ADP1706ACPZ-33-R7 [ADI]

1 A, Low Dropout, CMOS Linear Regulator; 1 A,低压差, CMOS线性稳压器
ADP1706ACPZ-33-R7
型号: ADP1706ACPZ-33-R7
厂家: ADI    ADI
描述:

1 A, Low Dropout, CMOS Linear Regulator
1 A,低压差, CMOS线性稳压器

稳压器
文件: 总20页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 A, Low Dropout,  
CMOS Linear Regulator  
ADP1706/ADP1707/ADP1708  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Maximum output current: 1 A  
Input voltage range: 2.5 V to 5.5 V  
Low shutdown current: <1 μA  
Low dropout voltage: 345 mV @ 1 A load  
Initial accuracy: 1ꢀ  
ADP1706  
10nF  
1
2
3
4
EN  
SS  
8
7
6
5
GND SENSE  
V
= 3.3V  
OUT  
IN  
IN  
OUT  
OUT  
V
= 5V  
IN  
4.7µF  
4.7µF  
Accuracy over line, load, and temperature: 2.5ꢀ  
16 fixed output voltage options with soft start:  
0.75 V to 3.3 V (ADP1706)  
Figure 1. ADP1706 with Fixed Output Voltage, 3.3 V  
16 fixed output voltage options with tracking  
0.75 V to 3.3 V (ADP1707)  
Adjustable output voltage option:  
ADP1707  
V
1
2
3
4
EN  
TRK  
8
7
6
5
TRK  
V
GND SENSE  
0.8 V to 5.0 V (ADP1708)  
IN  
IN  
OUT  
OUT  
OUT  
V
= 5V  
IN  
Stable with small 4.7 μF ceramic output capacitor  
Excellent load/line transient response  
Current limit and thermal overload protection  
Logic-controlled enable  
Available in an 8-lead, exposed paddle SOIC and  
3 mm × 3 mm, 8-lead exposed paddle LFCSP  
4.7µF  
4.7µF  
V
(V)  
OUT  
3
2
1
0
1
2 3 4 5  
TRK  
V
(V)  
APPLICATIONS  
Figure 2. ADP1707 with Output Voltage Tracking  
Notebook computers  
Memory components  
Telecommunications equipment  
Network equipment  
DSP/FPGA/microprocessor supplies  
Instrumentation equipment/data acquisition systems  
ADP1708  
R2  
R1  
1
2
3
4
EN  
ADJ  
8
7
6
5
GND SENSE  
V
= 0.8V(1 + R1/R2)  
OUT  
IN  
IN  
OUT  
OUT  
V
= 5V  
IN  
4.7µF  
4.7µF  
Figure 3. ADP1708 with Adjustable Output Voltage, 0.8 V to 5.0 V  
GENERAL DESCRIPTION  
ADP1707 and ADP1708 contain internal soft start capacitors  
that give a typical start-up time of 100 μs. The ADP1707  
includes a tracking feature that allows the output to follow an  
external voltage rail or reference.  
The ADP1706/ADP1707/ADP1708 are CMOS, low dropout  
linear regulators that operate from 2.5 V to 5.5 V and provide  
up to 1 A of output current. Using an advanced proprietary  
architecture, they provide high power supply rejection and  
achieve excellent line and load transient response with a small  
4.7 μF ceramic output capacitor.  
The ADP1706/ADP1707/ADP1708 are available in an 8-lead,  
exposed paddle SOIC package and an 8-lead, 3 mm × 3 mm  
exposed paddle LFCSP, making them not only very compact  
solutions but also providing excellent thermal performance for  
applications requiring up to 1 A of output current in a small,  
low profile footprint.  
The ADP1706/ADP1707 are available in 16 fixed output volt-  
age options. The ADP1708 is available in an adjustable version,  
which allows output voltages that range from 0.8 V to 5.0 V via  
an external divider. The ADP1706 allows an external soft start  
capacitor to be connected to program the start-up time; the  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADP1706/ADP1707/ADP1708  
TABLE OF CONTENTS  
Soft Start Function (ADP1706)................................................ 10  
Adjustable Output Voltage (ADP1708)................................... 11  
Track Mode (ADP1707) ............................................................ 11  
Enable Feature ............................................................................ 11  
Application Information................................................................ 12  
Capacitor Selection .................................................................... 12  
Voltage Tracking Applications.................................................. 12  
Current Limit and Thermal Overload Protection ................. 12  
Thermal Considerations............................................................ 13  
PCB Layout Considerations...................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
REVISION HISTORY  
6/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP1706/ADP1707/ADP1708  
SPECIFICATIONS  
VIN = (VOUT + 0.6 V) or 2.5 V (whichever is greater), IOUT = 10 mA, CIN = COUT = 4.7 μF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions  
Min  
Typ Max  
5.5  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = –40°C to +125°C  
IOUT = 0 mA  
IOUT = 100 mA  
IOUT = 100 mA, TJ = −40°C to +125°C  
IOUT = 1 A  
IOUT = 1 A, TJ = −40°C to +125°C  
EN = GND  
2.5  
IGND  
50  
310  
μA  
μA  
μA  
mA  
mA  
μA  
μA  
390  
1.2  
1.55  
0.1  
SHUTDOWN CURRENT  
IGND-SD  
EN = GND, TJ = −40°C to +125°C  
1.0  
OUTPUT VOLTAGE ACCURACY  
Fixed Output Voltage Accuracy  
(ADP1706 and ADP1707)  
VOUT  
IOUT = 10 mA  
IOUT = 100 μA to 1 A  
100 μA < IOUT < 1 A, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 100 μA to 1 A  
−1  
−1.5  
−2.5  
0.792 0.8  
0.788  
+1  
+1.5  
+2.5  
0.808  
0.812  
0.820  
+0.1  
%
%
%
V
Adjustable Output Voltage Accuracy  
(ADP1708)1  
VOUT  
V
100 μA < IOUT < 1 A, TJ = −40°C to +125°C  
0.780  
V
LINE REGULATION  
∆VOUT/∆VIN VIN = (VOUT + 0.6 V) to 5.5 V,  
TJ = −40°C to +125°C  
−0.1  
%/V  
LOAD REGULATION2  
DROPOUT VOLTAGE3  
∆VOUT/∆IOUT IOUT = 10 mA to 1 A, TJ = −40°C to +125°C  
0.001 %/mA  
mV  
VDROPOUT  
IOUT = 100 mA, VOUT ≥ 3.3 V  
33  
IOUT = 100 mA, VOUT ≥ 3.3 V,  
TJ = −40°C to +125°C  
55  
mV  
IOUT = 1 A, VOUT ≥ 3.3 V  
IOUT = 1 A, VOUT ≥ 3.3 V, TJ = −40°C to +125°C  
IOUT = 100 mA, 2.5 V ≤ VOUT < 3.3 V  
IOUT = 100 mA, 2.5 V ≤ VOUT < 3.3 V,  
TJ = −40°C to +125°C  
345  
35  
mV  
mV  
mV  
mV  
600  
60  
IOUT = 1 A, 2.5 V ≤ VOUT < 3.3 V  
IOUT = 1 A, 2.5 V ≤ VOUT < 3.3 V,  
TJ = −40°C to +125°C  
365  
mV  
mV  
630  
START-UP TIME4  
tSTART-UP  
ADP1707 and ADP1708  
ADP1706  
CURRENT LIMIT THRESHOLD5  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
100  
7.3  
μs  
ms  
A
CSS = 10 nF  
ILIMIT  
1.1  
1.5  
1.8  
TSSD  
TJ rising  
150  
15  
°C  
°C  
μA  
mV  
TSSD-HYS  
SSI-SOURCE  
VTRK-ERROR  
SOFT START SOURCE CURRENT (ADP1706)  
VOUT to VTRK ACCURACY (ADP1707)  
SS = GND  
0.6  
1.1  
1.6  
0 V ≤ VTRK ≤ (0.5 × VOUT (NOM)), VOUT (NOM) ≤ 1.8 V,  
TJ = −40°C to +125°C  
−40  
+40  
0 V ≤ VTRK ≤ (0.5 × VOUT (NOM)), VOUT (NOM) > 1.8 V,  
TJ = −40°C to +125°C  
−60  
+60  
mV  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
ADJ INPUT BIAS CURRENT (ADP1708)  
SENSE INPUT BIAS CURRENT  
VIH  
VIL  
VI-LEAKAGE  
ADJI-BIAS  
SNSI-BIAS  
2.5 V ≤ VIN ≤ 5.5 V  
2.5 V ≤ VIN ≤ 5.5 V  
EN = IN or GND  
1.8  
V
V
μA  
nA  
μA  
0.4  
1
0.1  
30  
4
100  
Rev. 0 | Page 3 of 20  
 
