ADP171AUJZ-R7 [ADI]

300 mA, Low Quiescent Current, CMOS Linear Regulators; 300毫安,低静态电流, CMOS线性稳压器
ADP171AUJZ-R7
型号: ADP171AUJZ-R7
厂家: ADI    ADI
描述:

300 mA, Low Quiescent Current, CMOS Linear Regulators
300毫安,低静态电流, CMOS线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件 PC
文件: 总20页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
300 mA, Low Quiescent Current,  
CMOS Linear Regulators  
ADP170/ADP171  
TYPICAL APPLICATION CIRCUITS  
FEATURES  
Maximum output current: 300 mA  
Input voltage range: 1.6 V to 3.6 V  
Low quiescent current  
V
V
IN  
OUT  
1
2
3
VIN  
5
VOUT  
C1  
C2  
ADP170  
GND  
I
I
GND = 23 μA with 0 mA load  
GND = 170 μA with 300 mA load  
ON  
EN  
NC  
4
Low shutdown current: <1 μA  
OFF  
Low dropout voltage: 66 mV at 300 mA load  
Output voltage accuracy: 1ꢀ  
Up to 31 fixed-output voltage options available from 0.8 V to  
3.0 V  
Figure 1. ADP170 with Fixed Output Voltage, 1.8 V  
V
= 2.3V  
IN  
V
= 1.8V  
Adjustable-output voltage range  
0.8 V to 3.0 V (ADP171)  
OUT  
1
2
3
VIN  
5
4
VOUT  
ADJ  
C
C
OUT  
IN  
1µF  
ADP171  
GND  
1µF  
Accuracy over line, load, and temperature: 3ꢀ  
Stable with small 1 μF ceramic output capacitor  
PSRR performance of 70 dB at 10 kHz and 73 dB at 1 kHz  
Low noise: 30 μV rms at VOUT = 0.8 V  
Current limit and thermal overload protection  
Logic-controlled enable  
R1  
ON  
EN  
OFF  
R2  
Figure 2. ADP171 with Adjustable Output Voltage  
Compact 5-lead TSOT package  
APPLICATIONS  
Mobile phones  
Digital camera and audio devices  
Portable and battery-powered equipment  
DSP/FPGA/microprocessor supplies  
Post dc-dc regulation  
GENERAL DESCRIPTION  
The ADP170/ADP171 are low voltage input, low quiescent  
current, low-dropout (LDO) linear regulators that operate from  
1.6 V to 3.6 V and provide up to 300 mA of output current. The  
low 66 mV dropout voltage at 300 mA load improves efficiency  
and allows operation over a wide input voltage range. The low  
23 μA of quiescent current at a 0 mA load makes the ADP170/  
ADP171 ideal for battery-operated portable equipment.  
performance and occupy minimal board space. Compared with  
commodity types of LDOs, the ADP170/ADP171 provide 20 dB  
to 40 dB better power supply rejection ratio (PSRR) at 100 kHz,  
making the ADP170/ADP171 an ideal power source for analog-  
to-digital converter (ADC) mixed-signal processor systems and  
allowing use of smaller size bypass capacitors. In addition, low  
output noise performance without the need for an additional  
bypass capacitor further reduces printed circuit board (PCB)  
component count.  
The ADP170 is capable of 31 fixed-output voltage options, ranging  
from 0.8 V to 3.0 V. ADP171 is an adjustable version, which allows  
output voltages that range from 0.8 V to 3.0 V via an external  
divider. The ADP170/ADP171 are optimized for stable operation  
with small 1 μF ceramic output capacitors. Ideal for powering  
digital processors, the ADP170/ADP171 exhibit good transient  
Short-circuit protection and thermal overload protection circuits  
prevent damage in adverse conditions. The ADP170/ADP171  
are available in tiny 5-lead TSOT for the smallest footprint  
solution to meet a variety of portable power applications.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.  
 
