ADP121-3.0-EVALZ [ADI]

150 mA, Low Quiescent Current, CMOS Linear Regulator; 150毫安,低静态电流, CMOS线性稳压器
ADP121-3.0-EVALZ
型号: ADP121-3.0-EVALZ
厂家: ADI    ADI
描述:

150 mA, Low Quiescent Current, CMOS Linear Regulator
150毫安,低静态电流, CMOS线性稳压器

稳压器
文件: 总20页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
150 mA, Low Quiescent Current,  
CMOS Linear Regulator  
ADP121  
TYPICAL APPLICATION CIRCUITS  
FEATURES  
Input voltage range: 2.3 V to 5.5 V  
Output voltage range: 1.2 V to 3.3 V  
Output current: 150 mA  
V
= 2.3V  
1µF  
V
= 1.8V  
OUT  
IN  
5
4
1
2
3
VIN  
GND  
EN  
VOUT  
NC  
1µF  
Low quiescent current  
I
I
GND = 11 μA with 0 ꢀA load  
GND = 30 μA with 150 mA load  
NC = NO CONNECT  
Low shutdown current: <1 μA  
Low dropout voltage  
Figure 1. ADP121 TSOT with Fixed Output Voltage, 1.8 V  
90 mV @ 150 mA load  
High PSRR  
V
= 1.8V  
V
= 2.3V  
1µF  
OUT  
IN  
VIN  
EN  
VOUT  
GND  
70 dB @ 1 kHz at VOUT = 1.2 V  
70 dB @ 10 kHz at VOUT = 1.2 V  
Low noise: 40 μV rms at VOUT = 1.2 V  
No noise bypass capacitor required  
Output voltage accuracy: 1ꢁ  
Stable with a small 1 μF ceramic output capacitor  
16 fixed output voltage options  
Current limit and thermal overload protection  
Logic controlled enable  
1µF  
Figure 2. ADP121 WLCSP with Fixed Output Voltage, 1.8 V  
5-lead TSOT package  
4-ball 0.4 mm pitch WLCSP  
APPLICATIONS  
Mobile phones  
Digital cameras and audio devices  
Portable and battery-powered equipment  
Post dc-to-dc regulation  
Post regulation  
GENERAL DESCRIPTION  
The ADP121 is a quiescent current, low dropout, linear regulators  
that operate from 2.3 V to 5.5 V and provide up to 150 mA of  
output current. The low 135 mV dropout voltage at 150 mA  
load improves efficiency and allows operation over a wide  
input voltage range. The low 30 μA of quiescent current at full  
load make the ADP121 ideal for battery-operated portable  
equipment.  
operation with small 1 ꢀF ceramic output capacitors. The  
ADP121 delivers good transient performance with minimal  
board area.  
Short-circuit protection and thermal overload protection circuits  
prevent damage in adverse conditions. The ADP121 is available  
in a tiny 5-lead TSOT and 4-ball 0.4 mm pitch WLCSP pack-  
ages and utilizes the smallest footprint solution to meet a  
variety of portable applications.  
The ADP121 is available in 16 fixed output voltage options  
ranging from 1.2 V to 3.3 V. The parts are optimized for stable  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
 
