideband)  
5
4
3
2
1
0
–1  
0
–2  
1
2
3
–3  
–4  
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 45. Input IP3 vs. RF Frequency at Four Different BB_AMP_GAIN_CTRL  
(Register A, Bits[2:1]) Settings, fBB = 100 MHz (Upper Sideband)  
Rev. A | Page 16 of 42  
 
 
 
Data Sheet  
ADMV1014  
IF MODE  
RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA =  
VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C unless otherwise specified. Register 0x0B set to 0x727C,  
Register 0x03, Bits[12:13] set to 11, measurements performed with a 90° hybrid, Register 0x03, Bit 11 = 0, and Register 0x03, Bit 8 = 1.  
25  
25  
20  
15  
10  
5
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY  
Figure 47. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 50. Conversion Gain vs. IF Frequency (fIF) at Maximum Gain,  
fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)  
25  
20  
15  
10  
5
25  
+85°C AT 28GHz  
+25°C AT 28GHz  
20  
–40°C AT 28GHz  
+85°C AT 39GHz  
+25°C AT 39GHz  
15  
–40°C AT 39GHz  
10  
0
5
0
–5  
–10  
3.5V UPPER SIDEBAND  
–15  
–5  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
–20  
3.5V LOWER SIDEBAND  
–10  
–15  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
–25  
–30  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 48. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 51. Conversion Gain vs. VATT at Various Temperatures, fIF = 3.5 GHz,  
fRF = 28 GHz and 39 GHz (Upper Sideband)  
25  
20  
15  
10  
5
25  
+85°C AT 28GHz  
+25°C AT 28GHz  
20  
–40°C AT 28GHz  
+85°C AT 39GHz  
+25°C AT 39GHz  
15  
–40°C AT 39GHz  
10  
0
5
0
–5  
–10  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 49. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 52. Conversion Gain vs. VATT at Various Temperatures, fIF = 3.5 GHz ,  
RF = 28 GHz and 39 GHz (Lower Sideband)  
f
Rev. A | Page 17 of 42  
 
ADMV1014  
Data Sheet  
12  
10  
8
+85°C UPPER SIDEBAND  
10  
8
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
6
6
4
4
2
0
2
–2  
–4  
–6  
–8  
–10  
–12  
39GHz UPPER SIDEBAND  
0
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
–2  
–4  
–6  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 53. Input IP3 vs. RF Frequency at Maximum Gain for Various  
Temperatures, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 56. Input IP3 vs. VATT for Various RF Frequencies (fRF), RF Amplitude =  
−30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz at fRF = 28 GHz and  
39 GHz (Upper Sideband and Lower Sideband)  
12  
10  
8
10  
39GHz UPPER SIDEBAND  
8
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
6
4
6
4
2
2
0
0
–2  
–2  
–4  
–6  
–8  
–10  
–4  
3.5V UPPER SIDEBAND  
–6  
–8  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
–10  
–12  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 57. Input IP3 vs. IF Frequency at Maximum Gain, RF Amplitude =  
−30 dBm per Tone at 20 MHz Spacing at fRF = 28 GHz and 39 GHz  
(Upper Sideband and Lower Sideband)  
Figure 54. Input IP3 vs. RF Frequency at Maximum Gain for Various Supply  
Voltages, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz  
(Upper Sideband and Lower Sideband)  
5
12  
10  
8
39GHz UPPER SIDEBAND  
4
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
3
2
6
4
1
2
0
0
–2  
–1  
–2  
–3  
–4  
–5  
–4  
+6dBm UPPER SIDEBAND  
–6  
–8  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
–10  
–12  
–30 –29 –28 –27 –26 –25 –24 –23 –22 –21 –20  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 58. Input IP3 vs. Input Power for Various RF Frequencies (fRF), at  
20 MHz Spacing, fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz  
(Upper Sideband and Lower Sideband)  
Figure 55. Input IP3 vs. RF Frequency at Maximum gain for Various LO Inputs,  
RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz  
(Upper Sideband and Lower Sideband)  
Rev. A | Page 18 of 42  
Data Sheet  
ADMV1014  
12  
9
8
7
6
5
4
3
2
1
0
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
10  
8
6
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 59. Noise Figure vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 62. Noise Figure vs. IF Frequency at Maximum Gain, fRF = 28 GHz and  
39 GHz (Upper Sideband and Lower Sideband)  
12  
10  
8
22  
+85°C AT 28GHz  
20  
+25°C AT 28GHz  
–40°C AT 28GHz  
18  
+85°C AT 39GHz  
+25°C AT 39GHz  
16  
14  
12  
10  
8
–40°C AT 39GHz  
6
4
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
6
4
2
2
0
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 63. Noise Figure vs. VATT at Various Temperatures, fIF = 3.5 GHz,  
fRF = 28 GHz and 39 GHz (Upper Sideband)  
Figure 60. Noise Figure vs. RF Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
22  
+85°C AT 28GHz  
12  
10  
8
20  
+25°C AT 28GHz  
–40°C AT 28GHz  
18  
+85°C AT 39GHz  
+25°C AT 39GHz  
16  
14  
12  
10  
8
–40°C AT 39GHz  
6
6
4
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
4
2
2
0
0
0.2  
0.4  
0.6  
0.8  
V
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
ATT  
RF FREQUENCY (GHz)  
Figure 64. Noise Figure vs. VATT at Various Temperatures, fIF = 3.5 GHz,  
RF = 28 GHz and 39 GHz (Lower Sideband)  
Figure 61. Noise Figure vs. RF Frequency at Maximum Gain for Various LO  
Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
f
Rev. A | Page 19 of 42  
ADMV1014  
Data Sheet  
0
1
–1  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
–2  
–4  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
–3  
–6  
–5  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–7  
–9  
–11  
–13  
–15  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 65. Input P1dB vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 68. Input P1dB vs. IF Frequency at Maximum Gain,  
fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)  
0
–2  
2
0
–4  
–2  
–4  
–6  
–8  
–6  
–8  
–10  
–12  
–10  
–14  
3.5V UPPER SIDEBAND  
+85°C AT 28GHz  
3.3V UPPER SIDEBAND  
+25°C AT 28GHz  
–12  
–16  
–18  
–20  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
–40°C AT 28GHz  
+85°C AT 39GHz  
–14  
–16  
+25°C AT 39GHz  
–40°C AT 39GHz  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
ATT  
Figure 69. Input P1dB vs. VATT at Various Temperatures, fIF = 3.5 GHz,  
fRF = 28 GHz and 39 GHz (Upper Sideband)  
Figure 66. Input P1dB vs. RF Frequency at Maximum Gain for Various Supply  
Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
2
0
0
–2  
–2  
–4  
–6  
–8  
–4  
–6  
–8  
–10  
–12  
–10  
+85°C AT 28GHz  
–14  
+6dBm UPPER SIDEBAND  
+25°C AT 28GHz  
–12  
0dBm UPPER SIDEBAND  
–40°C AT 28GHz  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
–16  
–18  
–20  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
–14  
–16  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
V
ATT  
RF FREQUENCY (GHz)  
Figure 70. Input P1dB vs. VATT at Various Temperatures, fIF = 3.5 GHz,  
RF = 28 GHz and 39 GHz (Lower Sideband)  
Figure 67. Input P1dB vs. RF Frequency at Maximum Gain for Various LO  
Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
f
Rev. A | Page 20 of 42  
Data Sheet  
ADMV1014  
60  
60  
50  
40  
30  
20  
10  
0
+85°C UPPER SIDEBAND  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
50  
40  
30  
20  
10  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF INPUT FREQUENCY (GHz)  
RF INPUT FREQUENCY (GHz)  
Figure 74. Image Rejection vs. RF Input Frequency at Maximum Gain for  
Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 71. Image Rejection vs. RF Input Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband), Uncalibrated  
60  
60  
+85°C UPPER SIDEBAND  
39GHz UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
50  
50  
28GHz UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
1
2
3
4
5
6
7
IF INPUT FREQUENCY (GHz)  
RF INPUT FREQUENCY (GHz)  
Figure 72. Image Rejection vs. RF Input Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband), Calibrated  
Figure 75. Image Rejection vs. IF Input Frequency at Maximum Gain,  
f
RF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)  
60  
60  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
39GHz UPPER SIDEBAND  
50  
50  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
40  
40  
30  
20  
10  
0
30  
20  
10  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF INPUT FREQUENCY (GHz)  
V
ATT  
Figure 73. Image Rejection vs. RF Input Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 76. Image Rejection vs. VATT at Various RF Frequencies (fRF),  
fIF = 3.5 GHz, fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)  
Rev. A | Page 21 of 42  
ADMV1014  
Data Sheet  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
0
1
2
3
4
5
6
7
8
12  
13  
14  
15  
6
6
9
10  
11  
0
4
2
0
4
1
3
2
7
15  
0
23  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 80. Conversion Gain vs. RF Frequency at Different IF_AMP_  
FINE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Register 0x08, Bits[7:4]  
and Bits[3:0] Are the Same  
Figure 77. Conversion Gain vs. RF Frequency at Different  
IF_AMP_COARSE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for  
Register 0x08, Bits[11:8] and Register 0x09, Bits[15:12] Are the Same  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–1  
0
0
1
2
3
4
5
6
7
8
12  
13  
14  
15  
–2  
1
–2  
–3  
–4  
–5  
9
3
10  
11  
–3  
7
15  
–4  
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 78. Input IP3 vs. RF Frequency at Different IF_AMP_COARSE_GAIN_x  
Settings, fIF = 3.5 GHz (Upper Sideband); Settings for Register 0x08, Bits[11:8]  
and Register 0x09, Bits[15:12] Are the Same  
Figure 81. Input IP3 vs. RF Frequency at Different IF_AMP_FINE_GAIN_x  
Settings, fIF = 3.5 GHz (Upper Sideband); Settings for Register 0x08, Bits[7:4]  
and Bits[3:0] Are the Same  
10  
9
10  
9
8
8
7
7
6
6
5
5
4
4
3
0
1
2
3
4
5
6
7
8
12  
13  
14  
15  
3
2
1
0
0
9
2
1
0
1
10  
11  
3
7
15  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 79. Noise Figure vs. RF Frequency at Different  
IF_AMP_COARSE_GAIN_x Settings, fIF = 3.5 GHz (Upper Sideband); Settings for  
Register 0x08, Bits[11:8] and Register 0x09, Bits[15:12] Are the Same  
Figure 82. Noise Figure vs. RF Frequency at Different IF_AMP_FINE_GAIN_x  
Settings, fIF = 3.5 GHz (Upper Sideband); Settings for Register 0x08, Bits[7:4]  
and Bits[3:0] Are the Same  
Rev. A | Page 22 of 42  
 
