ADP1612-5-EVALZ [ADI]

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters; 650千赫/1.3 MHz升压PWM直流 - 直流开关转换器
ADP1612-5-EVALZ
型号: ADP1612-5-EVALZ
厂家: ADI    ADI
描述:

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
650千赫/1.3 MHz升压PWM直流 - 直流开关转换器

转换器 开关
文件: 总28页 (文件大小:1262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
650 kHz /1.3 MHz Step-Up  
PWM DC-to-DC Switching Converters  
ADP1612/ADP1613  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
L1  
Current limit  
1.4 A for the ADP1612  
2.0 A for the ADP 1613  
Minimum input voltage  
1.8 V for the ADP1612  
2.5 V for the ADP1613  
Pin-selectable 650 kHz or 1.3 MHz PWM frequency  
Adjustable output voltage up to 20 V  
Adjustable soft start  
ADP1612/  
D1  
ADP1613  
V
V
OUT  
IN  
6
3
7
8
5
2
1
VIN  
EN  
SW  
FB  
ON  
R1  
R2  
OFF  
C
IN  
1.3MHz  
650kHz  
(DEFAULT)  
FREQ  
SS  
COMP  
C
OUT  
GND  
4
R
COMP  
C
SS  
Undervoltage lockout  
Thermal shutdown  
C
COMP  
8-lead MSOP  
Figure 1. Step-Up Regulator Configuration  
APPLICATIONS  
TFT LCD bias supplies  
Portable applications  
Industrial/instrumentation equipment  
100  
GENERAL DESCRIPTION  
V
= 5V  
IN  
fSW = 1.3MHz  
= 25°C  
The ADP1612/ADP1613 are step-up dc-to-dc switching con-  
verters with an integrated power switch capable of providing  
an output voltage as high as 20 V. With a package height of less  
than 1.1 mm, the ADP1612/ADP1613 are optimal for space-  
constrained applications such as portable devices or thin film  
transistor (TFT) liquid crystal displays (LCDs).  
90  
80  
70  
T
A
60  
50  
40  
The ADP1612/ADP1613 operate in current mode pulse-width  
modulation (PWM) with up to 94% efficiency. Adjustable  
soft start prevents inrush currents when the part is enabled.  
The pin-selectable switching frequency and PWM current-mode  
architecture allow for excellent transient response, easy noise  
filtering, and the use of small, cost-saving external inductors  
and capacitors. Other key features include undervoltage lockout  
(UVLO), thermal shutdown (TSD), and logic controlled enable.  
ADP1612, V  
ADP1612, V  
ADP1613, V  
ADP1613, V  
= 12V  
OUT  
OUT  
OUT  
OUT  
= 15V  
= 12V  
= 15V  
30  
1
10  
100  
1k  
LOAD CURRENT (mA)  
Figure 2. ADP1612/ADP1613 Efficiency for Various Output Voltages  
The ADP1612/ADP1613 are available in the lead-free  
8-lead MSOP.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
ADP1612/ADP1613  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
UnderVoltage Lockout (UVLO)............................................... 12  
Enable/Shutdown Control ........................................................ 12  
Applications Information.............................................................. 13  
Setting the Output Voltage........................................................ 13  
Inductor Selection...................................................................... 13  
Choosing the Input and Output Capacitors ........................... 13  
Diode Selection........................................................................... 14  
Loop Compensation .................................................................. 14  
Soft Start Capacitor.................................................................... 15  
Typical Application Circuits ......................................................... 16  
Step-Up Regulator...................................................................... 16  
Step-Up Regulator Circuit Examples....................................... 16  
SEPIC Converter ........................................................................ 22  
TFT LCD Bias Supply................................................................ 22  
PCB Layout Guidelines.................................................................. 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
Boundary Condition.................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 11  
Current-Mode PWM Operation.............................................. 11  
Frequency Selection ................................................................... 11  
Soft Start ...................................................................................... 11  
Thermal Shutdown (TSD)......................................................... 12  
REVISION HISTORY  
9/09—Rev. 0 to Rev. A  
Changes to Figure 45...................................................................... 17  
Changes to Figure 48 and Figure 51............................................. 18  
Changes to Figure 54 and Figure 57............................................. 19  
Changes to Figure 60 and Figure 63............................................. 20  
Changes to Figure 66 and Figure 69............................................. 21  
Changes to Figure 72...................................................................... 22  
Changes to Ordering Guide .......................................................... 25  
4/09—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
ADP1612/ADP1613  
SPECIFICATIONS  
VIN = 3.6 V, unless otherwise noted. Minimum and maximum values are guaranteed for TJ = −40°C to +125°C. Typical values specified  
are at TJ = 25°C. All limits at temperature extremes are guaranteed by correlation and characterization using standard statistical quality  
control (SQC), unless otherwise noted.  
Table 1.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY  
Input Voltage  
VIN  
ADP1612  
ADP1613  
1.8  
2.5  
5.5  
5.5  
V
V
Quiescent Current  
Nonswitching State  
IQ  
VFB = 1.5 V, FREQ = VIN  
VFB = 1.5 V, FREQ = GND  
VEN = 0 V  
FREQ = VIN, no load  
FREQ = GND, no load  
VEN = 3.6 V  
900  
700  
0.01  
4
2.2  
3.3  
1350  
1300  
2
5.8  
4
μA  
μA  
μA  
mA  
mA  
μA  
Shutdown  
Switching State1  
IQSHDN  
IQSW  
Enable Pin Bias Current  
OUTPUT  
IEN  
7
Output Voltage  
Load Regulation  
REFERENCE  
VOUT  
VIN  
20  
V
ILOAD = 10 mA to 150 mA, VIN = 3.3 V, VOUT = 12 V  
0.1  
mV/mA  
Feedback Voltage  
Line Regulation  
ERROR AMPLIFIER  
Transconductance  
Voltage Gain  
VFB  
1.2041 1.235 1.2659  
V
%/V  
ADP1612, VIN = 1.8 V to 5.5 V; ADP1613, VIN = 2.5 V to 5.5 V  
0.07  
0.24  
50  
GMEA  
AV  
ΔI = 4 μA  
80  
60  
1
μA/V  
dB  
nA  
FB Pin Bias Current  
SWITCH  
VFB = 1.3 V  
SW On Resistance  
SW Leakage Current  
Peak Current Limit2  
RDSON  
ICL  
ISW = 1.0 A  
VSW = 20 V  
ADP1612, duty cycle = 70%  
ADP1613, duty cycle = 70%  
130  
0.01  
1.4  
300  
10  
1.9  
2.5  
mΩ  
μA  
A
0.9  
1.3  
2.0  
A
OSCILLATOR  
Oscillator Frequency  
fSW  
FREQ = GND  
FREQ = VIN  
COMP = open, VFB = 1 V, FREQ = VIN  
FREQ = 3.6 V  
500  
1.1  
88  
650  
1.3  
90  
5
720  
1.4  
kHz  
MHz  
%
Maximum Duty Cycle  
FREQ Pin Current  
DMAX  
IFREQ  
8
ꢀA  
EN/FREQ LOGIC THRESHOLD  
Input Voltage Low  
Input Voltage High  
ADP1612, VIN = 1.8 V to 5.5 V; ADP1613, VIN = 2.5 V to 5.5 V  
VIL  
VIH  
0.3  
V
V
1.6  
3.4  
SOFT START  
SS Charging Current  
SS Voltage  
ISS  
VSS  
VSS = 0 V  
VFB = 1.3 V  
5
1.2  
6.2  
μA  
V
UNDERVOLTAGE LOCKOUT (UVLO)  
Undervoltage LockoutThreshold  
ADP1612, VIN rising  
ADP1612, VIN falling  
ADP1613, VIN rising  
ADP1613, VIN falling  
1.70  
1.62  
2.25  
2.16  
V
V
V
V
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
20  
°C  
°C  
1 This parameter specifies the average current while switching internally and with SW (Pin 5) floating.  
2 Current limit is a function of duty cycle. See the Typical Performance Characteristics section for typical values over operating ranges.  
Rev. A | Page 3 of 28  
 