 
ADP1706/ADP1707/ADP1708  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max  
Unit  
μV rms  
μV rms  
dB  
OUTPUT NOISE  
OUTNOISE  
10 Hz to 100 kHz, VOUT = 0.75 V  
10 Hz to 100 kHz, VOUT = 3.3 V  
1 kHz, VOUT = 0.75 V  
125  
450  
70  
POWER SUPPLY REJECTION RATIO  
PSRR  
1 kHz, VOUT = 3.3 V  
56  
dB  
1 Accuracy when OUT is connected directly to ADJ. When OUT voltage is set by external feedback resistors, absolute accuracy in adjust mode depends on the tolerances  
of resistors used.  
2 Based on an end-point calculation using 10 mA and 1 A loads. See Figure 11 for typical load regulation performance for loads less than 10 mA.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.5 V.  
4 Start-up time is defined as the time between the rising edge of EN to OUT being at 95% of its nominal value.  
5 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 1.0 V, or 0.9 V.  
Rev. 0 | Page 4 of 20  
ADP1706/ADP1707/ADP1708  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
IN to GND  
OUT to GND  
EN to GND  
SS/ADJ/TRK to GND  
SENSE to GND  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
−0.3 V to +6 V  
–0.3 V to IN  
Table 3. Thermal Resistance  
–0.3 V to +6 V  
–0.3 V to +6 V  
–0.3 V to +6 V  
–65°C to +150°C  
–40°C to +125°C  
JEDEC J-STD-020  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
8-Lead SOIC (Exposed Paddle)  
8-Lead 3 mm × 3 mm LFCSP (Exposed Paddle) 66  
58  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 20  
 
