ADN4697E [ADI]

3.3 V, 200 Mbps, Half- and Full-Duplex; 3.3 V , 200 Mbps的半双工和全双工
ADN4697E
型号: ADN4697E
厂家: ADI    ADI
描述:

3.3 V, 200 Mbps, Half- and Full-Duplex
3.3 V , 200 Mbps的半双工和全双工

文件: 总20页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 V, 200 Mbps, Half- and Full-Duplex,  
High Speed M-LVDS Transceivers  
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
CC  
Multipoint LVDS transceivers (low voltage differential  
signaling driver and receiver pairs)  
Switching rate: 200 Mbps (100 MHz)  
Supported bus loads: 30 Ω to 55 Ω  
Choice of 2 receiver types  
Type 1 (ADN4691E/ADN4693E): hysteresis of 25 mV  
Type 2 (ADN4696E/ADN4697E): threshold offset of 100 mV  
for open-circuit and bus-idle fail-safe  
Conforms to TIA/EIA-899 standard for M-LVDS  
Glitch-free power-up/power-down on M-LVDS bus  
Controlled transition times on driver output  
Common-mode range: −1 V to +3.4 V, allowing  
communication with 2 V of ground noise  
Driver outputs high-Z when disabled or powered off  
Enhanced ESD protection on bus pins  
ADN4691E/  
ADN4696E  
RO  
RE  
DE  
DI  
R
A
B
D
GND  
Figure 1.  
V
CC  
ADN4693E/  
ADN4697E  
A
B
RO  
RE  
DE  
DI  
R
15 kV HBM (human body model), air discharge  
8 kV HBM (human body model), contact discharge  
10 kV IEC 61000-4-2, air discharge  
Z
Y
D
8 kV IEC 61000-4-2, contact discharge  
Operating temperature range: −40°C to +85°C  
Available in 8-lead (ADN4691E/ADN4696E) and 14-lead  
(ADN4693E/ADN4697E) SOIC packages  
GND  
Figure 2.  
APPLICATIONS  
Backplane and cable multipoint data transmission  
Multipoint clock distribution  
Low power, high speed alternative to shorter RS-485 links  
Networking and wireless base station infrastructure  
GENERAL DESCRIPTION  
The ADN4691E/ADN4693E/ADN4696E/ADN4697E are  
multipoint, low voltage differential signaling (M-LVDS)  
transceivers (driver and receiver pairs) that can operate at up to  
200 Mbps (100 MHz). The receivers detect the bus state with a  
differential input of as little as 50 mV over a common-mode  
voltage range of −1 V to +3.4 V. ESD protection of up to 15 kV  
is implemented on the bus pins. The parts adhere to the  
TIA/EIA-899 standard for M-LVDS and complement TIA/EIA-  
644 LVDS devices with additional multipoint capabilities.  
The parts are available as half-duplex in an 8-lead SOIC package  
(the ADN4691E/ADN4696E) or as full-duplex in a 14-lead  
SOIC package (the ADN4693E/ADN4697E). A selection table  
for the ADN469xE parts is shown in Table 1.  
Table 1. ADN469xE Selection Table  
Part No.  
Receiver  
Data Rate  
100 Mbps  
200 Mbps  
100 Mbps  
200 Mbps  
100 Mbps  
100 Mbps  
200 Mbps  
200 Mbps  
SOIC  
Duplex  
Half  
Half  
Full  
Full  
Half  
Full  
ADN4690E Type 1  
ADN4691E Type 1  
ADN4692E Type 1  
ADN4693E Type 1  
ADN4694E Type 2  
ADN4695E Type 2  
ADN4696E Type 2  
ADN4697E Type 2  
8-lead  
8-lead  
14-lead  
14-lead  
8-lead  
14-lead  
8-lead  
14-lead  
The ADN4691E/ADN4693E are Type 1 receivers with 25 mV of  
hysteresis, so that slow-changing signals or loss of input does  
not lead to output oscillations. The ADN4696E/ADN4697E are  
Type 2 receivers exhibiting an offset threshold, guaranteeing the  
output state when the bus is idle (bus-idle fail-safe) or the inputs are  
open (open-circuit fail-safe).  
Half  
Full  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Driver Voltage and Current Measurements............................ 11  
Driver Timing Measurements .................................................. 12  
Receiver Timing Measurements............................................... 13  
Theory of Operation ...................................................................... 14  
Half-Duplex/Full-Duplex Operation....................................... 14  
Three-State Bus Connection..................................................... 14  
Truth Tables................................................................................. 14  
Glitch-Free Power-Up/Power-Down....................................... 15  
Fault Conditions......................................................................... 15  
Receiver Input Thresholds/Fail-Safe........................................ 15  
Applications Information.............................................................. 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History........................................................................... 2  
Specifications..................................................................................... 3  
Receiver Input Threshold Test Voltages .................................... 4  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits and Switching Characteristics................................ 11  
REVISION HISTORY  
3/12—Rev. 0 to Rev. A  
Changes to Table 8.............................................................................7  
Changes to Figure 33.......................................................................13  
Added Table 12 ................................................................................14  
Changes to Receiver Input Thresholds/Fail-Safe Section  
and Figure 36....................................................................................15  
Changes to Ordering Guide...........................................................17  
Added ADN4691E and ADN4693E................................. Universal  
Changes to Features Section, General Description Section,  