 
ADP170/ADP171  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information.............................................................. 12  
Capacitor Selection .................................................................... 12  
Undervoltage Lockout ............................................................... 13  
Enable Feature ............................................................................ 13  
Current Limit and Thermal Overload Protection ................. 14  
Thermal Considerations............................................................ 14  
Printed Circuit Board Layout Considerations ....................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor, Recommended Specifications........4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
5/10—Rev. A to Rev. B  
Changes to Figure 1 and Figure 2................................................... 1  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 17  
6/09—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Updated Outline Dimensions....................................................... 17  
1/09—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
ADP170/ADP171  
SPECIFICATIONS  
VIN = (VOUT + 0.4 V) or 1.6 V (whichever is greater), EN = VIN, IOUT = 10 mA, CIN = COUT = 1 μF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
23  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT1  
TJ = −40°C to +125°C  
1.6  
3.6  
IGND  
IOUT = 0 μA  
IOUT = 0 μA, TJ = −40°C to +125°C  
IOUT = 1 mA  
IOUT = 1 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 300 mA  
IOUT = 300 mA, TJ = −40°C to +125°C  
EN = GND  
EN = GND, VIN = 3.6 V, TJ = −40°C to +85°C  
EN = GND, VIN = 3.6 V, TJ = 85°C to 125°C  
IOUT = 10 mA  
1 mA < IOUT < 300 mA, VIN = (VOUT + 0.5 V) to 3.6 V  
1 mA < IOUT < 300 mA, VIN = (VOUT + 0.5 V) to 3.6 V,  
TJ = −40°C to +125°C  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
60  
50  
100  
210  
260  
130  
170  
0.1  
SHUTDOWN CURRENT  
IGND-SD  
2
25  
+1  
+2  
+3  
FIXED-OUTPUT VOLTAGE ACCURACY  
VOUT  
−1  
−2  
−3  
%
%
ADJUSTABLE-OUTPUT VOLTAGE  
ACCURACY (ADP171)2  
VADJ  
IOUT = 10 mA  
1 mA < IOUT < 300 mA, VIN = (VOUT + 0.5 V) to 3.6 V  
1 mA < IOUT < 300 mA, VIN = (VOUT + 0.5 V) to 3.6 V,  
TJ = −40°C to +125°C  
0.495 0.5  
0.490  
0.485  
0.505  
0.510  
0.515  
V
V
V
ADJ INPUT BIAS CURRENT (ADP171)  
LINE REGULATION  
LOAD REGULATION3  
ADJI-BIAS  
1.6 V ≤ VIN ≤ 3.6 V, ADJ connected to VOUT  
15  
nA  
∆VOUT/∆VIN VIN = (VOUT + 0.5 V) to 3.6 V, TJ = −40°C to +125°C  
∆VOUT/∆IOUT IOUT = 1 mA to 300 mA  
−0.25  
+0.25 %/V  
%/mA  
0.001  
IOUT = 1 mA to 300 mA, TJ = −40°C to +125°C  
0.007 %/mA  
mV  
DROPOUT VOLTAGE4  
VDROPOUT  
IOUT = 10 mA, VOUT ≥ 1.8 V  
2
IOUT = 10 mA, VOUT ≥ 1.8 V, TJ = −40°C to +125°C  
IOUT = 150 mA, VOUT ≥ 1.8 V  
IOUT = 150 mA, VOUT ≥ 1.8 V, TJ = −40°C to +125°C  
IOUT = 300 mA, VOUT ≥ 1.8 V  
IOUT = 300 mA, VOUT ≥ 1.8 V, TJ = −40°C to +125°C  
VOUT = 1.8 V  
7
mV  
mV  
mV  
mV  
mV  
μs  
33  
66  
70  
135  
800  
START-UP TIME5  
CURRENT-LIMIT THRESHOLD6  
tSTART-UP  
ILIMIT  
120  
450  
400  
1.2  
mA  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
Logic High Voltage  
Logic Low Voltage  
Leakage Current Voltage  
VIH  
VIL  
VI-LEAKAGE  
1.6 V ≤ VIN ≤ 3.6 V  
V
1.6 V ≤ VIN ≤ 3.6 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
0.4  
1
V
μA  
μA  
0.1  
80  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
1.5  
V
V
mV  
0.7  
Rev. B | Page 3 of 20  
 
