ADN2531 [ADI]

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver; 11.3 Gbps的,主动背向端接,差分激光二极管驱动器
ADN2531
型号: ADN2531
厂家: ADI    ADI
描述:

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
11.3 Gbps的,主动背向端接,差分激光二极管驱动器

驱动器 二极管 激光二极管
文件: 总20页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11.3 Gbps, Active Back-Termination,  
Differential Laser Diode Driver  
ADN2531  
FEATURES  
GENERAL DESCRIPTION  
3.3 V operation  
Up to 11.3 Gbps operation  
Typical 26 ps rise/fall times  
Bias current range: 10 mA to 100 mA  
Differential modulation current range: 10 mA to 80 mA  
Voltage input control for bias and modulation currents  
Data inputs sensitivity: 150 mV p-p differential  
Automatic laser shutdown (ALS)  
Crosspoint adjustment (CPA)  
The ADN2531 laser diode driver can work with directly  
modulated laser diodes, including vertical-cavity surface-emitting  
laser (VCSEL), Fabry-Perot (FP) lasers, and distributed feedback  
(DFB) lasers, with a differential loading resistance ranging from  
5 Ω to 140 Ω. The active back-termination in the ADN2531  
absorbs signal reflections from the laser diode side of the output  
transmission lines, enabling excellent optical eye quality even when  
the TOSA end of the output transmission lines is significantly  
mismatched. The ADN2531 is a SFP+ MSA-compliant device,  
and its small package and enhanced ESD protection provides  
the optimum solution for compact modules in which laser  
diodes are packaged in low pin-count optical subassemblies.  
VCSEL, FP, DFB laser support  
SFF/SFP/XFP/SFP+ MSA compliant  
Optical evaluation board available  
Compact, 3 mm × 3 mm LFCSP  
The modulation and bias currents are programmable via the  
MSET and BSET control pins. By driving these pins with control  
voltages, the user has the flexibility to implement various average  
optical power and extinction ratio control schemes, including a  
closed-loop or a look-up table control. The automatic laser shut-  
down (ALS) feature allows turning the bias on and off while  
simultaneously modulating currents by driving the ALS pin with  
a low voltage transistor-to-transistor logic (LVTTL) source.  
APPLICATIONS  
Optical transmitters, up to 11.3 Gbps, for SONET/SDH,  
Ethernet, and Fibre Channel applications  
SFF/SFP/SFP+/XFP/X2/XENPAK/XPAK MSA compliant  
300-pin optical modules, up to 11.3 Gbps  
The product is available in a space-saving, 3 mm × 3 mm LFCSP  
package and operates from −40°C to +100°C.  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
CPA  
ALS  
VCC  
ADN2531  
VCC  
IMODP  
IMODN  
5050Ω  
I
100Ω  
MOD  
VCC  
GND  
DATAP  
DATAN  
CROSSPOINT  
ADJUST  
IBMON  
IBIAS  
400Ω  
800Ω  
200Ω  
200Ω  
200Ω  
10Ω  
MSET  
GND  
BSET  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
ADN2531  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Stage................................................................................... 11  
Bias Current ................................................................................ 11  
Automatic Laser Shutdown (ALS) ........................................... 12  
Modulation Current................................................................... 12  
Load Mistermination................................................................. 14  
Crosspoint Adjust....................................................................... 14  
Power Consumption .................................................................. 14  
Applications Information.............................................................. 15  
Typical Application Circuit....................................................... 15  
Layout Guidelines....................................................................... 16  
Design Example.......................................................................... 16  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Package Thermal Specifications ................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Test Circuit ...................................................................................... 10  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
9/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADN2531  
SPECIFICATIONS  
VCC = VCCMIN to VCCMAX, TA = −40°C to +100°C, 12 Ω differential load impedance, crosspoint adjust disabled, unless otherwise noted.  
Typical values are specified at 25°C and IBIAS = IMOD = 40 mA with crosspoint adjust disabled, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BIAS CURRENT (IBIAS  
)
Bias Current Range  
Bias Current While ALS Asserted  
Compliance Voltage1  
10  
100  
300  
VCC  
mA  
μA  
V
ALS = high  
IBIAS = 80 mA  
IBIAS = 10 mA  
0.6  
0.55  
VCC  
V
MODULATION CURRENT (IMODP, IMODN)  
Modulation Current IMOD Range  
10  
35  
80  
mA diff  
mA diff  
μA diff  
%
ps  
ps  
ps rms  
ps p-p  
ps p-p  
ps p-p  
ps p-p  
dB  
RLOAD = 5 Ω to 50 Ω differential  
RLOAD = 100 Ω differential  
ALS = high  
70  
IMOD While ALS Asserted  
Crosspoint Adjust (CPA) Range2  
Rise Time (20% to 80%)2, 3, 4  
Fall Time (20% to 80%)2, 3, 4  
Random Jitter2, 3, 4  
500  
65  
32.5  
32.5  
26  
26  
<0.5  
5.4  
5.8  
5.4  
5.8  
−5  
−10.5  
Deterministic Jitter2, 4, 5  
8.2  
8.2  
8.2  
8.2  
10.7 Gbps, CPA disabled  
10.7 Gbps, CPA 35% to 65%  
11.3 Gbps, CPA disabled  
11.3 Gbps, CPA 35% to 65%  
5 GHz < f < 10 GHz, Z0 = 100 Ω differential7  
f < 5 GHz, Z0 = 100 Ω differential7  
Deterministic Jitter 2, 4, 6  
Differential |S22|  
dB  
Compliance Voltage1  
DATA INPUTS (DATAP, DATAN)  
Input Data Rate  
Differential Input Swing  
Differential |S11|  
Input Termination Resistance  
BIAS CONTROL INPUT (BSET)  
BSET Voltage to IBIAS Gain  
BSET Input Resistance  
VCC − 1.1  
VCC + 1.1  
V
11.3  
1.6  
Gbps  
NRZ  
0.15  
85  
V p-p diff Differential ac-coupled  
dB  
Ω
−15  
100  
f < 10 GHz, Z0 = 100 Ω differential  
Differential  
115  
100  
1000  
mA/V  
Ω
800  
1200  
MODULATION CONTROL INPUT (MSET)  
MSET Voltage to IMOD Gain  
MSET Input Resistance  
BIAS MONITOR (IBMON)  
IBMON to IBIAS Ratio  
120  
600  
mA/V  
Ω
10  
μA/mA  
Accuracy of IBIAS to IBMON Ratio  
−5.0  
−4.0  
−2.5  
−2  
+5.0  
+4.0  
+2.5  
+2  
%
%
%
%
10 mA ≤ IBIAS < 20 mA, RIBMON = 750 Ω  
20 mA ≤ IBIAS < 40 mA, RIBMON = 750 Ω  
40 mA ≤ IBIAS < 70 mA, RIBMON = 750 Ω  
70 mA ≤ IBIAS < 80 mA, RIBMON = 750 Ω  
AUTOMATIC LASER SHUTDOWN (ALS)  
VIH  
2.0  
V
VIL  
IIL  
IIH  
0.8  
+20  
200  
2
V
−20  
0
μA  
μA  
μs  
ALS Assert Time  
Rising edge of ALS to falling edge of IBIAS and  
IMOD below 10% of nominal; see Figure 2  
ALS Negate Time  
10  
μs  
Falling edge of ALS to rising edge of IBIAS and  
I
MOD above 90% of nominal; see Figure 2  
Rev. 0 | Page 3 of 20  
 
