ADP1711AUJZ-0.8-R7 [ADI]

150 mA, Low Dropout, CMOS Linear Regulator; 150毫安,低压差, CMOS线性稳压器
ADP1711AUJZ-0.8-R7
型号: ADP1711AUJZ-0.8-R7
厂家: ADI    ADI
描述:

150 mA, Low Dropout, CMOS Linear Regulator
150毫安,低压差, CMOS线性稳压器

稳压器
文件: 总16页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
150 mA, Low Dropout,  
CMOS Linear Regulator  
ADP1710/ADP1711  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Maximum output current: 150 mA  
Input voltage range: 2.5 V to 5.5 V  
Light load efficient  
ADP1710  
V
= 5V  
V
= 3.3V  
1µF  
IN  
1µF  
OUT  
1
2
3
5
IN  
OUT  
I
I
GND = 35 μA with zero load  
GND = 40 μA with 100 μA load  
GND  
EN  
4
NC  
Low shutdown current: <1 μA  
Low dropout voltage: 150 mV @ 150 mA load  
Initial accuracy: 1ꢀ  
NC = NO CONNECT  
Figure 1. ADP1710 with Fixed Output Voltage, 3.3 V  
Accuracy over line, load, and temperature: 2ꢀ  
Stable with small 1μF ceramic output capacitor  
16 fixed output voltage options: 0.75 V to 3.3 V (ADP1710)  
Adjustable output voltage option: 0.8 V to 5.0 V  
(ADP1710 Adjustable)  
16 fixed output voltage options with reference bypass:  
0.75 V to 3.3 V (ADP1711)  
High PSRR: 69 dB @ 1 kHz  
ADP1710  
ADJUSTABLE  
V
= 5.5V  
V
= 0.8V(1 + R1/R2)  
1µF  
IN  
OUT  
1
2
3
5
4
IN  
OUT  
ADJ  
1µF  
GND  
EN  
R1  
R2  
Low noise: 40 μVRMS  
Excellent load/line transient response  
Current limit and thermal overload protection  
Logic controlled enable  
Figure 2. ADP1710 with Adjustable Output Voltage, 0.8 V to 5.0 V  
ADP1711  
5-lead TSOT package  
V
= 5V  
V
= 3.3V  
1µF  
IN  
OUT  
1
2
3
5
IN  
OUT  
APPLICATIONS  
1µF  
Mobile phones  
GND  
EN  
Digital camera and audio devices  
Portable and battery-powered equipment  
Post dc-dc regulation  
10nF  
4
BYP  
Figure 3. ADP1711 with Fixed Output Voltage and Bypass Capacitor, 3.3 V  
GENERAL DESCRIPTION  
The ADP1710/ADP1711 are low dropout linear regulators  
that operate from 2.5 V to 5.5 V and provide up to 150 mA of  
output current. Utilizing a novel scaling architecture, ground  
current drawn is a very low 40 μA, when driving a 100 μA  
load, making the ADP1710/ADP1711 ideal for battery-  
operated portable equipment.  
The ADP1710/ADP1711 are optimized for stable operation with  
small 1 μF ceramic output capacitors, allowing for good transient  
performance while occupying minimal board space. An enable  
pin controls the output voltage on both devices. There is also an  
under-voltage lockout circuit on both devices, which disables the  
regulator if IN drops below a minimum threshold.  
The ADP1710 and the ADP1711 are each available in sixteen  
fixed output voltage options. The ADP1710 is also available in  
an adjustable version, which allows output voltages that range  
from 0.8 V to 5 V via an external divider. The ADP1711 allows  
for a reference bypass capacitor to be connected, which reduces  
output voltage noise and improves power supply rejection.  
An internal soft start gives a typical start-up time of 80 μs.  
Short-circuit protection and thermal overload protection  
circuits prevent damage to the devices in adverse conditions.  
Both the ADP1710 and the ADP1711 are available in tiny  
5­lead TSOT packages, for the smallest footprint solution to all  
your power needs.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADP1710/ADP1711  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Enable Feature ...............................................................................8  
Undervoltage Lockout (UVLO) ..................................................9  
Application Information................................................................ 10  
Capacitor Selection .................................................................... 10  
Current Limit and Thermal Overload Protection ................. 10  