 
 
 
Data Sheet  
ADMV1014  
1.0  
0.8  
1.0  
0.8  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
IF OUTPUT FREQUENCY (GHz)  
IF OUTPUT FREQUENCY (GHz)  
Figure 83. I/Q Magnitude Error vs. IF Output Frequency, Referenced to IF_I  
Output, fRF = 28 GHz, for Various Temperatures, at Maximum Gain  
Figure 85. I/Q Magnitude Error vs. IF Output Frequency, Referenced to IF_I  
Output, fRF = 39 GHz, for Various Temperatures, at Maximum Gain  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–1  
–2  
–3  
–4  
–5  
–2  
–3  
–4  
–5  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
IF OUTPUT FREQUENCY (GHz)  
IF OUTPUT FREQUENCY (GHz)  
Figure 84. I/Q Phase Error vs. IF Output Frequency, Referenced to IF_I Output,  
RF = 28 GHz, for Various Temperatures, at Maximum Gain  
Figure 86. I/Q Phase Error vs. IF Output Frequency, Referenced to IF_I Output,  
RF = 39 GHz, for Various Temperatures, at Maximum Gain  
f
f
Rev. A | Page 23 of 42  
ADMV1014  
Data Sheet  
OUTPUT DETECTOR PERFORMANCE  
RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA =  
VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B is set to 0x727C, Register 0x03, Bit 6 = 0, Register 0x03,  
Bits[13:12] set to 11, and TA = 25°C, unless otherwise noted.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
–22  
–27  
–32  
+85°C = 64  
+85°C = 8  
+85°C = 0  
+25°C = 64  
+25°C = 8  
+25°C = 0  
–40°C = 64  
–40°C = 8  
–40°C = 0  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF INPUT POWER (dBm)  
RF INPUT FREQUENCY (GHz)  
Figure 87. VDET vs. RF Input Power, fRF = 28 GHz for Various Temperatures  
and DET_PROG Settings  
Figure 89. VDET vs. RF Input Frequency at Various Input Power Levels,  
DET_PROG = 8  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
+85°C = 64  
+85°C = 8  
+85°C = 0  
+25°C = 64  
+25°C = 8  
+25°C = 0  
–40°C = 64  
–40°C = 8  
–40°C = 0  
–1  
–2  
–3  
–4  
–5  
+85°C = 64  
+85°C = 8  
+85°C = 0  
+25°C = 64  
+25°C = 8  
+25°C = 0  
–40°C = 64  
–40°C = 8  
–40°C = 0  
0.5  
0
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
RF INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
Figure 88. VDET vs. RF Input Power, fRF = 39 GHz for Various Temperatures  
and DET_PROG Settings  
Figure 90. VDET Linearity Error vs. RF Input Power, fRF = 28 GHz for Various  
Temperatures and DET_PROG Settings  
5
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
+85°C = 64  
+85°C = 8  
+85°C = 0  
+25°C = 64  
+25°C = 8  
+25°C = 0  
–40°C = 64  
–40°C = 8  
–40°C = 0  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
RF INPUT POWER (dBm)  
Figure 91. VDET Linearity Error vs. RF Input Power, fRF = 39 GHz for Various  
Temperatures and DET_PROG Settings  
Rev. A | Page 24 of 42  
 
 
 
Data Sheet  
ADMV1014  
RETURN LOSS AND ISOLATIONS  
RF amplitude = −30 dBm, measurements performed with a 0 mV dc bias. VCC_MIXER = VCC_QUAD = VCC_BG = VCC_LNA =  
VCC_VGA = VCC_IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B is set to 0x727C, Register 0x03, Bits[13:12] are set to 11,  
and TA = 25°C, unless otherwise noted.  
Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 11 = 0, Register 0x03, Bit 8 = 1, unless otherwise noted.  
Measurements in I/Q mode are measured as a composite of the I and Q channel performed, VCM = 1.15 V, Register 0x03, Bit 11 = 1, and  
Register 0x03, Bit 8 = 0, unless otherwise noted.  
0
0
I
Q
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
–35  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
1
2
3
4
5
6
7
RF FREQUENCY (GHz)  
I/Q FREQUENCY (GHz)  
Figure 92. RF Input Return Loss vs. RF Frequency  
Figure 95. I/Q Differential Return Loss vs. I/Q Frequency (Taken Without  
Hybrids or Baluns)  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
LO  
LO  
LO  
N
P
DIFF  
IF_I  
IF_Q  
–25  
–30  
–35  
4
5
6
7
8
9
10  
11  
12  
0
1
2
3
4
5
6
7
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 93. LO Return Loss vs. LO Frequency  
Figure 96. IF Return Loss vs. IF Frequency (Taken Without Hybrid)  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
LOx1 = 1.8  
LOx1 = +85°C  
LOx1 = +25°C  
LOx1 = –40°C  
LOx4 = +85°C  
LOx4 = +25°C  
LOx4 = –40°C  
LOx1 = 0.9  
–55  
LOx1 = 0  
LOx4 = 1.8  
–60  
LOx4 = 0.9  
LOx4 = 0  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
4
5
6
7
8
9
10  
11  
12  
4
5
6
7
8
9
10  
11  
12  
LO INPUT FREQUENCY (GHz)  
LO INPUT FREQUENCY (GHz)  
Figure 94. LO to RF Leakage vs. LO Input Frequency for Various Temperatures  
at Different Gain Settings  
Figure 97. LO to IF Leakage vs. LO Input Frequency at Different VCTRL Settings  
Rev. A | Page 25 of 42  
 