 
ADN2531  
Parameter  
POWER SUPPLY  
VCC  
Min  
Typ  
Max  
3.6  
Unit  
Test Conditions/Comments  
3.0  
3.3  
36  
55  
V
mA  
mA  
8
ICC  
VBSET = VMSET = 0 V  
VBSET = VMSET = 0 V  
9
ISUPPLY  
62  
1 The voltage between the pin with the specified compliance voltage and GND.  
2 Specified for TA = −40°C to +85°C due to test equipment limitation. See the Typical Performance Characteristics section for data on performance for TA = −40°C to +100°C.  
3 The pattern used is composed of a repetitive sequence of eight 1s followed by eight 0s at 10.7 Gbps.  
4 Measured using the high speed characterization circuit shown in Figure 22.  
5 The pattern used is K28.5 (00111110101100000101) at 10.7 Gbps rate.  
6 The pattern used is K28.5 (00111110101100000101) at 11.3 Gbps rate.  
7 Measured at balanced IMODP and IMODN.  
8 Only includes current in the ADN2531 VCC pins.  
9 Includes current in ADN2531 VCC pins and dc current in IMODP and IMODN pull-up inductors. See the Power Consumption section for total supply current calculation.  
PACKAGE THERMAL SPECIFICATIONS  
Table 2.  
Parameter  
Min  
65  
2.6  
Typ  
72.2  
5.8  
Max  
79.4  
10.7  
125  
Unit  
°C/W  
°C/W  
°C  
Test Conditions/Comments  
θJ-TOP  
θJ-PAD  
Thermal resistance from junction to top of package.  
Thermal resistance from junction to bottom of exposed pad.  
IC Junction Temperature  
ALS  
NEGATE TIME  
ALS  
t
I
BIAS  
MOD  
AND I  
90%  
10%  
t
ALS  
ASSERT TIME  
Figure 2. ALS Timing Diagram  
Rev. 0 | Page 4 of 20  
 
 
ADN2531  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage: VCC to GND  
IMODP, IMODN to GND  
DATAP, DATAN to GND  
All Other Pins  
ESD on IMODP/IMODN1  
ESD on All Other Pins1  
Junction Temperature  
Storage Temperature Range  
−0.3 V to +4.2 V  
VCC − 1.5 V to 4.5 V  
VCC − 1.8 V to VCC − 0.4 V  
−0.3 V to VCC + 0.3 V  
200 V HBM  
1.5 kV HBM  
150°C  
−65°C to +125°C  
ESD CAUTION  
1 HBM = human body model.  
Rev. 0 | Page 5 of 20  
 
 
ADN2531  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12 BSET  
11 IBMON  
10 IBIAS  
MSET 1  
CPA 2  
ALS 3  
GND 4  
PIN 1  
INDICATOR  
ADN2531  
TOP VIEW  
(Not to Scale)  
9
GND  
NOTES  
1. THERE IS AN EXPOSED PAD ON THE  
BOTTOM OF THE PACKAGE THAT MUST BE  
CONNECTED TO THE VCC OR GND PLANE.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
MSET  
CPA  
ALS  
GND  
I/O  
Description  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Input  
Input  
Input  
Modulation Current Control Input  
Crosspoint Adjust Control Input  
Automatic Laser Shutdown  
Negative Power Supply  
Power  
Power  
Output  
Output  
Power  
Power  
Output  
Output  
Input  
Power  
Input  
Input  
Power  
Power  
VCC  
Positive Power Supply  
IMODN  
IMODP  
VCC  
Modulation Current Negative Output  
Modulation Current Positive Output  
Positive Power Supply  
Negative Power Supply  
Bias Current Output  
Bias Current Monitoring Output  
Bias Current Control Input  
Positive Power Supply  
Data Signal Positive Input  
Data Signal Negative Input  
Positive Power Supply  
GND  
IBIAS  
IBMON  
BSET  
VCC  
DATAP  
DATAN  
VCC  
Exposed Pad  
EP  
Connect to the VCC or GND plane  
Rev. 0 | Page 6 of 20  
 