Thermal Considerations............................................................ 11  
Printed Circuit Board Layout Considerations ....................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ........................................................................ 8  
Adjustable Output Voltage (ADP1710 Adjustable) ................. 8  
Bypass Capacitor (ADP1711) ..................................................... 8  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADP1710/ADP1711  
SPECIFICATIONS  
VIN = (VOUT + 0.5 V) or 2.5 V (whichever is greater), IOUT = 1 mA, CIN = COUT = 1 μF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
35  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = –40°C to +125°C  
2.5  
5.5  
IGND  
IOUT = 0 μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
μA  
μA  
%
IOUT = 0 μA, TJ = –40°C to +125°C  
IOUT = 100 μA  
50  
40  
IOUT = 100 μA, TJ = –40°C to +125°C  
IOUT = 100 mA  
80  
665  
1
IOUT = 100 mA, TJ = –40°C to +125°C  
IOUT = 150 mA  
860  
1.3  
IOUT = 150 mA, TJ = –40°C to +125°C  
EN = GND  
SHUTDOWN CURRENT  
IGND-SD  
VOUT  
0.1  
EN = GND, TJ = –40°C to +125°C  
IOUT = 1 mA  
1.0  
FIXED OUTPUT VOLTAGE ACCURACY  
(ADP1710 AND ADP1711)  
–1  
–2  
+1  
100 μA < IOUT < 150 mA, TJ = –40°C to +125°C  
IOUT = 1 mA  
+2  
%
ADJUSTABLE OUTPUT VOLTAGE  
ACCURACY (ADP1710 ADJUSTABLE)1  
LINE REGULATION  
VOUT  
0.792 0.8  
0.784  
0.808  
0.816  
+0.1  
V
100 μA < IOUT < 150 mA, TJ = –40°C to +125°C  
VIN = (VOUT + 0.5 V) to 5.5 V, TJ = –40°C to +125°C  
IOUT = 10 mA to 150 mA  
V
∆VOUT/∆VIN  
∆VOUT/∆IOUT  
–0.1  
%/ V  
%/mA  
LOAD REGULATION2  
0.002  
IOUT = 10 mA to 150 mA, TJ = –40°C to +125°C  
IOUT = 100 mA, VOUT ≥ 3.0 V  
0.004 %/mA  
mV  
DROPOUT VOLTAGE3  
VDROPOUT  
100  
150  
120  
180  
IOUT = 100 mA, VOUT ≥ 3.0 V, TJ = –40°C to +125°C  
IOUT = 150 mA, VOUT ≥ 3.0 V  
175  
250  
200  
300  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IOUT = 150 mA, VOUT ≥ 3.0 V, TJ = –40°C to +125°C  
IOUT = 100 mA, 2.5 V ≤ VOUT < 3.0 V  
IOUT = 100 mA, 2.5 V ≤ VOUT < 3.0 V, TJ = –40°C to +125°C  
IOUT = 150 mA, 2.5 V ≤ VOUT < 3.0 V  
IOUT = 150 mA, 2.5 V ≤ VOUT < 3.0 V, TJ = –40°C to +125°C  
START-UP TIME4  
TSTART-UP  
ADP1710  
80  
μs  
ADP1711  
CURRENT LIMIT THRESHOLD5  
With 10 nF bypass capacitor  
TJ rising  
100  
270  
150  
μs  
ILIMIT  
180  
360  
mA  
THERMAL SHUTDOWN THRESHOLD  
TSSD  
°C  
°C  
V
THERMAL SHUTDOWN HYSTERESIS  
UVLO ACTIVE THRESHOLD  
UVLO INACTIVE THRESHOLD  
UVLO HYSTERESIS  
TSSD-HYS  
UVLOACTIVE  
15  
VIN falling  
1.95  
1.8  
UVLOINACTIVE VIN rising  
UVLOHYS  
2.45  
V
250  
mV  
V
EN INPUT LOGIC HIGH  
VIH  
2.5 V ≤ VIN ≤ 5.5 V  
EN INPUT LOGIC LOW  
VIL  
2.5 V ≤ VIN ≤ 5.5 V  
EN = IN or GND  
0.4  
1
V
EN INPUT LEAKAGE CURRENT  
VI-LEAKAGE  
0.1  
30  
μA  
ADJ INPUT BIAS CURRENT  
(ADP1710 ADJUSTABLE)  
ADJI-BIAS  
OUTNOISE  
100  
nA  
OUTPUT NOISE  
ADP1710  
10 Hz to 100 kHz, VOUT = 3.3 V  
330  
40  
μVrms  
μVrms  
ADP1711  
10 Hz to 100 kHz, VOUT = 0.75 V, with 10 nF bypass capacitor  
POWER SUPPLY REJECTION RATIO  
ADP1710  
PSRR  
1 kHz, VOUT = 3.3 V  
58  
69  
dB  
dB  
ADP1711  
1 kHz, VOUT = 0.75 V, with 10 nF bypass capacitor  
1 Accuracy when OUT is connected directly to ADJ. When OUT voltage is set by external feedback resistors, absolute accuracy in adjust mode depends on the tolerances  
of resistors used.  
2 Based on an end-point calculation using 10 mA and 150 mA loads. See Figure 8 for typical load regulation performance for loads less than 10 mA.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.5 V.  
4 Start-up time is defined as the time between the rising edge of EN to OUT being at 90% of its nominal value.  
5 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 1.0 V, or 0.9 V.  
Rev. 0 | Page 3 of 16  
 