ADMV1014  
Data Sheet  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
I = +85°C  
I = +25°C  
I = –40°C  
Q = +85°C  
Q = +25°C  
Q = –40°C  
I = 0  
I = 1  
I = 3  
I = 7  
I = 15  
Q = 0  
Q = 1  
Q = 3  
Q = 7  
Q = 15  
4
5
6
7
8
9
10  
11  
12  
4
5
6
7
8
9
10  
11  
12  
LO INPUT FREQUENCY (GHz)  
LO INPUT FREQUENCY (GHz)  
Figure 100. LO to IF Leakage, vs. LO Input Frequency at Different IF Amplifier  
Gain Settings (Taken Without Hybrid)  
Figure 98. LO to IF Leakage vs. LO Input Frequency at Various Temperatures  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
I_P = +85°C  
I_P = +25°C  
I_P = –40°C  
I_N = +85°C  
I_N = +25°C  
I_N = –40°C  
Q_P = +85°C  
Q_P = +25°C  
Q_P = –40°C  
Q_N = +85°C  
Q_N = +25°C  
Q_N = –40°C  
I_P = 0  
I_P = 3  
I_N = 0  
I_N = 3  
Q_P = 0  
Q_P = 3  
Q_N = 0  
Q_N = 3  
–80  
–85  
–90  
–80  
–85  
–90  
4
5
6
7
8
9
10  
11  
12  
4
6
8
10  
12  
LO INPUT FREQUENCY (GHz)  
LO INPUT FREQUENCY (GHz)  
Figure 101. Fundamental LO to I/Q Leakage vs. LO Input Frequency at  
Different Baseband Amplifier Gain Settings  
Figure 99. LO to I/Q Leakage vs. LO Input Frequency at Various Temperatures  
(Taken Without Hybrid)  
Rev. A | Page 26 of 42  
Data Sheet  
ADMV1014  
M × N SPURIOUS PERFORMANCE  
IF Mode  
Mixer spurious products are measured in dBc from the IF  
output power level. Spurious values are measured using the  
following equation:  
Measurements are made on the IF_I port. Data is taken without  
any 90° hybrid.  
IF frequency (fIF) = 3.5 GHz, LO= 6.125 GHz at 0 dBm, and  
|(M × RF)+ (N × LO)|  
f
RF = 28 GHz at −30 dBm.  
N/A means not applicable. Blank cells in the spurious  
performance tables indicate that the frequency is above 50 GHz  
and is not measured.  
N × LO  
4
0
1
2
3
5
6
7
8
81 93 85 93 93 99 96  
94 89 63  
Ĥ
−2  
−1  
0
The LO frequencies are referred from the frequencies applied  
to the LO_x pin of the ADMV1014. RF amplitude = −30 dBm,  
measurements performed with a 0 mV dc bias. VCC_MIXER =  
VCC_QUAD = VCC_BG = VCC_LNA = VCC_VGA = VCC_  
IF_BB = 3.3 V, DVDD = VCC_VVA = 1.8 V, Register 0x0B is set  
to 0x727C, Register 0x03, Bits[13:12] are set to 11, and TA =  
25°C, unless otherwise noted.  
66  
0
44 46 92 78  
M × RF  
N/A 45 43 65 54 71 64 80 58  
66 84 84 81  
+1  
fIF = 3.5 GHz, LO= 8.875 GHz at 0 dBm, and fRF = 39 GHz at  
−30 dBm.  
N × LO  
0
1
2
3
4
5
6
7
8
Measurements in IF mode performed with Register 0x03, Bit 11 = 0  
and Register 0x03, Bit 8 = 1, unless otherwise noted.  
84 92 91 93 59  
39 91 92 89  
−2  
−1  
0
62  
93 81 71  
0
M × RF  
The measurements in I/Q mode are as follows: VCM = 1.15 V,  
Register 0x03, Bit 11 = 1, and Register 0x03, Bit 8 = 0, unless  
otherwise noted.  
N/A 47 68 75 50 75  
62 89  
+1  
fIF = 3.5 GHz, LO= 7.875 GHz at 0 dBm, and fRF = 28 GHz at  
−30 dBm.  
I/Q Mode  
Measurements are made on the I_P port. Data is taken without  
any hybrids or baluns.  
N × LO  
0
1
2
3
4
5
6
7
8
BB frequency (fBB) =100 MHz, LO= 6.975 GHz at 0 dBm, and  
90 86 83 95 94 83 89 58  
93 70 41 65 90 89 83  
−2  
−1  
0
f
RF = 28 GHz at −30 dBm.  
70  
0
M × RF  
N × LO  
N/A 47 62 66 49 74 86  
70 90 88  
0
1
2
3
4
5
6
7
8
+1  
85 87 87 82  
90 54 46  
86  
45  
103 96  
59  
−2  
−1  
0
fIF = 3.5 GHz, LO= 10.5 GHz at 0 dBm, and fRF =39 GHz at  
−30 dBm  
61  
0
52  
78  
106 82  
81  
M × RF  
N/A 43 55 65  
61 91 80 82  
48  
76  
N × LO  
+1  
0
1
2
3
4
5
6
7
8
fBB = 100 MHz, LO= 9.725 GHz at 0 dBm, and fRF = 39 GHz at  
−30 dBm.  
85 87 94 94 90 58  
91 81 35 87 84 84 82  
−2  
−1  
0
61  
0
M × RF  
N × LO  
N/A 39 51 62 53  
61 89  
0
1
2
3
4
5
6
7
8
+1  
85 88 87 92 87 60  
92 56 47 51 61 85 84  
−2  
−1  
0
63  
0
M × RF  
N/A 42 48 67 51 85  
42 48  
+1  
Rev. A | Page 27 of 42  
 