ADN2531  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VCC = 3.3 V, crosspoint adjust disabled, unless otherwise noted.  
35  
10  
8
30  
25  
20  
15  
10  
5
10.7GBPS  
11.3GBPS  
6
4
2
0
0
10  
30  
50  
70  
10  
20  
30  
40  
50  
60  
70  
80  
I
(mA)  
I
(mA)  
MOD  
MOD  
Figure 7. Deterministic Jitter vs. IMOD  
Figure 4. Rise Time vs. IMOD  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
35  
30  
25  
20  
15  
10  
5
0
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
I
50  
60  
70  
80  
I
(mA)  
(mA)  
MOD  
MOD  
Figure 8. Random Jitter vs. IMOD  
Figure 5. Fall Time vs. IMOD  
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
0
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 6. Differential |S11|  
Figure 9. Differential |S22|  
Rev. 0 | Page 7 of 20  
 
 
ADN2531  
10  
9
8
7
6
5
4
3
2
1
30  
25  
20  
15  
10  
5
10.7GBPS  
11.3GBPS  
0
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Rise Time vs. Temperature  
(Worse-Case Conditions, CPA Disabled)  
Figure 13. Deterministic Jitter vs. Temperature  
(Worse-Case Conditions, CPA Disabled)  
30  
25  
20  
15  
10  
5
75  
65  
55  
45  
35  
25  
15  
V
V
V
= 3.0V  
= 3.3V  
= 3.6V  
CC  
CC  
CC  
0
–40  
–20  
0
20  
40  
60  
80  
2.4  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
TEMPERATURE (°C)  
CPA INPUT PERIPHERAL VOLTAGE (V)  
Figure 11. Fall Time vs. Temperature  
(Worst-Case Conditions, CPA Disabled)  
Figure 14. IMOD Eye Diagram Crosspoint vs. CPA Input Peripheral Voltage and VCC  
(IMOD = 40 mA)  
1.0  
0.8  
0.6  
0.4  
0.2  
75  
T
T
T
T
= –40°C  
= +85°C  
= +25°C  
= +100°C  
A
A
A
A
65  
55  
45  
35  
25  
15  
0
–40  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
–20  
0
20  
40  
60  
80  
100  
CPA INPUT PERIPHERAL VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 12. Random Jitter vs. Temperature  
(Worst-Case Conditions, CPA Disabled [Worst-Case IMOD = 40 mA])  
Figure 15. IMOD Eye Diagram Crosspoint vs. CPA Input Peripheral Voltage and  
Ambient Temperature (IMOD = 40 mA)  
Rev. 0 | Page 8 of 20  
 
 
ADN2531  
135  
130  
125  
120  
115  
110  
105  
100  
95  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
R
= 5  
LOAD  
100mA I  
50mA I  
BIAS  
BIAS  
R
= 12Ω  
90  
LOAD  
85  
80  
75  
70  
65  
R
= 50Ω  
60  
LOAD  
55  
50  
45  
40  
10mA I  
BIAS  
35  
30  
60  
25  
20  
40  
15  
10  
20  
5
0
0
0
20  
40  
60  
80  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
I
CURRENT (mA)  
MOD  
V
(V)  
MSET  
Figure 16. Total Supply Current vs. IMOD and IBIAS  
Figure 19. IMOD vs.VMSET at Various RLOAD Resistors  
12  
10  
8
1 LEVEL  
1 LEVEL  
40mA  
20mA  
6
CROSSING  
4
2
0 LEVEL  
0 LEVEL  
0
26.0  
26.5  
27.0  
27.5  
28.0  
28.5  
29.0  
29.5  
CH1 17.4mV/DIV  
0V  
CH2 16.4mV/DIV  
–6.0mV  
AVERAGE RISE/FALL TIME (ps)  
Figure 17. Average Rise/Fall Time Distribution vs. IMOD  
Figure 20. Electrical Eye Diagram  
(IMOD = 40 mA, PRBS31 Pattern at 10.3125 Gbps)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
(V)  
V
BSET  
Figure 18. IBIAS vs. VBEST at Various Temperatures  
Figure 21. Filtered 10 Gb Ethernet Optical Eye Using NX8346TS DFB (PRBS31  
Pattern at 10.3125 Gbps)  
Rev. 0 | Page 9 of 20  
ADN2531  
TEST CIRCUIT  
V
V
V
EE  
EE  
EE  
750  
GND  
10Ω  
V
BSET  
10nF  
TP1  
TP2  
GND  
BSET IBMON IBIAS GND  
GND  
VCC  
VCC  
GND  
BIAS TEE  
GND  
GND  
50Ω  
50Ω  
ADN2531  
Z
= 50Ω  
Z
= 50Ω  
= 50Ω  
Z
Z
= 50Ω  
0
0
0
DC BLOCK  
DC BLOCK  
ADAPTER ATTENUATOR  
ADAPTER ATTENUATOR  
J2  
DATAP  
IMODP  
GND  
= 50Ω  
GND  
GND  
= 50Ω  
GND  
OSCILLOSCOPE  
200Ω  
Z
Z
0
0
0
J3  
DATAN  
VCC  
IMODN  
VCC  
50Ω  
50Ω  
GND  
GND  
GND  
GND  
GND  
BIAS TEE  
GND  
GND  
GND  
MSET CPA ALS GND  
V
MSET  
BIAS TEE: PICOSECOND PULSE LABS MODEL 5542-219  
ADAPTER: PASTERNACK PE9436 2.92mm  
FEMALE-TO-FEMALE ADAPTER  
ATTENUATOR: PASTERNACK PE7046-10 2.92mm  
10dB ATTENUATOR  
GND  
10nF  
10µF  
V
V
EE  
EE  
V
EE  
V
CPA  
J8  
J5  
V
EE  
GND GND  
GND  
Figure 22. High Speed Characterization Circuit  
Rev. 0 | Page 10 of 20  
 