ADP1706/ADP1707/ADP1708  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
EN  
GND  
IN  
1
2
3
4
8
7
6
5
SS  
PIN 1  
EN  
GND  
IN  
1
2
3
4
INDICATOR  
8
7
6
5
SS  
ADP1706  
TOP VIEW  
(Not to Scale)  
SENSE  
OUT  
OUT  
SENSE  
OUT  
OUT  
ADP1706  
TOP VIEW  
(Not to Scale)  
IN  
IN  
Figure 4. 8-Lead SOIC, ADP1706  
Figure 5. 8-Lead LFCSP, ADP1706  
EN  
GND  
IN  
1
2
3
4
8
7
6
5
TRK  
PIN 1  
EN  
GND  
IN  
1
2
3
4
INDICATOR  
8
7
6
5
TRK  
ADP1707  
TOP VIEW  
(Not to Scale)  
SENSE  
OUT  
SENSE  
OUT  
ADP1707  
TOP VIEW  
IN  
OUT  
(Not to Scale)  
IN  
OUT  
Figure 6. 8-Lead SOIC, ADP1707  
Figure 7. 8-Lead LFCSP, ADP1707  
EN  
GND  
IN  
1
2
3
4
8
7
6
5
ADJ  
PIN 1  
EN  
GND  
IN  
1
2
3
4
INDICATOR  
8
7
6
5
ADJ  
ADP1708  
TOP VIEW  
(Not to Scale)  
SENSE  
OUT  
SENSE  
OUT  
ADP1708  
TOP VIEW  
(Not to Scale)  
IN  
OUT  
IN  
OUT  
Figure 8. 8-Lead SOIC, ADP1708  
Figure 9. 8-Lead LFCSP, ADP1708  
Table 4. Pin Function Descriptions  
ADP1706  
Pin No.  
ADP1707  
Pin No.  
ADP1708  
Pin No.  
Mnemonic Description  
1
1
1
EN  
Enable Input. Drive EN high to turn on the regulator; drive it low to turn off the  
regulator. For automatic startup, connect EN to IN.  
2
2
2
GND  
IN  
OUT  
SENSE  
Ground.  
3, 4  
5, 6  
7
3, 4  
5, 6  
7
3, 4  
5, 6  
7
Regulator Input Supply. Bypass IN to GND with a 4.7 μF or greater capacitor.  
Regulated Output Voltage. Bypass OUT to GND with a 4.7 μF or greater capacitor.  
Sense. Measures the actual output voltage at the load and feeds it to the error  
amplifier. Connect SENSE as close as possible to the load to minimize the effect  
of IR drop between the regulator output and the load.  
8
N/A  
N/A  
8
N/A  
N/A  
SS  
TRK  
Soft Start. A capacitor connected to this pin determines the soft start time.  
Track. The output follows the voltage applied at the TRK pin. See the Theory of  
Operation section for a more detailed description.  
N/A  
EP  
N/A  
EP  
8
EP  
ADJ  
EP  
Adjust. A resistor divider from OUT to ADJ sets the output voltage.  
The exposed pad on the bottom of the SOIC package and the LFCSP package. EP  
enhances thermal performance and is electrically connected to GND inside the  
package. User is recommended to connect EP to the ground plane on the board.  
Rev. 0 | Page 6 of 20  
 
ADP1706/ADP1707/ADP1708  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.8 V, IOUT = 100 mA, CIN = 4.7 μF, COUT = 4.7 μF, TA = 25°C, unless otherwise noted.  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
1400  
1200  
1000  
800  
600  
400  
200  
0
I
= 1A  
I
= 100µA  
LOAD  
LOAD  
I
= 10mA  
LOAD  
I
= 500mA  
I
= 100mA  
LOAD  
LOAD  
I
= 300mA  
LOAD  
I
I
= 300mA  
= 100mA  
LOAD  
LOAD  
I
= 500mA  
LOAD  
I
= 1A  
LOAD  
I
= 10mA  
10  
LOAD  
I
= 100µA  
LOAD  
–40  
10  
60  
110  
–40  
60  
110  
T
(°C)  
T (°C)  
J
J
Figure 10. Output Voltage vs. Junction Temperature  
Figure 13. Ground Current vs. Junction Temperature  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
1400  
1200  
1000  
800  
600  
400  
200  
0
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 11. Output Voltage vs. Load Current  
Figure 14. Ground Current vs. Load Current  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
2100  
1800  
1500  
1200  
900  
600  
300  
0
I
= 100µA  
I
= 1A  
LOAD  
LOAD  
I
= 500mA  
LOAD  
I
= 10mA  
LOAD  
I
= 300mA  
LOAD  
I
I
= 100mA  
LOAD  
I
= 100mA  
LOAD  
= 300mA  
LOAD  
I
= 10mA  
LOAD  
I
I
= 500mA  
= 1A  
LOAD  
LOAD  
I
= 100µA  
LOAD  
3.8  
4.2  
4.6  
5.0  
5.4  
3.6  
4.0  
4.4  
4.8  
5.2  
V
(V)  
V
(V)  
IN  
IN  
Figure 12. Output Voltage vs. Input Voltage  
Figure 15. Ground Current vs. Input Voltage  
Rev. 0 | Page 7 of 20  
 