ADMV1014  
Data Sheet  
THEORY OF OPERATION  
The ADMV1014 is a wideband microwave downconverter  
optimized for microwave radio designs operating in the 24 GHz  
to 44 GHz frequency range. See Figure 1 for a functional block  
diagram of the device. The ADMV1014 digital settings are  
controlled via the SPI. The ADMV1014 has two modes of  
operation:  
The baseband I/Q ports are designed to operate from dc to  
6.0 GHz at each I and Q channel.  
The BB output VCM can be changed from 1.05 V to 1.85 V. To  
change the VCM, set BB_SWITCH_HIGH_LOW_COMMMON  
(Register 0x0A, Bit 0) to be the opposite of Register 0x0A, Bit 6.  
Also, set the MIXER_VGATE bit field (Register 0x07, Bits[15:9])  
and the BB_AMP_REF_GEN bit field (Register 0x0A, Bits[6:3])  
based on Table 6.  
Baseband quadrature demodulation (I/Q mode)  
Image reject I/Q downconversion (IF mode)  
Table 6 provides the correct setting for these bit fields vs. the  
required common-mode voltage.  
START-UP SEQUENCE  
The ADMV1014 SPI settings require its default settings to be  
changed during startup for optimum performance. To use the  
SPI, toggle the RST pin to logic low and then logic high to  
perform a hard reset before starting up the device.  
The VCM can be further adjusted on each I or Q channel by  
15 mV by setting the BB_AMP_OFFSET_I bit field  
(Register 0x09, Bits[4:0]) and the BB_AMP_OFFSET_Q bit field  
(Register 0x09, Bits[9:5]) for each VCM setting shown in Table 6.  
Set Register 0x0B to 0x727C after every power-up or reset. Set  
Register 0x03, Bits[13:12] to 11 after every power-up or reset.  
The most significant bit (MSB) for each bit field is the sign bit.  
When the MSB is 1, the values of the four lower bits are  
positive. When the MSB is 0, the values of the four lower bits  
are negative. These bits also offer input IP2 and common-mode  
rejection optimization.  
BASEBAND QUADRATURE DEMODULATION (I/Q  
MODE)  
In I/Q mode, the output impedance of the baseband I/Q ports is  
100 Ω differential. These outputs are designed to be loaded to a  
dc-coupled, differential, 100 Ω load. I_P and I_N are the  
differential baseband I outputs. Q_P and Q_N are the  
differential baseband Q outputs.  
The BB I/Q section of the ADMV1014 also features a baseband  
amplifier with a digital attenuator that is controlled by setting  
the BB_AMP_GAIN_CTRL bit field (Register 0x0A, Bits[2:1]).  
Figure 44, Figure 45, and Figure 46 show the performance of the  
baseband digital attenuator.  
To set the ADMV1014 in I/Q mode, set BB_AMP_PD  
(Register 0x03, Bit 8) to 0 and set IF_AMP_PD (Register 0x03,  
Bit 11) to 1.  
The Baseband Quadrature Demodulation to Very Low  
Frequencies section shows the baseband performance to very  
low demodulation frequencies.  
Table 6. Common-Mode Voltage Settings  
MIXER_VGATE  
(Register 0x07, Bits[15:9])  
BB_AMP_REF_GEN  
(Register 0x0A, Bits[6:3])  
BB_SWITCH_HIGH_LOW_COMMON_MODE  
(Register 0x0A, Bit 0)  
VCM (V)  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1101010  
1101011  
1101100  
1101110  
1101111  
1110000  
1110001  
1110010  
1110101  
1110110  
1110111  
1111000  
1111010  
1111011  
0101100  
0101101  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Rev. A | Page 28 of 42  
 
 
 
 
Data Sheet  
ADMV1014  
path can switch from differential to single-ended operation by  
setting the QUAD_SE_MODE bits (Register 0x04, Bits[9:6]).  
See the Performance Between Differential vs. Single-Ended LO  
Input section for more information.  
IMAGE REJECTION DOWNCONVERSION  
The ADMV1014 features the ability to downconvert to a real IF  
output anywhere from 800 MHz to 6000 MHz, while suppressing  
the unwanted image sideband by typically better than 30 dBc.  
The IF outputs are quadrature to each other, 50 Ω single-ended,  
and are internally ac coupled. IF_I and IF_Q are the quadrature IF  
outputs. An external 90° hybrid is required to select the appropriate  
sideband.  
Figure 102 shows a block diagram of the LO path.  
To configure the ADMV1014 in IF mode, set BB_AMP_PD  
(Register 0x03, Bit 8) to 1 and set IF_AMP_PD (Register 0x03,  
Bit 11) to 0  
LO_N  
LO_P  
4 × LO_N  
4 × LO_P  
×4  
AMP  
Each IF output features an amplifier with a digital attenuator.  
The digital attenuator can be adjusted using fine or coarse steps.  
The coarse steps for the IF_I can be adjusted using the IF_AMP_  
COARSE_GAIN_I bit field (Register 0x08, Bits[11:8]). The coarse  
steps for the IF_Q can be adjusted using the IF_AMP_COARSE_  
GAIN_Q bit field (Register 0x09, Bits[15:12]). Each course gain  
bit field has five settings. The fine steps for IF_I can be adjusted  
using the IF_AMP_FINE_GAIN_I bit field (Register 0x08,  
Bits[3:0]). The fine steps for the IF_Q can be adjusted using the  
IF_AMP_FINE_GAIN_Q bit field (Register 0x08, Bits[7:4]).  
Figure 77 to Figure 82 show the performance of these four bit  
fields.  
Figure 102. LO Path Block Diagram  
Enable the quadrupler by setting the QUAD_IBIAS_PD bit  
(Register 0x03, Bit 7) to 0 and the QUAD_BG_PD bit  
(Register 0x03, Bit 9) to 0. To power down the quadrupler, set  
both of these bits to 1.  
An unwanted image can be downconverted from the  
quadrature error in generating the quadrature LO signals.  
Deviation from ideal quadrature (that is, total image rejection  
and no image tone is downconverted) on these signals limits the  
amount of achievable image rejection.  
DETECTOR  
The ADMV1014 offers about 25° of quadrature phase  
adjustment in the LO path quadrature signals. Make these  
adjustments through the LOAMP_PH_ADJ_I_FINE bits  
(Register 0x05, Bits[15:9]) and the LOAMP_PH_ADJ_Q_FINE  
(Register 0x05, Bits[8:2]) bits. These bits reject the unwanted  
sideband signal. In IF mode amplitude adjustments can be made  
to the complex outputs via IF_AMP_FINE_GAIN_Q  
(Register 0x08, Bits[7:4]) and IF_AMP_FINE_GAIN_I  
(Register 0x08, Bits[3:0]) to further reduce the unwanted  
sideband.  
The ADMV1014 features a square law detector that produces a  
voltage linearly, according to the square of the RF voltage  
output from the low noise amplifier. The detector can be  
enabled by setting the DET_EN bit (Register 0x03, Bit 6) to 0. The  
detector can be turned off by setting this bit to 1. The detector  
linear range can be adjusted by setting the DET_PROG bit field  
(Register 0x07, Bits[6:0]). These ranges are specified based on  
the input power into the detector coming from the output of the  
low noise amplifier. Each DET_PROG setting offers an  
approximate 20 dB of 1 dB dynamic range based on a two-  
point linear regression from an ideal line for one temperature at  
each DET_PROG setting. See Figure 89 to Figure 91 for more  
performance information of the detector.  
POWER-DOWN  
The SPI of the ADMV1014 allows the user to power down  
device circuits and reduce power consumption. There are two  
power-down modes: band gap power-down mode (BG_PD)  
and individual power-down circuits mode. The BG_PD bit  
(Register 0x03, Bit 5) and the QUAD_BG_PD bit (Register 0x03,  
Bit 9) power down the band gap circuit. The QUAD_IBIAS_PD  
bit (Register 0x03, Bit 7) and the IBIAS_PD bit (Register 0x03,  
Bit 14) power down the specific circuits.  
LO INPUT PATH  
The LO input path operates from 5.4 GHz to 10.25 GHz with an  
LO amplitude range of −6 dBm to +6 dBm. The LO has an  
internal quadrupler (×4) and a programmable band-pass filter.  
The LO band-pass filter is programmable using QUAD_FILTERS  
(Register 0x04 Bits[3:0]). See the Performance at Different  
Quad Filter Settings section for more information on the  
QUAD_FILTERS settings.  
Table 7 shows the circuits that are controlled by their related  
power-down bit, the typical power savings, and the latency  
requirement to power the circuits back up.  
The LO path can operate either differentially or single-ended  
(SE). LOIP and LOIN are the inputs to the LO path. The LO  
Rev. A | Page 29 of 42  
 
 
 
 
 