ADN2531  
THEORY OF OPERATION  
ADN2531  
As shown in Figure 1, the ADN2531 consists of an input stage and  
two voltage-controlled current sources for bias and modulation.  
The bias current is available at the IBIAS pin. It is controlled by the  
voltage at the BSET pin and can be monitored at the IBMON pin.  
The differential modulation current is available at the IMODP  
and IMODN pins. It is controlled by the voltage at the MSET pin.  
50  
50Ω  
C
C
DATAP  
DATAN  
The output stage implements the active back-termination  
circuitry for proper transmission line matching and power  
consumption reduction. The ADN2531 can drive a load with  
differential resistance ranging from 5 Ω to 140 Ω. The excellent  
back-termination in the ADN2531 absorbs signal reflections  
from the TOSA end of the output transmission lines, enabling  
excellent optical eye quality to be achieved even when the  
TOSA end of the output transmission lines is significantly  
misterminated.  
DATA SIGNAL SOURCE  
Figure 24. AC Coupling the Data Source to the ADN2531 Data Inputs  
BIAS CURRENT  
The bias current is generated internally using a voltage-to-current  
converter consisting of an internal operational amplifier and a  
transistor, as shown in Figure 25.  
V
CC  
ADN2531  
INPUT STAGE  
I
BMON  
BIAS  
The input stage of the ADN2531 converts the data signal applied  
to the DATAP and DATAN pins to a level that ensures proper  
operation of the high speed switch. The equivalent circuit of the  
input stage is shown in Figure 23.  
BSET  
IBMON  
IBIAS  
800Ω  
I
V
CC  
200Ω  
200Ω  
2Ω  
DATAP  
GND  
V
CC  
50Ω  
50Ω  
Figure 25. Voltage-to-Current Converter Used to Generate IBIAS  
The BSET to IBIAS voltage-to-current conversion factor is set  
at 100 mA/V by the internal resistors, and the bias current is  
monitored at the IBMON pin using a current mirror with a gain  
equal to 1/100. By connecting a 750 Ω resistor between IBMON  
and GND, the bias current can be monitored as a voltage across  
the resistor. A low temperature coefficient precision resistor must  
be used for the IBMON resistor (RIBMON). Any error in the value  
of RIBMON due to tolerances or drift in its value over temperature  
contributes to the overall error budget for the IBIAS monitor voltage.  
DATAN  
Figure 23. Equivalent Circuit of the Input Stage  
The DATAP and DATAN pins are terminated internally with a  
100 Ω differential termination resistor. This minimizes signal  
reflections at the input that could otherwise lead to degradation  
in the output eye diagram. It is not recommended to drive the  
ADN2531 with single-ended data signal sources.  
If the IBMON voltage is being connected to an ADC for analog-  
to-digital conversion, RIBMON should be placed close to the ADC to  
minimize errors due to voltage drops on the ground plane. See the  
Design Example section for example calculations of the accuracy of  
the IBIAS monitor as a percentage of the nominal IBIAS value.  
The ADN2531 input stage must be ac-coupled to the signal source  
to eliminate the need for matching between the common-mode  
voltages of the data signal source and the input stage of the driver  
(see Figure 24). The ac coupling capacitors should have an  
impedance less than 50 Ω over the required frequency range.  
Generally, this is achieved using 10 nF to 100 nF capacitors, for  
more than 1 Gbps operation.  
Rev. 0 | Page 11 of 20  
 
 
 