ADP1612/ADP1613  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Junction-to-ambient thermal resistance (θJA) of the package is  
specified for the worst-case conditions, that is, a device soldered  
in a circuit board for surface-mount packages. The junction-to-  
ambient thermal resistance is highly dependent on the application  
and board layout. In applications where high maximum power  
dissipation exists, attention to thermal board design is required.  
The value of θJA may vary, depending on PCB material, layout,  
and environmental conditions.  
Parameter  
Rating  
VIN, EN, FB to GND  
FREQ to GND  
COMP to GND  
SS to GND  
−0.3 V to +6 V  
−0.3 V to VIN + 0.3 V  
1.0 V to 1.6 V  
−0.3 V to +1.3 V  
21 V  
SW to GND  
Operating Junction Temperature Range −40°C to +125°C  
Storage Temperature Range  
Soldering Conditions  
ESD (Electrostatic Discharge)  
Human Body Model  
−65°C to +150°C  
JEDEC J-STD-020  
Table 3.  
Package Type  
8-Lead MSOP  
2-Layer Board1  
4-Layer Board1  
θJA  
θJC  
Unit  
5 kV  
206.9  
162.2  
44.22  
44.22  
°C/W  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
1 Thermal numbers per JEDEC standard JESD 51-7.  
BOUNDARY CONDITION  
Modeled under natural convection cooling at 25°C ambient  
temperature, JESD 51-7, and 1 W power input with 2- and  
4-layer boards.  
Absolute maximum ratings apply individually only, not in  
combination.  
ESD CAUTION  
Rev. A | Page 4 of 28  
 
 
 
 
ADP1612/ADP1613  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
COMP  
FB  
1
2
3
4
8
7
6
5
SS  
ADP1612/  
ADP1613  
TOP VIEW  
FREQ  
VIN  
EN  
(Not to Scale)  
GND  
SW  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
COMP  
FB  
Description  
1
2
Compensation Input. Connect a series resistor-capacitor network from COMP to GND to compensate the regulator.  
Output Voltage Feedback Input. Connect a resistive voltage divider from the output voltage to FB to set the  
regulator output voltage.  
3
4
5
EN  
GND  
SW  
Enable Input. Drive EN low to shut down the regulator; drive EN high to turn on the regulator.  
Ground.  
Switching Output. Connect the power inductor from the input voltage to SW and connect the external rectifier  
from SW to the output voltage to complete the step-up converter.  
6
7
8
VIN  
FREQ  
SS  
Main Power Supply Input. VIN powers the ADP1612/ADP1613 internal circuitry. Connect VIN to the input source  
voltage. Bypass VIN to GND with a 10 μF or greater capacitor as close to the ADP1612/ADP1613 as possible.  
Frequency Setting Input. FREQ controls the switching frequency. Connect FREQ to GND to program the oscillator  
to 650 kHz, or connect FREQ to VIN to program it to 1.3 MHz. If FREQ is left floating, the part defaults to 650 kHz.  
Soft Start Timing Capacitor Input. A capacitor connected from SS to GND brings up the output slowly at power-  
up and reduces inrush current.  
Rev. A | Page 5 of 28  
 
 
ADP1612/ADP1613  
TYPICAL PERFORMANCE CHARACTERISTICS  
VEN = VIN and TA = 25°C, unless otherwise noted.  
100  
100  
90  
ADP1612  
ADP1612  
V
= 3.3V  
V
= 5V  
IN  
IN  
fSW = 650kHz  
= 25°C  
fSW = 1.3MHz  
T = 25°C  
A
90  
80  
70  
T
A
80  
70  
60  
50  
40  
60  
50  
40  
V
V
V
= 5V  
= 12V  
= 15V  
OUT  
OUT  
OUT  
V
V
= 12V  
= 15V  
OUT  
OUT  
30  
30  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. ADP1612 Efficiency vs. Load Current, VIN = 3.3 V, fSW = 650 kHz  
Figure 7. ADP1612 Efficiency vs. Load Current, VIN = 5 V, fSW = 1.3 MHz  
100  
100  
ADP1612  
ADP1613  
V
= 3.3V  
V
= 5V  
IN  
IN  
fSW = 1.3MHz  
= 25°C  
fSW = 650kHz  
T = 25°C  
A
90  
80  
70  
90  
80  
70  
T
A
60  
50  
40  
60  
50  
40  
V
V
V
= 5V  
= 12V  
= 15V  
V
V
V
= 12V  
= 15V  
= 20V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
30  
30  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 5. ADP1612 Efficiency vs. Load Current, VIN = 3.3 V, fSW = 1.3 MHz  
Figure 8. ADP1613 Efficiency vs. Load Current, VIN = 5 V, fSW = 650 kHz  
100  
100  
ADP1612  
ADP1613  
V
= 5V  
V
= 5V  
IN  
IN  
fSW = 650kHz  
= 25°C  
fSW = 1.3MHz  
T = 25°C  
A
90  
80  
70  
90  
80  
70  
T
A
60  
50  
40  
60  
50  
40  
V
V
V
= 12V  
= 15V  
= 20V  
OUT  
OUT  
OUT  
V
V
= 12V  
= 15V  
OUT  
OUT  
30  
30  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 6. ADP1612 Efficiency vs. Load Current, VIN = 5 V, fSW = 650 kHz  
Figure 9. ADP1613 Efficiency vs. Load Current, VIN = 5 V, fSW = 1.3 MHz  
Rev. A | Page 6 of 28  
 