 
ADP1710/ADP1711  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
IN to GND  
OUT to GND  
–0.3 V to +6 V  
–0.3 V to IN  
Table 3. Thermal Resistance  
Package Type  
5-Lead TSOT  
EN to GND  
ADJ/BYP to GND  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
–0.3 V to +6 V  
–0.3 V to +6 V  
–65°C to +150°C  
–40°C to +125°C  
JEDEC J-STD-020  
θJA  
Unit  
170  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 16  
 
ADP1710/ADP1711  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
5
IN  
GND  
EN  
OUT  
1
2
3
5
4
IN  
GND  
EN  
OUT  
BYP  
1
2
3
5
IN  
GND  
EN  
OUT  
ADP1710  
ADP1710  
ADP1711  
FIXED  
ADJUSTABLE  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
4
NC  
4
ADJ  
NC = NO CONNECT  
Figure 4. 5-Lead TSOT (UJ-Suffix)  
Figure 5. 5-Lead TSOT (UJ-Suffix)  
Figure 6. 5-Lead TSOT (UJ-Suffix)  
Table 4. Pin Function Descriptions  
ADP1710 ADP1710  
Fixed  
Pin No.  
Adjustable ADP1711  
Pin No.  
Pin No.  
Mnemonic Description  
1
2
3
1
2
3
1
2
3
IN  
GND  
EN  
Regulator Input Supply. Bypass IN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive it low to turn off the  
regulator. For automatic startup, connect EN to IN.  
4
NC  
No Connect.  
4
5
ADJ  
BYP  
Adjust. A resistor divider from OUT to ADJ sets the output voltage.  
Connect a 1 nF or greater capacitor (10 nF is recommended) between BYP and GND  
to reduce the internal reference noise for low noise applications.  
4
5
5
OUT  
Regulated Output Voltage. Bypass OUT to GND with a 1 μF or greater capacitor.  
Rev. 0 | Page 5 of 16  
 
ADP1710/ADP1711  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.8 V, IOUT = 1 mA, CIN = COUT = 1 μF, TA = 25°C, unless otherwise noted.  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
I
= 150mA  
= 100mA  
LOAD  
I
= 10mA  
LOAD  
LOAD  
I
= 1mA  
LOAD  
I
= 100µA  
LOAD  
I
= 50mA  
I
= 50mA  
LOAD  
LOAD  
I
= 100mA  
I
LOAD  
I
= 1mA  
25  
I
= 100µA  
LOAD  
LOAD  
I
= 10mA  
–5  
= 150mA  
125  
LOAD  
LOAD  
–40  
–5  
25  
(°C)  
85  
–40  
85  
125  
T
T (°C)  
J
J
Figure 7. Output Voltage vs. Junction Temperature  
Figure 10. Ground Current vs. Junction Temperature  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 8. Output Voltage vs. Load Current  
Figure 11. Ground Current vs. Load Current  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 100µA  
I
= 1mA  
I
= 10mA  
LOAD  
LOAD  
LOAD  
I
I
I
= 150mA  
= 100mA  
LOAD  
LOAD  
I
= 50mA  
LOAD  
I
= 100mA  
= 50mA  
I
LOAD  
LOAD  
I
= 150mA  
LOAD  
= 1mA  
I
= 100µA  
LOAD  
I
= 10mA  
LOAD  
LOAD  
3.3  
3.8  
4.3  
4.8  
5.3  
3.3  
3.8  
4.3  
4.8  
5.3  
V
(V)  
V
(V)  
IN  
IN  
Figure 9. Output Voltage vs. Input Voltage  
Figure 12. Ground Current vs. Input Voltage  
Rev. 0 | Page 6 of 16  
 