ADP170/ADP171  
Parameter  
Symbol  
Conditions  
Min  
Typ  
72  
50  
40  
30  
73  
70  
50  
47  
Max  
Unit  
μV rms  
μV rms  
μV rms  
μV rms  
dB  
dB  
dB  
dB  
OUTPUT NOISE  
OUTNOISE  
10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 3.0 V  
10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 1.8 V  
10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 1.2 V  
10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 0.8 V  
1 kHz, VIN = 3.6 V, IOUT = 10 mA, VOUT = 0.8 V  
10 kHz, VIN = 3.6 V, IOUT = 10 mA, VOUT = 0.8 V  
10 kHz, VIN = (VOUT + 1 V), IOUT = 10 mA to 300 mA  
100 kHz, VIN = (VOUT + 1 V), IOUT = 10 mA to 300 mA  
POWER SUPPLY REJECTION RATIO  
PSRR  
1 The current from the external resistor divider network in the case of adjustable voltage output (as with the ADP171) should be subtracted from the ground current measured.  
2 Accuracy when VOUT is connected directly to ADJ. When the VOUT voltage is set by external feedback resistors, the absolute accuracy in adjust mode depends on the  
tolerances of resistors used.  
3 Based on an end-point calculation using 1 mA and 300 mA loads. See Figure 6 for typical load regulation performance for loads less than 1 mA.  
4 Applies only for output voltages above 1.6 V. Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal  
output voltage.  
5 Start-up time is defined as the time between the rising edge of EN and VOUT being at 90% of its nominal value.  
6 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
MINIMUM INPUT AND OUTPUT  
CAPACITANCE1  
CMIN  
TJ = −40°C to +125°C  
0.45  
μF  
CAPACITOR ESR  
RESR  
TJ = −40°C to +125°C  
0.001  
1
Ω
1 The minimum input and output capacitance should be greater than 0.45 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. B | Page 4 of 20  
 
ADP170/ADP171  
ABSOLUTE MAXIMUM RATINGS  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. PCB.  
Refer to JESD 51-7 for detailed information regarding board  
construction.  
Table 3.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +3.6 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to +3.6 V  
−65°C to +150°C  
−40°C to +125°C  
−40°C to +85°C  
JEDEC J-STD-020  
Storage Temperature Range  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Soldering Conditions  
ΨJB is the junction-to-board thermal characterization parameter  
with units of °C/W. The ΨJB of the package is based on modeling  
and calculation using a 4-layer board. The Guidelines for Reporting  
and Using Electronic Package Thermal Information: JESD51-12  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package—factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
Stresses above those listed under absolute maximum ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
Absolute maximum ratings apply only individually, not in  
combination. The ADP170/ADP171 can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient temperature  
may have to be derated.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-  
ambient thermal resistance of the package (θJA).  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
Unit  
5-Lead TSOT  
170  
43  
°C/W  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
following formula:  
TJ = TA + (PD × θJA)  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
Rev. B | Page 5 of 20  
 
ADP170/ADP171  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
1
2
3
VIN  
GND  
EN  
VIN  
GND  
EN  
5
5
4
VOUT  
VOUT  
ADJ  
ADP170  
ADP171  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
4
NC  
NC = NO CONNECT  
Figure 4. ADP171 5-Lead TSOT  
Figure 3. ADP170 5-Lead TSOT  
Table 5. Pin Function Descriptions  
Pin No.  
ADP170 ADP171 Mnemonic Description  
1
2
3
1
2
3
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For  
automatic startup, connect EN to VIN.  
4
5
NC  
ADJ  
VOUT  
No Connect. Not connected internally.  
Adjust. A resistor divider from VOUT to ADJ sets the output voltage.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
4
5
Rev. B | Page 6 of 20  
 
ADP170/ADP171  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.6 V, VOUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 1 μF, TA = 25°C, unless otherwise noted.  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
200  
180  
160  
140  
120  
100  
80  
I
I
I
= 300mA  
= 100mA  
= 10mA  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
60  
I
I
= 1mA  
LOAD  
40  
= 100µA  
LOAD  
20  
I
= 10µA  
–5  
LOAD  
0
–40  
–5  
25  
85  
125  
–40  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Junction Temperature  
Figure 8. Ground Current vs. Junction Temperature  
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0.01  
0.01  
0.1  
1
10  
100  
1k  
0.1  
1
10  
100  
1k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 6. Output Voltage vs. Load Current  
Figure 9. Ground Current vs. Load Current  
1.805  
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
180  
160  
140  
120  
100  
80  
I
I
= 300mA  
= 100mA  
LOAD  
LOAD  
I
= 10mA  
LOAD  
60  
I
I
= 1mA  
LOAD  
LOAD  
40  
= 100µA  
20  
I
I
= 100µA  
= 1mA  
I
I
= 10mA  
= 100mA  
I
I
= 200mA  
= 300mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
= 10µA  
LOAD  
0
2.1  
2.3  
2.5  
2.7  
2.9  
(V)  
3.1  
3.3  
3.5  
2.1  
2.3  
2.5  
2.7  
2.9  
(V)  
3.1  
3.3  
3.5  
V
V
IN  
IN  
Figure 7. Output Voltage vs. Input Voltage  
Figure 10. Ground Current vs. Input Voltage  
Rev. B | Page 7 of 20  
 