 
ADP1612/ADP1613  
2.4  
2.2  
2.0  
1.8  
3.4  
3.2  
3.0  
ADP1613  
ADP1612  
T
= +25°C  
A
T
= +25°C  
A
2.8  
2.6  
2.4  
2.2  
T
= –40°C  
1.6  
1.4  
1.2  
A
T
= –40°C  
A
T
= +85°C  
2.8  
T
= +85°C  
A
A
2.0  
2.5  
1.8  
2.3  
3.3  
3.8  
4.3  
4.8  
3.0  
3.5  
4.0  
4.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 10. ADP1612 Switch Current Limit vs. Input Voltage, VOUT = 5 V  
Figure 13. ADP1613 Switch Current Limit vs. Input Voltage, VOUT = 5 V  
2.6  
2.0  
ADP1613  
ADP1612  
1.8  
2.4  
T
= +25°C  
A
T
= +25°C  
A
1.6  
2.2  
2.0  
1.8  
1.4  
1.2  
1.0  
T
= –40°C  
A
T
= –40°C  
A
T
= +85°C  
A
T
= +85°C  
2.8  
A
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1.8  
2.3  
3.3  
3.8  
4.3  
4.8  
5.3  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 11. ADP1612 Switch Current Limit vs. Input Voltage, VOUT = 8 V  
Figure 14. ADP1613 Switch Current Limit vs. Input Voltage, VOUT = 8 V  
1.6  
2.6  
ADP1613  
ADP1612  
2.4  
1.4  
T
= +25°C  
A
T
= –40°C  
A
T
= –40°C  
A
2.2  
2.0  
1.2  
1.0  
0.8  
1.8  
1.6  
1.4  
T
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
4.0  
A
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 12. ADP1612 Switch Current Limit vs. Input Voltage, VOUT = 15 V  
Figure 15. ADP1613 Switch Current Limit vs. Input Voltage, VOUT = 15 V  
Rev. A | Page 7 of 28  
ADP1612/ADP1613  
800  
750  
700  
6
5
4
ADP1612/ADP1613  
ADP1612/ADP1613  
T
= +25°C  
A
T
= +125°C  
A
650  
600  
550  
500  
450  
400  
T
= +125°C  
A
T
= –40°C  
A
3
2
1
T
= –40°C  
A
T
= +25°C  
A
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. ADP1612/ADP1613 Quiescent Current vs. Input Voltage,  
Nonswitching, fSW = 650 kHz  
Figure 19. ADP1612/ADP1613 Quiescent Current vs. Input Voltage, Switching,  
fSW = 1.3 MHz  
800  
250  
I
= 1A  
SW  
ADP1612/ADP1613  
ADP1612/ADP1613  
230  
210  
750  
700  
T
= +30°C  
A
190  
170  
150  
130  
T
= +125°C  
T
= +85°C  
A
A
650  
600  
550  
500  
T
= –40°C  
A
110  
T
= +25°C  
2.8  
A
90  
70  
T
= –40°C  
2.3  
A
1.8  
2.3  
3.3  
3.8  
4.3  
4.8  
5.3  
1.8  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 17. ADP1612/ADP1613 Quiescent Current vs. Input Voltage,  
Nonswitching, fSW = 1.3 MHz  
Figure 20. ADP1612/ADP1613 On Resistance vs. Input Voltage  
3.5  
250  
I
= 1A  
SW  
ADP1612/ADP1613  
ADP1612/ADP1613  
230  
210  
V
= 1.8V  
IN  
V
3.0  
T
= +25°C  
A
190  
170  
150  
130  
2.5  
= 2.5V  
T
= +125°C  
IN  
A
2.0  
1.5  
1.0  
T
= –40°C  
A
110  
V
= 3.6V  
IN  
90  
70  
V
= 5.5V  
IN  
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
–40  
–15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 18. ADP1612/ADP1613 Quiescent Current vs. Input Voltage, Switching,  
fSW = 650 kHz  
Figure 21. ADP1612/ADP1613 On Resistance vs. Temperature  
Rev. A | Page 8 of 28  
ADP1612/ADP1613  
660  
650  
640  
630  
620  
610  
600  
590  
580  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
ADP1612/ADP1613  
ADP1612/ADP1613  
T
= +25°C  
V
= 1.8V  
IN  
A
V
= 5.5V  
IN  
T
= +125°C  
A
V
= 3.6V  
IN  
T
= –40°C  
2.8  
A
1.8  
2.3  
3.3  
3.8  
4.3  
4.8  
5.3  
–40  
–10  
20  
50  
80  
110  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 22. ADP1612/ADP1613 Frequency vs. Input Voltage, fSW = 650 kHz  
Figure 25. ADP1612/ADP1613 SS Pin Current vs. Temperature  
1.32  
92.8  
ADP1612/ADP1613  
ADP1612/ADP1613  
T
= +25°C  
1.30  
1.28  
A
92.6  
T
= +25°C  
A
T
= +125°C  
92.4  
92.2  
92.0  
91.8  
91.6  
91.4  
91.2  
A
1.26  
1.24  
1.22  
1.20  
T
= –40°C  
A
T
= –40°C  
A
1.18  
T
= +125°C  
A
1.16  
1.14  
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 23. ADP1612/ADP1613 Frequency vs. Input Voltage, fSW = 1.3 MHz  
Figure 26. ADP1612/ADP1613 Maximum Duty Cycle vs. Input Voltage,  
fSW = 650 kHz  
93.4  
7
ADP1612/ADP1613  
T
= +125°C  
ADP1612/ADP1613  
A
93.2  
93.0  
6
T
= +25°C  
A
T
= +125°C  
A
5
4
92.8  
92.6  
92.4  
92.2  
T
= –40°C  
A
3
2
1
T
= +25°C  
A
92.0  
T
= –40°C  
91.8  
91.6  
A
0
1.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
EN PIN VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 24. ADP1612/ADP1613 EN Pin Current vs. EN Pin Voltage  
Figure 27. ADP1612/ADP1613 Maximum Duty Cycle vs. Input Voltage,  
fSW = 1.3 MHz  
Rev. A | Page 9 of 28  
ADP1612/ADP1613  
T
T
OUTPUT VOLTAGE (5V/DIV)  
OUTPUT VOLTAGE (5V/DIV)  
V
V
I
= 5V  
= 12V  
IN  
OUT  
= 250mA  
V
V
I
= 5V  
= 12V  
LOAD  
IN  
OUT  
L = 6.8µH  
f
= 1.3MHz  
= 20mA  
SW  
LOAD  
SWITCH VOLTAGE (10V/DIV)  
L = 6.8µH  
= 1.3MHz  
INDUCTOR CURRENT  
(200mA/DIV)  
f
SW  
C
= 10µF  
OUT  
INDUCTOR CURRENT (2A/DIV)  
EN PIN VOLTAGE (5V/DIV)  
SWITCH VOLTAGE (10V/DIV)  
TIME (400ns/DIV)  
TIME (20ms/DIV)  
Figure 28. ADP1612/ADP1613 Switching Waveform in Discontinuous  
Conduction Mode  
Figure 31. ADP1612/ADP1613 Start-Up from VIN, CSS =100 nF  
T
T
OUTPUT VOLTAGE (5V/DIV)  
OUTPUT VOLTAGE (5V/DIV)  
V
V
= 5V  
IN  
= 12V  
OUT  
I
= 200mA  
LOAD  
L = 6.8µH  
SWITCH VOLTAGE (10V/DIV)  
f
= 1.3MHz  
SW  
INDUCTOR CURRENT  
(500mA/DIV)  
C
= 10µF  
OUT  
V
V
= 5V  
IN  
= 12V  
OUT  
I
= 250mA  
LOAD  
L = 6.8µH  
f
= 1.3MHz  
SW  
SWITCH VOLTAGE (10V/DIV)  
INDUCTOR CURRENT (500mA/DIV)  
EN PIN VOLTAGE (5V/DIV)  
TIME (400µs/DIV)  
TIME (400ns/DIV)  
Figure 29. ADP1612/ADP1613 Switching Waveform in Continuous  
Conduction Mode  
Figure 32. ADP1612/ADP1613 Start-Up from Shutdown, CSS = 33 nF  
T
T
OUTPUT VOLTAGE (5V/DIV)  
V
V
= 5V  
IN  
= 12V  
OUT  
I
= 250mA  
LOAD  
OUTPUT VOLTAGE (5V/DIV)  
L = 6.8µH  
f
= 1.3MHz  
SW  
SWITCH VOLTAGE (10V/DIV)  
V
V
= 5V  
IN  
= 12V  
OUT  
SWITCH VOLTAGE (10V/DIV)  
I
= 250mA  
LOAD  
L = 6.8µH  
f
= 1.3MHz  
SW  
INDUCTOR CURRENT (500mA/DIV)  
INDUCTOR CURRENT (2A/DIV)  
EN PIN VOLTAGE (5V/DIV)  
TIME (20ms/DIV)  
EN PIN VOLTAGE (5V/DIV)  
TIME (400µs/DIV)  
Figure 30. ADP1612/ADP1613 Start-Up from VIN, CSS =33 nF  
Figure 33. ADP1612/ADP1613 Start-Up from Shutdown, CSS = 100 nF  
Rev. A | Page 10 of 28  
ADP1612/ADP1613  
THEORY OF OPERATION  
L1  
V
IN  
>1.6V  
<0.3V  
C
IN  
VIN  
FREQ  
6
7
D1  
+
SW  
V
5
OUT  
V
A
IN  
D
C
+
OUT  
COMPARATOR  
CURRENT  
SENSING  
V
OUT  
PWM  
COMPARATOR  
D
REF  
ERROR  
R1  
R2  
AMPLIFIER  
FB  
2
1
OSCILLATOR  
5µA  
V
BG  
UVLO  
COMPARATOR  
DRIVER  
COMP  
V
IN  
S
R
Q
N1  
R
UVLO  
COMP  
REF  
V
SS  
TSD  
COMPARATOR  
C
COMP  
5µA  
T
SENSE  
BAND GAP  
BG  
SS  
SOFT  
START  
RESET  
T
REF  
8
C
SS  
AGND  
1.1M  
AGND  
ADP1612/AD1613  
3
4
EN  
GND  
>1.6V  
<0.3V  
Figure 34. Block Diagram with Step-Up Regulator Application Circuit  
The ADP1612/ADP1613 current-mode step-up switching  
converters boost a 1.8 V to 5.5 V input voltage to an output  
voltage as high as 20 V. The internal switch allows a high  
output current, and the high 650 kHz/1.3 MHz switching  
frequency allows for the use of tiny external components.  
The switch current is monitored on a pulse-by-pulse basis to  
limit it to 1.4 A typical (ADP1612) or 2.0 A typical (ADP1613).  
FREQUENCY SELECTION  
The frequency of the ADP1612/ADP1613 is pin-selectable  
to operate at either 650 kHz to optimize the regulator for high  
efficiency or at 1.3 MHz for use with small external components.  
If FREQ is left floating, the part defaults to 650 kHz. Connect  
FREQ to GND for 650 kHz operation or connect FREQ to VIN  
for 1.3 MHz operation. When connected to VIN for 1.3 MHz  
operation, an additional 5 μA, typical, of quiescent current is  
active. This current is turned off when the part is shutdown.  
CURRENT-MODE PWM OPERATION  
The ADP1612/ADP1613 utilize a current-mode PWM control  
scheme to regulate the output voltage over all load conditions.  
The output voltage is monitored at FB through a resistive voltage  
divider. The voltage at FB is compared to the internal 1.235 V  
reference by the internal transconductance error amplifier to  
create an error voltage at COMP. The switch current is internally  
measured and added to the stabilizing ramp. The resulting sum  
is compared to the error voltage at COMP to control the PWM  
modulator. This current-mode regulation system allows fast  
transient response, while maintaining a stable output voltage.  
By selecting the proper resistor-capacitor network from COMP  
to GND, the regulator response is optimized for a wide range of  
input voltages, output voltages, and load conditions.  
SOFT START  
To prevent input inrush current to the converter when the part is  
enabled, connect a capacitor from SS to GND to set the soft start  
period. Once the ADP1612/ADP1613 are turned on, SS sources  
5 ꢀA, typical, to the soft start capacitor (CSS) until it reaches  
1.2 V at startup. As the soft start capacitor charges, it limits the  
peak current allowed by the part. By slowly charging the soft  
start capacitor, the input current ramps slowly to prevent it  
from overshooting excessively at startup. When the ADP1612/  
ADP1613 are in shutdown mode (EN ≤ 0.3 V), a thermal shut-  
down event occurs, or the input voltage is below the falling  
undervoltage lockout voltage, SS is internally shorted to GND  
to discharge the soft start capacitor.  
Rev. A | Page 11 of 28  
 