ADP1710/ADP1711  
180  
160  
140  
120  
100  
80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
V
V
= 50mV  
RIPPLE  
= 5V  
IN  
OUT  
= 0.75V  
= 1µF  
C
OUT  
I
= 50mA  
LOAD  
I
=
LOAD  
10mA  
60  
40  
I
= 100µA  
LOAD  
20  
0
0.1  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
10M  
1
10  
(mA)  
100  
1000  
I
LOAD  
Figure 16. ADP1711 Power Supply Rejection Ratio vs. Frequency  
(10 nF Bypass Capacitor)  
Figure 13. Dropout Voltage vs. Load Current  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
0
V
V
V
= 50mV  
RIPPLE  
= 5V  
IN  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 3.3V  
= 1µF  
C
OUT  
I
= 50mA  
LOAD  
I
= 10mA  
LOAD  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 50mA  
= 100mA  
= 150mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
= 100µA  
100k  
LOAD  
3.2  
3.3  
3.4  
(V)  
3.5  
3.6  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
1M  
10M  
V
IN  
Figure 17. ADP1710 Power Supply Rejection Ratio vs. Frequency  
Figure 14. Output Voltage vs. Input Voltage (in Dropout)  
7
6
5
I
= 150mA  
LOAD  
4
3
2
1
I
= 100mA  
LOAD  
I
=
=
=
LOAD  
10mA  
I
=
LOAD  
50mA  
I
LOAD  
1mA  
I
LOAD  
100µA  
0
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
V
IN  
Figure 15. Ground Current vs. Input Voltage (In Dropout)  
Rev. 0 | Page 7 of 16  
ADP1710/ADP1711  
THEORY OF OPERATION  
The ADP1710/ADP1711 are low dropout, CMOS linear  
regulators that use an advanced, proprietary architecture to  
provide high power supply rejection ratio (PSRR) and excellent  
line and load transient response with just a small 1 μF ceramic  
output capacitor. Both devices operate from a 2.5 V to 5.5 V  
input rail and provide up to 150 mA of output current.  
Incorporating a novel scaling architecture, ground current is  
very low when driving light loads. Ground current in shutdown  
mode is typically 100 nA.  
ADJUSTABLE OUTPUT VOLTAGE  
(ADP1710 ADJUSTABLE)  
The ADP1710 adjustable version can have its output voltage  
set over a 0.8 V to 5.0 V range. The output voltage is set by  
connecting a resistive voltage divider from OUT to ADJ. The  
output voltage is calculated using the equation  
V
OUT = 0.8 V (1 + R1/R2)  
(1)  
where:  
R1 is the resistor from OUT to ADJ.  
R2 is the resistor from ADJ to GND.  
IN  
OUT  
The maximum bias current into ADJ is 100 nA, so for less  
than 0.5% error due to the bias current, use values less than  
60 kΩ for R2.  
CURRENT LIMIT  
THERMAL PROTECT  
+
BYPASS CAPACITOR (ADP1711)  
SHUTDOWN  
AND UVLO  
The ADP1711 allows for an external bypass capacitor to be  
connected to the internal reference, which reduces output  
voltage noise and improves power supply rejection. A low  
leakage capacitor of 1 nF or greater (10 nF is recommended)  
must be connected between the BYP and GND pins.  
NC/  
ADJ/  
BYP  
EN  
REFERENCE  
GND  
NC = NO CONNECT  
Figure 18. Internal Block Diagram  
ENABLE FEATURE  
Internally, the ADP1710/ADP1711 each consist of a reference,  
an error amplifier, a feedback voltage divider, and a PMOS pass  
transistor. Output current is delivered via the PMOS pass  
device, which is controlled by the error amplifier. The error  
amplifier compares the reference voltage with the feedback  
voltage from the output and amplifies the difference. If the  
feedback voltage is lower than the reference voltage, the gate of  
the PMOS device is pulled lower, allowing more current to pass  
and increasing the output voltage. If the feedback voltage is  
higher than the reference voltage, the gate of the PMOS device  
is pulled higher, allowing less current to pass and decreasing the  
output voltage.  
The ADP1710/ADP1711 use the EN pin to enable and disable  
the OUT pin under normal operating conditions. As shown in  
Figure 19, when a rising voltage on EN crosses the active  
threshold, OUT turns on. When a falling voltage on EN crosses  
the inactive threshold, OUT turns off.  
EN  
The ADP1710 is available in two versions, one with fixed output  
voltage options and one with an adjustable output voltage. The  
fixed output voltage option is set internally to one of sixteen  
values between 0.75 V and 3.3 V, using an internal feedback  
network. The adjustable output voltage can be set to between 0.8  
V and 5.0 V by an external voltage divider connected from OUT  
to ADJ. The ADP1711 is available with fixed output voltage  
options and features a bypass pin, which allows an external  
capacitor to be connected, which reduces internal reference  
noise. All devices are controlled by an enable pin (EN).  
2
OUT  
V
V
= 5V  
IN  
= 1.6V  
= 1µF  
OUT  
C
C
IN  
= 1µF  
= 10mA  
OUT  
LOAD  
I
TIME (1ms/DIV)  
Figure 19. ADP1710 Adjustable Typical EN Pin Operation  
Rev. 0 | Page 8 of 16  
 