and Table 1..........................................................................................1  
Added Type 1 Receiver Parameters, Table 2 ..................................3  
Added Table 3, Renumbered Sequentially .....................................4  
Added Type 1 Receiver Parameters, Table 5 ..................................5  
Added Table 7.....................................................................................6  
12/11—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
SPECIFICATIONS  
VCC = 3.0 V to 3.6 V; RL = 50 Ω; TA = TMIN to TMAX, unless otherwise noted. 1  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit Test Conditions/Comments  
DRIVER  
Differential Outputs  
Differential Output Voltage Magnitude  
∆|VOD| for Complementary Output States  
Common-Mode Output Voltage (Steady State)  
ΔVOC(SS) for Complementary Output States  
Peak-to-Peak VOC  
|VOD  
∆|VOD  
VOC(SS)  
ΔVOC(SS)  
VOC(PP)  
|
480  
−50  
0.8  
650  
+50  
1.2  
+50  
150  
2.4  
mV  
mV  
V
mV  
mV  
V
See Figure 19  
See Figure 19  
See Figure 20, Figure 23  
See Figure 20, Figure 23  
See Figure 20, Figure 23  
See Figure 21  
|
−50  
Maximum Steady-State Open-Circuit Output  
Voltage  
VA(O), VB(O)  
VY(O), or VZ(O)  
,
0
Voltage Overshoot  
Low to High  
High to Low  
VPH  
VPL  
1.2VSS  
V
V
See Figure 24, Figure 27  
See Figure 24, Figure 27  
−0.2VSS  
Output Current  
Short Circuit  
High Impedance State, Driver Only  
|IOS  
IOZ  
|
24  
+10  
mA  
μA  
See Figure 22  
–1.4 V ≤ (VY or VZ) ≤ 3.8 V,  
other output = 1.2 V  
–1.4 V ≤ (VY or VZ) ≤ 3.8 V,  
other output = 1.2 V, 0 V ≤ VCC ≤ 1.5 V  
VI = 0.4 sin(30e6πt) V + 0.5 V,2  
other output = 1.2 V, DE = 0 V  
VAB = 0.4 sin(30e6πt) V,2 DE = 0 V  
−15  
−10  
Power Off  
IO(OFF)  
+10  
μA  
pF  
pF  
Output Capacitance  
CY or CZ  
3
Differential Output Capacitance  
Output Capacitance Balance (CY/CZ)  
Logic Inputs (DI, DE)  
CYZ  
CY/Z  
2.5  
1.01  
0.99  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
VIH  
VIL  
IIH  
2
GND  
0
0
VCC  
0.8  
10  
V
V
μA  
μA  
VIH = 2 V  
VIL = 0.8 V  
IIL  
10  
RECEIVER  
Differential Inputs  
Differential Input Threshold Voltage  
Type 1 Receiver (ADN4691E, ADN4693E)  
Type 2 Receiver (ADN4696E, ADN4697E)  
Input Hysteresis  
VTH  
VTH  
−50  
50  
+50  
150  
mV  
mV  
See Table 3, Figure 36  
See Table 4, Figure 36  
Type 1 Receiver (ADN4691E, ADN4693E)  
Type 2 Receiver (ADN4696E, ADN4697E)  
Differential Input Voltage Magnitude  
Input Capacitance  
VHYS  
VHYS  
|VID|  
CA or CB  
25  
0
mV  
mV  
V
0.05  
VCC  
3
pF  
VI = 0.4 sin(30e6πt) V + 0.5 V,2  
other input = 1.2 V  
Differential Input Capacitance  
Input Capacitance Balance (CA/CB)  
Logic Output RO  
Output High Voltage  
Output Low Voltage  
CAB  
CA/B  
2.5  
1.01  
pF  
VAB = 0.4 sin(30e6πt) V2  
0.99  
2.4  
VOH  
VOL  
IOZ  
V
V
μA  
IOH = –8 mA  
IOL = 8 mA  
VO = 0 V or 3.6 V  
0.4  
+15  
High Impedance Output Current  
Logic Input RE  
−10  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
VIH  
VIL  
IIH  
2
VCC  
0.8  
0
V
V
μA  
μA  
GND  
−10  
−10  
VIH = 2 V  
VIL = 0.8 V  
IIL  
0
Rev. A | Page 3 of 20  
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit Test Conditions/Comments  
BUS INPUT/OUTPUT  
Input Current  
A (Receiver or Transceiver with Driver Disabled) IA  
0
32  
+20  
0
32  
+20  
0
μA  
μA  
μA  
μA  
μA  
μA  
μA  
VB = 1.2 V, VA = 3.8 V  
−20  
−32  
0
−20  
−32  
−4  
VB = 1.2 V, VA = 0 V or 2.4 V  
VB = 1.2 V, VA = −1.4 V  
VA = 1.2 V, VB = 3.8 V  
VA = 1.2 V, VB = 0 V or 2.4 V  
VA = 1.2 V, VB = −1.4 V  
VA = VB, 1.4 V ≤ VA ≤ 3.8 V  
B (Receiver or Transceiver with Driver Disabled)  
IB  
Differential (Receiver or Transceiver with Driver  
Disabled)  
IAB  
+4  
Power-Off Input Current  
A (Receiver or Transceiver)  
0 V ≤ VCC ≤ 1.5 V  
IA(OFF)  
0
32  
+20  
0
32  
+20  
0
μA  
μA  
μA  
μA  
μA  
μA  
μA  
pF  
VB = 1.2 V, VA = 3.8 V  
VB = 1.2 V, VA = 0 V or 2.4 V  
VB = 1.2 V, VA = −1.4 V  
VA = 1.2 V, VB = 3.8 V  
VA = 1.2 V, VB = 0 V or 2.4 V  
VA = 1.2 V, VB = −1.4 V  
VA = VB, 1.4 ≤ VA ≤ 3.8 V  
VI = 0.4 sin(30e6πt) V + 0.5 V,2  
other input = 1.2 V, DE = 0 V  
VAB = 0.4 sin(30e6πt) V,2 DE = 0 V  
−20  
−32  
0
−20  
−32  
−4  
B (Receiver or Transceiver)  
IB(OFF)  
Differential (Receiver or Transceiver)  
Input Capacitance (Transceiver with Driver Disabled) CA or CB  
IAB(OFF)  
+4  
5
Differential Input Capacitance (Transceiver with  
Driver Disabled)  
CAB  
3
pF  
Input Capacitance Balance (CA/CB) (Transceiver  
with Driver Disabled)  
CA/B  
0.99  
1.01  
DE = 0 V  
POWER SUPPLY  
Supply Current  
ICC  
Only Driver Enabled  
13  
1
22  
4
mA  
mA  
mA  
mA  
DE, RE = VCC, RL = 50 Ω  
Both Driver and Receiver Disabled  
Both Driver and Receiver Enabled  
Only Receiver Enabled  
DE = 0 V, RE= VCC, RL = no load  
DE = VCC, RE = 0 V, RL = 50 Ω  
DE, RE = 0 V, RL = 50 Ω  
16  
4
24  
13  
1 All typical values are given for VCC = 3.3 V and TA = 25°C.  
2 HP4194A impedance analyzer (or equivalent).  
RECEIVER INPUT THRESHOLD TEST VOLTAGES  
RE  
= 0 V, H = high, L = low  
Table 3. Test Voltages for Type 1 Receiver  
Applied Voltages  
Input Voltage, Differential  
Input Voltage, Common Mode  
Receiver Output  
VA (V)  
2.4  
0
VB (V)  
0
2.4  
3.75  
3.8  
−1.4  
−1.35  
VID (V)  
2.4  
−2.4  
0.05  
−0.05  
0.05  
−0.05  
VIC (V)  
1.2  
1.2  
3.775  
3.775  
−1.375  
−1.375  
RO (V)  
H
L
H
L
H
L
3.8  
3.75  
−1.35  
−1.4  
Rev. A | Page 4 of 20  
 