 
 
 
 
ADP1612/ADP1613  
THERMAL SHUTDOWN (TSD)  
ENABLE/SHUTDOWN CONTROL  
The ADP1612/ADP1613 include TSD protection. If the die  
temperature exceeds 150°C (typical), TSD turns off the NMOS  
power device, significantly reducing power dissipation in the  
device and preventing output voltage regulation. The NMOS  
power device remains off until the die temperature reduces to  
130°C (typical). The soft start capacitor is discharged during  
TSD to ensure low output voltage overshoot and inrush  
currents when regulation resumes.  
The EN input turns the ADP1612/ADP1613 regulator on or  
off. Drive EN low to turn off the regulator and reduce the  
input current to 0.01 ꢀA, typical. Drive EN high to turn on  
the regulator.  
When the step-up dc-to-dc switching converter is in shutdown  
mode (EN ≤ 0.3 V), there is a dc path from the input to the output  
through the inductor and output rectifier. This causes the output  
voltage to remain slightly below the input voltage by the forward  
voltage of the rectifier, preventing the output voltage from dropping  
to ground when the regulator is shutdown. Figure 37 provides a  
circuit modification to disconnect the output voltage from the  
input voltage at shutdown.  
UNDERVOLTAGE LOCKOUT (UVLO)  
If the input voltage is below the UVLO threshold, the ADP1612/  
ADP1613 automatically turn off the power switch and place  
the part into a low power consumption mode. This prevents  
potentially erratic operation at low input voltages and prevents  
the power device from turning on when the control circuitry  
cannot operate it. The UVLO levels have ~100 mV of hysteresis  
to ensure glitch free startup.  
Regardless of the state of the EN pin, when a voltage is applied to  
VIN of the ADP1612/ADP1613, a large current spike occurs due  
to the nonisolated path through the inductor and diode between  
VIN and VOUT. The high current is a result of the output capacitor  
charging. The peak value is dependent on the inductor, output  
capacitor, and any load active on the output of the regulator.  
Rev. A | Page 12 of 28  
 
 
ADP1612/ADP1613  
APPLICATIONS INFORMATION  
For CCM duty cycles greater than 50% that occur with input  
voltages less than one-half the output voltage, slope compen-  
sation is required to maintain stability of the current-mode  
regulator. For stable current-mode operation, ensure that the  
selected inductance is equal to or greater than the minimum  
calculated inductance, LMIN, for the application parameters in  
the following equation:  
SETTING THE OUTPUT VOLTAGE  
The ADP1612/ADP1613 feature an adjustable output voltage  
range of VIN to 20 V. The output voltage is set by the resistor  
voltage divider, R1 and R2, (see Figure 34) from the output  
voltage (VOUT) to the 1.235 V feedback input at FB. Use the  
following equation to determine the output voltage:  
V
OUT = 1.235 × (1 + R1/R2)  
(1)  
(2)  
(VOUT 2 ×VIN )  
Choose R1 based on the following equation:  
L > LMIN  
=
(7)  
2.7 × fSW  
V
1.235  
OUT  
R1= R2 ×  
Inductors smaller than the 4.7 ꢀH to 22 ꢀH recommended  
1.235  
range can be used as long as Equation 7 is satisfied for the given  
application. For input/output combinations that approach the  
90% maximum duty cycle, doubling the inductor is recom-  
mended to ensure stable operation. Table 5 suggests a series  
of inductors for use with the ADP1612/ADP1613.  
INDUCTOR SELECTION  
The inductor is an essential part of the step-up switching  
converter. It stores energy during the on time of the power  
switch, and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, induc-  
tance values in the range of 4.7 ꢀH to 22 ꢀH are recommended.  
In general, lower inductance values have higher saturation  
current and lower series resistance for a given physical size.  
However, lower inductance results in a higher peak current  
that can lead to reduced efficiency and greater input and/or  
output ripple and noise. A peak-to-peak inductor ripple current  
close to 30% of the maximum dc input current typically yields  
an optimal compromise.  
Table 5. Suggested Inductors  
Dimensions  
Manufacturer  
Part Series  
CMD4D11  
CDRH4D28CNP  
CDRH5D18NP  
CDRH6D26HPNP  
DO3308P  
L × W × H (mm)  
5.8 × 4.4 × 1.2  
5.1 × 5.1 × 3.0  
6.0 × 6.0 × 2.0  
7.0 × 7.0 × 2.8  
12.95 × 9.4 × 3.0  
12.95 × 9.4 × 5.21  
5.2 × 5.2 × 2.0  
6.2 × 6.3 × 2.0  
6.2 × 6.3 × 3.5  
Assorted  
Sumida  
Coilcraft  
Toko  
DO3316P  
D52LC  
D62LCB  
D63LCB  
For determining the inductor ripple current in continuous  
operation, the input (VIN) and output (VOUT) voltages determine  
the switch duty cycle (D) by the following equation:  
Würth  
WE-TPC  
VOUT VIN  
Elektronik  
WE-PD, PD2, PD3, PD4  
Assorted  
D =  
(3)  
VOUT  
CHOOSING THE INPUT AND OUTPUT CAPACITORS  
Using the duty cycle and switching frequency, fSW, determine  
the on time by the following equation:  
The ADP1612/ADP1613 require input and output bypass capa-  
citors to supply transient currents while maintaining constant  
input and output voltages. Use a low equivalent series resistance  
(ESR), 10 ꢀF or greater input capacitor to prevent noise at the  
ADP1612/ADP1613 input. Place the capacitor between VIN  
and GND as close to the ADP1612/ADP1613 as possible.  
Ceramic capacitors are preferred because of their low ESR  
characteristics. Alternatively, use a high value, medium ESR  
capacitor in parallel with a 0.1 ꢀF low ESR capacitor as close  
to the ADP1612/ADP1613 as possible.  
D
fSW  
tON  
=
(4)  
The inductor ripple current (ΔIL) in steady state is calculated by  
V
IN ×tON  
L
ΔIL =  
(5)  
(6)  
Solve for the inductance value (L) by the following equation:  
VIN × tON  
L =  
ΔIL  
Ensure that the peak inductor current (the maximum input  
current plus half the inductor ripple current) is below the rated  
saturation current of the inductor. Likewise, make sure that the  
maximum rated rms current of the inductor is greater than the  
maximum dc input current to the regulator.  
Rev. A | Page 13 of 28  
 
 
 
 
 
 
ADP1612/ADP1613  
The output capacitor maintains the output voltage and supplies  
current to the load while the ADP1612/ADP1613 switch is on.  
The value and characteristics of the output capacitor greatly  
affect the output voltage ripple and stability of the regulator. A  
low ESR ceramic dielectric capacitor is preferred. The output  
voltage ripple (ΔVOUT) is calculated as follows:  
LOOP COMPENSATION  
The ADP1612/ADP1613 use external components to  
compensate the regulator loop, allowing optimization of  
the loop dynamics for a given application.  
The step-up converter produces an undesirable right-half plane  
zero in the regulation feedback loop. This requires compensating  
the regulator such that the crossover frequency occurs well  
below the frequency of the right-half plane zero. The right-  
half plane zero is determined by the following equation:  
QC  
COUT  
IL ×tON  
COUT  
ΔVOUT  
=
=
(8)  
where:  
QC is the charge removed from the capacitor.  
ON is the on time of the switch.  
OUT is the output capacitance.  
2
VIN  
VOUT  
RLOAD  
2π× L  
FZ (RHP) =  
×
(13)  
t
C
IL is the average inductor current.  
where:  
FZ(RHP) is the right-half plane zero.  
LOAD is the equivalent load resistance or the output voltage  
D
fSW  
tON  
=
(9)  
R
divided by the load current.  
and  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-fifth of the right-half  
plane zero.  
VOUT VIN  
D =  
(10)  
VOUT  
The regulator loop gain is  
Choose the output capacitor based on the following equation:  
VFB  
VIN  
VOUT VOUT  
IL ×(VOUT VIN )  
fSW ×VOUT × ΔVOUT  
AVL  
=
×
×GMEA × ZCOMP ×GCS × ZOUT  
(14)  
COUT  
(11)  
where:  
VL is the loop gain.  
VFB is the feedback regulation voltage, 1.235 V.  
OUT is the regulated output voltage.  
VIN is the input voltage.  
MEA is the error amplifier transconductance gain.  
COMP is the impedance of the series RC network from COMP  
Multilayer ceramic capacitors are recommended for this  
application.  
A
DIODE SELECTION  
V
The output rectifier conducts the inductor current to the output  
capacitor and load while the switch is off. For high efficiency,  
minimize the forward voltage drop of the diode. For this reason,  
Schottky rectifiers are recommended. However, for high voltage,  
high temperature applications, where the Schottky rectifier  
reverse leakage current becomes significant and can degrade  
efficiency, use an ultrafast junction diode.  
G
Z
to GND.  
GCS is the current sense transconductance gain (the inductor  
current divided by the voltage at COMP), which is internally  
set by the ADP1612/ADP1613.  
ZOUT is the impedance of the load and output capacitor.  
Ensure that the diode is rated to handle the average output  
load current. Many diode manufacturers derate the current  
capability of the diode as a function of the duty cycle. Verify  
that the output diode is rated to handle the average output  
load current with the minimum duty cycle. The minimum  
duty cycle of the ADP1612/ADP1613 is  
VOUT VIN(MAX)  
DMIN  
=
(12)  
VOUT  
where VIN(MAX) is the maximum input voltage.  
The following are suggested Schottky diode manufacturers:  
ON Semiconductor  
Diodes, Inc.  
Rev. A | Page 14 of 28  
 