 
ADP1710/ADP1711  
As can be seen, the EN pin has hysteresis built in. This prevents  
on/off oscillations that can occur due to noise on the EN pin as  
it passes through the threshold points.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The ADP1710/ADP1711 have an undervoltage lockout circuit,  
which monitors the voltage on the IN pin. When the voltage on  
IN drops below 1.95 V (minimum), the circuit activates, disabling  
the OUT pin.  
The EN pin active/inactive thresholds are derived from the IN  
voltage. Therefore, these thresholds vary with changing input  
voltage. Figure 20 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.5 V to 5.5 V.  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
EN ACTIVE  
HYSTERESIS  
EN INACTIVE  
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
IN  
Figure 20. Typical EN Pin Thresholds vs. Input Voltage  
Rev. 0 | Page 9 of 16  
 
 
ADP1710/ADP1711  
APPLICATION INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input Bypass Capacitor  
Connecting a 1 μF capacitor from IN to GND reduces the  
circuit sensitivity to printed circuit board (PCB) layout,  
especially when long input traces or high source impedance are  
encountered. If greater than 1 μF of output capacitance is  
required, the input capacitor should be increased to match it.  
The ADP1710/ADP1711 are designed for operation with small,  
space-saving ceramic capacitors, but they will function with most  
commonly used capacitors as long as care is taken about the  
effective series resistance (ESR) value. The ESR of the output  
capacitor affects stability of the LDO control loop. A minimum of  
1 μF capacitance with an ESR of 500 mΩ or less is recommended  
to ensure stability of the ADP1710/ADP1711. Transient response  
to changes in load current is also affected by output capacitance.  
Using a larger value of output capacitance improves the transient  
response of the ADP1710/ADP1711 to large changes in load  
current. Figure 21 and Figure 22 show the transient responses for  
output capacitance values of 1 μF and 22 μF, respectively.  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the  
ADP1710/ADP1711, as long as they meet the minimum  
capacitance and maximum ESR requirements. Ceramic  
capacitors are manufactured with a variety of dielectrics, each  
with different behavior over temperature and applied voltage.  
Capacitors must have a dielectric adequate to ensure the  
minimum capacitance over the necessary temperature range  
and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 6.3 V or 10 V are recommended. Y5V and Z5U  
dielectrics are not recommended, due to their poor temperature  
and dc bias characteristics.  
V
RESPONSE TO LOAD STEP  
OUT  
FROM 7.5mA TO 142.5mA  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
1
The ADP1710/ADP1711 are protected against damage due to  
excessive power dissipation by current and thermal overload  
protection circuits. The ADP1710/ADP1711 are designed to  
current limit when the output load reaches 270 mA (typical).  
When the output load exceeds 270 mA, the output voltage is  
reduced to maintain a constant current limit.  
V
V
C
C
= 5V  
IN  
= 3.3V  
= 1µF  
OUT  
IN  
= 1µF  
OUT  
TIME (4µs/DIV)  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and  
power dissipation) when the junction temperature starts to rise  
above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
135°C, the output is turned on again and output current is  
restored to its nominal value.  
Figure 21. Output Transient Response, COUT = 1 μF  
V
RESPONSE TO LOAD STEP  
OUT  
FROM 7.5mA TO 142.5mA  
1
Consider the case where a hard short from OUT to ground  
occurs. At first the ADP1710/ADP1711 current limits, so that  
only 270 mA is conducted into the short. If self heating of the  
junction is great enough to cause its temperature to rise above  
150°C, thermal shutdown activates, turning off the output and  
reducing the output current to zero. As the junction  
temperature cools and drops below 135°C, the output turns on  
and conducts 270 mA into the short, again causing the  
junction temperature to rise above 150°C. This thermal  
oscillation between 135°C and 150°C causes a current  
oscillation between 270 mA and 0 mA, which continues as  
long as the short remains at the output.  
V
V
C
= 5V  
IN  
= 3.3V  
= 22µF  
OUT  
IN  
C
= 22µF  
OUT  
TIME (4µs/DIV)  
Figure 22. Output Transient Response, COUT = 22 μF  
Rev. 0 | Page 10 of 16  
 