 
 
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Table 4. Test Voltages for Type 2 Receiver  
Applied Voltages  
Input Voltage, Differential  
Input Voltage, Common Mode Receiver Output  
VA (V)  
+2.4  
0
+3.8  
+3.8  
−1.25  
−1.35  
VB (V)  
0
VID (V)  
+2.4  
−2.4  
+0.15  
+0.05  
+0.15  
+0.05  
VIC (V)  
+1.2  
+1.2  
+3.725  
+3.775  
−1.325  
−1.375  
RO (V)  
H
L
H
L
H
L
+2.4  
+3.65  
+3.75  
−1.4  
−1.4  
TIMING SPECIFICATIONS  
VCC = 3.0 V to 3.6 V; TA = TMIN to TMAX, unless otherwise noted.1  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DRIVER  
Maximum Data Rate  
Propagation Delay  
Differential Output Rise/Fall Time  
200  
1
1
Mbps  
ns  
ns  
ps  
ns  
ps  
ps  
ns  
ns  
tPLH, tPHL  
tR, tF  
tSK  
tSK(PP)  
tJ(PER)  
tJ(PP)  
tPHZ  
tPLZ  
tPZH  
tPZL  
1.5  
0
2.4  
1.6  
100  
1
3
130  
7
7
7
7
See Figure 24, Figure 27  
See Figure 24, Figure 27  
See Figure 24, Figure 27  
See Figure 24, Figure 27  
100 MHz clock input4 (see Figure 26)  
200 Mbps 215 − 1 PRBS input6 (see Figure 29)  
See Figure 25, Figure 28  
See Figure 25, Figure 28  
See Figure 25, Figure 28  
Pulse Skew |tPHL – tPLH  
|
Part-to-Part Skew2  
Period Jitter, RMS (1 Standard Deviation)3  
Peak-to-Peak Jitter3, 5  
Disable Time from High Level  
Disable Time from Low Level  
Enable Time to High Level  
Enable Time to Low Level  
2
30  
ns  
ns  
See Figure 25, Figure 28  
RECEIVER  
Propagation Delay  
Rise/Fall Time  
Pulse Skew |tRPHL – tRPLH  
tRPLH, tRPHL  
tR, tF  
tSK  
2
1
4
6
2.3  
ns  
ns  
CL = 15 pF (see Figure 30, Figure 33)  
CL = 15 pF (see Figure 30, Figure 33)  
CL = 15 pF (see Figure 30, Figure 33)  
|
Type 1 Receiver (ADN4691E,  
ADN4693E)  
Type 2 Receiver (ADN4696E,  
ADN4697E)  
Part-to-Part Skew2  
Period Jitter, RMS (1 Standard Deviation)3  
Peak-to-Peak Jitter3, 5  
100  
300  
300  
500  
ps  
ps  
tSK(PP)  
tJ(PER)  
tJ(PP)  
1
7
ns  
ps  
CL = 15 pF (see Figure 30, Figure 33)  
100 MHz clock input7 (see Figure 32)  
200 Mbps 215 − 1 PRBS input8 (see Figure 35)  
4
Type 1 Receiver (ADN4691E,  
ADN4693E)  
Type 2 Receiver (ADN4696E,  
ADN4697E)  
tJ(PP)  
300  
450  
700  
800  
ps  
ps  
Disable Time from High Level  
Disable Time from Low Level  
Enable Time to High Level  
Enable Time to Low Level  
tRPHZ  
tRPLZ  
tRPZH  
tRPZL  
10  
10  
15  
15  
ns  
ns  
ns  
ns  
See Figure 31, Figure 34  
See Figure 31, Figure 34  
See Figure 31, Figure 34  
See Figure 31, Figure 34  
1 All typical values are given for VCC = 3.3 V and TA = 25°C.  
2 tSK(PP) is defined as the difference between the propagation delays of two devices between any specified terminals. This specification applies to devices at the same VCC  
and temperature, and with identical packages and test circuits.  
3 Jitter parameters are guaranteed by design and characterization. Values do not include stimulus jitter.  
4 tR = tF = 0.5 ns (10% to 90%), measured over 30,000 samples.  
5 Peak-to-peak jitter specifications include jitter due to pulse skew (tSK).  
6 tR = tF = 0.5 ns (10% to 90%), measured over 100,000 samples.  
7 |VID| = 400 mV (ADN4696E, ADN4697E), Vic = 1.1 V, tR = tF = 0.5 ns (10% to 90%), measured over 30,000 samples.  
8 |VID| = 400 mV (ADN4696E, ADN4697E), Vic = 1.1 V, tR = tF = 0.5 ns (10% to 90%), measured over 100,000 samples.  
Rev. A | Page 5 of 20  
 