ADP170/ADP171  
400  
350  
300  
250  
200  
150  
100  
50  
5.0  
V
V
V
V
V
V
V
V
= 2.1V  
= 2.3V  
= 2.7V  
= 2.9V  
= 3.2V  
= 3.4V  
= 3.5V  
= 3.6V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
0
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
–50  
–25  
0
25  
50  
75  
100  
125  
V
(V)  
TEMPERATURE (°C)  
IN  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Ground Current vs. Input Voltage (In Dropout)  
–30  
70  
300mA  
200mA  
100mA  
10mA  
1mA  
T
= 25°C  
A
60  
50  
40  
30  
20  
10  
0
–40  
–50  
–60  
–70  
–80  
–90  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 15. Power Supply Rejection Ratio vs. Frequency, VOUT = 0.8 V  
Figure 12. Dropout Voltage vs. Load Current  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
–30  
300mA  
200mA  
100mA  
10mA  
1mA  
–40  
–50  
–60  
–70  
–80  
–90  
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 300mA  
1.55  
1.60  
1.65  
1.70  
1.75  
(V)  
1.80  
1.85  
1.90  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
FREQUENCY (Hz)  
IN  
Figure 13. Output Voltage vs. Input Voltage (in Dropout)  
Figure 16. Power Supply Rejection Ratio vs. Frequency, VOUT = 1.8 V  
Rev. B | Page 8 of 20  
ADP170/ADP171  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
70  
60  
50  
40  
30  
20  
10  
0
3V  
1.8V  
0.8V  
300mA  
200mA  
100mA  
10mA  
1mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 17. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.0 V  
Figure 20. RMS Noise vs. Load Current and Output Voltage  
–30  
3V, 1mA  
I
1.8V, 1mA  
0.8V, 1mA  
LOAD  
1mA TO 300mA LOAD STEP,  
2.5A/µs  
–40  
–50  
–60  
–70  
–80  
–90  
3V, 300mA  
1.8V, 300mA  
0.8V, 300mA  
1
V
OUT  
2
V
V
= 3.6V  
= 1.8V  
IN  
OUT  
B
10  
100  
1k  
10k  
100k  
1M  
10M  
CH1 200mA CH2 50.0mV  
M40.00µs A CH1  
124mA  
W
T
160.680µs  
FREQUENCY (Hz)  
Figure 18. Power Supply Rejection Ratio vs. Frequency, Various Output  
Voltages and Load Currents  
Figure 21. Load Transient Response, CIN and COUT = 1 μF  
10  
I
LOAD  
1mA TO 300mA LOAD STEP,  
2.5A/µs  
1
1
0.8V  
1.8V  
3.0V  
V
OUT  
2
0.1  
V
= 3.6V  
IN  
V
V
= 3.6V  
= 1.8V  
IN  
OUT  
I
= 10mA  
= 1µF  
LOAD  
C
OUT  
0.01  
10  
B
CH1 200mA CH2 50.0mV  
M40.0µs A CH1 204mA  
W
100  
1k  
10k  
100k  
T
159.800µs  
FREQUENCY (Hz)  
Figure 19. Output Noise Spectrum  
Figure 22. Load Transient Response, CIN and COUT = 4.7 μF  
Rev. B | Page 9 of 20  
ADP170/ADP171  
V
IN  
V
IN  
2.6V TO 3.6V INPUT VOLTAGE STEP,  
2V/µs  
2.6V TO 3.6V INPUT VOLTAGE STEP  
2V/µs  
1
2
1
2
V
V
OUT  
OUT  
V
C
= 1.8V  
OUT  
= C  
V
C
= 1.8V  
OUT  
= C  
= 1µF  
IN  
OUT  
= 1µF  
IN  
OUT  
B
CH1 1.00V  
CH2 10.0mV  
M10.0µs A CH1  
39.3000%  
2.94V  
CH1 1.00V  
CH2 10.0mV  
M10.0µs A CH1 2.94V  
W
T
T
39.3000µs  
Figure 23. Line Transient Response, Load Current = 1 mA  
Figure 24. Line Transient Response, Load Current = 300 mA  
Rev. B | Page 10 of 20  
ADP170/ADP171  
THEORY OF OPERATION  
The ADP170/ADP171 are low quiescent current, low-dropout  
linear regulators that operate from 1.6 V to 3.6 V and can provide  
up to 300 mA of output current. Drawing a low 170 μA of quies-  
cent current (typical) at full load makes the ADP170/ADP171  
ideal for battery-operated portable equipment. Shutdown current  
consumption is typically 100 nA.  
Internally, the ADP170/ADP171 consist of a reference, an error  
amplifier, a feedback voltage divider, and a PMOS pass transistor.  
Output current is delivered via the PMOS pass device, which is  
controlled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower than  
the reference voltage, the gate of the PMOS device is pulled lower,  
allowing more current to pass and increasing the output voltage.  
If the feedback voltage is higher than the reference voltage, the  
gate of the PMOS device is pulled higher, allowing less current  
to pass and decreasing the output voltage.  
Optimized for use with small 1 μF ceramic capacitors, the  
ADP170/ADP171 provide excellent transient performance.  
ADP170  
VIN  
VOUT  
The adjustable ADP171 has an output voltage range of 0.8 V to  
3.0 V. The output voltage is set by the ratio of two external resistors,  
as shown in Figure 2. The device servos the output to maintain  
the voltage at the ADJ pin at 0.5 V referenced to ground. The  
current in R1 is then equal to 0.5 V/R2 and the current in R1 is  
the current in R2 plus the ADJ pin bias current. The ADJ pin  
bias current, 15 nA at 25°C, flows through R1 into the ADJ pin.  
SHORT CIRCUIT,  
UVLO AND  
THERMAL  
R1  
R2  
GND  
PROTECT  
EN  
SHUTDOWN  
0.5V REFERENCE  
The output voltage can be calculated using the equation:  
NOTES  
V
OUT = 0.5 V(1 + R1/R2) + (ADJI-BIAS)(R1)  
1. R1 AND R2 ARE INTERNAL RESISTORS, AVAILABLE ON  
THE ADP170 ONLY.  
The value of R1 should be less than 200 kΩ to minimize errors  
in the output voltage caused by the ADJ pin bias current. For  
example, when R1 and R2 each equal 200 kΩ, the output voltage  
is 1.0 V. The output voltage error introduced by the ADJ pin  
bias current is 3 mV or 0.3%, assuming a typical ADJ pin bias  
current of 15 nA at 25°C.  
Figure 25. ADP170 Internal Block Diagram  
ADP171  
VIN  
GND  
EN  
VOUT  
SHORT CIRCUIT,  
UVLO AND  
THERMAL  
Note that in shutdown, the output is turned off and the divider  
current is zero.  
PROTECT  
The ADP170/ADP171 use the EN pin to enable and disable the  
VOUT pin under normal operating conditions. When EN is high,  
VOUT turns on; when EN is low, VOUT turns off. For automatic  
startup, EN can be tied to VIN.  
ADJ  
SHUTDOWN  
0.5V REFERENCE  
Figure 26. ADP171 Internal Block Diagram  
Rev. B | Page 11 of 20  
 