 
ADN2531  
The equivalent circuits of the BSET, IBIAS, and IBMON pins  
are shown in Figure 26 to Figure 28.  
AUTOMATIC LASER SHUTDOWN (ALS)  
The ALS pin is a digital input that enables/disables both the bias  
and modulation currents, depending on the logic state applied,  
as shown in Table 5.  
V
CC  
V
CC  
BSET  
800Ω  
200Ω  
Table 5. ALS Logic States  
ALS Logic State  
IBIAS and IMOD  
Disabled  
Enabled  
High  
Low  
Figure 26. Equivalent Circuit of the BSET Pin  
Floating  
Enabled  
V
CC  
IBIAS  
V
2k  
CC  
The ALS pin is compatible with 3.3 V CMOS and LVTTL logic  
levels. Its equivalent circuit is shown in Figure 30.  
100Ω  
V
V
CC  
CC  
10Ω  
100  
42kΩ  
ALS  
Figure 27. Equivalent Circuit of the IBIAS Pin  
2kΩ  
V
V
CC  
CC  
Figure 30. Equivalent Circuit of the ALS Pin  
500  
MODULATION CURRENT  
The modulation current can be controlled by applying a dc  
voltage to the MSET pin. This voltage is converted into a dc  
current via a voltage-to-current converter that uses an  
operational amplifier and a bipolar transistor, as shown in  
Figure 31.  
100Ω  
V
CC  
IBMON  
Figure 28. Equivalent Circuit of the IBMON Pin  
V
CC  
The recommended configuration for the BSET, IBIAS, and  
IBMON pins is shown in Figure 29.  
TO LASER CATHODE  
IMODP  
IMODN  
I
100Ω  
MOD  
L
I
FROM CPA STAGE  
BIAS  
IBIAS  
MSET  
ADN2531  
400Ω  
BSET  
IBMON  
R
IBMON  
750Ω  
GND  
V
BSET  
200Ω  
ADN2531  
GND  
Figure 29. Recommended Configuration for BSET, IBIAS, and IBMON Pins  
Figure 31. Generation of Modulation Current on the ADN2531  
The circuit used to drive the BSET voltage must be able to drive  
the 1 kΩ input resistance of the BSET pin. For proper operation  
of the bias current source, the voltage at the IBIAS pin must be  
between the compliance voltage specifications for this pin over  
supply, temperature, and bias current range (see Table 1). The  
maximum compliance voltage is specified for only two bias  
current levels (10 mA and 100 mA), but it can be calculated for  
any bias current by  
The dc current is switched by the data signal applied to the  
input stage (DATAP and DATAN pins) and gained up by the  
output stage to generate the differential modulation current at  
the IMODP and IMODN pins. The output stage also generates  
the active back-termination, which provides proper transmission  
line termination. Active back-termination uses feedback around  
an active circuit to synthesize a broadband termination resistance.  
This provides excellent transmission line termination while  
dissipating less power than a traditional resistor passive back-  
termination. No portion of the modulation current flows in the  
active back-termination resistance. All of the preset modulation  
current (IMOD), the range of which is specified in Table 1, flows  
into the external load.  
V
COMPLIANCE (V) = VCC (V) − 0.75 − 4.4 × IBIAS (A)  
See the Headroom Calculations section for examples.  
The function of Inductor L is to isolate the capacitance of the  
IBIAS output from the high frequency signal path. For  
recommended components, see Table 6.  
Rev. 0 | Page 12 of 20  
 
 
 
 
 
 
 
ADN2531  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
The equivalent circuits for the MSET, IMODP, and IMODN pins  
are shown in Figure 32 and Figure 33. The two 50 Ω resistors in  
Figure 33 represent the active back-termination resistance.  
V
V
CC  
CC  
MAXIMUM  
MSET  
TYPICAL  
MINIMUM  
400  
200Ω  
80  
Figure 32. Equivalent Circuit of the MSET Pin  
70  
60  
V
V
CC  
CC  
IMODN  
IMODP  
50  
0
10  
20  
30  
40  
50  
60  
50Ω  
50Ω  
DIFFERENTIAL R  
()  
LOAD  
Figure 35. MSET Voltage to Modulation Current Ratio vs.  
Differential Load Resistance  
7.7Ω  
7.7Ω  
Using the resistance of the TOSA, the user can calculate the  
voltage range that should be applied to the MSET pin to  
generate the required modulation current range (see the  
example in the Applications Information section).  
Figure 33. Equivalent Circuit of the IMODP and IMODN Pins  
The recommended configuration of the MSET, IMODP, and  
IMODN pins is shown in Figure 34. See Table 6 for recom-  
mended components. When the voltage on DATAP is greater  
than the voltage on DATAN, the modulation current flows into  
the IMODP pin and out of the IMODN pin, generating an  
optical Logic 1 level at the TOSA output when the TOSA is  
connected as shown in Figure 34.  
The circuit used to drive the MSET voltage must be able to  
drive the 600 Ω resistance of the MSET pin. To be able to drive  
80 mA modulation currents through the differential load, the  
output stage of the ADN2531 (IMODP and IMODN pins) must  
be ac-coupled to the load. The voltages at these pins have a dc  
component equal to VCC and an ac component with single-ended  
peak-to-peak amplitude of IMOD × 50 Ω. This is the case when the  
load impedance (RTOSA) is less than 100 Ω differential because  
the transmission line characteristic impedance sets the peak-to-  
peak amplitude. For the case where RTOSA is greater than 100 Ω,  
the single-ended, peak-to-peak amplitude is IMOD × RTOSA ÷ 2.  
IBIAS  
V
CC  
L
L
ADN2531  
Z
= 25Ω  
Z
Z
= 25Ω  
= 25Ω  
0
0
C
C
For proper operation of the output stage, the voltages at the  
IMODP and IMODN pins must be between the compliance  
voltage specifications for this pin over supply, temperature, and  
modulation current range, as shown in Figure 36. See the  
Headroom Calculations section for examples of headroom  
calculations.  
IMODP  
FP/DFB  
TOSA  
Z
= 100Ω  
= 25Ω  
L
Z
0
0
IMODN  
MSET  
GND  
V
MSET  
L
L
V
V
V
IMODP, IMODN  
V
CC  
CC  
Figure 34. Recommended Configuration for the  
MSET, IMODP, and IMODN Pins  
V
CC  
+ 1.1V  
The ratio between the voltage applied to the MSET pin and the  
differential modulation current available at the IMODP and  
IMODN pins is a function of the load resistance value, as shown  
in Figure 35.  
NORMAL OPERATION REGION  
V
CC  
V
– 1.1V  
CC  
Figure 36. Allowable Range for the Voltage at IMODP and IMODN  
Rev. 0 | Page 13 of 20  
 