ADP121  
TABLE OF CONTENTS  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information.............................................................. 12  
Capacitor Selection .................................................................... 12  
Undervoltage Lockout ............................................................... 13  
Enable Feature ............................................................................ 13  
Current Limit and Thermal Overload Protection ................. 14  
Thermal Considerations............................................................ 14  
Printed Circuit Board Layout Considerations ....................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
7/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP121  
SPECIFICATIONS  
VIN = (VOUT + 0.5 V) or 2.3 V, whichever is greater; EN = VIN; IOUT = 10 mA; CIN = COUT = 1 ꢀF; TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
11  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = −40°C to +125°C  
IOUT = 0 μA  
IOUT = 0 μA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
EN = GND  
2.3  
5.5  
IGND  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
21  
29  
40  
15  
30  
SHUTDOWN CURRENT  
IGND-SD  
VOUT  
0.1  
EN = GND, TJ = −40°C to +125°C  
IOUT = 10 mA  
100 μA < IOUT < 150 mA,  
1.5  
+1  
+2  
FIXED OUTPUT VOLTAGE ACCURACY  
−1  
−2  
%
VIN = (VOUT + 0.5 V) to 5.5 V  
100 μA < IOUT < 150 mA,  
VIN = (VOUT + 0.5 V) to 5.5 V  
TJ = −40°C to +125°C  
−3  
+3  
%
REGULATION  
Line Regulation  
∆VOUT/∆VIN  
VIN = (VOUT + 0.5 V) to 5.5 V, IOUT = 1 mA  
TJ = −40°C to +125°C  
−0.03  
+0.03  
0.005  
%/V  
Load Regulation1  
∆VOUT/∆IOUT IOUT = 1 mA to 150 mA  
0.001  
%/mA  
%/mA  
IOUT = 1 mA to 150 mA  
TJ = −40°C to +125°C  
DROPOUT VOLTAGE2  
TSOT  
VDROPOUT  
VOUT = 3.3 V  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
VOUT = 3.3 V  
8
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
μs  
12  
120  
6
180  
9
WLCSP  
90  
135  
350  
START-UP TIME3  
TSTART-UP  
ILIMIT  
120  
225  
CURRENT-LIMIT THRESHOLD4  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
EN INPUT  
160  
1.2  
mA  
TSSD  
TSSD-HYS  
TJ rising  
150  
15  
°C  
°C  
EN Input Logic High  
VIH  
2.3 V ≤ VIN ≤ 5.5 V  
V
EN Input Logic Low  
EN Input Leakage Current  
VIL  
VI-LEAKAGE  
2.3 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
0.4  
1
V
μA  
0.05  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
OUTNOISE  
2.25  
V
V
mV  
1.5  
120  
65  
52  
OUTPUT NOISE  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 1.2 V  
μV rms  
μV rms  
μV rms  
40  
Rev. 0 | Page 3 of 20  
 
ADP121  
Parameter  
Symbol  
Conditions  
Min  
Typ  
60  
66  
Max  
Unit  
dB  
dB  
POWER SUPPLY REJECTION RATIO  
PSRR  
10 kHz, VIN = 5 V, VOUT = 3.3 V  
10 kHz, VIN = 5 V, VOUT = 2.5 V  
10 kHz, VIN = 5 V, VOUT = 1.2 V  
70  
dB  
INPUT AND OUTPUT CAPACITOR5  
Minimum Input and Output Capacitance  
Capacitor ESR  
CAPMIN  
RESR  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
0.70  
0.001  
μF  
Ω
1
1 Based on an end-point calculation using 1 mA and 100 mA loads. See Figure 6 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.3 V.  
3 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
5 The minimum input and output capacitance should be greater than 0.70 ꢀF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. 0 | Page 4 of 20  
ADP121  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4” × 3, circuit  
board. Refer to JESD 51-7 and JESD 51-9 for detailed  
information on the board construction. For additional  
information, see AN-617 Application Note, MicroCSPTM Wafer  
Level Chip Scale Package.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +6 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to +6 V  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
Ψ
JB is the junction-to-board thermal characterization parameter  
measured in °C/W. ΨJB is based on modeling and calculation  
using a four-layer board. The JESD51-12 Guidelines for Reporting  
and Using Package Thermal Information states that thermal  
characterization parameters are not the same as thermal  
resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation  
from the package, factors that make ΨJB more useful in real-  
world applications. Maximum TJ is calculated from the board  
temperature (TB) and PD using the following formula:  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP121 can be damaged when the junction  
temperature limits are exceeded. Monitoring the ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient temperature  
may have to be derated. In applications with moderate power  
dissipation and low PCB thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long  
as the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package (θJA). TJ is calculated from  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed  
information about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 3.  
Package Type  
5-Lead TSOT  
4-Ball 0.4 mm Pitch WLCSP  
θJA  
ΨJB  
43  
58  
Unit  
°C/W  
°C/W  
170  
260  
TA and PD using the following formula:  
ESD CAUTION  
TJ = TA + (PD × θJA)  
Junction-to-ambient thermal resistance, θJA, is based on  
modeling and calculation using a four-layer board. The  
junction-to-ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
Rev. 0 | Page 5 of 20  
 