ADP170/ADP171  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input Bypass Capacitor  
Connecting a 1 μF capacitor from VIN to GND reduces the  
circuit sensitivity to the printed circuit board (PCB) layout,  
especially when long input traces or high source impedance  
are encountered. If greater than 1 μF of output capacitance is  
required, the input capacitor should be increased to match it.  
The ADP170/ADP171 are designed for operation with small,  
space-saving ceramic capacitors but will function with most  
commonly used capacitors as long as care is taken with regard  
to the effective series resistance (ESR) value. The ESR of the  
output capacitor affects the stability of the LDO control loop.  
A minimum of 1 μF capacitance with an ESR of 1 ꢀ or less is  
recommended to ensure stability of the ADP170/ADP171. The  
transient response to changes in load current is also affected by  
output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP170/ADP171 to  
large changes in load current. Figure 27 and Figure 28 show the  
transient responses for output capacitance values of 1 μF and  
4.7 μF, respectively.  
Input and Output Capacitor Properties  
Any good quality ceramic capacitor can be used with the  
ADP170/ADP171, as long as it meets the minimum capacitance  
and maximum ESR requirements. Ceramic capacitors are manu-  
factured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over the  
necessary temperature range and dc bias conditions. A X5R or X7R  
dielectric with a voltage rating of 6.3 V or 10 V is recommended.  
The Y5V and Z5U dielectrics are not recommended, due to their  
poor temperature and dc bias characteristics.  
I
LOAD  
1mA TO 300mA LOAD STEP,  
2.5A/µs  
Figure 29 depicts the capacitance vs. bias voltage characteristics  
of a 0402, 1 μF, 10 V X5R capacitor. The variance of a capacitor  
is strongly influenced by the capacitor size and voltage rating. In  
general, a capacitor in a larger package or higher voltage rating  
will exhibit less capacitance variance over bias voltage. The  
temperature variation of the X5R dielectric is about 15% over  
the −40°C to +85°C temperature range and is not a function of  
package or voltage rating.  
1
2
V
OUT  
V
C
= 1.8V  
OUT  
= C  
= 1µF  
IN  
OUT  
1.2  
B
CH1 200mA CH2 50.0mV  
M200ns A CH1  
500.000ns  
112mA  
W
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
Figure 27. Output Transient Response, COUT = 1 ꢀF  
I
LOAD  
1mA TO 300mA LOAD STEP,  
2.5A/µs  
1
2
0
2
4
6
8
10  
V
OUT  
BIAS VOLTAGE (V)  
Figure 29. Capacitance vs. Bias Voltage Characteristics  
V
C
= 1.8V  
OUT  
= C  
= 4.7µF  
IN  
OUT  
Use Equation 1 to determine the worst-case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
B
CH1 200mA CH2 50.0mV  
M200ns A CH1  
500.000ns  
108mA  
W
T
Figure 28. Output Transient Response, COUT = 4.7 ꢀF  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Rev. B | Page 12 of 20  
 