ADP1706/ADP1707/ADP1708  
400  
350  
300  
250  
200  
150  
100  
50  
LOAD SWITCHED FROM 50mA TO 950mA  
AND BACK TO 50mA  
V
OUT  
V
V
= 3.8V  
= 1.6V  
= 4.7µF  
= 4.7µF  
IN  
OUT  
C
C
IN  
OUT  
0
10  
100  
(mA)  
1000  
TIME (20µs/DIV)  
I
LOAD  
Figure 19. Load Transient Response, CIN = 4.7 μF, COUT = 4.7 μF  
Figure 16. Dropout Voltage vs. Load Current  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
LOAD SWITCHED FROM 50mA TO 950mA  
AND BACK TO 50mA  
V
OUT  
I
I
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 300mA  
= 500mA  
= 750mA  
= 1A  
V
V
= 3.8V  
= 1.6V  
= 22μF  
= 22μF  
IN  
OUT  
C
C
IN  
OUT  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
TIME (20μs/DIV)  
V
(V)  
IN  
Figure 17. Output Voltage vs. Input Voltage (in Dropout)  
Figure 20. Load Transient Response, CIN = 22 μF, COUT = 22 μF  
2500  
2000  
1500  
1000  
500  
I
I
I
I
I
I
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 750mA  
= 500mA  
= 300mA  
= 100mA  
= 10mA  
V
STEP FROM 4V TO 5V  
IN  
V
OUT  
V
= 3.3V  
OUT  
C
= 4.7μF  
IN  
C
I
= 4.7μF  
= 1A  
OUT  
LOAD  
0
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
TIME (100μs/DIV)  
V
(V)  
IN  
Figure 18. Ground Current vs. Input Voltage (in Dropout)  
Figure 21. Line Transient Response  
Rev. 0 | Page 8 of 20  
ADP1706/ADP1707/ADP1708  
18  
16  
14  
12  
10  
8
–40  
–45  
–50  
–55  
V
= 50mV  
= 10mA  
= 4.7μF  
RIPPLE  
I
LOAD  
C
OUT  
FREQUENCY = 10kHz  
V
= 2.4V  
OUT  
V
= 1.6V  
OUT  
6
4
V
= 0.8V  
OUT  
2
0
0
5
10  
15  
20  
25  
2.7  
3.2  
3.7  
4.2  
4.7  
C
(nF)  
V
(V)  
SS  
IN  
Figure 22. Output Voltage Ramp-Up Time vs. Soft Start Capacitor Value  
Figure 25. ADP1708 Power Supply Rejection Ratio vs. Input Voltage  
0
–35  
V
V
V
= 50mV  
I
I
I
I
I
I
= 300mA  
= 200mA  
= 100mA  
= 10mA  
= 1mA  
V
V
I
= 50mV  
RIPPLE  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 5V  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 3.3V  
= 4.7μF  
= 10mA  
OUT  
C
C
= 4.7μF  
OUT  
OUT  
FREQUENCY = 10kHz  
–40  
–45  
–50  
–55  
= 100µA  
0.8  
1.3  
1.8  
2.3  
V
2.8  
(V)  
3.3  
3.8  
4.3  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
OUT  
Figure 23. ADP1706 Power Supply Rejection Ratio vs. Frequency  
Figure 26. ADP1708 Power Supply Rejection Ratio vs. Output Voltage  
0
V
V
V
= 50mV  
I
I
I
I
I
I
= 300mA  
= 200mA  
= 100mA  
= 10mA  
= 1mA  
RIPPLE  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 5V  
IN  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 0.8V  
= 4.7μF  
C
OUT  
= 100µA  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 24. ADP1708 Power Supply Rejection Ratio vs. Frequency  
Rev. 0 | Page 9 of 20  
ADP1706/ADP1707/ADP1708  
THEORY OF OPERATION  
providing a smooth ramp-up to the nominal output voltage.  
The soft start time is calculated by  
The ADP1706/ADP1707/ADP1708 are low dropout linear  
regulators that use an advanced, proprietary architecture to  
provide high power supply rejection ratio (PSRR) and excellent  
line and load transient response with a small 4.7 μF ceramic  
output capacitor. All devices operate from a 2.5 V to 5.5 V input  
rail and provide up to 1 A of output current. Supply current in  
shutdown mode is typically 100 nA.  
T
SS = VREF ×(CSS/ISS)  
where:  
SS is the soft start period.  
REF is the 0.8 V reference voltage.  
SS is the soft start capacitance from SS to GND.  
SS is the current sourced from SS (1.2 μA).  
(1)  
T
V
C
I
When the ADP1706 is disabled (using EN), the soft start capacitor  
is discharged to GND through an internal 100 Ω resistor.  
IN  
OUT  
SENSE  
CURRENT LIMIT  
THERMAL PROTECT  
EN  
SHUTDOWN  
ADJ/  
TRK/  
SS  
2
EN  
SOFT  
START  
REFERENCE  
OUT  
GND  
V
V
= 5V  
= 3.3V  
IN  
OUT  
Figure 27. Internal Block Diagram  
C
C
I
= 4.7μF  
OUT  
1
= 10nF  
= 1A  
SS  
Internally, the ADP1706/ADP1707/ADP1708 consist of a  
LOAD  
reference, an error amplifier, a feedback voltage divider, and a  
PMOS pass transistor. Output current is delivered via the  
PMOS pass device, which is controlled by the error amplifier.  
The error amplifier compares the reference voltage with the  
feedback voltage from the output and amplifies the difference. If  
the feedback voltage is lower than the reference voltage, the gate  
of the PMOS device is pulled lower, allowing more current  
to pass and increasing the output voltage. If the feedback  
voltage is higher than the reference voltage, the gate of the  
PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
TIME (2ms/DIV)  
Figure 28. OUT Ramp-Up with External Soft Start Capacitor  
The ADP1707 and ADP1708 have no pins for soft start;  
therefore, the function is switched to an internal soft start  
capacitor, which sets the soft start ramp-up period to approxi-  
mately 48 μs. Note that the ramp-up period is the time it takes  
OUT to go from 0% to 90% of the nominal value and is  
different from the start-up time in Table 1, which is the time  
between the rising edge of EN to OUT being at 90% of the  
nominal value. For the worst-case output voltage of 5 V, using  
the suggested 4.7 μF output capacitor, the resulting input  
inrush current is approximately 490 mA, which is less than  
the maximum 1 A load current.  
The ADP1706/ADP1707 are available in 16 fixed output voltage  
options between 0.75 V and 3.3 V. The ADP1706 allows for  
connection of an external soft start capacitor, which controls  
the output voltage ramp during startup. The ADP1707 features  
a TRK pin that allows the output voltage to follow the voltage at  
this pin. The ADP1708 is available in an adjustable version with  
an output voltage that can be set to between 0.8 V and 5.0 V by  
an external voltage divider. All devices are controlled by an  
enable pin (EN).  
EN  
2
SOFT START FUNCTION (ADP1706)  
For applications that require a controlled startup, the ADP1706  
provides a programmable soft start function. The programma-  
ble soft start is useful for reducing inrush current upon startup  
and for providing voltage sequencing. To implement a soft start,  
connect a small ceramic capacitor from SS to GND. Upon  
startup, a 1.2 μA current source charges this capacitor. The  
ADP1706 start-up output voltage is limited by the voltage at SS,  
V
V
= 5V  
= 1.6V  
IN  
OUT  
OUT  
1
C
I
= 4.7μF  
= 10mA  
OUT  
LOAD  
TIME (20µs/DIV)  
Figure 29. OUT Ramp-Up with Internal Soft Start  
Rev. 0 | Page 10 of 20  
 