 
ADP1612/ADP1613  
To determine the crossover frequency, it is important to note  
that, at that frequency, the compensation impedance (ZCOMP  
The capacitor, C2, is chosen to cancel the zero introduced by  
output capacitance, ESR.  
)
is dominated by a resistor, and the output impedance (ZOUT) is  
dominated by the impedance of an output capacitor. Therefore,  
when solving for the crossover frequency, the equation (by  
definition of the crossover frequency) is simplified to  
Solve for C2 as follows:  
ESR ×COUT  
C2 =  
(19)  
RCOMP  
For low ESR output capacitance such as with a ceramic  
capacitor, C2 is optional. For optimal transient performance,  
COMP and CCOMP might need to be adjusted by observing the  
VFB  
VIN  
VOUT VOUT  
AVL  
=
×
×GMEA × RCOMP ×GCS ×  
(15)  
R
1
=1  
load transient response of the ADP1612/ADP1613. For most  
applications, the compensation resistor should be within the  
range of 4.7 kΩ to 100 kΩ and the compensation capacitor  
should be within the range of 100 pF to 3.3 nF.  
2π× fC ×COUT  
where:  
fC is the crossover frequency.  
COMP is the compensation resistor.  
Solve for RCOMP  
2π× fC ×COUT ×(VOUT  
R
SOFT START CAPACITOR  
,
Upon startup (EN ≥ 1.6 V), the voltage at SS ramps up slowly  
by charging the soft start capacitor (CSS) with an internal 5 ꢀA  
current source (ISS). As the soft start capacitor charges, it limits  
the peak current allowed by the part to prevent excessive over-  
shoot at startup. The necessary soft start capacitor, CSS, for a  
specific overshoot and start-up time can be calculated for the  
maximum load condition when the part is at current limit by:  
2
)
RCOMP  
=
(16)  
(17)  
V
FB ×VIN ×GMEA ×GCS  
where:  
VFB = 1.235 V.  
MEA = 80 ꢀA/V.  
GCS = 13.4 A/V.  
G
Δt  
VSS  
CSS = ISS  
(20)  
2
4746 × fC ×COUT ×(VOUT  
)
RCOMP  
=
VIN  
where:  
Once the compensation resistor is known, set the zero formed  
by the compensation capacitor and resistor to one-fourth of the  
crossover frequency, or  
ISS = 5 μA (typical).  
VSS = 1.2 V.  
Δt = startup time, at current limit.  
2
If the applied load does not place the part at current limit, the  
necessary CSS will be smaller. A 33 nF soft start capacitor results  
in negligible input current overshoot at start up, and therefore is  
suitable for most applications. However, if an unusually large  
output capacitor is used, a longer soft start period is required  
to prevent input inrush current.  
CCOMP  
=
(18)  
π× fC × RCOMP  
where CCOMP is the compensation capacitor.  
ERROR  
AMPLIFIER  
COMP  
1
2
FB  
g
m
Conversely, if fast startup is a requirement, the soft start  
capacitor can be reduced or removed, allowing the  
ADP1612/ADP1613 to start quickly, but allowing greater  
peak switch current.  
V
BG  
R
COMP  
C2  
C
COMP  
Figure 35. Compensation Components  
Rev. A | Page 15 of 28  
 
ADP1612/ADP1613  
TYPICAL APPLICATION CIRCUITS  
Both the ADP1612 and ADP1613 can be used in the application  
circuits in this section.  
STEP-UP REGULATOR CIRCUIT EXAMPLES  
ADP1612 Step-Up Regulator  
The ADP1612 is geared toward applications requiring input  
voltages as low as 1.8 V, where the ADP1613 is more suited for  
applications needing the output power capabilities of a 2.0 A  
switch. The primary differences are shown in Table 6.  
L1  
4.7µH  
D1  
3A, 40V  
V
= 1.8V TO 4.2V  
V
= 5V  
IN  
OUT  
6
3
7
8
5
VIN  
SW  
ON  
ADP1612  
R1  
30k  
OFF  
EN  
Table 6. ADP1612/ADP1613 Differences  
C
IN  
2
1
FB  
10µF  
C
OUT  
10µF  
Parameter  
ADP1612  
ADP1613  
2.0 A  
FREQ  
SS  
R2  
10kΩ  
Current Limit  
1.4 A  
COMP  
R
COMP  
6.8kΩ  
Input Voltage Range  
1.8 V to 5.5 V  
2.5 V to 5.5 V  
C
GND  
SS  
33nF  
C
COMP  
3300pF  
4
The Step-Up Regulator Circuit Examples section recommends  
component values for several common input, output, and load  
conditions. The equations in the Applications Information  
section can be used to select components for alternate  
configurations.  
L1: DO3316P-472ML  
D1: MBRA340T3G  
R1: RC0805FR-0730KL  
R2: CRCW080510K0FKEA  
C
C
C
C
: ECJ-2VB1H332K  
COMP  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
IN  
OUT  
R
: RC0805JR-076K8L  
: ECJ-2VB1H333K  
SS  
COMP  
Figure 38. ADP1612 Step-Up Regulator Configuration  
VOUT = 5 V, fSW = 650 kHz  
STEP-UP REGULATOR  
The circuit in Figure 36 shows the ADP1612/ADP1613 in a  
basic step-up configuration.  
100  
90  
ADP1612  
V
= 5V  
OUT  
fSW = 650kHz  
= 25°C  
L1  
T
A
ADP1612/  
ADP1613  
80  
D1  
V
V
OUT  
IN  
6
3
7
8
5
2
1
VIN  
EN  
SW  
FB  
70  
ON  
R1  
R2  
OFF  
60  
50  
40  
C
IN  
1.3MHz  
650kHz  
(DEFAULT)  
FREQ  
SS  
V
V
V
V
= 1.8V  
= 2.7V  
= 3.3V  
= 4.2V  
IN  
IN  
IN  
IN  
COMP  
C
OUT  
GND  
4
R
COMP  
C
SS  
C
COMP  
30  
1
10  
100  
1k  
10k  
LOAD CURRENT (mA)  
Figure 36. Step-Up Regulator  
Figure 39. ADP1612 Efficiency vs. Load Current  
VOUT = 5 V, fSW = 650 kHz  
The modified step-up circuit in Figure 37 incorporates true  
shutdown capability advantageous for battery-powered applica-  
tions requiring low standby current. Driving the EN pin below  
0.3 V shuts down the ADP1612/ADP1613 and completely  
disconnects the input from the output.  
T
V
f
= 5V  
OUT  
= 650kHz  
SW  
OUTPUT VOLTAGE (50mV/DIV)  
AC-COUPLED  
L1  
NTGD1100L  
ADP1612/  
Q1  
D1  
ADP1613  
V
V
OUT  
IN  
A
6
3
7
8
5
2
1
LOAD CURRENT (50mA/DIV)  
VIN  
SW  
R3  
10k  
R1  
R2  
EN  
C
IN  
FB  
1.3MHz  
Q1  
B
650kHz  
(DEFAULT)  
FREQ  
SS  
COMP  
C
OUT  
GND  
R
ON  
COMP  
C
SS  
4
OFF  
TIME (100µs/DIV)  
C
COMP  
Figure 40. ADP1612 50 mA to 150 mA Load Transient (VIN = 3.3 V)  
VOUT = 5 V, fSW = 650 kHz  
Figure 37. Step-Up Regulator with True Shutdown  
Rev. A | Page 16 of 28  
 
 
 
 
 