 
 
 
ADP170/ADP171  
In this example, the worst-case temperature coefficient  
The EN pin active/inactive thresholds are derived from the VIN  
voltage. Therefore, these thresholds vary with changing input  
voltage. Figure 31 shows typical EN active/inactive thresholds  
when the input voltage varies from 1.6 V to 3.6 V.  
1.2  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 0.94 ꢁF at 1.8 V, as shown in Figure 29.  
Substituting these values in Equation 1 yields  
1.1  
CEFF = 0.94 ꢁF × (1 − 0.15) × (1 − 0.1) = 0.719 ꢁF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temper-  
ature and tolerance at the chosen output voltage.  
1.0  
EN ACTIVE  
0.9  
0.8  
To guarantee the performance of the ADP170/ADP171, it is  
imperative that the effects of dc bias, temperature, and toler-  
ances on the behavior of the capacitors are evaluated for each  
application.  
EN INACTIVE  
0.7  
0.6  
0.5  
0.4  
UNDERVOLTAGE LOCKOUT  
The ADP170/ADP171 have an internal undervoltage lockout  
circuit that disables all inputs and the output when the input  
voltage is less than approximately 1.2 V. This ensures that the  
ADP170/ADP171 inputs and the output behave in a predictable  
manner during power-up.  
V
(V)  
IN  
Figure 31. Typical EN Pin Thresholds vs. Input Voltage  
The ADP170/ADP171 utilize an internal soft start to limit the  
inrush current when the output is enabled. The start-up time  
for the 1.8 V option is approximately 120 ꢁs from the time the  
EN active threshold is crossed to when the output reaches 90%  
of its final value. As shown in Figure 32, the start-up time is  
dependent on the output voltage setting.  
ENABLE FEATURE  
The ADP170/ADP171 use the EN pin to enable and disable the  
VOUT pin under normal operating conditions. As shown in  
Figure 30, when a rising voltage on EN crosses the active  
threshold, VOUT turns on. When a falling voltage on EN  
crosses the inactive threshold, VOUT turns off.  
3.5  
EN  
V
= 3.0V  
OUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 1.8V  
OUT  
V
= 0.8V  
OUT  
1
2
B
CH1 1.00V  
CH2 1.00V  
M20.0µs A CH1 2.72V  
79.8000µs  
W
T
Figure 32. Typical Start-Up Time  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
V
EN  
Figure 30. ADP170/ADP171 Typical EN Pin Operation  
As shown in Figure 30, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
Rev. B | Page 13 of 20  
 
 
 