 
 
 
ADP121  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
5
4
1
2
3
VIN  
GND  
EN  
VOUT  
NC  
A
B
VIN  
VOUT  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
EN  
GND  
NC = NO CONNECT  
Figure 3. 5-Lead TSOT Pin Configuration  
Figure 4. 4-Ball WLCSP Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
TSOT WLCSP Mnemonic Description  
1
2
3
A1  
B2  
B1  
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or larger capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
4
5
N/A  
A2  
NC  
VOUT  
No Connect. Not connected internally.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
Rev. 0 | Page 6 of 20  
 
ADP121  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 1 ꢀF, TA = 25°C, unless otherwise noted.  
1.804  
1.802  
1.800  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 1.8V  
V
V
= 1.8V  
OUT  
= 2.3V  
OUT  
= 2.3V  
IN  
IN  
1.798  
1.796  
1.794  
1.792  
I
I
I
I
I
I
= 10µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
I
= 10µA  
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 100µA  
= 1mA  
1.790  
1.788  
1.786  
= 10mA  
= 100mA  
= 150mA  
0
–40°C  
–5°C  
25°C  
(°C)  
85°C  
125°C  
–40°C  
–5°C  
25°C  
(°C)  
85°C  
125°C  
T
T
J
J
Figure 5. Output Voltage vs. Junction Temperature  
Figure 8. Ground Current vs. Junction Temperature  
1.806  
1.804  
1.802  
35  
V
V
T
= 1.8V  
V
V
T
= 1.8V  
OUT  
= 2.3V  
OUT  
= 2.3V  
IN  
= 25°C  
IN  
= 25°C  
A
30  
25  
20  
A
1.800  
1.798  
1.796  
1.794  
15  
10  
5
0
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 6. Output Voltage vs. Load Current  
Figure 9. Ground Current vs. Load Current  
1.806  
1.804  
1.802  
1.800  
1.798  
35  
30  
25  
20  
I
I
I
I
I
I
= 10µA  
= 100µA  
= 1mA  
= 10mA  
= 50mA  
= 100mA  
V
= 1.8V  
V
= 1.8V  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
OUT  
= 25°C  
OUT  
= 25°C  
T
T
A
A
15  
10  
5
I
I
I
I
I
I
= 10µA  
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
1.796  
1.794  
0
2.3  
2.3  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
V
V
IN  
IN  
Figure 10. Ground Current vs. Input Voltage  
Figure 7. Output Voltage vs. Input Voltage  
Rev. 0 | Page 7 of 20  
 