 
 
ADP1710/ADP1711  
140  
120  
100  
80  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so junction temperatures do not exceed 125°C.  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
THERMAL CONSIDERATIONS  
To guarantee reliable operation, the junction temperature of the  
ADP1710/ADP1711 must not exceed 125°C. To ensure the  
junction temperature stays below this maximum value, the user  
needs to be aware of the parameters that contribute to junction  
temperature changes. These parameters include ambient  
temperature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The θJA  
number is dependent on the package assembly compounds used  
and the amount of copper to which the GND pins of the package  
are soldered on the PCB. Table 5 shows typical θJA values of the  
5­lead TSOT package for various PCB copper sizes.  
60  
40  
20  
1mA  
10mA  
30mA  
80mA  
100mA  
150mA  
125mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5 4.0 4.5  
(V)  
OUT  
5.0  
5.0  
5.0  
V
– V  
IN  
Figure 23. 500 mm2 of PCB Copper, TA = 25°C  
140  
120  
100  
80  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
Table 5.  
Copper Size (mm2)  
01  
θJA (°C/W)  
170  
152  
146  
134  
131  
50  
100  
300  
500  
60  
40  
1 Device soldered to minimum size pin traces.  
20  
The junction temperature of the ADP1710/ADP1711 can be  
calculated from the following equation:  
1mA  
10mA  
30mA  
80mA  
100mA  
150mA  
125mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5 4.0 4.5  
(V)  
OUT  
TJ = TA + (PD × θJA)  
(2)  
(3)  
V
– V  
IN  
Figure 24. 100 mm2 of PCB Copper, TA = 25°C  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
140  
120  
100  
80  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
where:  
I
I
LOAD is the load current.  
GND is the ground current.  
60  
VIN and VOUT are the input voltage and output voltage,  
respectively.  
40  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
20  
1mA  
10mA  
30mA  
80mA  
100mA  
150mA  
125mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5 4.0 4.5  
(V)  
OUT  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
V
– V  
IN  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB to  
ensure the junction temperature does not rise above 125°C. The  
following figures show junction temperature calculations for  
different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
Figure 25. 0 mm2 of PCB Copper, TA = 25°C  
Rev. 0 | Page 11 of 16  
 
 
 