 
 
ADP1706/ADP1707/ADP1708  
ADJUSTABLE OUTPUT VOLTAGE (ADP1708)  
ENABLE FEATURE  
The ADP1708 can have its output voltage set over a 0.8 V to  
5.0 V range. The output voltage is set by connecting a resistive  
voltage divider from OUT to ADJ. The output voltage is  
calculated by  
The ADP1706/ADP1707/ADP1708 use the EN pin to enable  
and disable the OUT pin under normal operating conditions.  
As shown in Figure 31, when a rising voltage on EN crosses the  
active threshold, OUT turns on. When a falling voltage on EN  
crosses the inactive threshold, OUT turns off.  
V
OUT = 0.8 V (1 + R1/R2)  
(2)  
where:  
R1 is the resistor from OUT to ADJ.  
R2 is the resistor from ADJ to GND.  
EN  
The maximum bias current into ADJ is 100 nA, so for less  
than 0.5% error due to the bias current, use values less than  
60 kΩ for R2.  
TRACK MODE (ADP1707)  
OUT  
The ADP1707 includes a tracking mode feature. As shown in  
V
V
C
= 5V  
= 1.6V  
IN  
OUT  
Figure 30, if the voltage applied at the TRK pin is less than the  
nominal output voltage, OUT is equal to the voltage at TRK.  
Otherwise, OUT regulates to its nominal output value.  
4.0  
= 4.7μF  
= 10mA  
OUT  
I
LOAD  
TIME (10ms/DIV)  
Figure 31. ADP1706 Typical EN Pin Operation  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
As shown in Figure 31, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
The EN pin active/inactive thresholds are derived from the IN  
voltage. Therefore, these thresholds vary when changing the  
input voltage. Figure 32 shows typical EN active/inactive  
thresholds when the input voltage varies from 2.5 V to 5.5 V.  
1.4  
V
V
= 3.8V  
IN  
0.5  
0
= 3.3V  
OUT  
1.3  
1.2  
I
= 10mA  
LOAD  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V
(V)  
TRK  
1.1  
EN ACTIVE  
Figure 30. ADP1707 Output Voltage vs. Tracking Voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
HYSTERESIS  
For example, consider an ADP1707 with a nominal output  
voltage of 3.3 V. If the voltage applied to its TRK pin is greater  
than 3.3 V, OUT maintains a nominal output voltage of 3.3 V.  
If the voltage applied to TRK is reduced below 3.3 V, OUT  
tracks this voltage. OUT can track the TRK pin voltage from  
the nominal value all the way down to 0 V. A voltage divider is  
present from TRK to the error amplifier input with a divider  
ratio equal to the divider from OUT to the error amplifier,  
which sets the output voltage equal to the tracking voltage.  
Both divider ratios are set by postpackage trim, depending on  
the desired output voltage.  
EN INACTIVE  
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
IN  
Figure 32. Typical EN Pin Thresholds vs. Input Voltage  
Rev. 0 | Page 11 of 20  
 
 
 