 
ADP121  
0.35  
0.30  
0.25  
0.20  
140  
T
= 25°C  
V
V
V
V
V
V
= 2.30  
= 2.50  
= 3.00  
= 3.50  
= 4.20  
= 5.50  
A
IN  
IN  
IN  
IN  
IN  
IN  
120  
100  
80  
60  
40  
20  
0
0.15  
0.10  
0.05  
V
= 2.5V  
OUT  
V
= 3.3V  
OUT  
0
–50  
–25  
0
25  
50  
75  
100  
125  
1
10  
100  
1000  
TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Dropout Voltage vs. Load Current, WLCSP  
3.35  
3.30  
3.25  
3.20  
V
T
= 3.3V  
180  
OUT  
= 25°C  
T
= 25°C  
A
A
160  
140  
120  
100  
80  
60  
40  
V
V
V
V
V
V
@ 1mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3.15  
3.10  
3.05  
V
= 2.5V  
OUT  
@ 10mA  
@ 20mA  
@ 50mA  
@ 100mA  
@ 150mA  
V
= 3.3V  
OUT  
20  
0
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
V
1
10  
100  
1000  
IN  
I
(mA)  
LOAD  
Figure 12. Dropout Voltage vs. Load Current, TSOT  
Figure 15. Output Voltage vs. Input Voltage (In Dropout), WLCSP  
3.35  
3.30  
3.25  
3.20  
60  
V
T
= 3.3V  
V
T
= 3.3V  
OUT  
= 25°C  
OUT  
= 25°C  
A
A
50  
40  
30  
V
V
V
V
V
V
@ 1mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
3.15  
3.10  
3.05  
20  
10  
0
@ 10mA  
@ 20mA  
@ 50mA  
@ 100mA  
@ 150mA  
I
I
I
= 1mA  
= 10mA  
= 20mA  
I
I
I
= 50mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
V
V
(V)  
IN  
IN  
Figure 13. Output Voltage vs. Input Voltage (In Dropout), TSOT  
Figure 16. Ground Current vs. Input Voltage (In Dropout)  
Rev. 0 | Page 8 of 20  
ADP121  
0
0
–20  
3.3V/150mA  
3.3V/100µA  
1.2V/150mA  
1.2V/100µA  
1.8V/150mA  
1.8V/100µA  
V
V
V
= 50mV  
RIPPLE  
= 5V  
IN  
–10  
= 1.2V  
OUT  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
C
= 1µF  
OUT  
150mA  
100mA  
10mA  
1mA  
100µA  
0µA  
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Power Supply Rejection Ratio vs. Frequency  
Figure 20. Power Supply Rejection Ratio vs. Frequency, at Various Output  
Voltages and Load Currents  
0
10  
V
V
V
= 50mV  
RIPPLE  
= 5V  
IN  
1.2V  
1.8V  
3.3V  
–10  
150mA  
100mA  
10mA  
1mA  
100µA  
0µA  
= 1.8V  
= 1µF  
OUT  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
C
OUT  
1
0.1  
0
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Power Supply Rejection Ratio vs. Frequency  
Figure 21. Output Noise Spectrum, VIN = 5 V, ILOAD = 10 mA, COUT = 1 μF  
70  
60  
50  
40  
0
V
V
V
= 50mV  
RIPPLE  
150mA  
100mA  
10mA  
1mA  
100µA  
0µA  
–10  
= 5V  
IN  
= 3.3V  
= 1µF  
OUT  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
C
OUT  
30  
20  
10  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
0
0.001  
0.01  
0.1  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
I
(mA)  
LOAD  
FREQUENCY (Hz)  
Figure 19. Power Supply Rejection Ratio vs. Frequency  
Figure 22. Output Noise vs. Load Current and Output Voltage, VIN = 5 V, COUT = 1 μF  
Rev. 0 | Page 9 of 20  
ADP121  
I
LOAD  
I
LOAD  
1mA TO 150mA LOAD STEP,  
2.5A/µs  
4V TO 5V INPUT VOLTAGE STEP,  
2V/µs  
V
OUT  
V
OUT  
V
C
= 1.8V,  
V
V
= 5V  
= 1.8V  
OUT  
= C = 1µF  
OUT  
IN  
OUT  
IN  
(40µs/DIV)  
(4µs/DIV)  
Figure 25. Line Transient Response, Load Current = 150 mA  
Figure 23. Load Transient Response, CIN = COUT = 1 μF  
V
C
= 1.8V,  
OUT  
= C  
I
= 1µF  
LOAD  
IN  
OUT  
1mA TO 150mA LOAD STEP,  
2.5A/µs  
I
LOAD  
4V TO 5V INPUT VOLTAGE STEP,  
2V/µs  
V
OUT  
V
OUT  
V
V
= 5V  
= 1.8V  
IN  
OUT  
(40µs/DIV)  
(10µs/DIV)  
Figure 26. Line Transient Response, Load Current = 1 mA  
Figure 24. Load Transient Response, CIN = COUT = 4.7 μF  
Rev. 0 | Page 10 of 20  
ADP121  
THEORY OF OPERATION  
The ADP121 is a low quiescent current, low dropout linear  
regulators that operate from 2.3 V to 5.5 V and provide up  
to 150 mA of output current. Drawing a low 30 μA quiescent  
current (typical) at full load makes the ADP121 ideal for battery-  
operated portable equipment. Shutdown current consumption  
is typically 100 nA.  
Internally, the ADP121 consists of a reference, an error amplifier,  
a feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device, which is con-  
trolled by the error amplifier. The error amplifier compares the  
reference voltage with the feedback voltage from the output and  
amplifies the difference. If the feedback voltage is lower than  
the reference voltage, the gate of the PMOS device is pulled  
lower, allowing more current to flow and increasing the output  
voltage. If the feedback voltage is higher than the reference  
voltage, the gate of the PMOS device is pulled higher, allowing  
less current to flow and decreasing the output voltage.  
Optimized for use with small 1 ꢀF ceramic capacitors,  
the ADP121 provides excellent transient performance.  
VIN  
VOUT  
R1  
The ADP121 is available in 16 output voltage options ranging  
from 1.2 V to 3.3 V. The ADP121 uses the EN pin to enable and  
disable the VOUT pin under normal operating conditions.  
When EN is high, VOUT turns on; when EN is low, VOUT  
turns off. For automatic startup, EN can be tied to VIN.  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
PROTECT  
R2  
EN  
SHUTDOWN  
0.8V REFERENCE  
Figure 27. Internal Block Diagram  
Rev. 0 | Page 11 of 20  
 