 
ADP1612/ADP1613  
L1  
L1  
4.7µH  
10µH  
D1  
3A, 40V  
D1  
2A, 20V  
V
= 1.8V TO 4.2V  
V
= 5V  
V
= 2.7V TO 5V  
V
= 12V  
IN  
OUT  
IN  
OUT  
6
3
7
8
5
6
3
7
8
5
VIN  
SW  
VIN  
SW  
ON  
ADP1612  
EN  
R1  
30kΩ  
ON  
ADP1612  
EN  
R1  
86.6k  
OFF  
OFF  
C
C
IN  
IN  
10µF  
2
1
FB  
2
1
FB  
10µF  
C
C
OUT  
10µF  
OUT  
10µF  
FREQ  
SS  
R2  
10kΩ  
FREQ  
SS  
R2  
10kΩ  
COMP  
COMP  
R
R
COMP  
12kΩ  
COMP  
22kΩ  
C
GND  
C
GND  
SS  
33nF  
SS  
33nF  
C
C
COMP  
1200pF  
COMP  
1800pF  
4
4
L1: DO3316P-472ML  
D1: MBRA340T3G  
R1: RC0805FR-0730KL  
R2: CRCW080510K0FKEA  
L1: DO3316P-103ML  
D1: DFLS220L-7  
R1: ERJ-6ENF8662V  
R2: CRCW080510K0FKEA  
C
: ECJ-2VB1H122K  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
C
: ECJ-2VB1H182K  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
COMP  
COMP  
C
C
C
C
C
C
IN  
IN  
OUT  
OUT  
R
: RC0805JR-0712KL  
: ECJ-2VB1H333K  
SS  
R
: RC0805JR-0722KL  
: ECJ-2VB1H333K  
SS  
COMP  
COMP  
Figure 41. ADP1612 Step-Up Regulator Configuration  
VOUT = 5 V, fSW = 1.3 MHz  
Figure 44. ADP1612 Step-Up Regulator Configuration  
VOUT = 12 V, fSW = 650 kHz  
100  
90  
100  
ADP1612  
ADP1612  
V
= 5V  
V
= 12V  
OUT  
OUT  
fSW = 1.3MHz  
= 25°C  
fSW = 650kHz  
= 25°C  
T
T
A
90  
A
80  
80  
70  
70  
60  
50  
40  
60  
V
= 2.7V  
= 3.3V  
= 4.2V  
= 5.0V  
V
V
V
V
= 1.8V  
IN  
= 2.7V  
IN  
= 3.3V  
IN  
= 4.2V  
IN  
IN  
IN  
IN  
IN  
V
V
V
50  
40  
30  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 42. ADP1612 Efficiency vs. Load Current  
VOUT = 5 V, fSW = 1.3 MHz  
Figure 45. ADP1612 Efficiency vs. Load Current  
VOUT = 12 V, fSW = 650 kHz  
T
T
V
f
= 12V  
V
f
= 5V  
OUT  
= 650kHz  
OUT  
= 1.3MHz  
SW  
SW  
OUTPUT VOLTAGE (50mV/DIV)  
AC-COUPLED  
OUTPUT VOLTAGE (100mV/DIV)  
AC-COUPLED  
LOAD CURRENT (50mA/DIV)  
LOAD CURRENT (50mA/DIV)  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 43. ADP1612 50 mA to 150 mA Load Transient (VIN = 3.3 V)  
VOUT = 5 V, fSW = 1.3 MHz  
Figure 46. ADP1612 50 mA to 150 mA Load Transient (VIN = 3.3 V)  
VOUT = 12 V, fSW = 650 kHz  
Rev. A | Page 17 of 28  
ADP1612/ADP1613  
L1  
6.8µH  
L1  
15µH  
D1  
D1  
2A, 20V  
2A, 20V  
V
= 2.7V TO 5V  
V
= 12V  
V
= 2.7V TO 5V  
V
= 15V  
IN  
OUT  
IN  
OUT  
6
3
7
8
5
6
3
7
8
5
VIN  
SW  
VIN  
SW  
ON  
ADP1612  
EN  
R1  
86.6kΩ  
ON  
ADP1612  
EN  
R1  
110kΩ  
OFF  
OFF  
C
C
IN  
10µF  
IN  
10µF  
2
1
2
1
FB  
FB  
C
C
OUT  
10µF  
OUT  
10µF  
FREQ  
SS  
FREQ  
SS  
R2  
10kΩ  
R2  
10kΩ  
COMP  
COMP  
R
R
COMP  
18kΩ  
COMP  
22kΩ  
C
C
GND  
GND  
SS  
33nF  
SS  
33nF  
C
C
COMP  
680pF  
COMP  
1800pF  
4
4
L1: DO3316P-682ML  
D1: DFLS220L-7  
R1: ERJ-6ENF8662V  
R2: CRCW080510K0FKEA  
L1: DO3316P-153ML  
D1: DFLS220L-7  
R1: ERJ-6ENF1103V  
R2: CRCW080510K0FKEA  
C
C
C
C
: CC0805KRX7R9BB681  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
C
C
C
C
: ECJ-2VB1H182K  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
OUT  
COMP  
COMP  
IN  
IN  
OUT  
R
: RC0805JR-0718KL  
: ECJ-2VB1H333K  
R
: RC0805JR-0722KL  
: ECJ-2VB1H333K  
SS  
COMP  
SS  
COMP  
Figure 47. ADP1612 Step-Up Regulator Configuration  
VOUT = 12 V, fSW = 1.3 MHz  
Figure 50. ADP1612 Step-Up Regulator Configuration  
VOUT = 15 V, fSW = 650 kHz  
100  
100  
ADP1612  
ADP1612  
V
= 12V  
V
= 15V  
OUT  
OUT  
fSW = 1.3MHz  
= 25°C  
fSW = 650kHz  
= 25°C  
90  
80  
70  
T
T
A
90  
A
80  
70  
60  
50  
40  
60  
V
V
V
V
= 2.7V  
= 3.3V  
= 4.2V  
= 5.0V  
V
V
V
V
= 2.7V  
= 3.3V  
= 4.2V  
= 5.0V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
50  
40  
30  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 48. ADP1612 Efficiency vs. Load Current  
VOUT = 12 V, fSW = 1.3 MHz  
Figure 51. ADP1612 Efficiency vs. Load Current  
VOUT = 15 V, fSW = 650 kHz  
T
V
f
= 12V  
T
V
f
= 15V  
OUT  
= 1.3MHz  
OUT  
= 650kHz  
SW  
SW  
OUTPUT VOLTAGE (100mV/DIV)  
AC-COUPLED  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
LOAD CURRENT (50mA/DIV)  
LOAD CURRENT (50mA/DIV)  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 49. ADP1612 50 mA to 150 mA Load Transient (VIN = 3.3 V)  
VOUT = 12 V, fSW = 1.3 MHz  
Figure 52. ADP1612 50 mA to 150 mA Load Transient (VIN = 3.3 V)  
VOUT = 15 V, fSW = 650 kHz  
Rev. A | Page 18 of 28  
ADP1612/ADP1613  
ADP1613 Step-Up Regulator  
L1  
10µH  
L1  
10µH  
D1  
D1  
2A, 20V  
3A, 40V  
V
= 2.7V TO 5V  
V
= 15V  
V
= 2.7V TO 5V  
V
= 12V  
IN  
OUT  
IN  
OUT  
6
3
7
8
5
6
3
7
8
5
VIN  
SW  
VIN  
SW  
ON  
ADP1612  
EN  
R1  
110kΩ  
ON  
ADP1613  
EN  
R1  
86.6kΩ  
OFF  
OFF  
C
C
IN  
10µF  
IN  
10µF  
2
1
2
1
FB  
FB  
C
C
OUT  
10µF  
OUT  
10µF  
FREQ  
SS  
FREQ  
SS  
R2  
10kΩ  
R2  
10kΩ  
COMP  
COMP  
R
R
COMP  
10kΩ  
COMP  
12kΩ  
C
C
GND  
GND  
SS  
33nF  
SS  
33nF  
C
C
COMP  
1800pF  
COMP  
2200pF  
4
4
L1: DO3316P-103ML  
D1: DFLS220L-7  
R1: ERJ-6ENF1103V  
R2: CRCW080510K0FKEA  
L1: DO3316P-103ML  
D1: MBRA340T3G  
R1: ERJ-6ENF8662V  
R2: CRCW080510K0FKEA  
C
C
C
C
: ECJ-2VB1H182K  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
C
C
C
C
: ECJ-2VB1H222K  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
OUT  
COMP  
COMP  
IN  
IN  
OUT  
R
: RC0805JR-0710KL  
: ECJ-2VB1H333K  
R
: RC0805JR-0712KL  
: ECJ-2VB1H333K  
SS  
COMP  
SS  
COMP  
Figure 53. ADP1612 Step-Up Regulator Configuration  
VOUT =15 V, fSW = 1.3 MHz  
Figure 56. ADP1613 Step-Up Regulator Configuration  
OUT = 12 V, fSW = 650 kHz  
V
100  
100  
ADP1613  
V
= 12V  
OUT  
ADP1612  
V
= 15V  
OUT  
fSW = 650kHz  
= 25°C  
fSW = 1.3MHz  
= 25°C  
90  
80  
70  
90  
80  
70  
60  
50  
40  
30  
T
A
T
A
60  
50  
40  
30  
V
V
V
V
= 2.7V  
= 3.3V  
= 4.2V  
= 5.0V  
IN  
IN  
IN  
IN  
V
V
V
V
= 2.7V  
= 3.3V  
= 4.2V  
= 5.0V  
IN  
IN  
IN  
IN  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 57. ADP1613 Efficiency vs. Load Current  
OUT = 12 V, fSW = 650 kHz  
Figure 54. ADP1612 Efficiency vs. Load Current  
VOUT =15 V, fSW = 1.3 MHz  
V
T
T
V
f
= 12V  
V
f
= 15V  
OUT  
= 650kHz  
OUT  
= 1.3MHz  
SW  
SW  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
LOAD CURRENT (50mA/DIV)  
LOAD CURRENT (50mA/DIV)  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 55. ADP1612 50 mA to 150 mA Load Transient (VIN = 3.3 V)  
VOUT =15 V, fSW = 1.3 MHz  
Figure 58. ADP1613 50 mA to 150 mA Load Transient (VIN = 5 V)  
VOUT = 12 V, fSW = 650 kHz  
Rev. A | Page 19 of 28  
ADP1612/ADP1613  
L1  
6.8µH  
L1  
15µH  
D1  
D1  
3A, 40V  
3A, 40V  
V
= 2.7V TO 5V  
V
= 12V  
V
= 3.3V TO 5.5V  
V
= 15V  
IN  
OUT  
IN  
OUT  
6
3
7
8
5
6
3
7
8
5
VIN  
SW  
VIN  
SW  
ON  
ADP1613  
EN  
R1  
86.6kΩ  
ON  
ADP1613  
EN  
R1  
110kΩ  
OFF  
OFF  
C
C
IN  
10µF  
IN  
10µF  
2
1
2
1
FB  
FB  
C
C
OUT  
10µF  
OUT  
10µF  
FREQ  
SS  
FREQ  
SS  
R2  
10kΩ  
R2  
10kΩ  
COMP  
COMP  
R
R
COMP  
10kΩ  
COMP  
10kΩ  