 
 
 
 
 
 
 
 
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = TMIN to TMAX, unless otherwise noted.  
THERMAL RESISTANCE  
Table 6.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VCC  
−0.5 V to +4 V  
−0.5 V to +4 V  
Digital Input Voltage (DE, RE, DI)  
Receiver Input (A, B) Voltage  
Half-Duplex (ADN4691E, ADN4696E)  
Full-Duplex (ADN4693E, ADN4697E)  
Receiver Output Voltage (RO)  
Driver Output (A, B, Y, Z) Voltage  
ESD Rating (A, B, Y, Z Pins)  
HBM (Human Body Model)  
Air Discharge  
Table 7. Thermal Resistance  
Package Type  
8-Lead SOIC  
14-Lead SOIC  
θJA  
121  
86  
Unit  
°C/W  
°C/W  
−1.8 V to +4 V  
−4 V to +6 V  
−0.3 V to +4 V  
−1.8 V to +4 V  
ESD CAUTION  
15 kV  
8 kV  
Contact Discharge  
IEC 61000-4-2, Air Discharge  
IEC 61000-4-2, Contact Discharge  
ESD Rating (Other Pins, HBM)  
ESD Rating (All Pins)  
10 kV  
8 kV  
4 kV  
FICDM  
1.25 kV  
Machine Model  
400 V  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 20  
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NC  
RO  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
CC  
CC  
ADN4693E/  
ADN4697E  
TOP VIEW  
RE  
A
DE  
B
(Not to Scale)  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
CC  
DI  
Z
ADN4691E/  
ADN4696E  
TOP VIEW  
(Not to Scale)  
B
GND  
GND  
Y
8
NC  
A
GND  
NC = NO CONNECT  
Figure 3. ADN4691E/ADN4696E Pin Configuration  
Figure 4. ADN4693E/ADN4697E Pin Configuration  
Table 8. Pin Function Descriptions  
ADN4691E/ ADN4693E/  
ADN4696E  
Pin No.  
ADN4697E  
Pin No.  
Mnemonic Description  
1
2
RO  
Receiver Output. Type 1 receiver (ADN4691E/ADN4693E), when enabled:  
If A − B ≥ 50 mV, then RO = logic high. If A − B ≤ −50 mV, then RO = logic low.  
Type 2 receiver (ADN4696E/ADN4697E), when enabled:  
If A − B ≥ 150 mV, then RO = logic high. If A − B ≤ 50 mV, then RO = logic low.  
Receiver output is undefined outside these conditions.  
2
3
4
3
4
5
RE  
DE  
DI  
Receiver Output Enable. A logic low on this pin enables the receiver output, RO.  
A logic high on this pin places RO in a high impedance state.  
Driver Output Enable. A logic high on this pin enables the driver differential outputs.  
A logic low on this pin places the driver differential outputs in a high impedance state.  
Driver Input. Half-duplex (ADN4691E/ADN4696E), when enabled:  
A logic low on DI forces A low and B high, whereas a logic high on DI forces A high and B low.  
Full-duplex (ADN4693E/ADN4697E), when enabled:  
A logic low on DI forces Y low and Z high, whereas a logic high on DI forces Y high and Z low.  
Ground.  
Noninverting Driver Output Y.  
Inverting Driver Output Z.  
Noninverting Receiver Input A and Noninverting Driver Output A.  
Noninverting Receiver Input A.  
Inverting Receiver Input B and Inverting Driver Output B.  
Inverting Receiver Input B.  
5
6, 7  
9
10  
N/A  
12  
N/A  
11  
GND  
Y
Z
A
A
B
B
VCC  
NC  
N/A  
N/A  
6
N/A  
7
N/A  
8
N/A  
13, 14  
1, 8  
Power Supply (3.3 V 0.3 V).  
No Connect. Do not connect to these pins.  
Rev. A | Page 7 of 20  
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
TYPICAL PERFORMANCE CHARACTERISTICS  
Data Sheet  
20  
18  
0
–5  
V
V
V
= 3.0V  
= 3.3V  
= 3.6V  
CC  
CC  
CC  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
16  
DRIVER  
14  
12  
10  
8
6
RECEIVER (V = 250mV, V = 1V)  
4
2
0
ID  
IC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
0
20  
40  
60  
80  
100  
120  
RECEIVER HIGH LEVEL OUTPUT VOLTAGE, V  
OH  
FREQUENCY (MHz)  
Figure 8. Receiver Output Current vs. Output Voltage (Output High)  
(TA = 25°C)  
Figure 5. Power Supply Current (ICC) vs. Frequency  
(VCC = 3.3 V, TA = 25°C; Receiver VID = 250 mV, VIC = 1 V)  
20  
18  
16  
14  
12  
10  
8
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DRIVER  
RECEIVER (V = 250mV, V = 1V)  
ID  
IC  
6
4
2
0
–50  
–30  
–10  
10  
30  
50  
70  
90  
0
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
OUTPUT CURRENT, I (mA)  
O
Figure 9. Driver Differential Output Voltage vs. Output Current  
(VCC = 3.3 V, TA = 25°C)  
Figure 6. Power Supply Current vs. Temperature (Data Rate = 200 Mbps,  
CC = 3.3 V; Receiver VID = 250 mV, VIC = 1 V)  
V
2.4  
40  
35  
30  
25  
20  
15  
10  
5
tPHL  
tPLH  
V
V
V
= 3V  
= 3.3V  
= 3.6V  
CC  
CC  
CC  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
0
1.0  
–40  
–20  
0
20  
40  
60  
80  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE, T (°C)  
RECEIVER LOW LEVEL OUTPUT VOLTAGE, V (V)  
A
OL  
Figure 10. Driver Propagation Delay vs. Temperature  
(Data Rate = 2 Mbps, VCC = 3.3 V)  
Figure 7. Receiver Output Current vs. Output Voltage (Output Low)  
(TA = 25°C)  
Rev. A | Page 8 of 20  
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
120  
100  
80  
60  
40  
20  
0
6.0  
tRPLH  
tRPHL  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
–50  
–30  
–10  
10  
30  
50  
70  
90  
120  
90  
–50  
–30  
–10  
10  
30  
50  
70  
90  
TEMPERATURE, T (°C)  
TEMPERATURE, T (°C)  
A
A
Figure 11. Receiver Propagation Delay vs. Temperature  
(Data Rate = 2 Mbps, VCC = 3.3 V, VID = 400 mV, VIC = 1.1 V)  
Figure 14. Driver Jitter (Peak-to-Peak) vs. Temperature  
(Data Rate = 200 Mbps, VCC = 3.3 V, PRBS 215 − 1 Input)  
3.0  
7
6
5
4
3
2
1
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
20  
40  
60  
80  
100  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Driver Jitter (Period) vs. Frequency  
(VCC = 3.3 V, TA = 25°C, Clock Input)  
Figure 15. Receiver Jitter (Period) vs. Frequency  
(VCC = 3.3 V, TA = 25°C, VID = 400 mV)  
800  
700  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
60  
40  
20  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
–50  
–30  
–10  
10  
30  
50  
70  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 16. Receiver Jitter (Peak-to-Peak) vs. Temperature  
Figure 13. Driver Jitter (Peak-to-Peak) vs. Data Rate  
(VCC = 3.3 V, TA = 25°C, PRBS 215 − 1 Input)  
(Data Rate = 200 Mbps, VCC = 3.3 V, VID = 400 mV, VIC = 1.1 V,  
PRBS 215 − 1 Input)  
Rev. A | Page 9 of 20  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
1ns/DIV  
2.5ns/DIV  
Figure 17. ADN4696E Driver Output Eye Pattern  
Figure 18. ADN4696E Receiver Output Eye Pattern  
(Data Rate = 200 Mbps, PRBS 215 − 1 Input, CL = 15 pF)  
(Data Rate = 200 Mbps, PRBS 215 − 1 Input, RL = 50 Ω)  
Rev. A | Page 10 of 20  
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
TEST CIRCUITS AND SWITCHING CHARACTERISTICS  
DRIVER VOLTAGE AND CURRENT MEASUREMENTS  
A/Y  
3.32k  
I
OS  
V
CC  
49.9Ω  
V
DI  
OD  
+
A/Y  
B/Z  
3.32kΩ  
B/Z  
DI  
–1V TO +3.4V  
V
TEST  
S1  
S2  
–1V OR +3.4V  
V
TEST  
NOTES  
1. 1% TOLERANCE FOR ALL RESISTORS  
Figure 19. Driver Voltage Measurement over Common-Mode Range  
Figure 22. Driver Short Circuit  
A/Y  
B/Z  
1.3V  
0.7V  
C1  
1pF  
R1  
24.9  
A/Y  
B/Z  
DI  
R2  
24.9Ω  
C3  
2.5pF  
V
OC  
V  
OC(SS)  
V
C2  
V
OC  
OC(PP)  
1pF  
NOTES  
1. C1, C2, AND C3 ARE 20% AND INCLUDE PROBE/STRAY  
CAPACITANCE LESS THAN 2cm FROM DUT.  
2. R1 AND R2 ARE 1%, METAL FILM, SURFACE MOUNT,  
LESS THAN 2cm FROM DUT.  
NOTES  
1. INPUT PULSE GENERATOR: 500kHz; 50% ± 5% DUTY CYCLE; t , t 1ns.  
R
F
2. V  
MEASURED ON TEST EQUIPMENT WITH –3dB BANDWIDTH 1GHz.  
OC(PP)  
Figure 20. Driver Common-Mode Output Voltage Measurement  
Figure 23. Driver Common-Mode Output Voltage (Steady State)  
V
CC  
A/Y  
S1  
S2  
R1  
1.62k  
±1%  
V
, V  
OR V  
Z(O)  
,
DE B/Z  
A(O) B(O)  
V
Y(O)  
Figure 21. Maximum Steady-State Output Voltage Measurement  
Rev. A | Page 11 of 20  
 