 
 
 
 
ADN2531  
Considering VBSET/IBIAS = 10 V/A as the conversion factor from  
BSET to IBIAS, the dissipated power becomes  
LOAD MISTERMINATION  
V
Due to its excellent S22 performance, the ADN2531 can drive  
differential loads that range from 5 Ω to 140 Ω. In practice, many  
TOSAs have differential resistance not equal to 100 Ω. In this  
case, with 100 Ω differential transmission lines connecting the  
ADN2531 to the load, the load end of the transmission lines are  
misterminated. This mistermination leads to signal reflections  
back to the driver. The excellent back-termination in the ADN2531  
absorbs these reflections, preventing their reflection back to the  
load. This enables excellent optical eye quality to be achieved even  
when the load end of the transmission lines is significantly mis-  
terminated. The connection between the load and the ADN2531  
must be made with 100 Ω differential (50 Ω single-ended)  
transmission lines so that the driver end of the transmission  
lines is properly terminated.  
V
VBSET  
10V / A  
MSET  
P =VCC  
×
+ ISUPPLY +V  
×
IBIAS  
5.8  
To ensure long-term reliable operation, the ADN2531 junction  
temperature must not exceed 150°C, as specified in Table 3. For  
improved heat dissipation, the module case can be used as a  
heat sink, as shown in Figure 38.  
THERMAL COMPOUND  
MODULE CASE  
T
TOP  
DIE  
T
THERMOCOUPLES  
J
PACKAGE  
T
PAD  
CROSSPOINT ADJUST  
PCB  
The crossing level in the output electrical eye diagram can be  
adjusted between 35% and 65% using the crosspoint adjust (CPA)  
control input. This can be used to compensate for asymmetry in  
the laser response and to optimize the optical eye mask margin.  
The CPA input is a voltage-control input, and a plot of eye cross-  
point vs. CPA control voltage is shown in Figure 14 and Figure 15  
in the Typical Performance Characteristics section. The equivalent  
circuit for the CPA pin is shown in Figure 37. To disable the  
crosspoint adjust function and set the eye crossing to 50%, the  
COPPER PLANE  
VIAS  
Figure 38. Typical Optical Module Structure  
A compact optical module is a complex thermal environment, and  
calculations of device junction temperature using the junction-to-  
ambient thermal resistance (θJA) of the package do not yield  
accurate results. The following equation, derived from the  
model in Figure 39, can be used to estimate the IC junction  
temperature:  
CPA pin should be tied to VCC  
.
P ×  
(
θJ PAD × θJ TOP  
)
+ TTOP × θJ PAD + TPAD × θJ TOP  
TJ =  
θJ PAD + θJ TOP  
7kΩ  
7kΩ  
where:  
7kΩ  
TTOP is the temperature at the top of the package in °C.  
TPAD is the temperature at the package exposed paddle in °C.  
TJ is the IC junction temperature in °C.  
V
CC  
P is the ADN2531 power dissipation in watts.  
CPA  
θ
J-TOP is the thermal resistance from the IC junction to the top of  
the package.  
J-PAD is the thermal resistance from the IC junction to the  
exposed paddle of the package.  
Figure 37. Equivalent Circuit for CPA Pin  
θ
POWER CONSUMPTION  
The power dissipated by the ADN2531 is given by  
T
TOP  
V
MSET  
P = VCC  
×
+ ISUPPLY + V  
× IBIAS  
IBIAS  
T
θJ-TOP  
TOP  
5.8  
T
J
where:  
CC is the power supply voltage.  
BIAS is the bias current generated by the ADN2531.  
MSET is the voltage applied to the MSET pin.  
SUPPLY is the sum of the current that flows into the VCC, IMODP,  
and IMODN pins when VBSET = VMSET = 0 (see Table 1).  
IBIAS is the average voltage on the IBIAS pin.  
P
θJ-PAD  
V
I
V
I
T
PAD  
T
PAD  
Figure 39. Electrical Model for Thermal Calculations  
V
TTOP and TPAD can be determined by measuring the temperature  
at points inside the module, as shown in Figure 38. The thermo-  
couples should be positioned to obtain an accurate measurement of  
the temperatures of the package top and paddle. θJ-TOP and θJ-PAD  
are given in Table 2.  
Rev. 0 | Page 14 of 20  
 
 
 