 
ADP1706/ADP1707/ADP1708  
APPLICATION INFORMATION  
Input Bypass Capacitor  
CAPACITOR SELECTION  
Connecting a 4.7 μF capacitor from the IN pin to GND reduces  
the circuit sensitivity to the printed circuit board (PCB) layout,  
especially when long input traces, or high source impedance,  
is encountered. If greater than 4.7 μF of output capacitance is  
required, it is recommended that the input capacitor be increased  
to match it.  
Output Capacitor  
The ADP1706/ADP1707/ADP1708 are designed for operation  
with small, space-saving ceramic capacitors, but they function  
with most commonly used capacitors as long as care is taken with  
the effective series resistance (ESR) value. The ESR of the output  
capacitor affects stability of the LDO control loop. A minimum of  
4.7 μF capacitance with an ESR of 500 mΩ or less is recommended  
to ensure stability of the ADP1706/ADP1707/ADP1708. Transient  
response to changes in load current is also affected by output  
capacitance. Using a larger value of output capacitance improves  
the transient response of the ADP1706/ADP1707/ADP1708 to  
large changes in load current. Figure 33 and Figure 34 show the  
transient responses for output capacitance values of 4.7 μF and  
22 μF, respectively.  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the  
ADP1706/ADP1707/ADP1708, as long as they meet the  
minimum capacitance and maximum ESR requirements.  
Ceramic capacitors are manufactured with a variety of dielec-  
trics, each with different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure  
the minimum capacitance over the necessary temperature range  
and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 6.3 V or 10 V are recommended. Y5V and Z5U  
dielectrics are not recommended, due to their poor temperature  
and dc bias characteristics.  
V
RESPONSE TO LOAD STEP  
OUT  
FROM 50mA TO 950mA  
VOLTAGE TRACKING APPLICATIONS  
RATIO VOLTAGE TRACKING  
ADP1706-2.5  
2.5V  
IN  
OUT  
5V  
EN  
I/O POWER RAIL  
2.5V  
SS  
GND  
R1  
R2  
RATIO  
TRACKING  
V
V
C
C
= 3.8V  
IN  
V
OUT  
= 1.6V  
= 4.7μF  
= 4.7μF  
OUT  
IN  
1.2V  
CORE RAIL  
OUT  
ADP1707-1.2  
1.2V  
TIME (2μs/DIV)  
OUT  
TRK  
IN  
TIME  
Figure 33. Output Transient Response, COUT = 4.7 μF  
EN  
GND  
Figure 35. Voltage Tracking Feature Using ADP1707  
Figure 35 shows an application where the ADP1707 tracking  
feature is used. An ADP1706 powers the I/O of a microproces-  
sor and an ADP1707 powers the core. At startup, the output of  
the ADP1706 ramps to 2.5 V, which is divided down via a  
voltage divider (R1 and R2) to a lower voltage at the TRK pin of  
the ADP1707. The output of the ADP1707 thus follows the  
TRK pin and ramps up steadily to 1.2 V. This implementation  
ensures that the core of the processor powers up after the I/O.  
V
RESPONSE TO LOAD STEP  
OUT  
FROM 50mA TO 950mA  
V
V
= 3.8V  
IN  
= 1.6V  
OUT  
C
C
= 22μF  
IN  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
= 22μF  
OUT  
TIME (2μs/DIV)  
The ADP1706/ADP1707/ADP1708 are protected against  
damage due to excessive power dissipation by current and  
thermal overload protection circuits. The ADP1706/ADP1707/  
ADP1708 are designed to reach current limit when the output  
load reaches 1.5 A (typical). When the output load exceeds  
1.5 A, the output voltage is reduced to maintain a constant  
current limit.  
Figure 34. Output Transient Response, COUT = 22 μF  
Rev. 0 | Page 12 of 20  
 
 
 
 
 
ADP1706/ADP1707/ADP1708  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and  
power dissipation) when the junction temperature starts to  
rise above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
135°C (typical), the output is turned on again and output  
current is restored to its nominal value.  
The junction temperature of the ADP1706/ADP1707/ADP1708  
can be calculated by  
TJ = TA + (PD × θJA)  
where:  
(3)  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
(4)  
Consider the case where a hard short from OUT to ground  
occurs. At first, the ADP1706/ADP1707/ADP1708 reach  
current limit so that only 1.5 A is conducted into the short. If  
self-heating of the junction becomes great enough to cause its  
temperature to rise above 150°C, thermal shutdown activates,  
turning off the output and reducing the output current to  
zero. As the junction temperature cools and drops below  
135°C, the output turns on and conducts 1.5 A into the short,  
again causing the junction temperature to rise above 150°C.  
This thermal oscillation between 135°C and 150°C causes a  
current oscillation between 1.5 A and 0 A that continues as  
long as the short remains at the output.  
where:  
I
I
LOAD is the load current.  
GND is the ground current.  
VIN and VOUT are the input and output voltages, respectively.  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(5)  
As shown in Equation 5, for a given ambient temperature,  
input-to-output voltage differential, and continuous load  
current, a minimum copper size requirement exists for the PCB  
to ensure the junction temperature does not rise above 125°C.  
Figure 36 to Figure 41 show junction temperature calculations  
for different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation should be externally limited  
so junction temperatures do not exceed 125°C.  
140  
THERMAL CONSIDERATIONS  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
To guarantee reliable operation, the junction temperature of  
the ADP1706/ADP1707/ADP1708 must not exceed 125°C. To  
ensure that the junction temperature stays below this maximum  
value, the user needs to be aware of the parameters that contrib-  
ute to junction temperature changes. These parameters include  
ambient temperature, power dissipation in the power device,  
and thermal resistance between the junction and ambient air (θJA).  
The θJA value is dependent on the package assembly compounds  
used and the amount of copper to which the GND pins of the  
package are soldered on the PCB. Table 5 shows typical θJA values  
of the 8-lead SOIC and 8-lead LFCSP for various PCB copper sizes.  
120  
100  
80  
60  
40  
20  
1mA  
10mA  
100mA  
300mA  
500mA  
1A  
750mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
V
2.5  
3.0 3.5 4.0 4.5 5.0  
(V)  
OUT  
Table 5. Typical θJA Values  
– V  
IN  
Copper Size (mm2)  
θJA (°C/W), SOIC  
θJA (°C/W), LFCSP  
Figure 36. 500 mm2 of PCB Copper, TA = 25°C, SOIC  
01  
57.6  
53.1  
52.3  
51.3  
51.3  
65.9  
62.3  
61.2  
59.7  
59.4  
50  
100  
300  
500  
1 Device soldered to minimum size pin traces.  
Rev. 0 | Page 13 of 20  
 