ADP121  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input Bypass Capacitor  
Connecting a 1 ꢀF capacitor from VIN to GND reduces the  
circuit sensitivity to the printed circuit board (PCB) layout,  
especially when long input traces or high source impedance  
is encountered. If output capacitance greater than 1 ꢀF is  
required, the input capacitor should be increased to match it.  
The ADP121 is designed for operation with small, space-saving  
ceramic capacitors, but functions with most commonly used  
capacitors as long as care is taken with the effective series resistance  
(ESR) value. The ESR of the output capacitor affects stability of the  
LDO control loop. A minimum of 0.70 ꢀF capacitance with an  
ESR of 1 Ω or less is recommended to ensure stability of the  
ADP121. The transient response to changes in load current is  
also affected by output capacitance. Using a larger value of output  
capacitance improves the transient response of the ADP121 to  
large changes in the load current. Figure 28 and Figure 29 show  
the transient responses for output capacitance values of 1 ꢀF and  
4.7 ꢀF, respectively.  
Input and Output Capacitor Properties  
Any good quality ceramic capacitor can be used with the  
ADP121, as long as it meets the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufac-  
tured with a variety of dielectrics, each with a different behavior  
over temperature and applied voltage. Capacitors must have an  
adequate dielectric to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R  
or X7R dielectrics with a voltage rating of 6.3 V or 10 V are  
recommended. Y5V and Z5U dielectrics are not recommended,  
due to their poor temperature and dc bias characteristics.  
I
LOAD  
1mA TO 150mA LOAD STEP,  
2.5A/µs  
Figure 30 depicts the capacitance vs. voltage bias characteristic  
of an 0402 1 ꢀF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15ꢁ over the −40°C to +85°C tempera-  
ture range and is not a function of package or voltage rating.  
1.2  
CH1 MEAN  
115.7mA  
V
OUT  
V
C
= 1.8V,  
OUT  
= C  
= 1µF  
IN  
OUT  
1.0  
0.8  
0.6  
(400ns/DIV)  
Figure 28. Output Transient Response, COUT = 1 ꢀF  
I
LOAD  
1mA TO 150mA LOAD STEP,  
2.5A/µs  
0.4  
0.2  
0
0
2
4
6
8
10  
VOLTAGE (V)  
V
OUT  
Figure 30. Capacitance vs. Voltage Bias Characteristic  
V
= 1.8V,  
OUT  
C
= C = 4.7µF  
IN  
OUT  
(400ns/DIV)  
Figure 29. Output Transient Response, COUT = 4.7 ꢀF  
Rev. 0 | Page 12 of 20  
 
 
 
 
 