C
C
GND  
GND  
SS  
33nF  
SS  
33nF  
C
C
COMP  
1000pF  
COMP  
1800pF  
4
4
L1: DO3316P-682ML  
D1: MBRA340T3G  
R1: ERJ-6ENF8662V  
R2: CRCW080510K0FKEA  
L1: DO3316P-153ML  
D1: MBRA340T3G  
R1: ERJ-6ENF1103V  
R2: CRCW080510K0FKEA  
C
C
C
C
: ECJ-2VB1H102K  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
C
C
C
C
: ECJ-2VB1H182K  
COMP  
COMP  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
OUT  
IN  
IN  
OUT  
R
: RC0805JR-0710KL  
: ECJ-2VB1H333K  
R
: RC0805JR-0710KL  
: ECJ-2VB1H333K  
SS  
COMP  
SS  
COMP  
Figure 59. ADP1613 Step-Up Regulator Configuration  
VOUT = 12 V, fSW = 1.3 MHz  
Figure 62. ADP1613 Step-Up Regulator Configuration  
VOUT = 15 V, fSW = 650 kHz  
100  
100  
90  
ADP1613  
ADP1613  
V
= 12V  
V
= 15V  
OUT  
OUT  
fSW = 1.3MHz  
= 25°C  
fSW = 650kHz  
= 25°C  
90  
80  
70  
T
T
A
A
80  
70  
60  
60  
50  
40  
30  
50  
40  
30  
V
V
V
V
= 2.7V  
= 3.3V  
= 4.2V  
= 5.0V  
V
V
V
V
= 3.3V  
= 4.2V  
= 5.0V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 60. ADP1613 Efficiency vs. Load Current  
VOUT = 12 V, fSW = 1.3 MHz  
Figure 63. ADP1613 Efficiency vs. Load Current  
VOUT = 15 V, fSW = 650 kHz  
T
T
V
f
= 12V  
V
f
= 15V  
OUT  
= 1.3MHz  
OUT  
= 650kHz  
SW  
SW  
OUTPUT VOLTAGE (100mV/DIV)  
AC-COUPLED  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
LOAD CURRENT (50mA/DIV)  
LOAD CURRENT (50mA/DIV)  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 61. ADP1613 50 mA to 150 mA Load Transient (VIN = 5 V)  
VOUT = 12 V, fSW = 1.3 MHz  
Figure 64. ADP1613 50 mA to 150 mA Load Transient (VIN = 5 V)  
VOUT = 15 V, fSW = 650 kHz  
Rev. A | Page 20 of 28  
ADP1612/ADP1613  
L1  
10µH  
L1  
15µH  
D1  
D1  
3A, 40V  
3A, 40V  
V
= 3.3V TO 5.5V  
V
= 15V  
V
= 3.3V TO 5.5V  
V
= 20V  
IN  
OUT  
IN  
OUT  
6
3
7
8
5
6
3
7
8
5
VIN  
SW  
VIN  
SW  
ON  
ADP1613  
EN  
R1  
110kΩ  
ON  
ADP1613  
EN  
R1  
150kΩ  
OFF  
OFF  
C
10µF  
C
IN  
10µF  
IN  
2
1
2
1
FB  
FB  
C
C
OUT  
10µF  
OUT  
10µF  
FREQ  
SS  
FREQ  
SS  
R2  
10kΩ  
R2  
10kΩ  
COMP  
COMP  
R
R
COMP  
8.2kΩ  
COMP  
18kΩ  
C
C
GND  
GND  
SS  
33nF  
SS  
33nF  
C
C
COMP  
1200pF  
COMP  
820pF  
4
4
L1: DO3316P-103ML  
D1: MBRA340T3G  
R1: ERJ-6ENF1103V  
R2: CRCW080510K0FKEA  
L1: DO3316P-153ML  
D1: MBRA340T3G  
R1: RC0805JR-07150KL  
R2: CRCW080510K0FKEA  
C
C
C
C
: ECJ-2VB1H122K  
COMP  
C
C
C
C
: CC0805KRX7R9BB821  
COMP  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
OUT  
IN  
IN  
OUT  
R
: RC0805JR-078K2L  
: ECJ-2VB1H333K  
R
: RC0805JR-0718KL  
: ECJ-2VB1H333K  
SS  
COMP  
SS  
COMP  
Figure 65. ADP1613 Step-Up Regulator Configuration  
VOUT = 15 V, fSW = 1.3 MHz  
Figure 68. ADP1613 Step-Up Regulator Configuration  
VOUT = 20 V, fSW = 650 kHz  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
ADP1613  
ADP1613  
V
= 15V  
V
= 20V  
OUT  
OUT  
fSW = 1.3MHz  
= 25°C  
fSW = 650kHz  
= 25°C  
T
T
A
A
80  
70  
60  
50  
40  
30  
V
V
V
V
= 3.3V  
= 4.2V  
= 5.0V  
= 5.5V  
V
V
V
V
= 3.3V  
= 4.2V  
= 5.0V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
20  
1
10  
100  
1k  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 66. ADP1613 Efficiency vs. Load Current  
VOUT = 15 V, fSW = 1.3 MHz  
Figure 69. ADP1613 Efficiency vs. Load Current  
VOUT = 20 V, fSW = 650 kHz  
T
T
V
f
= 15V  
V
f
= 20V  
OUT  
= 1.3MHz  
OUT  
= 650kHz  
SW  
SW  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
LOAD CURRENT (50mA/DIV)  
LOAD CURRENT (50mA/DIV)  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 67. ADP1613 50 mA to 150 mA Load Transient (VIN = 5 V)  
VOUT = 15 V, fSW = 1.3 MHz  
Figure 70. ADP1613 50 mA to 150 mA Load Transient (VIN = 5 V)  
VOUT = 20 V, fSW = 650 kHz  
Rev. A | Page 21 of 28  
ADP1612/ADP1613  
SEPIC CONVERTER  
L1  
10µH  
The circuit in Figure 74 shows the ADP1612/ADP1613 in a  
single-ended primary inductance converter (SEPIC) topology.  
This topology is useful for an unregulated input voltage, such as  
a battery-powered application in which the input voltage can vary  
between 2.7 V to 5 V and the regulated output voltage falls within  
the input voltage range.  
D1  
3A, 40V  
V
= 3.3V TO 5.5V  
V
= 20V  
IN  
OUT  
6
3
7
8
5
VIN  
SW  
ON  
ADP1613  
EN  
R1  
150kΩ  
OFF  
C
IN  
2
1
FB  
10µF  
C
OUT  
10µF  
FREQ  
SS  
R2  
10kΩ  
COMP  
R
The input and the output are dc isolated by a coupling capacitor  
(C1). In steady state, the average voltage of C1 is the input voltage.  
When the ADP1612/ADP1613 switch turns on and the diode  
turns off, the input voltage provides energy to L1 and C1 provides  
energy to L2. When the ADP1612/ADP1613 switch turns off  
and the diode turns on, the energy in L1 and L2 is released to  
charge the output capacitor (COUT) and the coupling capacitor  
(C1) and to supply current to the load.  
COMP  
8.2kΩ  
C
GND  
SS  
33nF  
C
COMP  
1200pF  
4
L1: DO3316P-103ML  
D1: MBRA340T3G  
R1: RC0805JR-07150KL  
R2: CRCW080510K0FKEA  
C
C
C
C
: ECL-2VB1H122K  
COMP  
: GRM21BR61C106KE15L  
: GRM32DR71E106KA12L  
IN  
OUT  
R
: RC0805JR-078K2L  
: ECJ-2VB1H333K  
SS  
COMP  
Figure 71. ADP1613 Step-Up Regulator Configuration  
VOUT = 20 V, fSW = 1.3 MHz  
L1  
DO3316P  
4.7µH  
100  
90  
80  
70  
60  
50  
40  
30  
ADP1613  
V
= 20V  
OUT  
fSW = 1.3MHz  
= 25°C  
T
A
ADP1612/  
ADP1613  
MBRA210LT  
2A, 10V  
C1  
10µF  
V
= 2.0V TO 5.5V  
V
= 3.3V  
OUT  
IN  
6
3
7
8
5
VIN  
EN  
SW  
ON  
L2  
OFF  
DO3316P  
4.7µH  
C
IN  
10µF  
R1  
16.9k  
FREQ  
SS  
2
1
FB  
R2  
10kΩ  
COMP  
C
OUT  
10µF  
R
COMP  
82kΩ  
GND  
4
C
SS  
C
COMP  
220pF  
V
V
V
V
= 3.3V  
= 4.2V  
= 5.0V  
= 5.5V  
IN  
IN  
IN  
IN  
Figure 74. SEPIC Converter  
20  
1
10  
100  
1k  
TFT LCD BIAS SUPPLY  
LOAD CURRENT (mA)  
Figure 75 shows a power supply circuit for TFT LCD module  
applications. This circuit has +10 V, 5 V, and +22 V outputs.  
The +10 V is generated in the step-up configuration. The −5 V  
and +22 V are generated by the charge-pump circuit. During  
the step-up operation, the SW node switches between +10 V  
and ground (neglecting the forward drop of the diode and on  
resistance of the switch). When the SW node is high, C5 charges  
up to +10 V. When the SW node is low, C5 holds its charge and  
forward-biases D8 to charge C6 to −10 V. The Zener diode (D9)  
clamps and regulates the output to −5 V.  
Figure 72. ADP1613 Efficiency vs. Load Current  
VOUT = 20 V, fSW = 1.3 MHz  
T
V
f
= 20V  
OUT  
= 1.3MHz  
SW  
OUTPUT VOLTAGE (200mV/DIV)  
AC-COUPLED  
LOAD CURRENT (50mA/DIV)  
The VGH output is generated in a similar manner by the charge-  
pump capacitors, C1, C2, and C4. The output voltage is tripled  
and regulated down to 22 V by the Zener diode, D5.  
TIME (100µs/DIV)  
Figure 73. ADP1613 50 mA to 150 mA Load Transient (VIN = 5 V)  
VOUT = 20 V, fSW = 1.3 MHz  
Rev. A | Page 22 of 28  
 