 
 
ADP1706/ADP1707/ADP1708  
140  
140  
120  
100  
80  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
120  
100  
80  
60  
60  
40  
40  
20  
20  
1mA  
10mA  
100mA  
300mA  
500mA  
1A  
1mA  
10mA  
100mA  
300mA  
500mA  
1A  
750mA (LOAD CURRENT)  
750mA (LOAD CURRENT)  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
V
2.5  
– V  
3.0 3.5 4.0 4.5  
(V)  
5.0  
1.0  
1.5  
2.0  
V
2.5  
3.0 3.5 4.0 4.5 5.0  
(V)  
OUT  
– V  
IN  
OUT  
IN  
Figure 37. 100 mm2 of PCB Copper, TA = 25°C, SOIC  
Figure 40. 100 mm2 of PCB Copper, TA = 25°C, LFCSP  
140  
120  
100  
80  
140  
120  
100  
80  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
60  
60  
40  
40  
20  
20  
1mA  
10mA  
100mA  
300mA  
500mA  
1A  
1mA  
10mA  
100mA  
300mA  
500mA  
1A  
750mA (LOAD CURRENT)  
750mA (LOAD CURRENT)  
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
V
2.5  
– V  
3.0 3.5 4.0 4.5 5.0  
(V)  
1.0  
1.5  
2.0  
V
2.5  
3.0 3.5 4.0 4.5 5.0  
(V)  
OUT  
– V  
IN  
OUT  
IN  
Figure 38. 0 mm2 of PCB Copper, TA = 25°C, SOIC  
Figure 41. 0 mm2 of PCB Copper, TA = 25°C, LFCSP  
140  
120  
100  
80  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
60  
40  
20  
1mA  
10mA  
100mA  
300mA  
500mA  
1A  
750mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
V
2.5  
3.0 3.5 4.0 4.5 5.0  
(V)  
OUT  
– V  
IN  
Figure 39. 500 mm2 of PCB Copper, TA = 25°C, LFCSP  
Rev. 0 | Page 14 of 20  
 
ADP1706/ADP1707/ADP1708  
Use of 0402 or 0603 size capacitors and resistors achieves the  
smallest possible footprint solution on boards where area is  
limited.  
PCB LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins of the  
ADP1706/ADP1707/ADP1708. However, as can be seen from  
Table 5, a point of diminishing returns is eventually reached,  
beyond which an increase in the copper size does not yield  
significant heat dissipation benefits.  
ANALOG  
DEVICES  
ADP1706/ADP1707/ADP1708  
SOIC8  
C3  
C1  
C2  
GND  
GND  
The ADP1706/ADP1707/ADP1708 feature an exposed pad on  
the bottom of both the SOIC and LFCSP packages to improve  
thermal performance. Because the exposed pad is electrically  
connected to GND inside the package, it is recommended that  
it also be connected to the ground plane on the PCB with a  
sufficient amount of copper.  
U1  
R1  
J1  
R2  
Here are a few general tips when designing PCBs:  
VIN  
VOUT  
Place the input capacitor as close as possible to the IN and  
GND pins.  
Place the output capacitor as close as possible to the OUT  
and GND pins.  
For the ADP1706, place the soft start capacitor as close as  
possible to the SS pin.  
Connect the load as close as possible to the OUT and  
SENSE pins.  
GND  
EN  
ADJ/TRK/SS  
GND  
Figure 42. Example PCB Layout  
Rev. 0 | Page 15 of 20  
 
ADP1706/ADP1707/ADP1708  
OUTLINE DIMENSIONS  
5.00 (0.197)  
4.90 (0.193)  
4.80 (0.189)  
3.098 (0.122)  
4.00 (0.157)  
3.90 (0.154)  
3.80 (0.150)  
2.41 (0.095)  
8
5
6.20 (0.244)  
6.00 (0.236)  
5.80 (0.228)  
TOP VIEW  
1
4
BOTTOM VIEW  
(PINS UP)  
1.27 (0.05)  
BSC  
0.50 (0.020)  
0.25 (0.010)  
45°  
1.65 (0.065)  
1.25 (0.049)  
1.75 (0.069)  
1.35 (0.053)  
1.27 (0.050)  
0.40 (0.016)  
0.10 (0.004)  
MAX  
SEATING  
PLANE  
8°  
0°  
0.25 (0.0098)  
0.17 (0.0067)  
0.51 (0.020)  
0.31 (0.012)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 43. 8-Lead Standard Small Outline Package, with Expose Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-2)  
Dimensions shown in millimeters and (inches)  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
0.50  
BSC  
0.60 MAX  
5
8
2.95  
2.75 SQ  
2.55  
1.60  
1.45  
1.30  
EXPOSED  
PAD  
TOP  
VIEW  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
1.89  
1.74  
1.59  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
Figure 44. 8-Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
Rev. 0 | Page 16 of 20  
 