ADP121  
Equation 1 can be used to determine the worst-case capacitance  
accounting for capacitor variation over temperature, compo-  
nent tolerance, and voltage.  
As shown in Figure 31, the EN pin has built in hysteresis. This  
prevents on/off oscillations that may occur due to noise on the  
EN pin as it passes through the threshold points.  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
The active/inactive thresholds of the EN pin are derived from  
the VIN voltage. Therefore, these thresholds vary with changing  
input voltage. Figure 32 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.3 V to 5.5 V.  
1.10  
where:  
C
BIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
1.05  
1.00  
In this example, TEMPCO over −40°C to +85°C is assumed to  
be 15ꢁ for an X5R dielectric. TOL is assumed to be 10ꢁ, and  
C
BIAS is 0.94 μF at 1.8 V from the graph in Figure 30.  
Substituting these values in Equation 1 yields  
EFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
EN ACTIVE  
0.95  
0.90  
0.85  
C
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
EN INACTIVE  
0.80  
0.75  
To guarantee the performance of the ADP121, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors are evaluated for each application.  
0.70  
2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
IN  
Figure 32. Typical EN Pin Thresholds vs. Input Voltage  
UNDERVOLTAGE LOCKOUT  
The ADP121 utilizes an internal soft start to limit the inrush  
current when the output is enabled. The start-up time for the  
1.8 V option is approximately 120 ꢀs from the time the EN  
active threshold is crossed to when the output reaches 90ꢁ of its  
final value. The start-up time is somewhat dependant on the  
output voltage setting and increases slightly as the output  
voltage increases.  
The ADP121 has an internal undervoltage lockout circuit that  
disables all inputs and the output when the input voltage is less  
than approximately 2.2 V. This ensures that the inputs of the  
ADP121 and the output behave in a predictable manner during  
power-up.  
ENABLE FEATURE  
The ADP121 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. Figure 31 shows a  
rising voltage on EN crossing the active threshold, and then  
VOUT turns on. When a falling voltage on EN crosses the  
inactive threshold, VOUT turns off.  
6
EN  
5
4
3
V
V
= 5V  
= 1.8V  
IN  
OUT  
3.3V  
C
= C  
= 100mA  
= 1µF  
IN  
OUT  
VOUT  
2
I
LOAD  
1.8V  
1
1.2V  
EN  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
(µs)  
Figure 33. Typical Start-Up Time  
40ms/DIV  
Figure 31. ADP121 Typical EN Pin Operation  
Rev. 0 | Page 13 of 20  
 
 
 