 
ADP170/ADP171  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The junction temperature of the ADP170/ADP171 can be  
calculated from the following equation:  
The ADP170/ADP171 are protected against damage due to  
excessive power dissipation by current and thermal overload  
protection circuits. The ADP170/ADP171 are designed to limit  
the current when the output load reaches 450 mA (typical).  
When the output load exceeds 450 mA, the output voltage is  
reduced to maintain a constant current limit.  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
where:  
Thermal overload protection is included, which limits the junction  
temperature to a maximum of 150°C (typical). Under extreme  
conditions (that is, high ambient temperature and power dissip-  
ation), when the junction temperature starts to rise above 150°C,  
the output is turned off, reducing the output current to 0. When  
the junction temperature drops below 135°C, the output is turned  
on again and output current is restored to its nominal value.  
I
I
LOAD is the load current.  
GND is the ground current.  
V
IN and VOUT are input and output voltages, respectively.  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
Consider the case where a hard short from VOUT to GND occurs.  
At first, the ADP170/ADP171 will limit the current so that only  
450 mA is conducted into the short. If self-heating of the junction  
is great enough to cause its temperature to rise above 150°C,  
thermal shutdown will activate, turning off the output and  
reducing the output current to 0. As the junction temperature  
cools and drops below 135°C, the output turns on and conducts  
450 mA into the short, again causing the junction temperature  
to rise above 150°C. This thermal oscillation between 135°C  
and 150°C causes a current oscillation between 450 mA and 0 mA,  
which continues as long as the short remains at the output.  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB to  
ensure that the junction temperature does not rise above 125°C.  
Figure 33 to Figure 38 show junction temperature calculations  
for different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
140  
T
MAX  
J
120  
100  
80  
60  
40  
20  
0
I
= 300mA  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions.  
LOAD  
I
= 150mA  
LOAD  
THERMAL CONSIDERATIONS  
To guarantee reliable operation, the junction temperature of the  
ADP170/ADP171 must not exceed 125°C. To ensure the junction  
temperature stays below this maximum value, the user needs to  
be aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds used and the amount of  
copper to which the GND pin of the package is soldered on the  
PCB. Table 6 shows typical θJA values of the 5-lead TSOT package  
for various PCB copper sizes.  
I
= 100mA  
= 25mA  
LOAD  
I
LOAD  
I
= 10mA  
I
= 1mA  
1.5  
LOAD  
2.0  
LOAD  
0.5  
1.0  
2.5  
3.0  
V
– V (V)  
IN  
OUT  
Figure 33. 500 mm2 of PCB Copper, TA = 25°C  
140  
120  
100  
80  
T
MAX  
J
I
= 300mA  
LOAD  
Table 6. Typical θJA Values  
Copper Size (mm2)  
01  
θJA (°C/W)  
170  
I
= 150mA  
LOAD  
50  
152  
146  
134  
131  
60  
100  
300  
500  
I
= 100mA  
LOAD  
40  
I
= 25mA  
LOAD  
20  
1 Device soldered to minimum size pin traces.  
I
= 10mA  
LOAD  
I
= 1mA  
1.5  
LOAD  
0
0.5  
1.0  
2.0  
– V (V)  
2.5  
3.0  
V
OUT  
IN  
Figure 34. 100 mm2 of PCB Copper, TA = 25°C  
Rev. B | Page 14 of 20  
 
 
 
ADP170/ADP171  
140  
120  
100  
80  
140  
120  
100  
80  
T
MAX  
T
MAX  
J
J
I
= 300mA  
LOAD  
I
= 150mA  
LOAD  
I
= 300mA  
LOAD  
I
= 100mA  
LOAD  
I
I
= 150mA  
LOAD  
I
= 25mA  
LOAD  
60  
= 100mA  
= 25mA  
60  
LOAD  
I
40  
LOAD  
40  
I
= 1mA  
I
= 10mA  
LOAD  
LOAD  
1.5  
20  
20  
I
= 10mA  
LOAD  
2.0  
I
= 1mA  
1.5  
LOAD  
0
0.5  
0
0.5  
1.0  
2.5  
3.0  
3.0  
3.0  
1.0  
2.0  
– V (V)  
2.5  
3.0  
V
– V  
(V)  
V
OUT  
IN  
OUT  
IN  
Figure 35. 0 mm2 of PCB Copper, TA = 25°C  
Figure 38. 0 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
In cases where board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction tem-  
perature rise (see Figure 39). Maximum junction temperature  
(TJ) is calculated from the board temperature (TB) and power  
dissipation (PD) using the following formula:  
T
MAX  
J
I
= 300mA  
LOAD  
I
= 150mA  
LOAD  
I
= 100mA  
LOAD  
TJ = TB + (PD × ΨJB)  
(5)  
I
= 25mA  
LOAD  
60  
The typical value of ΨJB is 42.8°C/W for the 5-lead TSOT package.  
140  
40  
I
= 10mA  
I
= 1mA  
LOAD  
LOAD  
120  
100  
80  
20  
0
0.5  
1.0  
1.5  
V
2.0  
2.5  
– V (V)  
IN  
OUT  
Figure 36. 500 mm2 of PCB Copper, TA = 50°C  
I
I
I
I
= 1mA  
I
I
I
= 150mA  
= 250mA  
= 300mA  
60  
40  
20  
0
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
140  
120  
100  
80  
= 10mA  
= 50mA  
= 100mA  
T
MAX  
J
T
MAX  
J
I
= 300mA  
LOAD  
I
= 150mA  
LOAD  
0.4  
0.8  
1.2  
1.6  
– V  
2.0  
2.4  
2.8  
I
= 100mA  
LOAD  
V
(V)  
IN  
OUT  
I
= 25mA  
LOAD  
60  
Figure 39. TSOT, TA = 85°C  
40  
I
= 1mA  
I
= 10mA  
LOAD  
LOAD  
20  
0
0.5  
1.0  
1.5  
2.0  
– V (V)  
2.5  
V
OUT  
IN  
Figure 37. 100 mm2 of PCB Copper, TA = 50°C  
Rev. B | Page 15 of 20  
 