ADP1706/ADP1707/ADP1708  
ORDERING GUIDE  
Model  
ADP1706ARDZ-0.75R71 –40°C to +125°C  
Temperature Range  
Output Voltage (V)  
Package Description Package Option Branding  
0.75  
0.8  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
ADP1706ARDZ-0.8-R71  
ADP1706ARDZ-0.85R71  
ADP1706ARDZ-0.9-R71  
ADP1706ARDZ-0.95R71  
ADP1706ARDZ-1.0-R71  
ADP1706ARDZ-1.05R71  
ADP1706ARDZ-1.1-R71  
ADP1706ARDZ-1.15R71  
ADP1706ARDZ-1.2-R71  
ADP1706ARDZ-1.3-R71  
ADP1706ARDZ-1.5-R71  
ADP1706ARDZ-1.8-R71  
ADP1706ARDZ-2.5-R71  
ADP1706ARDZ-3.0-R71  
ADP1706ARDZ-3.3-R71  
ADP1706ACPZ-0.75R71  
ADP1706ACPZ-0.8-R71  
ADP1706ACPZ-0.85R71  
ADP1706ACPZ-0.9-R71  
ADP1706ACPZ-0.95R71  
ADP1706ACPZ-1.0-R71  
ADP1706ACPZ-1.05R71  
ADP1706ACPZ-1.1-R71  
ADP1706ACPZ-1.15R71  
ADP1706ACPZ-1.2-R71  
ADP1706ACPZ-1.3-R71  
ADP1706ACPZ-1.5-R71  
ADP1706ACPZ-1.8-R71  
ADP1706ACPZ-2.5-R71  
ADP1706ACPZ-3.0-R71  
ADP1706ACPZ-3.3-R71  
ADP1707ARDZ-0.75R71  
ADP1707ARDZ-0.8-R71  
ADP1707ARDZ-0.85R71  
ADP1707ARDZ-0.9-R71  
ADP1707ARDZ-0.95R71  
ADP1707ARDZ-1.0-R71  
ADP1707ARDZ-1.05R71  
ADP1707ARDZ-1.1-R71  
ADP1707ARDZ-1.15R71  
ADP1707ARDZ-1.2-R71  
ADP1707ARDZ-1.3-R71  
ADP1707ARDZ-1.5-R71  
ADP1707ARDZ-1.8-R71  
ADP1707ARDZ-2.5-R71  
ADP1707ARDZ-3.0-R71  
ADP1707ARDZ-3.3-R71  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0.85  
0.9  
0.95  
1.0  
1.05  
1.1  
1.15  
1.2  
1.3  
1.5  
1.8  
2.5  
3.0  
3.3  
0.75  
0.8  
0.85  
0.9  
0.95  
1.0  
1.05  
1.1  
1.15  
1.2  
1.3  
1.5  
1.8  
L62  
L63  
L64  
L6J  
L68  
L65  
L67  
L66  
L69  
L6A  
L6C  
L6D  
L6H  
L6E  
L6F  
L6G  
2.5  
3.0  
3.3  
0.75  
0.8  
0.85  
0.9  
0.95  
1.0  
1.05  
1.1  
1.15  
1.2  
1.3  
1.5  
1.8  
2.5  
3.0  
3.3  
Rev. 0 | Page 17 of 20  
 
ADP1706/ADP1707/ADP1708  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Output Voltage (V)  
Package Description Package Option Branding  
ADP1707ACPZ-0.75R71  
ADP1707ACPZ-0.8-R71  
ADP1707ACPZ-0.85R71  
ADP1707ACPZ-0.9-R71  
ADP1707ACPZ-0.95R71  
ADP1707ACPZ-1.0-R71  
ADP1707ACPZ-1.05R71  
ADP1707ACPZ-1.1-R71  
ADP1707ACPZ-1.15R71  
ADP1707ACPZ-1.2-R71  
ADP1707ACPZ-1.3-R71  
ADP1707ACPZ-1.5-R71  
ADP1707ACPZ-1.8-R71  
ADP1707ACPZ-2.5-R71  
ADP1707ACPZ-3.0-R71  
ADP1707ACPZ-3.3-R71  
ADP1708ARDZ-R71  
0.75  
0.8  
0.85  
0.9  
0.95  
1.0  
1.05  
1.1  
1.15  
1.2  
1.3  
1.5  
1.8  
2.5  
3.0  
3.3  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead SOIC_N_EP  
8-Lead LFCSP_VD  
Evaluation Board  
Evaluation Board  
Evaluation Board  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
CP-8-2  
RD-8-2  
CP-8-2  
L6P  
L6Q  
L6R  
L6S  
L6T  
L6U  
L6V  
L6W  
L6X  
L6Y  
L6Z  
L70  
L71  
L72  
L73  
L74  
0.8 to 5.0  
0.8 to 5.0  
ADP1708ACPZ-R71  
L7P  
ADP1706-3.3-EVALZ1  
ADP1707-3.3-EVALZ1  
ADP1708-EVALZ1  
3.3  
3.3  
Adjustable, but set to 1.6 V  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
ADP1706/ADP1707/ADP1708  
NOTES  
Rev. 0 | Page 19 of 20  
ADP1706/ADP1707/ADP1708  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06640-0-6/07(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADP1706ARDZ-0.75R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-0.8-R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-0.85R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-0.9-R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-0.95R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-075R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-08-R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-085R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-09-R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-095R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-1.0-R7

1 A, Low Dropout, CMOS Linear Regulator
ADI

ADP1706ARDZ-1.05R7

1 A, Low Dropout, CMOS Linear Regulator
ADI