 
ADP121  
temperature changes. These parameters include ambient temper-  
ature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The θJA  
number is dependent on the package assembly compounds used  
and the amount of copper to which the GND pins of the package  
are soldered on the PCB. Table 5 shows typical θJA values for  
various PCB copper sizes and Table 6 shows the typical ΨJB values  
for the ADP121.  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP121 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP121 is designed to current limit when the  
output load reaches 225 mA (typical). When the output load  
exceeds 225 mA, the output voltage is reduced to maintain a  
constant current limit.  
Table 5. Typical θJA Values  
Thermal overload protection is built-in, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and  
power dissipation) when the junction temperature starts to  
rise above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
135°C, the output is turned on again and output current is  
restored to its nominal value.  
Copper Size (mm2)  
TSOT (°C/W)  
WLCSP (°C/W)  
01  
50  
100  
300  
500  
170  
152  
146  
134  
131  
260  
159  
157  
153  
151  
1 Device soldered to minimum size pin traces.  
Consider the case where a hard short from VOUT to GND  
occurs. At first, the ADP121 current limits, so that only  
225 mA is conducted into the short. If self-heating of the  
junction is great enough to cause its temperature to rise above  
150°C, thermal shutdown activates turning off the output and  
reducing the output current to zero. As the junction tempera-  
ture cools and drops below 135°C, the output turns on and  
conducts 225 mA into the short, again causing the junction  
temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation  
between 225 mA and 0 mA that continues as long as the  
short remains at the output.  
Table 6. Typical ΨJB Values  
TSOT (°C/W)  
42.8  
WLCSP (°C/W)  
58.4  
The junction temperature of the ADP121 can be calculated  
from the following equation:  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so junction temperatures do not exceed 125°C.  
where:  
I
I
LOAD is the load current.  
GND is the ground current.  
V
IN and VOUT are input and output voltages, respectively.  
THERMAL CONSIDERATIONS  
Power dissipation due to ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to  
In most applications, the ADP121 does not dissipate a lot of  
heat due to high efficiency. However, in applications with a high  
ambient temperature and high supply voltage to an output voltage  
differential, the heat dissipated in the package is large enough  
that it can cause the junction temperature of the die to exceed  
the maximum junction temperature of 125°C.  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature,  
input-to-output voltage differential, and continuous load  
current, there exists a minimum copper size requirement for  
the PCB to ensure that the junction temperature does not rise  
above 125°C. Figure 34 to Figure 47 show junction temperature  
calculations for different ambient temperatures, load currents,  
VIN-to-VOUT differentials, and areas of PCB copper.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
In cases where the board temperature is known, the thermal  
characterization parameter, ΨJB, can be used to estimate the  
junction temperature rise. TJ is calculated from TB and PD using  
the formula  
To guarantee reliable operation, the junction temperature of the  
ADP121 must not exceed 125°C. To ensure that the junction  
temperature stays below this maximum value, the user needs  
to be aware of the parameters that contribute to junction  
TJ = TB + (PD × ΨJB)  
(5)  
Rev. 0 | Page 14 of 20  
 
 
 
 
ADP121  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
60  
40  
20  
0
60  
40  
20  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
0
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 34. TSOT, 500 mm2 of PCB Copper, TA = 25°C  
Figure 37. TSOT, 500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT  
= 150mA  
60  
40  
20  
60  
40  
20  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 35. TSOT, 100 mm2 of PCB Copper, TA = 25°C  
Figure 38. TSOT, 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
60  
40  
20  
60  
40  
20  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 36. TSOT, 0 mm2 of PCB Copper, TA = 25°C  
Figure 39. TSOT, 0 mm2 of PCB Copper, TA = 50°C  
Rev. 0 | Page 15 of 20  
 
ADP121  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
60  
40  
20  
60  
40  
20  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
4.5  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 40. WLCSP, 500 mm2 of PCB Copper, TA = 25°C  
Figure 43. WLCSP, 500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
60  
40  
20  
60  
40  
20  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
V
V
IN  
OUT  
IN  
OUT  
Figure 41. WLCSP, 100 mm2 of PCB Copper, TA = 25°C  
Figure 44. WLCSP, 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION  
TEMPERATURE  
MAX JUNCTION  
TEMPERATURE  
LOAD CURRENT = 1mA  
LOAD CURRENT =  
10mA  
60  
40  
20  
0
60  
40  
20  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
0
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
OUT  
IN  
OUT  
Figure 42. WLCSP, 0 mm2 of PCB Copper, TA = 25°C  
Figure 45. WLCSP, 0 mm2 of PCB Copper, TA = 50°C  
Rev. 0 | Page 16 of 20  
ADP121  
140  
120  
100  
80  
GND  
GND  
ANALOG DEVICES  
ADP121-xx-EVALZ  
C1  
C2  
U1  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
MAX JUNCTION TEMPERATURE  
60  
40  
20  
0
J1  
VIN  
VOUT  
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
IN  
OUT  
Figure 46. TSOT, 100 mm2 of PCB Copper, TA = 85°C  
140  
120  
100  
80  
EN  
GND  
GND  
Figure 48. Example of TSOT PCB Layout  
J1  
ADP121CB-xx-EVALZ  
LOAD CURRENT = 1mA  
LOAD CURRENT = 10mA  
LOAD CURRENT = 25mA  
LOAD CURRENT = 50mA  
LOAD CURRENT = 75mA  
LOAD CURRENT = 100mA  
LOAD CURRENT = 150mA  
MAX JUNCTION TEMPERATURE  
60  
40  
20  
VOUT  
VIN  
C1  
C2  
U1  
WLC  
SP  
GND  
GND  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
EN  
V
IN  
OUT  
Figure 47. WLCSP, 100 mm2 of PCB Copper, TA = 85°C  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP121. How-  
ever, as can be seen from Table 5 and Table 6, a point of  
diminishing returns is eventually reached, beyond which  
an increase in the copper size does not yield significant heat  
dissipation benefits.  
Figure 49. Example of WLCSP PCB Layout  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use 0402 or 0603 size capacitors and  
resistors to achieve the smallest possible footprint solution on  
boards where area is limited.  
Rev. 0 | Page 17 of 20  
 