 
ADN2531  
APPLICATIONS INFORMATION  
the low frequency cutoff performance is dependent on the dc  
blocking capacitance and the transmission line impedance. For  
additional applications information and optical eye diagram  
performance data, consult the relevant application notes on the  
ADN2531 product page at www.analog.com.  
TYPICAL APPLICATION CIRCUIT  
Figure 40 shows a typical application circuit for the ADN2531.  
The dc voltages applied to the BSET and MSET pins control the  
bias and modulation currents. The bias current can be monitored  
as a voltage drop across the 750 Ω resistor connected between  
the IBMON pin and GND. The dc voltage applied to the CPA  
pin controls the crosspoint in the output eye diagram. By tying  
the CPA pin to VCC, the CPA function is disabled. The ALS pin  
allows the user to turn the bias and modulation currents on and  
off, depending on the logic level applied to the pin. The data  
signal source must be connected to the DATAP and DATAN  
pins of the ADN2531 using 50 Ω transmission lines. The  
modulation current outputs, IMODP and IMODN, must be  
connected to the load (TOSA) using 100 Ω differential (50 Ω  
single-ended) transmission lines.  
Table 6. Recommended Components  
Component  
Value  
110 Ω  
300 Ω  
Varies  
Description  
R1, R2  
R3, R4  
R13, R14  
0603 size resistor  
0603 size resistor  
The resistor value and size are TOSA  
load impedance dependent  
C3, C4  
100 nF  
160 nH  
0402 size capacitor,  
Phycomp 223878719849  
0603 size inductor,  
L6, L7  
Murata LQW18ANR16  
L2, L3  
0603 size chip ferrite bead, Murata  
BLM18HG601  
Table 6 provides a list of recommended components for the ac  
coupling interface between the ADN2531 and the TOSA. The  
reference circuit can support up to 11.3 Gbps applications, and  
L1, L4, L5, L8  
10 μH  
0805 size inductor,  
Murata LQM21FN100M70L  
C8  
100nF  
V
CC  
GND  
R5  
V
CC  
GND  
750  
C5  
10nF  
BSET  
TP1  
L1  
L8  
R1  
R4  
V
CC  
BSET IBMON IBIAS GND  
V
VCC  
VCC  
V
CC  
CC  
R14  
L2  
L7  
Z
Z
= 50Ω  
Z
Z
= 50Ω  
Z
0
= 50Ω  
0
0
DATAP  
DATAN  
DATAP  
IMODP  
C1  
C4  
GND  
= 50Ω  
TOSA  
ADN2531  
= 50Ω  
Z
0
= 50Ω  
0
0
DATAN  
VCC  
IMODN  
VCC  
C2  
C3  
R13  
GND  
L3  
L6  
V
V
CC  
CC  
MSET CPA ALS GND  
V
CC  
L4  
R2 L5  
R3  
C6  
MSET  
+3.3V  
10nF  
V
CC  
GND  
C7  
20µF  
CPA ALS  
V
V
CC  
CC  
GND  
Figure 40. Typical ADN2531 Application Circuit  
Rev. 0 | Page 15 of 20  
 
 
 
 
ADN2531  
Therefore, VIBIAS = 1.32 V > 0.6 V, which satisfies the requirement  
LAYOUT GUIDELINES  
The maximum voltage at the IBIAS pin must be less than the  
maximum IBIAS compliance specification as described by  
Due to the high frequencies at which the ADN2531 operates,  
care should be taken when designing the PCB layout to obtain  
optimum performance. For example, use controlled impedance  
transmission lines for high speed signal paths, and keep the  
length of transmission lines as short as possible to reduce losses  
and pattern-dependent jitter. In addition, the PCB layout must  
be symmetrical, both on the DATAP and DATAN inputs and on  
the IMODP and IMODN outputs, to ensure a balance between  
the differential signals.  
VCOMPLIANCE_MAX = VCC − 0.75 − 4.4 × IBIAS (A)  
For this example,  
VCOMPLIANCE_MAX = VCC − 0.75 − 4.4 × 0.04 = 2.374 V  
Therefore, VIBIAS = 1.32 V < 2.374 V, which satisfies the  
requirement.  
To calculate the headroom at the modulation current pins  
(IMODP and IMODN), the voltage has a dc component equal  
to VCC due to the ac-coupled configuration and a swing equal to  
Furthermore, all VCC and GND pins must be connected to  
solid copper planes by using low inductance connections. When  
these connections are made through vias, multiple vias can be  
connected in parallel to reduce the parasitic inductance. Each  
GND pin must be locally decoupled to VCC with high quality  
capacitors (see Figure 40). If proper decoupling cannot be  
achieved using a single capacitor, use multiple capacitors in  
parallel for each GND pin. A 20 μF tantalum capacitor must be  
used as the general decoupling capacitor for the entire module.  
IMOD × 50 Ω because RTOSA is less than 100 Ω. For proper  
operation of the ADN2531, the voltage at each modulation  
output pin should be within the normal operation region shown  
in Figure 36.  
Assuming the dc voltage drop across L1, L2, L3, and L4 is 0 V  
and IMOD is 40 mA, the minimum voltage at the modulation  
output pins is equal to  
For recommended PCB layouts, including those suitable for the  
SFP+ and XFP modules, contact sales. For guidelines on the  
surface-mount assembly of the ADN2531, see the AN-772  
Application Note, A Design and Manufacturing Guide for the  
Lead Frame Chip Scale Package (LFCSP), on www.analog.com.  
VCC − (IMOD × 12)/2 = VCC − 0.24 V  
Therefore, VCC − 0.24 > VCC − 1.1 V, which satisfies the  
requirement.  
The maximum voltage at the modulation output pins is equal to  
DESIGN EXAMPLE  
VCC + (IMOD × 12)/2 = VCC + 0.24 V  
Assuming that the impedance of the TOSA is 12 Ω, the forward  
voltage of the laser at low current is VF = 1.5 V, IBIAS = 40 mA,  
IMOD = 40 mA, and VCC = 3.3 V, this design example calculates  
Therefore, VCC + 0.24 < VCC + 1.1 V, which satisfies the  
requirement.  
Headroom calculations must be repeated for the minimum and  
maximum values of the required IBIAS and IMOD ranges to ensure  
proper device operation over all operating conditions.  
The headroom for the IBIAS, IMODP, and IMODN pins.  
The typical voltage required at the BSET and MSET pins to  
produce the desired bias and modulation currents.  
The IBIAS monitor accuracy over the IBIAS current range.  
BSET and MSET Pin Voltage Calculations  
To set the desired bias and modulation currents, the BSET and  
MSET pins of the ADN2531 must be driven with the appropriate  
dc voltage. The voltage range required at the BSET pin to generate  
the required IBIAS range can be calculated using the BSET voltage to  
Headroom Calculations  
To ensure proper device operation, the voltages on the IBIAS,  
IMODP, and IMODN pins must meet the compliance voltage  
specifications in Table 1.  
I
BIAS gain specified in Table 1. Assuming that IBIAS = 40 mA and that  
IBIAS/VBSET = 100 mA/V (which is the typical IBIAS/VBSET ratio), the  
Considering the typical application circuit shown in Figure 40,  
the voltage at the IBIAS pin can be written as  
BSET voltage is given by  
IBIAS (mA)  
40  
VIBIAS = VCC VF − (IBIAS × RTOSA) − VLA  
VBSET  
=
=
= 0.4 V  
100 mA/V 100  
The BSET voltage range can be calculated using the required  
BIAS range and the minimum and maximum BSET voltage to  
where:  
VCC is the supply voltage.  
VF is the forward voltage across the laser at low current.  
RTOSA is the resistance of the TOSA.  
VLA is the dc voltage drop across L5, L6, L7, and L8.  
I
IBIAS gain values specified in Table 1.  
The voltage required at the MSET pin to produce the desired  
modulation current can be calculated using  
For proper operation, the minimum voltage at the IBIAS pin  
should be greater than 0.6 V, as specified by the minimum  
IBIAS compliance specification in Table 1.  
IMOD  
K
VMSET  
=
Assuming that the voltage drop across the 50 Ω transmission lines  
is negligible and that VLA = 0 V, VF = 1.5 V, and IBIAS = 40 mA,  
where K is the MSET voltage to IMOD ratio.  
VIBIAS = 3.3 − 1.5 − (0.04 × 12) = 1.32 V  
Rev. 0 | Page 16 of 20  
 