 
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
DRIVER TIMING MEASUREMENTS  
V
CC  
DI  
0V  
C1  
1pF  
A/Y  
B/Z  
0.5V  
0.5V  
tPHL  
CC  
CC  
R1  
50Ω  
C3  
0.5pF  
DI  
OUT  
tPLH  
V
SS  
C2  
1pF  
90% V  
90% V  
SS  
SS  
V
PH  
OUT  
0V  
0V  
10% V  
NOTES  
1. C1, C2, AND C3 ARE 20% AND INCLUDE PROBE/STRAY  
CAPACITANCE LESS THAN 2cm FROM DUT.  
2. R1 IS 1%, METAL FILM, SURFACE MOUNT,  
LESS THAN 2cm FROM DUT.  
10% V  
SS  
SS  
0% V  
SS  
V
PL  
tR  
tF  
Figure 24. Driver Timing Measurement  
NOTES  
1. INPUT PULSE GENERATOR: 500kHz; 50% ± 5% DUTY CYCLE; tR  
, tF 1ns.  
V
CC  
2. MEASURED ON TEST EQUIPMENT WITH –3dB BANDWIDTH 1GHz.  
Figure 27. Driver Propagation, Rise/Fall Times and Voltage Overshoot  
C1  
1pF  
A/Y  
B/Z  
R1  
24.9  
C4  
0.5pF  
DI  
OUT  
S1  
V
CC  
R2  
24.9Ω  
C3  
2.5pF  
DE  
DE  
0.5V  
tPZL  
0.5V  
tPLZ  
CC  
CC  
C2  
1pF  
0V  
0V  
NOTES  
1. C1, C2, C3, AND C4 ARE 20% AND INCLUDE PROBE/STRAY  
CAPACITANCE LESS THAN 2cm FROM DUT.  
2. R1 AND R2 ARE 1%, METAL FILM, SURFACE MOUNT,  
LESS THAN 2cm FROM DUT.  
OUT  
–0.1V  
0.1V  
–0.1V  
0.1V  
(DI = 0V)  
~ –0.6V  
~ 0.6V  
tPZH  
tPHZ  
Figure 25. Driver Enable/Disable Time  
OUT  
(DI = V  
)
V
CC  
CC  
0V  
INPUT  
(CLOCK)  
V
/2  
V
/2  
CC  
CC  
NOTES  
1. INPUT PULSE GENERATOR: 500kHz; 50% ± 5% DUTY CYCLE; tR, tF 1ns.  
2. MEASURED ON TEST EQUIPMENT WITH –3dB BANDWIDTH 1GHz.  
0V  
1/f0  
Figure 28. Driver Enable/Disable Times  
V
CC  
OUTPUT  
V
– V  
OR  
– V  
A
B
0V  
0V  
INPUT  
(PRBS)  
0.5V  
0.5V  
CC  
CC  
V
Y
Z
(IDEAL)  
0V  
1/f0  
V
– V  
B
A
OR  
OUTPUT  
V
– V  
Y
Z
V
– V  
A
B
0V  
0V  
OUTPUT  
0V  
0V  
OR  
– V  
V
Y
Z
V
– V  
A
B
(ACTUAL )  
OR  
V
– V  
tJ(PP)  
tc(n)  
Y
Z
tJ(PER) = |tc(n) – 1/f0|  
NOTES  
NOTES  
1. INPUT PULSE GENERATOR: AGILENT 8304A STIMULUS SYSTEM;  
200Mbps; 2 – 1PRBS.  
1. INPUT PULSE GENERATOR: AGILENT 8304A STIMULUS SYSTEM;  
100MHz; 50% ± 1% DUTY CYCLE.  
15  
2. MEASURED USING TEK TDS6604 WITH TDSJIT3 SOFTWARE.  
2. MEASURED USING TEK TDS6604 WITH TDSJIT3 SOFTWARE.  
Figure 29. Driver Peak-to-Peak Jitter Characteristics  
Figure 26. Driver Period Jitter Characteristics  
Rev. A | Page 12 of 20  
 