 
ADP1710/ADP1711  
140  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
120  
100  
80  
60  
40  
20  
0
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP1710/  
ADP1711. However, as can be seen from Table 5, a point of  
diminishing returns eventually is reached, beyond which an  
increase in the copper size does not yield significant heat  
dissipation benefits.  
Place the input capacitor as close as possible to the IN and GND  
pins. Place the output capacitor as close as possible to the OUT  
and GND pins. For ADP1711, place the internal reference  
bypass capacitor as close as possible to the BYP pin. Use of 0402  
or 0603 size capacitors and resistors achieves the smallest  
possible footprint solution on boards where area is limited.  
1mA  
10mA  
30mA  
80mA  
100mA  
150mA  
125mA (LOAD CURRENT)  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5 4.0 4.5  
(V)  
OUT  
5.0  
5.0  
5.0  
V
– V  
IN  
Figure 26. 500 mm2 of PCB Copper, TA = 50°C  
GND (BOTTOM)  
GND (TOP)  
140  
120  
100  
80  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
ADP1710/  
ADP1711  
C1  
C2  
60  
40  
20  
IN  
OUT  
1mA  
10mA  
30mA  
80mA  
100mA  
150mA  
125mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5 4.0 4.5  
(V)  
OUT  
V
– V  
IN  
R1  
C3  
Figure 27. 100 mm2 of PCB Copper, TA = 50°C  
EN  
140  
120  
100  
80  
R2  
MAX TJ (DO NOT OPERATE ABOVE THIS POINT)  
Figure 29. Example PCB Layout  
60  
40  
20  
1mA  
10mA  
30mA  
80mA  
100mA  
150mA  
125mA (LOAD CURRENT)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5 4.0 4.5  
(V)  
OUT  
V
– V  
IN  
Figure 28. 0 mm2 of PCB Copper, TA = 50°C  
Rev. 0 | Page 12 of 16  
 
ADP1710/ADP1711  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 30. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions show in millimeters  
Rev. 0 | Page 13 of 16  
 
ADP1710/ADP1711  
ORDERING GUIDE  
Temperature  
Range  
Output  
Voltage (V)  
Package  
Description  
Package  
Option  
Model  
Branding  
L4S  
L0D  
L40  
L41  
L42  
L0E  
L43  
L47  
L44  
L45  
L46  
L0F  
L0G  
L0H  
L0J  
ADP1710AUJZ-0.75R71  
ADP1710AUJZ-0.8-R71  
ADP1710AUJZ-0.85R71  
ADP1710AUJZ-0.9-R71  
ADP1710AUJZ-0.95R71  
ADP1710AUJZ-1.0-R71  
ADP1710AUJZ-1.05R71  
ADP1710AUJZ-1.10R71  
ADP1710AUJZ-1.15R71  
ADP1710AUJZ-1.2-R71  
ADP1710AUJZ-1.3-R71  
ADP1710AUJZ-1.5-R71  
ADP1710AUJZ-1.8-R71  
ADP1710AUJZ-2.5-R71  
ADP1710AUJZ-3.0-R71  
ADP1710AUJZ-3.3-R71  
ADP1710AUJZ-R71  
ADP1711AUJZ-0.75R71  
ADP1711AUJZ-0.8-R71  
ADP1711AUJZ-0.85R71  
ADP1711AUJZ-0.9-R71  
ADP1711AUJZ-0.95R71  
ADP1711AUJZ-1.0-R71  
ADP1711AUJZ-1.05R71  
ADP1711AUJZ-1.10R71  
ADP1711AUJZ-1.15R71  
ADP1711AUJZ-1.2-R71  
ADP1711AUJZ-1.3-R71  
ADP1711AUJZ-1.5-R71  
ADP1711AUJZ-1.8-R71  
ADP1711AUJZ-2.5-R71  
ADP1711AUJZ-3.0-R71  
ADP1711AUJZ-3.3-R71  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.30  
1.50  
1.80  
2.50  
3.00  
3.30  
0.8 to 5.0  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.30  
1.50  
1.80  
2.50  
3.00  
3.30  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
L0K  
L0L  
L4T  
L0M  
L48  
L49  
L4A  
L0N  
L4C  
L4G  
L4D  
L4E  
L4F  
L0P  
L0Q  
L0R  
L0S  
L0U  
1 Z = Pb-free part.  
Rev. 0 | Page 14 of 16  
 
 
ADP1710/ADP1711  
NOTES  
Rev. 0 | Page 15 of 16  
ADP1710/ADP1711  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06310-0-10/06(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADP1711AUJZ-0.85R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-0.9-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-0.95R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.0-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.05R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.10R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.15R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.2-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.3-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.5-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-1.8-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP1711AUJZ-2.5-R7

150 mA, Low Dropout, CMOS Linear Regulator
ADI