 
 
ADN2531  
The value of K depends on the actual resistance of the TOSA  
and can be obtained from Figure 35. For a TOSA resistance of  
This example assumes that the nominal value of IBIAS is 40 mA  
and that the IBIAS range for all operating conditions is 10 mA to  
80 mA. The accuracy of the IBIAS to IBMON ratio is given in Table 1  
and is plotted in Figure 41.  
12 Ω, the typical value of K is 110 mA/V. Assuming that IMOD  
40 mA and using the preceding equation, the MSET voltage is  
given by  
=
Referring to Figure 41, the IBMON output current accuracy is  
4.3% for the minimum IBIAS of 10 mA and 3.0% for the  
maximum IBIAS value of 80 mA.  
I MOD (mA)  
40  
VMSET  
=
=
= 0.36 V  
110 mA/V 110  
The MSET voltage range can be calculated using the required  
MOD range and the minimum and maximum K values. These  
The accuracy of the IBMON output current as a percentage of  
the nominal IBIAS is given by  
I
4.3  
100  
values can be obtained from the minimum and maximum  
curves in Figure 35.  
IBMON _ AccuracyMIN =10 mA  
×
= ±1.075%  
100 40 mA  
IBIAS Monitor Accuracy Calculations  
for the minimum IBIAS value, and by  
6
3.0  
100  
IBMON _ AccuracyMAX = 80 mA  
×
= ± 6.0%  
100 40 mA  
5
4
3
2
1
0
for the maximum IBIAS value. This gives a worse-case accuracy  
for the IBMON output current of 6.0% of the nominal IBIAS  
value over all operating conditions. The IBMON output current  
accuracy numbers can be combined with the accuracy numbers  
for the 750 Ω IBMON resistor (RIBMON) and any other error  
sources to calculate an overall accuracy for the IBMON voltage.  
0
20  
40  
60  
80  
100  
I
(mA)  
BIAS  
Figure 41. Accuracy of IBIAS to IBMON Ratio  
Rev. 0 | Page 17 of 20  
ADN2531  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
0.60 MAX  
3.00  
BSC SQ  
PIN 1  
INDICATOR  
BOTTOM VIEW  
*
1.65  
1.50 SQ  
1.35  
13  
12  
16  
1
0.45  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
4
9
8
0.50  
BSC  
5
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 42. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +100°C  
−40°C to +100°C  
−40°C to +100°C  
Package Description  
Package Option  
CP-16-3  
CP-16-3  
Branding  
F0K  
F0K  
ADN2531ACPZ-WP1  
ADN2531ACPZ-R21  
ADN2531ACPZ-R71  
EVAL-ADN2531-NTZ1  
EVAL-ADN2531-NPZ1  
16-Lead LFCSP_VQ, 50-Piece Waffle Pack  
16-Lead LFCSP_VQ, 250-Piece Reel  
16-Lead LFCSP_VQ, 1,500-Piece Reel  
Optical Evaluation Board Without Laser Populated  
Optical Evaluation Board with Laser Populated  
CP-16-3  
F0K  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
ADN2531  
NOTES  
Rev. 0 | Page 19 of 20  
ADN2531  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07881-0-9/09(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADN2531ACPZ

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-R2

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-R7

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-WP

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2804

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2804ACPZ

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2804ACPZ-500RL7

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2804ACPZ-RL7

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2805

1.25 Gbps Clock and Data Recovery IC
ADI

ADN2805ACPZ

1.25 Gbps Clock and Data Recovery IC
ADI

ADN2805ACPZ-500RL7

1.25 Gbps Clock and Data Recovery IC
ADI

ADN2805ACPZ-RL7

1.25 Gbps Clock and Data Recovery IC
ADI