 
 
 
 
 
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
RECEIVER TIMING MEASUREMENTS  
A
RO  
V
ID  
RE  
B
V
A
B
C
15pF  
L
V
OUT  
V
NOTES  
1. C IS 20%, CERAMIC, SURFACE MOUNT, AND INCLUDES  
L
PROBE/STRAY CAPACITANCE < 2cm FROM DUT.  
Figure 30. Receiver Timing Measurement  
0V  
0V  
V
ID  
1.4V  
A
R
L
499  
tRPHL  
90%  
tRPLH  
RO  
1.0V  
B
RE  
V
OH  
90%  
1.2V  
C
15pF  
L
V
V
TEST  
OUT  
RE INPUT  
V
0.5V  
0.5V  
OUT  
CC  
CC  
10%  
10%  
V
OL  
tF  
tR  
NOTES  
1. C IS 20% AND INCLUDES PROBE/STRAY  
CAPACITANCE < 2cm FROM DUT.  
NOTES  
1. INPUT PULSE GENERATOR: 50MHz; 50% ± 5% DUTY CYCLE; t , t 1ns.  
2. MEASURED ON TEST EQUIPMENT WITH –3dB BANDWIDTH 1GHz.  
L
R
F
2. R IS 1% METAL FILM, SURFACE MOUNT, <2cm FROM DUT.  
L
Figure 33. Receiver Propagation and Rise/Fall Times  
Figure 31. Receiver Enable/Disable Time  
V
CC  
INPUT  
RE INPUT  
0.5V  
0.5V  
(V – V  
)
CC  
CC  
A
B
0V  
V
0V  
tRPZL  
1/f0  
tRPLZ  
V
CC  
OUT  
(V  
TEST  
= V )  
CC  
0.5V  
0.5V  
CC  
CC  
(A = 1V)  
V
OH  
V
V
+ 0.5V  
– 0.5V  
OL  
V
V
OL  
OUTPUT  
(IDEAL)  
0.5V  
0.5V  
CC  
CC  
tRPZH  
tRPHZ  
OH  
V
V
OL  
OUT  
OH  
(V  
TEST  
(A = 1.4V)  
= 0V)  
1/f0  
0V  
V
OH  
NOTES  
1. INPUT PULSE GENERATOR: 500kHz; 50% ± 5% DUTY CYCLE; tR  
,
tF 1ns.  
OUTPUT  
(ACTUAL)  
0.5V  
0.5V  
CC  
CC  
Figure 34. Receiver Enable/Disable Times  
V
OL  
tc(n)  
V
A
tJ(PER) = |tc(n) – 1f0|  
INPUT  
(PRBS)  
NOTES  
1. INPUT PULSE GENERATOR: AGILENT 8304A STIMULUS SYSTEM;  
100MHz; 50% ± 1% DUTY CYCLE.  
V
B
2. MEASURED USING TEK TDS6604 WITH TDSJIT3 SOFTWARE.  
V
OH  
Figure 32. Receiver Period Jitter Characteristics  
OUTPUT  
0.5V  
0.5V  
CC  
CC  
V
OL  
tJ(PP)  
NOTES  
1. INPUT PULSE GENERATOR: AGILENT 8304A STIMULUS SYSTEM;  
15  
200Mbps; 2 – 1PRBS.  
2. MEASURED USING TEK TDS6604 WITH TDSJIT3 SOFTWARE.  
Figure 35. Receiver Peak-to-Peak Jitter Characteristics  
Rev. A | Page 13 of 20  
 