 
 
ADP1612/ADP1613  
BAV99  
D5  
R3  
200  
C4  
10nF  
VGH  
+22V  
BAV99  
D8  
R4  
C3  
10µF  
D5  
BZT52C22  
C5  
10nF  
200Ω  
VGL  
–5V  
C6  
10µF  
D9  
D4  
BZT52C5VIS  
BAV99  
D3  
D7  
C1  
10nF  
C2  
1µF  
DO3316P  
4.7µH  
D2  
ADP1612/  
ADP1613  
D1  
V
= 3.3V  
V
= 10V  
OUT  
IN  
6
3
7
8
5
2
1
VIN  
SW  
FB  
ON  
R1  
71.5kΩ  
OFF  
EN  
C
IN  
10µF  
1.3MHz  
650kHz  
FREQ  
SS  
R2  
10kΩ  
(DEFAULT)  
COMP  
C
10µF  
OUT  
GND  
4
R
COMP  
27kΩ  
C
SS  
C
COMP  
1200pF  
Figure 75. TFT LCD Bias Supply  
Rev. A | Page 23 of 28  
 
ADP1612/ADP1613  
PCB LAYOUT GUIDELINES  
For high efficiency, good regulation, and stability, a well-  
designed printed circuit board layout is required.  
Use the following guidelines when designing printed circuit  
boards (also see Figure 34 for a block diagram and Figure 3  
for a pin configuration).  
Keep the low ESR input capacitor, CIN (labeled as C7 in  
Figure 76), close to VIN and GND. This minimizes noise  
injected into the part from board parasitic inductance.  
Keep the high current path from CIN (labeled as C7 in  
Figure 76) through the L1 inductor to SW and GND as  
short as possible.  
Keep the high current path from VIN through L1, the  
rectifier (D1) and the output capacitor, COUT (labeled as  
C4 in Figure 76) as short as possible.  
Keep high current traces as short and as wide as possible.  
Place the feedback resistors as close to FB as possible to  
prevent noise pickup. Connect the ground of the feedback  
network directly to an AGND plane that makes a Kelvin  
connection to the GND pin.  
Figure 76. Example Layout for ADP1612/ADP1613 Boost Application  
(Top Layer)  
Place the compensation components as close as possible to  
COMP. Connect the ground of the compensation network  
directly to an AGND plane that makes a Kelvin connection  
to the GND pin.  
Connect the softstart capacitor, CSS (labeled as C1 in  
Figure 76) as close to the device as possible. Connect the  
ground of the softstart capacitor to an AGND plane that  
makes a Kelvin connection to the GND pin.  
Avoid routing high impedance traces from the compensa-  
tion and feedback resistors near any node connected to SW  
or near the inductor to prevent radiated noise injection.  
Figure 77. Example Layout for ADP1612/ADP1613 Boost Application  
(Bottom Layer)  
Rev. A | Page 24 of 28  
 
 
ADP1612/ADP1613  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 78. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
RM-8  
RM-8  
Branding  
L7Z  
L96  
ADP1612ARMZ-R71  
ADP1613ARMZ-R71  
ADP1612-5-EVALZ1  
ADP1612-BL1-EVZ1  
ADP1613-12-EVALZ1  
ADP1613-BL1-EVZ1  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
Evaluation Board, 5 V Output Voltage Configuration  
Blank Evaluation Board  
Evaluation Board, 12 V Output Voltage Configuration  
Blank Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 25 of 28  
 
 
 
ADP1612/ADP1613  
NOTES  
Rev. A | Page 26 of 28  
ADP1612/ADP1613  
NOTES  
Rev. A | Page 27 of 28  
ADP1612/ADP1613  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06772-0-9/09(A)  
Rev. A | Page 28 of 28  

相关型号:

ADP1612-BL1-EVZ

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
ADI

ADP1612ARMZ-R7

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
ADI

ADP1613

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
ADI

ADP1613-12-EVALZ

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
ADI

ADP1613-BL1-EVZ

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
ADI

ADP1613ARMZ-R7

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters
ADI

ADP1614

650 kHz/1.3 MHz, 4 A, Step-Up
ADI

ADP1614-1.3-EVALZ

650 kHz/1.3 MHz, 4 A, Step-Up
ADI

ADP1614-650-EVALZ

650 kHz/1.3 MHz, 4 A, Step-Up
ADI

ADP1614ACPZ-1.3-R7

650 kHz/1.3 MHz, 4 A, Step-Up
ADI

ADP1614ACPZ-650-R7

650 kHz/1.3 MHz, 4 A, Step-Up
ADI

ADP1614ACPZ-R7

650kHz/1.3 MHz, 4 A, Step-Up,PWM, DC-to-DC Switching Converter
ADI