ADMV1014  
Data Sheet  
Table 7. Power-Down Power and Latency Requirements  
Typical Power  
Savings (mW)  
Power-Up  
Latency (μs)  
Power-Down  
Latency (μs)  
Bit Name  
Circuit  
IBIAS_PD  
QUAD_IBIAS_PD  
BG_PD and QUAD_BG_PD  
IBIAS_PD, IF_AMP_PD, QUAD_BG_PD,  
BB_AMP_PD, QUAD_IBIAS_PD, BG_PD  
Receiver bias current (IBIAS  
LO path  
Band gap  
Entire chip  
)
1172  
238  
1423  
1435  
5
4
4.5  
5
<1  
<1  
<1  
<1  
SEN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
SDI  
R/W A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
Figure 103. Write Serial Port Timing Diagram  
SEN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
SDI  
R/W A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
SDO  
Figure 104. Read Serial Port Timing Diagram  
Sideband. The ADMV1014 input logic level for the write cycle  
supports an 1.8 V interface.  
SERIAL PORT INTERFACE (SPI)  
The SPI of the ADMV1014 allows the user to configure the device  
for specific functions or operations via a 4-pin SPI port. This  
interface provides users with added flexibility and customization.  
The SPI consists of four control lines: SCLK, SDIN, SDO, and  
For a read cycle, up to 16 bits of serial read data are shifted out,  
MSB first. After the 16 bits of data shift out, the parity bit shifts  
out. The output logic level for a read cycle is 1.8 V.  
The parity bit always follows the direction of the data. If parity  
is not used, the transmitting end transmits zero instead of parity.  
The parity is odd, which means that the total number of ones  
transmitted during a command, including the read/write bit,  
the address bit, the data bit, and the parity bit, must be odd.  
SEN  
.
The ADMV1014 protocol consists of a write/read bit followed  
by six register address bits, 16 data bits, and a parity bit. Both  
the address and data fields are organized most significant bit  
(MSB) first and end with the least significant bit. For a write, set  
the first bit to 0. For a read, set the first bit to 1.  
Figure 103 and Figure 104 show the SPI write and read  
protocol, respectively.  
The write cycle sampling must be performed on the rising edge.  
The 16 bits of the serial write data are shifted in, MSB to Lower  
Rev. A | Page 30 of 42  
 
 
 
 
Data Sheet  
ADMV1014  
APPLICATIONS INFORMATION  
ERROR VECTOR MAGNITUDE (EVM)  
PERFORMANCE  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Figure 105 shows the EVM vs. input power performance of the  
ADMV1014 in IF mode at maximum gain, upper sideband,  
25°C and 0 dBm LO input power. The EVM measurement was  
performed using four 100 MHz, 5G-NR, 256QAM waveforms.  
The EVM shown is the average of the four channels. The EVM  
of the test equipment was not de-embedded.  
Figure 106 shows the constellation diagram and EVM statistics  
of each of the four channels at −30 dBm input power.  
–45  
–40  
–35  
–30  
(dBm)  
–25  
–20  
–15  
P
IN  
Figure 105. EVM vs. Input Power at 28 GHz, VCTRL = 0 V, TA = 25°C,  
LO = 0 dBm, Upper Sideband (Low-Side LO), IF = 3.5 GHz  
Figure 106. Constellation Diagram and EVM Statistics per Channel  
Rev. A | Page 31 of 42  
 
 
 
 
ADMV1014  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
BASEBAND QUADRATURE DEMODULATION TO  
VERY LOW FREQUENCIES  
Figure 107 to Figure 111 show the I/Q mode performance at  
low baseband frequencies. The measurements were performed  
at 28 GHz, −25 dBm input power, VCM = 1.15 V, Register 0x03,  
Bit 11 = 1, Register 0x03, Bit 8 = 0, 6 dBm LO input power, and  
TA = 25°C.  
350  
300  
250  
200  
IMAGE REJECT  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
BASEBAND FREQUENCY (Hz)  
Figure 110. Image Rejection vs. Baseband Frequency  
Q DIFFERENTIAL  
I DIFFERENTIAL  
150  
350  
100  
50  
0
300  
250  
200  
150  
100  
50  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
BASEBAND FREQUENCY (Hz)  
Q DIFFERENTIAL  
I DIFFERENTIAL  
Figure 107. I and Q Differential Peak-to-Peak Voltage vs. Baseband Frequency  
20  
18  
16  
14  
12  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
BASEBAND FREQUENCY (Hz)  
Figure 111. DC Offset Error vs. Baseband Frequency  
8
Q GAIN  
I GAIN  
PERFORMANCE AT DIFFERENT QUAD FILTER  
SETTINGS  
7
6
5
0
Figure 112 shows the conversion gain vs. RF frequency in IF  
mode at 25°C and LO input power = 6 dBm, for different  
QUAD_FILTERS settings. Figure 113 shows the LO to IF_I and  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
LO to IF_Q leakage vs. LO frequency at different quad filter  
BASEBAND FREQUENCY (Hz)  
settings.  
Figure 108. Conversion Gain vs. Baseband Frequency  
25  
20  
15  
10  
5
5
4
3
2
1
0
AMPLITUDE IMBALANCE  
PHASE IMBALANCE  
0
–5  
–10  
QUAD_FILTERS = 0  
QUAD_FILTERS = 5  
QUAD_FILTERS = 10  
QUAD_FILTERS = 15  
–15  
–20  
–25  
–30  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
RF FREQUENCY (GHz)  
BASEBAND FREQUENCY (Hz)  
Figure 112. Conversion Gain vs. RF Frequency for Four Different  
QUAD_FILTERS Settings, fIF = 3.5 GHz (Upper Sideband)  
Figure 109. Amplitude Imbalance and Phase Imbalance vs. Baseband Frequency  
Rev. A | Page 32 of 42  
 
 
 
 
 
Data Sheet  
ADMV1014  
–40  
PERFORMANCE BETWEEN DIFFERENTIAL vs.  
SINGLE-ENDED LO INPUT  
IF I: QUAD_FILTERS = 0  
IF I: QUAD_FILTERS = 5  
IF I: QUAD_FILTERS = 10  
IF I: QUAD_FILTERS = 15  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
Figure 115 to Figure 117 show the conversion gain, input IP3  
and image rejection performance for operating the ADMV1014  
LO input as differential vs. SE. The measurements were  
performed with 0 dBm LO input power, IF mode, with an IF  
frequency of 3.5 GHz, upper sideband, and TA = 25°C.  
25  
IF Q: QUAD_FILTERS = 0  
IF Q: QUAD_FILTERS = 5  
IF Q: QUAD_FILTERS = 10  
IF Q: QUAD_FILTERS = 15  
20  
15  
10  
4
5
6
7
8
9
10  
11  
12  
LO FREQUENCY (GHz)  
Figure 113. LO To IF Leakage vs. RF Frequency for Four Different  
QUAD_FILTERS Settings, fIF = 3.5 GHz (Upper Sideband)  
LO DIFF  
VVA TEMPERATURE COMPENSATION  
LO SE P SIDE  
5
0
LO SE N SIDE  
Figure 114 shows the conversion gain vs. RF frequency at two  
different Register 0x0B settings and three different temperatures  
for IF mode. The recommended value suggested in the Start-Up  
Sequence section provides the highest conversion gain. If the  
priority is to decrease the conversion gain variation across  
temperature, Register 0x0B can be set to 0x726C. However, at  
this value, the conversion gain is lower at each temperature.  
25  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 115. Conversion Gain vs. RF Frequency for Three Different LO Mode  
Settings, fIF = 3.5 GHz (Upper Sideband)  
10  
8
6
20  
15  
10  
5
4
2
0
–2  
–4  
LO DIFF  
+85°C AT REG 0x0B = 0x727C  
+25°C AT REG 0x0B = 0x727C  
LO SE P SIDE  
0
–6  
–8  
LO SE N SIDE  
–40°C AT REG 0x0B = 0x727C  
+85°C AT REG 0x0B = 0x726C  
+25°C AT REG 0x0B = 0x726C  
–40°C AT REG 0x0B = 0x726C  
–5  
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
–10  
23  
RF FREQUENCY (GHz)  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 116. Input IP3 vs. RF Frequency for Three Different LO Mode Settings,  
RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz  
(Upper Sideband)  
Figure 114. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
Register 0x0B Settings and Various Temperatures  
Rev. A | Page 33 of 42  
 
 
 
 
 