 
 
 
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
THEORY OF OPERATION  
The ADN4691E/ADN4693E/ADN4696E/ADN4697E are  
transceivers for transmitting and receiving multipoint, low  
voltage differential signaling (M-LVDS) at high speed (data  
rates up to 200 Mbps). Each device has a differential line driver  
and a differential line receiver, allowing each device to send and  
receive data.  
Driver, Half Duplex (ADN4691E/ADN4696E)  
Table 10. Transmitting (See Table 9 for Abbreviations)  
Inputs  
Outputs  
Power  
Yes  
Yes  
Yes  
Yes  
DE  
H
H
H
L
DI  
H
L
NC  
X
X
A
H
L
B
L
H
H
Z
Z
Z
Multipoint LVDS expands on the established LVDS low voltage  
differential signaling method by allowing bidirectional commu-  
nication between more than two nodes. Up to 32 nodes can be  
connected on an M-LVDS bus.  
L
Z
Z
Z
Yes  
≤1.5 V  
NC  
X
X
HALF-DUPLEX/FULL-DUPLEX OPERATION  
Driver, Full Duplex (ADN4693E/ADN4697E)  
Half-duplex operation allows a transceiver to transmit or  
receive, but not both at the same time. However, with full-  
duplex operation, a transceiver can transmit and receive  
simultaneously. The ADN4691E/ADN4696E are half-duplex  
devices in which the driver and the receiver share differential  
bus terminals. The ADN4693E/ADN4697E are full-duplex  
devices that have dedicated driver output and receiver input  
pins. Figure 37 and Figure 38 show typical half- and full-duplex  
bus topologies, respectively, for M-LVDS.  
Table 11. Transmitting (See Table 9 for Abbreviations)  
Inputs  
Outputs  
Power  
Yes  
Yes  
DE  
H
H
DI  
H
L
Y
H
L
Z
L
H
H
Z
Z
Z
Yes  
Yes  
Yes  
≤1.5 V  
H
L
NC  
X
NC  
X
X
L
Z
Z
Z
THREE-STATE BUS CONNECTION  
X
The outputs of the device can be placed in a high impedance  
state by disabling the driver or receiver. This allows several  
driver outputs to be connected to a single M-LVDS bus. Note  
that, on each bus line, only one driver can be enabled at a time,  
but many receivers can be enabled at the same time.  
Type 1 Receiver (ADN4691E/ADN4693E)  
Table 12. Receiving (see Table 9 for Abbreviations)  
Inputs  
Output  
RO  
A − B  
RE  
Power  
Yes  
The driver can be enabled or disabled using the driver enable  
pin (DE). DE enables the driver outputs when taken high; when  
taken low, DE puts the driver outputs into a high impedance state.  
≥50 mV  
L
H
L
I
Yes  
≤−50 mV  
L
Yes  
−50 mV < A − B < 50 mV  
L
RE  
Similarly, an active low receiver enable pin ( ) controls the  
Yes  
Yes  
Yes  
No  
NC  
X
X
L
I
RE  
receiver. Taking  
low enables the receiver, whereas taking it  
H
NC  
X
Z
Z
Z
high puts the receiver outputs into a high impedance state.  
X
Truth tables for driver and receiver output states under various  
conditions are shown in Table 10, Table 11, Table 12 and  
Table 13.  
Type 2 Receiver (ADN4696E/ADN4697E)  
TRUTH TABLES  
Table 13. Receiving (See Table 9 for Abbreviations)  
Inputs  
Output  
Table 9. Truth Table Abbreviations  
RE  
Power  
Yes  
Yes  
A − B  
RO  
H
L
Abbreviation  
Description  
≥150 mV  
≤50 mV  
L
L
H
L
High level  
Low level  
Yes  
Yes  
Yes  
Yes  
50 mV < A − B < 150 mV  
NC  
X
X
X
L
L
H
NC  
X
I
L
Z
Z
Z
X
I
Z
Don’t care  
Indeterminate  
High impedance (off)  
Disconnected  
NC  
No  
Rev. A | Page 14 of 20  
 
 
 
 
 