 
ADP121  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 50. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions show in millimeters  
0.660  
0.600  
0.540  
0.860  
0.820 SQ  
0.780  
A1 BALL  
CORNER  
SEATING  
PLANE  
2
1
A
B
0.280  
0.260  
0.240  
0.40  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.230  
0.200  
0.170  
0.050 NOM  
COPLANARITY  
Figure 51. 4-Ball Wafer Level Chip Scale- Package [WLCSP]  
(CB-4-2)  
Dimensions show in millimeters  
Rev. 0 | Page 18 of 20  
 
ADP121  
ORDERING GUIDE  
Temperature  
Range  
Output  
Voltage (V)  
Package  
Option  
Model  
Package Description  
5-Lead TSOT  
Branding  
LA3  
LA4  
LA5  
LC0  
LC1  
LC2  
LC3  
LC4  
LC5  
LC6  
LC7  
LC8  
ADP121-AUJZ28R71  
ADP121-AUJZ30R71  
ADP121-AUJZ33R71  
ADP121-ACBZ12R71  
ADP121-ACBZ15R71  
ADP121-ACBZ155R71  
ADP121-ACBZ16R71  
ADP121-ACBZ165R71  
ADP121-ACBZ17R71  
ADP121-ACBZ175R71  
ADP121-ACBZ18R71  
ADP121-ACBZ188R71  
ADP121-ACBZ20R71  
ADP121-ACBZ25R71  
ADP121-ACBZ278R71  
ADP121-ACBZ28R71  
ADP121-ACBZ29R71  
ADP121-ACBZ30R71  
ADP121-ACBZ33R71  
ADP121-3.3-EVALZ1  
ADP121-3.0-EVALZ1  
ADP121-2.8-EVALZ1  
ADP121CB-3.3-EVALZ1  
ADP121CB-3.0-EVALZ1  
ADP121CB-2.8-EVALZ1  
ADP121CB-2.0-EVALZ1  
ADP121CB-1.8-EVALZ1  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
2.8  
UJ-5  
3.0  
3.3  
1.2  
1.5  
1.55  
1.6  
1.65  
1.7  
1.75  
1.8  
1.875  
2.0  
2.5  
2.775  
2.8  
2.9  
3.0  
3.3  
3.3  
3.0  
2.8  
5-Lead TSOT  
5-Lead TSOT  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
UJ-5  
UJ-5  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
LC9  
LCA  
LCC  
LCD  
LCE  
LCF  
LCG  
4-Ball WLCSP  
4-Ball WLCSP  
ADP121 3.3 V Output Evaluation Board  
ADP121 3.0 V Output Evaluation Board  
ADP121 2.8 V Output Evaluation Board  
ADP121-1 3.3 V Output Evaluation Board  
ADP121-1 3.0 V Output Evaluation Board  
ADP121-1 2.8 V Output Evaluation Board  
ADP121-1 2.0 V Output Evaluation Board  
ADP121-1 1.8 V Output Evaluation Board  
3.3  
3.0  
2.8  
2.0  
1.8  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 19 of 20  
 
 
ADP121  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06901-0-7/08(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADP121-3.3-EVALZ

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ12R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ155R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ15R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ165R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ16R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ175R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ17R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ188R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ18R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ20R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP121-ACBZ25R7

150 mA, Low Quiescent Current, CMOS Linear Regulator
ADI