ADMV1014  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.8GHz LOWER SIDEBAND  
1.0GHz LOWER SIDEBAND  
2.0GHz LOWER SIDEBAND  
3.0GHz LOWER SIDEBAND  
4.0GHz LOWER SIDEBAND  
5.0GHz LOWER SIDEBAND  
6.0GHz LOWER SIDEBAND  
LO DIFF  
LO SE P SIDE  
LO SE N SIDE  
5
0
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF INPUT FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 117. Image Rejection vs. RF Input Frequency for Three Different LO  
Mode Settings, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
Figure 119. Conversion Gain vs. RF Frequency at Multiple IF Frequency  
Settings (Lower Sideband)  
f
IF = 3.5 GHz (Upper Sideband)  
25  
20  
15  
10  
5
PERFORMANCE ACROSS RF FREQUENCY AT FIXED  
IF AND BASEBAND FREQUENCIES  
The ADMV1014 quadrupler operates from 21.6 GHz to  
41 GHz. When using high-side LO injection, the conversion  
gain starts rolling off gradually after the quadrupler frequency  
reaches 41 GHz. When using low-side LO, the conversion gain  
starts rolling off when the quadrupler frequency is 21.6 GHz.  
0
–5  
–10  
–15  
–20  
–25  
–30  
0.8GHz UPPER SIDEBAND  
1.0GHz UPPER SIDEBAND  
2.0GHz UPPER SIDEBAND  
3.0GHz UPPER SIDEBAND  
4.0GHz UPPER SIDEBAND  
5.0GHz UPPER SIDEBAND  
6.0GHz UPPER SIDEBAND  
Figure 118 and Figure 119 show the conversion gain vs. RF  
frequency in IF mode for fixed IF frequencies (TA = 25°C, LO =  
6 dBm) for upper sideband and lower sideband, respectively.  
Figure 120 and Figure 121 show the conversion gain vs. RF  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
frequency in IQ mode for fixed BB frequencies (TA = 25°C, LO =  
RF FREQUENCY (GHz)  
6 dBm) for upper sideband and lower sideband, respectively.  
Figure 120. Conversion Gain vs. RF Frequency at Multiple I/Q Frequency  
Settings (Upper Sideband)  
25  
20  
15  
10  
5
30  
20  
10  
0
0
–5  
–10  
–20  
0.8GHz UPPER SIDEBAND  
–10  
–15  
–20  
–25  
–30  
1.0GHz UPPER SIDEBAND  
2.0GHz UPPER SIDEBAND  
3.0GHz UPPER SIDEBAND  
4.0GHz UPPER SIDEBAND  
5.0GHz UPPER SIDEBAND  
6.0GHz UPPER SIDEBAND  
–30  
–40  
–50  
–60  
0.8GHz LOWER SIDEBAND  
1.0GHz LOWER SIDEBAND  
2.0GHz LOWER SIDEBAND  
3.0GHz LOWER SIDEBAND  
4.0GHz LOWER SIDEBAND  
5.0GHz LOWER SIDEBAND  
6.0GHz LOWER SIDEBAND  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
Figure 118. Conversion Gain vs. RF Frequency for Multiple IF Frequency  
Settings (Upper Sideband)  
RF FREQUENCY (GHz)  
Figure 121. Conversion Gain vs. RF Frequency at Multiple IQ Frequency  
Settings (Lower Sideband)  
Rev. A | Page 34 of 42  
 
 
 
 
 
 
Data Sheet  
ADMV1014  
RECOMMENDED LAND PATTERN  
EVALUATION BOARD INFORMATION  
Solder the exposed pad on the underside of the ADMV1014 to a  
low thermal and electrical impedance ground plane. This pad is  
typically soldered to an exposed opening in the solder mask on  
the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package.  
For more information about the ADMV1014 evaluation board,  
refer to the ADMV1014-EVALZ user guide.  
Figure 122. Evaluation Board Layout for the LGA package  
Rev. A | Page 35 of 42  
 
 
ADMV1014  
Data Sheet  
REGISTER SUMMARY  
Table 8. Register Summary  
Bit 15  
Bit 14  
Bit 6  
Bit 13  
Bit 5  
Bit 12  
Bit 4  
Bit 11  
Bit 3  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Reg.  
Name  
Bits  
Bit 7  
Reset  
R/W  
0x00  
SPI_CONTROL  
[15:8]  
PARITY_EN  
SPI_SOFT_  
RESET  
RESERVED  
CHIP_ID[7:4]  
0x0093  
R/W  
[7:0]  
CHIP_ID[3:0]  
REVISION  
RESERVED  
0x01  
0x02  
ALARM  
[15:8]  
PARITY_  
ERROR  
TOO_FEW_ TOO_MANY_ ADDRESS  
0x0000  
0xFFFF  
R
ERRORS  
TOO_  
ERRORS  
_RANGE_  
ERROR  
[7:0]  
RESERVED  
ALARM_MASKS [15:8]  
PARITY_  
TOO_MANY_ ADDRESS  
RESERVED  
R/W  
ERROR_MASK FEW_  
ERRORS_  
ERRORS_  
MASK  
_RANGE_  
ERROR_  
MASK  
MASK  
[7:0]  
RESERVED  
0x03  
ENABLE  
QUAD  
[15:8]  
[7:0]  
RESERVED  
IBIAS_PD  
P1DB_COMPENSATION IF_AMP_  
PD  
RESERVED QUAD_  
BG_PD  
BB_AMP_  
PD  
0x0157  
R/W  
QUAD_IBIAS_ DET_EN  
PD  
BG_PD  
RESERVED  
0x04  
0x05  
[15:8]  
[7:0]  
RESERVED  
QUAD_SE_MODE[3:2]  
QUAD_FILTERS  
0x5700  
0x4101  
R/W  
R/W  
QUAD_SE_MODE[1:0]  
RESERVED  
LO_AMP_  
PHASE_  
ADJUST1  
[15:8]  
LOAMP_PH_ADJ_I_FINE  
LOAMP_  
PH_ADJ_  
Q_FINE[6]  
[7:0]  
LOAMP_PH_ADJ_Q_FINE[5:0]  
MIXER_VGATE  
RESERVED  
0x07  
0x08  
0x09  
MIXER  
[15:8]  
[7:0]  
RESERVED 0xD808  
R/W  
R/W  
R/W  
RESERVED  
DET_PROG  
IF_AMP  
[15:8]  
[7:0]  
RESERVED  
IF_AMP_COARSE_GAIN_I  
IF_AMP_FINE_GAIN_I  
0x0000  
IF_AMP_FINE_GAIN_Q  
IF_AMP_BB_  
AMP  
[15:8]  
IF_AMP_COARSE_GAIN_Q  
RESERVED  
BB_AMP_OFFSET_I  
BB_AMP_GAIN_CTRL  
BB_AMP_OFFSET_Q[4:3] 0x0000  
[7:0]  
BB_AMP_OFFSET_Q[2:0]  
0x0A BB_AMP__AGC [15:8]  
[7:0]  
RESERVED  
BB_AMP_REF_GEN  
0x2390  
R/W  
RESERVED  
BB_  
SWITCH_  
HIGH_  
LOW_  
COMMON_  
MODE  
0x0B  
VVA_TEMP_  
COMP  
[15:8]  
[7:0]  
VVA_TEMPERATURE_COMPENSATION[15:8]  
VVA_TEMPERATURE_COMPENSATION[7:0]  
0x4A5C  
R/W  
Rev. A | Page 36 of 42  
 