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Type 2 receivers (ADN4696E/ADN4697E) have an open circuit  
and bus-idle fail-safe. The input threshold is offset by 100 mV so  
that a logic low is present on the receiver output when the bus is  
idle or when the receiver inputs are open.  
GLITCH-FREE POWER-UP/POWER-DOWN  
To minimize disruption to the bus when adding nodes, the  
M-LVDS outputs of the device are kept glitch-free when the  
device is powering up or down. This feature allows insertion of  
devices onto a live M-LVDS bus because the bus outputs are not  
switched on before the device is fully powered. In addition, all  
outputs are placed in a high impedance state when the device is  
powered off.  
The different receiver thresholds for the two receiver types are  
illustrated in Figure 36. See Table 12 and Table 13 for receiver  
output states under various conditions.  
TYPE 1 RECEIVER  
TYPE 2 RECEIVER  
OUTPUT  
OUTPUT  
FAULT CONDITIONS  
The ADN4691E/ADN4693E/ADN4696E/ADN4697E contain  
short-circuit current protection that protects the part under  
fault conditions in the case of short circuits on the bus. This  
protection limits the current in a fault condition to 24 mA at  
the transmitter outputs for short-circuit faults between −1 V  
and +3.4 V. Any network fault must be cleared to avoid data  
transmission errors and to ensure reliable operation of the data  
network and any devices that are connected to the network.  
0.25  
0.15  
LOGIC 1  
LOGIC 1  
UNDEFINED  
0.05  
0
UNDEFINED  
LOGIC 0  
–0.05  
LOGIC 0  
–0.15  
RECEIVER INPUT THRESHOLDS/FAIL-SAFE  
Two receiver types are available, both of which incorporate  
protection against short circuits.  
Figure 36. Input Threshold Voltages  
The Type 1 receivers of the ADN4691E/ADN4693E incorporate  
25 mV of hysteresis. This ensures that slow-changing signals or  
a loss of input does not result in oscillation of the receiver output.  
Type 1 receiver thresholds are 50 mV; therefore, the state of the  
receiver output is indeterminate if the differential between A and  
B is about 0 V. This state occurs if the bus is idle (approximately 0 V  
on both A and B), with no drivers enabled on the attached nodes.  
Rev. A | Page 15 of 20  
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Data Sheet  
APPLICATIONS INFORMATION  
M-LVDS extends the low power, high speed, differential  
signaling of LVDS (low voltage differential signaling) to  
multipoint systems where multiple nodes are connected over  
short distances in a bus topology network.  
The communication line is typically terminated at both ends  
by resistors (RT), the value of which is chosen to match the  
characteristic impedance of the medium (typically 100 ꢀ).  
For half-duplex multipoint applications such as the one shown  
in Figure 37, only one driver can be enabled at any time. Full-  
duplex nodes allow a master-slave topology as shown in Figure 38.  
In this configuration, a master node can concurrently send and  
receive data to/from slave nodes. At any time, only one slave  
node can have its driver enabled to concurrently transmit data  
back to the master node.  
With M-LVDS, a transmitting node drives a differential signal  
across a transmission medium such as a twisted pair cable. The  
transmitted differential signal allows other receiving nodes that  
are connected along the bus to detect a differential voltage that  
can then be converted back into a single-ended logic signal by  
the receiver.  
R
R
T
T
A
B
A
B
A
B
A
B
ADN4696E  
ADN4696E  
ADN4696E  
ADN4696E  
R
R
R
R
D
D
D
D
RO RE DE DI  
RO RE DE DI  
RO RE DE DI  
RO RE DE DI  
NOTES  
1. MAXIMUM NUMBER OF NODES: 32.  
2. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.  
T
Figure 37. ADN4696E Typical Half-Duplex M-LVDS Network (Type 2 Receivers with Threshold Offset for Bus-Idle Fail-Safe)  
R
R
R
R
T
T
T
T
A
B
R
Z
Y
A
B
R
Z
Y
A
B
R
Z
Y
A B Z Y  
MASTER  
SLAVE  
SLAVE  
SLAVE  
ADN4697E  
ADN4697E  
ADN4697E  
ADN4697E  
R
D
D
D
D
RO RE DE DI  
RO RE DE DI  
RO RE DE DI  
RO RE DE DI  
NOTES  
1. MAXIMUM NUMBER OF NODES: 32.  
2. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.  
T
Figure 38. ADN4697E Typical Full-Duplex M-LVDS Master-Slave Network (Type 2 Receivers with Threshold Offset for Bus-Idle Fail-Safe)  
Rev. A | Page 16 of 20  
 
 
 
Data Sheet  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 40. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADN4691EBRZ  
ADN4691EBRZ-RL7  
ADN4693EBRZ  
ADN4693EBRZ-RL7  
ADN4696EBRZ  
ADN4696EBRZ-RL7  
ADN4697EBRZ  
ADN4697EBRZ-RL7  
EVAL-ADN469xEHDEBZ  
EVAL-ADN469xEFDEBZ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
14-Lead Standard Small Outline Package (SOIC_N)  
14-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
14-Lead Standard Small Outline Package (SOIC_N)  
14-Lead Standard Small Outline Package (SOIC_N)  
Evaluation Board for Half-Duplex (ADN4691E/ADN4696E)  
Evaluation Board for Full-Duplex (ADN4693E/ADN4697E)  
R-8  
R-8  
R-14  
R-14  
R-8  
R-8  
R-14  
R-14  
1 Z = RoHS Compliant Part.  
Rev. A | Page 17 of 20  
 
 
 
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
NOTES  
Data Sheet  
Rev. A | Page 18 of 20  
Data Sheet  
NOTES  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
Rev. A | Page 19 of 20  
ADN4691E/ADN4693E/ADN4696E/ADN4697E  
NOTES  
Data Sheet  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10355-0-3/12(A)  
Rev. A | Page 20 of 20  
 
 

相关型号:

ADN4697EBRZ

3.3 V, 200 Mbps, Half- and Full-Duplex
ADI

ADN4697EBRZ-RL7

3.3 V, 200 Mbps, Half- and Full-Duplex
ADI

ADN5-24-1PM

60-480 Watts
ASTEC

ADN5-24-1PM

Power Supply
EMERSON-NETWO

ADN5-24-1PM-C

Slim form factor 120 - 480 Watts
EMERSON-NETWO

ADN5-24-3PM

120-960 Watts
ASTEC

ADN8102

3.75 Gbps Quad Bidirectional CX4 Equalizer
ADI

ADN8102-EVALZ

3.75 Gbps Quad Bidirectional CX4 Equalizer
ADI

ADN8102ACPZ

3.75 Gbps Quad Bidirectional CX4 Equalizer
ADI

ADN8102ACPZ-R7

3.75 Gbps Quad Bidirectional CX4 Equalizer
ADI

ADN8810

12-Bit High Output Current Source
ADI

ADN8810-EVAL

12-Bit High Output Current Source
ADI