 
ADP170/ADP171  
GND  
GND  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
ANALOG DEVICES  
ADP171-x.x-EVALZ  
Heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins of the  
ADP170/ADP171. However, as can be seen from Table 6, a  
point of diminishing returns is eventually reached, beyond  
which an increase in the copper size does not yield significant  
heat dissipation benefits.  
C1  
C2  
U1  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0402 or 0603 size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
J1  
R 1  
VIN  
VOUT  
R 2  
GND  
GND  
ANALOG DEVICES  
ADP170-x.x-EVALZ  
EN  
GND  
GND  
Figure 41. Example ADP171 PCB Layout  
C1  
C2  
U1  
J1  
VIN  
VOUT  
EN  
GND  
GND  
Figure 40. Example ADP170 PCB Layout  
Rev. B | Page 16 of 20  
 
ADP170/ADP171  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 42. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions show in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Output Voltage (V)2 Package Description  
Branding  
L8E  
L8F  
L8G  
L8H  
ADP170AUJZ-1.2-R7  
ADP170AUJZ-1.5-R7  
ADP170AUJZ-1.8-R7  
ADP170AUJZ-2.5-R7  
ADP170AUJZ-2.8-R7  
ADP171AUJZ-R7  
ADP170-1.8-EVALZ  
ADP170-BL1-EVZ  
ADP171-EVALZ  
1.2  
1.5  
1.8  
2.5  
2.8  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
L8P  
L9A  
0.8 to 3.0 (Adjustable) 5-Lead TSOT  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
ADP171-BL1-EVZ  
1 Z = RoHS Compliant Part.  
2 For additional voltage options, contact your local Analog Devices, Inc., sales or distribution representative.  
Rev. B | Page 17 of 20  
 
ADP170/ADP171  
NOTES  
Rev. B | Page 18 of 20  
ADP170/ADP171  
NOTES  
Rev. B | Page 19 of 20  
ADP170/ADP171  
NOTES  
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07716-0-5/10(B)  
Rev. B | Page 20 of 20  

相关型号:

ADP172

300 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP1720

50mA High-Voltage Micro-power LDO in MSOP
ADI

ADP1720-3.3

Complete Closed-Loop Precision Analog Microcontroller Thermocouple
ADI

ADP1720-3.3-EVALZ

50 mA, High Voltage, Micropower Linear Regulator
ADI

ADP1720-33

50mA High-Voltage Micro-power LDO in MSOP
ADI

ADP1720-5-EVALZ

50 mA, High Voltage, Micropower Linear Regulator
ADI

ADP1720-50

50mA High-Voltage Micro-power LDO in MSOP
ADI

ADP1720-ADJ

50mA High-Voltage Micro-power LDO in MSOP
ADI

ADP1720-EP

50 mA, High Voltage, Micropower Linear Regulator
ADI

ADP1720-EVALZ

50 mA, High Voltage, Micropower Linear Regulator
ADI

ADP1720ARMZ-3.3-R7

50 mA, High Voltage, Micropower Linear Regulator
ADI

ADP1720ARMZ-5-R7

50 mA, High Voltage, Micropower Linear Regulator
ADI