Data Sheet  
ADMV1014  
REGISTER DETAILS  
Address: 0x00, Reset: 0x0093, Name: SPI_CONTROL  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
[15] PARITY_EN (R/W)  
[3:0] REVISION (R)  
Enable the Parity for Write Execution  
Revision ID  
[14] SPI_SOFT_RESET (R/W)  
[11:4] CHIP_ID (R)  
SPI Soft Reset  
Chip ID  
[13:12] RESERVED  
Table 9. Bit Descriptions for SPI_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
15  
14  
[13:12]  
[11:4]  
[3:0]  
PARITY_EN  
SPI_SOFT_RESET  
RESERVED  
CHIP_ID  
Enable the Parity for Write Execution  
SPI Soft Reset  
Reserved  
0x0  
0x0  
0x0  
0x9  
0x3  
R/W  
R/W  
R
Chip ID  
Revision ID  
R
R
REVISION  
Address: 0x01, Reset: 0x0000, Name: ALARM  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15] PARITY_ERROR (R)  
[11:0] RESERVED  
Parity Error  
[12] ADDRESS_RANGE_ERROR (R)  
[14] TOO_FEW_ERRORS (R)  
Address Range Error  
Too Few Errors  
[13] TOO_MANY_ERRORS (R)  
Too_Many_Errors  
Table 10. Bit Descriptions for ALARM  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
15  
PARITY_ERROR  
Parity Error  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
14  
13  
12  
TOO_FEW_ERRORS  
TOO_MANY_ERRORS  
ADDRESS_RANGE_ERROR  
Too Few Errors  
Too Many Errors  
Address Range Error  
Reserved  
[11:0] RESERVED  
Address: 0x02, Reset: 0xFFFF, Name: ALARM_MASKS  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[15] PARITY_ERROR_MASK (R/W)  
[11:0] RESERVED  
Parity Error Mask  
[12] ADDRESS_RANGE_ERROR_MASK (R/W)  
[14] TOO_FEW_ERRORS_MASK (R/W)  
Address Range Error Mask  
Too Few Errors Mask  
[13] TOO_MANY_ERRORS_MASK (R/W)  
Too Many Errors Mask  
Table 11. Bit Descriptions for ALARM_MASKS  
Bits  
15  
14  
13  
Bit Name  
Settings Description  
Reset  
0x1  
0x1  
0x1  
0x1  
Access  
R/W  
R/W  
R/W  
R/W  
R
PARITY_ERROR_MASK  
TOO_FEW_ERRORS_MASK  
TOO_MANY_ERRORS_MASK  
ADDRESS_RANGE_ERROR_MASK  
Parity Error Mask  
Too Few Errors Mask  
Too Many Errors Mask  
Address Range Error Mask  
Reserved  
12  
[11:0] RESERVED  
0xFFF  
Rev. A | Page 37 of 42  
 
ADMV1014  
Data Sheet  
Address: 0x03, Reset: 0x0157, Name: ENABLE  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1
1
[15] RESERVED  
[4:0] RESERVED  
[14] IBIAS_PD (R/W)  
[5] BG_PD (R/W)  
Power Down the RX Ibias  
Power Down the RX BG  
[13:12] P1DB_COMPENSATION (R/W)  
[6] DET_EN (R/W)  
Turn on bits to optimize P1dB  
Digital RX Detector Enable  
[11] IF_AMP_PD (R/W)  
Power Down the IF Amp  
[7] QUAD_IBIAS_PD (R/W)  
Power Down the Quadrupler Bias  
Current.  
[10] RESERVED  
[8] BB_AMP_PD (R/W)  
Power Down the Base-Band Amp  
[9] QUAD_BG_PD (R/W)  
Power Down the Quadrupler BandGap  
Table 12. Bit Descriptions for ENABLE  
Bits  
15  
Bit Name  
RESERVED  
IBIAS_PD  
Settings Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x0  
0x1  
0x0  
0x1  
Access  
R
Reserved  
14  
Power Down the Rx IBIAS  
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
[13:12] P1DB_COMPENSATION  
Turn on bits to optimize P1dB  
Power Down the IF Amp  
Reserved  
Power Down the Quadrupler Band Gap  
Power Down the Baseband Amp  
Power Down the Quadrupler Bias Current  
Digital Rx Detector Enable  
Power Down the Rx BG  
11  
10  
9
8
7
IF_AMP_PD  
RESERVED  
QUAD_BG_PD  
BB_AMP_PD  
QUAD_IBIAS_PD  
DET_EN  
6
5
[4:0]  
BG_PD  
RESERVED  
Reserved  
Address: 0x04, Reset: 0x5700, Name: QUAD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
[15:10] RESERVED  
[3:0] QUAD_FILTERS (R/W)  
LO Filters BW Selection  
[9:6] QUAD_SE_MODE (R/W)  
Switch Differential/SE Modes  
0110: SE_Mode_N_Side.  
1001: SE_Mode_P_Side.  
1100: Differential Mode.  
0000: LO Frequency BW: 8.625 to 10.25GHz.  
0101: LO Frequency BW: 6.6 to 9.2GHz.  
1010: LO Frequency BW: 5.4 to 8GHz.  
1111: LO Frequency BW: 5.4 to 7GHz.  
[5:4] RESERVED  
Table 13. Bit Descriptions for QUAD  
Bits Bit Name Settings  
[15:10] RESERVED  
Description  
Reserved  
Reset  
0x15  
0xC  
Access  
R
R/W  
[9:6]  
QUAD_SE_MODE  
Switch Differential/SE Modes  
0110 SE Mode N Side  
1001 SE Mode P Side  
1100 Differential Mode  
Reserved.  
[5:4]  
[3:0]  
RESERVED  
QUAD_FILTERS  
0x0  
0x0  
R
R/W  
LO Filters BW Selection  
0000 LO Frequency BW: 8.625 GHz to 10.25 GHz  
0101 LO Frequency BW: 6.6 GHz to 9.2 GHz  
1010 LO Frequency BW: 5.4 GHz to 8 GHz  
1111 LO Frequency BW: 5.4 GHz to 7 GHz  
Rev. A | Page 38 of 42  
Data Sheet  
ADMV1014  
Address: 0x05, Reset: 0x4101, Name: LO_AMP_PHASE_ADJUST1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
1
[15:9] LOAMP_PH_ADJ_I_FINE (R/W)  
Mixer Image Rejection Calibration  
0x00:Maximum Phase, 0x7F: Minimum  
Phase  
[1:0] RESERVED  
[8:2] LOAMP_PH_ADJ_Q_FINE (R/W)  
Mixer Image Rejection Calibration  
0x00:Maximum Phase, 0x7F: Minimum  
Phase  
Table 14. Bit Descriptions for LO_AMP_PHASE_ADJUST1  
Bits Bit Name Settings Description  
[15:9] LOAMP_PH_ADJ_I_FINE  
Reset  
0x20  
Access  
R/W  
Mixer Image Rejection Calibration 0x00: Maximum Phase, 0x7F:  
Minimum Phase  
[8:2]  
[1:0]  
LOAMP_PH_ADJ_Q_FINE  
RESERVED  
Mixer Image Rejection Calibration 0x0: Maximum Phase, 0x7F:  
Minimum Phase  
Reserved.  
0x40  
0x1  
R/W  
R
Address: 0x07, Reset: 0xD808, Name: MIXER  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
1
1
0
1
1
0
0
0
0
0
0
0
1
0
0
0
[15:9] MIXER_VGATE (R/W)  
[6:0] DET_PROG (R/W)  
Control BB Common Mode Voltage  
(Please see the application section  
for more Information)  
Digital RX Detector Program  
0: From -12 to +4dBm.  
1: From -13 to +3dBm.  
10: From -14 to +2dBm.  
[8:7] RESERVED  
100: From -15 to +1dBm.  
1000: From -15.5 to +0.5dBm.  
10000: From -16.25 to -0.25dBm.  
100000: From -17 to -1dBm.  
1000000: From -18 to -2dBm.  
Table 15. Bit Descriptions for MIXER  
Bits Bit Name Settings Description  
[15:9] MIXER_VGATE  
Reset  
0x6C  
Access  
R/W  
Control BB Common Mode Voltage. See the Applications Information section for  
more information)  
[8:7]  
[6:0]  
RESERVED  
DET_PROG  
Reserved.  
0x0  
0x8  
R
R/W  
Digital Rx Detector Program.  
From −12 dBm to +4 dBm.  
From −13 dBm to +3 dBm.  
0
1
10 From −14 dBm to +2 dBm.  
100 From −15 dBm to +1 dBm.  
1000 From −15.5 dBm to +0.5 dBm.  
10000 From −16.25 dBm to −0.25 dBm.  
100000 From −17 dBm to −1 dBm.  
1000000 From −18 dBm to −2 dBm.  
Rev. A | Page 39 of 42  
ADMV1014  
Data Sheet  
Address: 0x08, Reset: 0x0000, Name: IF_AMP  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] RESERVED  
[3:0] IF_AMP_FINE_GAIN_I (R/W)  
IF Amp I, 10 Fine Steps from 0x0 to  
0xA (Total attenuation ~1dB). Refer  
to Figure 80 to Figure 82.  
[11:8] IF_AMP_COARSE_GAIN_I (R/W)  
Digital IF Amp 1dB Step Gain_I  
0: Refer to Figure 77 to Figure 79.  
1: Refer to Figure 77 to Figure 79.  
11: Refer to Figure 77 to Figure 79.  
111: Refer to Figure 77 to Figure 79.  
1111: Refer to Figure 77 to Figure 79.  
[7:4] IF_AMP_FINE_GAIN_Q (R/W)  
IF Amp Q, 10 Fine Steps from 0x0  
to 0xA (Total attenuation ~1dB). Refer  
to Figure 80 to Figure 82.  
Table 16. Bit Descriptions for IF_AMP  
Bits  
Bit Name  
Settings Description  
Reset Access  
[15:12] RESERVED  
Reserved.  
Digital IF Amp Step Gain I.  
0x0  
0x0  
R
R/W  
[11:8]  
IF_AMP_COARSE_GAIN_I  
0
1
Refer to Figure 77 to Figure 79.  
Refer to Figure 77 to Figure 79.  
11 Refer to Figure 77 to Figure 79.  
111 Refer to Figure 77 to Figure 79.  
1111 Refer to Figure 77 to Figure 79.  
[7:4]  
[3:0]  
IF_AMP_FINE_GAIN_Q  
IF_AMP_FINE_GAIN_I  
IF Amp Q, 10 Fine Steps from 0x0 to 0xA. Refer to Figure 80 to Figure 82.  
IF Amp I, 10 Fine Steps from 0x0 to 0xA. Refer to Figure 80 to Figure 82.  
0x0  
0x0  
R/W  
R/W  
Address: 0x9, Reset: 0x0000, Name: IF_AMP__BB_AMP  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] IF_AMP_COARSE_GAIN_Q (R/W)  
Digital IF Amp 1dB Step Gain_Q  
[4:0] BB_AMP_OFFSET_I (R/W)  
BB Amp I. Bit 4: Use as Sign Bit, b’1  
is for positive values and b’0 is for  
negative values; Bits [3:0] Minimum  
Offset, 0xF: Maximum Offset.  
0: Refer to Figure 77 to Figure 79.  
1: Refer to Figure 77 to Figure 79.  
11: Refer to Figure 77 to Figure 79.  
111: Refer to Figure 77 to Figure 79.  
1111: Refer to Figure 77 to Figure 79.  
[9:5] BB_AMP_OFFSET_Q (R/W)  
BB Amp Q. Bit 9: Use as Sign Bit,  
b’1is for positive values and b’0 is  
for negative values; Bit [8:5] Minimum  
Offset, 0xF: Maximum Offset.  
[11:10] RESERVED  
Table 17. Bit Descriptions for IF_AMP__BB_AMP  
Bits Bit Name Settings Description  
[15:12] IF_AMP_COARSE_GAIN_Q  
Reset Access  
Digital IF Amp 1 dB Step Gain Q  
Refer to Figure 77 to Figure 79  
Refer to Figure 77 to Figure 79  
0x0  
R/W  
0
1
11 Refer to Figure 77 to Figure 79  
111 Refer to Figure 77 to Figure 79  
1111 Refer to Figure 77 to Figure 79  
Reserved.  
[11:10] RESERVED  
0x0  
0x0  
R
R/W  
[9:5]  
BB_AMP_OFFSET_Q  
BB Amp Q (Bit 9: Use as Sign Bit, 1 is for positive values and 0 is for  
negative values; Bits[8:5]: Minimum Offset, 0xF: Maximum Offset)  
[4:0]  
BB_AMP_OFFSET_I  
BB Amp I (Bit 4: Use as Sign Bit, 1 is for positive values and 0 is for  
negative values; Bits[3:0]: Minimum Offset, 0xF: Maximum Offset)  
0x0  
R/W  
Rev. A | Page 40 of 42  
Data Sheet  
ADMV1014  
Address: 0x0A, Reset: 0x2390, Name: BB_AMP_AGC  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
0
1
1
1
0
0
1
0
0
0
0
[15:7] RESERVED  
[6:3] BB_AMP_REF_GEN (R/W)  
Control BB Common Mode Voltage  
See the Baseband Quadrature Demodulation  
(I/Q Mode) section for more information.  
[0] BB_SWITCH_HIGH_LOW_COMMON_MODE (R/W)  
Setting between High and Low Output  
Common Mode Voltage; Should Be  
Set to Opposite from RegA<bit6>  
[2:1] BB_AMP_GAIN_CTRL (R/W)  
See Figure 44 to Figure 46.  
Table 18. Bit Descriptions for BB_AMP_AGC  
Bits  
Bit Name  
Settings Description  
Reset Access  
[15:7] RESERVED  
Reserved.  
0x4  
0x2  
R
R/W  
[6:3]  
BB_AMP_REF_GEN  
Control BB Common-Mode Voltage. See the  
Baseband Quadrature Demodulation (I/Q Mode)  
section for more information.  
[2:1]  
0
BB_AMP_GAIN_CTRL  
BB_SWITCH_HIGH_LOW_COMMON_MODE  
See Figure 44 to Figure 46.  
0x0  
0x0  
R/W  
R/W  
Setting between High and Low Output Common-  
Mode Voltage. This bit must be set to opposite from  
Register 0x0A, Bit 6. See the Baseband Quadrature  
Demodulation (I/Q Mode) section for more  
information.  
Address: 0x0B, Reset: 0x4A5C, Name: VVA_TEMP_COMP  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
0
0
1
0
1
0
0
1
0
1
1
1
0
0
[15:0] VVA_TEMPPERATURE_COMPENSATION (R/W)  
VVA Temperature Compensation  
Table 19. Bit Descriptions for VVA_TEMP_COMP  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[15:0] VVA_TEMPERATURE_COMPENSATION  
VVA Temperature Compensation. Set to 0x727C. See the  
Start-Up Sequence section and the VVA Temperature  
Compensation section for more information. Disable  
PARITY_EN when updating the VVA temperature  
compensation.  
0x4A5C R/W  
Rev. A | Page 41 of 42  
ADMV1014  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
0.32  
0.27  
0.22  
0.81 BSC  
SQ  
0.40  
0.35  
0.30  
PIN 1  
CORNER AREA  
PIN 1  
INDICATOR  
32  
25  
24  
1
3.50 REF  
SQ  
3.57 BSC  
SQ  
0.50  
BSC  
17  
8
16  
9
0.75  
BSC  
BOTTOM VIEW  
3.77 BSC  
TOP VIEW  
SIDE VIEW  
0.165  
BSC  
0.52  
0.45  
0.38  
0.275  
REF  
0.75 MAX  
0.67 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.25  
0.22  
0.19  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 123. 32-Terminal Land Grid Array [LGA]  
(CC-32-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CC-32-6  
CC-32-6  
ADMV1014ACCZ  
ADMV1014ACCZ-R7  
ADMV1014-EVALZ  
−40°C to +85°C  
−40°C to +85°C  
32-Terminal Land Grid Array Package [LGA]  
32-Terminal Land Grid Array Package [LGA]  
Evaluation Board  
1 Z = RoHS-Compliant Part.  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17172-0-4/19(A)  
Rev. A | Page 42 of 42  
 
 

相关型号:

ADMV1014-EVALZ

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014ACCZ

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014ACCZ-R7

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV4420

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420-EVALZ

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ-R2

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ-RL7

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4540

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540-EVALZ

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540ACCZ

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540ACCZ-RL7

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI