ADP175ARMZ-1.05R7 [ADI]

500 mA, Low Dropout, CMOS Linear Regulator; 500毫安,低压差, CMOS线性稳压器
ADP175ARMZ-1.05R7
型号: ADP175ARMZ-1.05R7
厂家: ADI    ADI
描述:

500 mA, Low Dropout, CMOS Linear Regulator
500毫安,低压差, CMOS线性稳压器

稳压器
文件: 总20页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500 mA, Low Dropout,  
CMOS Linear Regulator  
ADP1715/ADP1716  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Maximum output current: 500 mA  
Input voltage range: 2.5 V to 5.5 V  
Low shutdown current: <1 μA  
Low dropout voltage:  
250 mV @ 500 mA load  
ADP1715  
1
2
3
4
8
7
6
5
EN  
IN  
GND  
GND  
GND  
GND  
V
= 5V  
IN  
OUT  
SS  
2.2µF  
= 3.3V  
V
OUT  
50 mV @ 100 mA load  
2.2µF  
10nF  
Initial accuracy: 1ꢀ  
Accuracy over line, load, and temperature: 3ꢀ  
16 fixed output voltage options with soft start:  
0.75 V to 3.3 V (ADP1715)  
Figure 1. ADP1715 with Fixed Output Voltage, 3.3 V  
ADP1715  
ADJUSTABLE  
Adjustable output voltage option: 0.8 V to 5.0 V  
(ADP1715 Adjustable)  
16 fixed output voltage options with tracking:  
0.75 V to 3.3 V (ADP1716)  
1
2
3
4
8
7
6
5
EN  
GND  
GND  
GND  
GND  
V
= 5V  
IN  
IN  
OUT  
ADJ  
2.2µF  
= 0.8(1 + R1/R2)  
R1  
V
OUT  
Stable with small 2.2 μF ceramic output capacitor  
Excellent load/line transient response  
Current limit and thermal overload protection  
Logic controlled enable  
R2  
2.2µF  
Figure 2. ADP1715 with Adjustable Output Voltage, 0.8 V to 5.0 V  
8-lead thermally enhanced MSOP package  
ADP1716  
V
(V)  
OUT  
APPLICATIONS  
1
2
3
4
8
7
6
5
EN  
GND  
GND  
GND  
GND  
3
2
1
V
= 5V  
IN  
IN  
Notebook computers  
Memory components  
Telecommunications equipment  
Network equipment  
OUT  
TRK  
2.2µF  
OUT  
V
0
1
2
3
4
5
2.2µF  
V
= 0V TO 5V  
V
(V)  
TRK  
TRK  
DSP/FPGA/μP supplies  
Figure 3. ADP1716 with Output Voltage Tracking  
Instrumentation equipment/data acquisition systems  
GENERAL DESCRIPTION  
between 0.75 V and 3.3 V; the adjustable output voltage can  
be set to any value between 0.8 V and 5.0 V by an external  
voltage divider connected from OUT to ADJ. The variable  
soft start uses an external capacitor at SS to control the  
output voltage ramp. Tracking limits the output voltage to  
the at-or-below voltage at the TRK pin.  
The ADP1715/ADP1716 are low dropout, CMOS linear  
regulators that operate from 2.5 V to 5.5 V and provide up to  
500 mA of output current. Using an advanced proprietary  
architecture, they provide high power supply rejection and  
achieve excellent line and load transient response with just a  
small 2.2 μF ceramic output capacitor.  
The ADP1715/ADP1716 are available in 8-lead thermally  
enhanced MSOP packages, making them not only a very  
compact solution but also providing excellent thermal  
performance for applications requiring up to 500 mA of output  
current in a small, low profile footprint.  
Three versions of this part are available, one with fixed  
output voltage options and variable soft start (ADP1715),  
one with adjustable output voltage and fixed soft start  
(ADP1715 Adjustable), and one with voltage tracking in  
fixed output voltage options (ADP1716). The fixed output  
voltage options are internally set to one of sixteen values  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADP1715/ADP1716  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Track Mode (ADP1716) ............................................................ 11  
Enable Feature ............................................................................ 11  
Application Information................................................................ 12  
Capacitor Selection .................................................................... 12  
Current Limit and Thermal Overload Protection ................. 12  
Thermal Considerations............................................................ 12  
Printed Circuit Board Layout Considerations ....................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
Soft-Start Function (ADP1715)................................................ 10  
Adjustable Output Voltage (ADP1715 Adjustable) ............... 11  
REVISION HISTORY  
9/06—Rev. 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP1715/ADP1716  
SPECIFICATIONS  
VIN = (VOUT + 0.5 V) or 2.5 V (whichever is greater), IOUT = 10 mA, CIN = COUT = 2.2 μF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
65  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = –40°C to +125°C  
2.5  
5.5  
IGND  
IOUT = 100 μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
IOUT = 100 μA, TJ = –40°C to +125°C  
IOUT = 100 mA  
100  
160  
IOUT = 100 mA, TJ = –40°C to +125°C  
100 μA < IOUT < 500 mA, TJ = –40°C to +125°C  
EN = GND  
220  
650  
SHUTDOWN CURRENT  
IGND-SD  
VOUT  
0.1  
EN = GND, TJ = –40°C to +125°C  
IOUT = 10 mA  
1.0  
FIXED OUTPUT VOLTAGE ACCURACY  
(ADP1715 and ADP1716 ONLY)  
–1  
–2  
–3  
+1  
IOUT = 10 mA to 500 mA  
+2  
%
100 μA < IOUT < 500 mA, TJ = –40°C to +125°C  
IOUT = 10 mA  
+3  
%
ADJUSTABLE OUTPUT VOLTAGE  
ACCURACY (ADP1715 ADJUSTABLE)1  
VOUT  
0.792 0.8  
0.784  
0.808  
0.816  
0.824  
V
IOUT = 10 mA to 500 mA  
V
100 μA < IOUT < 500 mA, TJ = –40°C to +125°C  
VIN = (VOUT + 0.5 V) to 5.5 V, TJ = –40°C to +125°C  
0.776  
V
LINE REGULATION  
LOAD REGULATION2  
∆VOUT/∆VIN  
–0.15  
+0.15 %/ V  
%/mA  
∆VOUT/∆IOUT IOUT = 10 mA to 500 mA  
IOUT = 10 mA to 500 mA, TJ = –40°C to +125°C  
IOUT = 100 mA, VOUT ≥ 3.3 V  
0.002  
0.004 %/mA  
mV  
DROPOUT VOLTAGE3  
VDROPOUT  
50  
IOUT = 100 mA, VOUT ≥ 3.3 V, TJ = –40°C to +125°C  
IOUT = 500 mA, VOUT ≥ 3.3 V  
100  
300  
400  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
250  
60  
IOUT = 500 mA, VOUT ≥ 3.3 V, TJ = –40°C to +125°C  
IOUT = 100 mA, 2.5 V ≤ VOUT < 3.3 V  
IOUT = 100 mA, 2.5 V ≤ VOUT < 3.3 V, TJ = –40°C to +125°C  
IOUT = 500 mA, 2.5 V ≤ VOUT < 3.3 V  
100  
400  
500  
320  
IOUT = 500 mA, 2.5 V ≤ VOUT < 3.3 V, TJ = –40°C to +125°C  
START-UP TIME4  
TSTART-UP  
ADP1715 Adjustable and ADP1716  
ADP1715 with External Soft Start  
CURRENT LIMIT THRESHOLD5  
THERMAL SHUTDOWN THRESHOLD  
100  
7.3  
μs  
CSS = 10 nF  
TJ rising  
ms  
mA  
ILIMIT  
550  
0.7  
750  
150  
1200  
1.7  
TSSD  
°C  
°C  
μA  
THERMAL SHUTDOWN HYSTERESIS  
TSSD-HYS  
SSI-SOURCE  
15  
SOFT-START SOURCE CURRENT  
(ADP1715 WITH EXTERNAL  
SOFT START)  
SS = GND  
1.2  
VOUT to VTRK ACCURACY  
(ADP1716)  
VTRK-ERROR  
0 V ≤ VTRK ≤ (0.5 × VOUT(NOM)), VOUT(NOM) ≤ 1.8 V, TJ = –40°C to +125°C  
–50  
–100  
1.8  
+50  
mV  
mV  
V
0 V ≤ VTRK ≤ (0.5 × VOUT(NOM)), VOUT(NOM) > 1.8 V, TJ = –40°C to +125°C  
+100  
EN INPUT LOGIC HIGH  
EN INPUT LOGIC LOW  
EN INPUT LEAKAGE CURRENT  
VIH  
2.5 V ≤ VIN ≤ 5.5 V  
2.5 V ≤ VIN ≤ 5.5 V  
EN = IN or GND  
VIL  
0.4  
1
V
VI-LEAKAGE  
ADJI-BIAS  
0.1  
30  
μA  
nA  
ADJ INPUT BIAS CURRENT  
(ADP1715 ADJUSTABLE)  
100  
OUTPUT NOISE  
OUTNOISE  
PSRR  
10 Hz to 100 kHz, VOUT = 0.75 V  
10 Hz to 100 kHz, VOUT = 3.3 V  
1 kHz, VOUT = 0.75 V  
125  
450  
67  
μVrms  
μVrms  
dB  
POWER SUPPLY REJECTION RATIO  
1 kHz, VOUT = 3.3 V  
53  
dB  
1 Accuracy when OUT is connected directly to ADJ. When OUT voltage is set by external feedback resistors, absolute accuracy in adjust mode depends on the tolerances  
of resistors used.  
2 Based on an end-point calculation using 10 mA and 500 mA loads. See Figure 8 for typical load regulation performance for loads less than 10 mA.  
3 Dropout voltage is defined as the input to output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.5 V.  
4 Start-up time is defined as the time between the rising edge of EN to OUT being at 95% of its nominal value.  
5 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 1.0 V, or 0.9 V.  
Rev. 0 | Page 3 of 20  
 
 
 
 
ADP1715/ADP1716  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
IN to GND  
OUT to GND  
–0.3 V to +6 V  
–0.3 V to IN  
Table 3. Thermal Resistance  
Package Type  
EN to GND  
–0.3 V to +6 V  
–0.3 V to +6 V  
–65°C to +150°C  
–40°C to +125°C  
JEDEC J-STD-020  
θJA  
Unit  
SS/ADJ/TRK to GND  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
8-Lead MSOP  
118  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 20  
 
ADP1715/ADP1716  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
EN  
GND  
GND  
GND  
GND  
EN  
GND  
GND  
GND  
GND  
EN  
IN  
GND  
GND  
GND  
GND  
ADP1715  
ADP1715  
IN  
IN  
ADP1716  
FIXED  
ADJUSTABLE  
OUT  
SS  
OUT  
ADJ  
OUT  
TRK  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
Figure 4. 8-Lead MSOP (RM-Suffix)  
Figure 5. 8-Lead MSOP (RM-Suffix)  
Figure 6. 8-Lead MSOP (RM-Suffix)  
Table 4. Pin Function Descriptions  
ADP1715  
Fixed  
Pin No.  
ADP1715  
Adjustable  
Pin No.  
ADP1716  
Pin No.  
1
Mnemonic Description  
1
1
EN  
Enable Input. Drive EN high to turn on the regulator; drive it low to turn off the  
regulator. For automatic startup, connect EN to IN.  
2
3
2
3
2
3
IN  
OUT  
Regulator Input Supply. Bypass IN to GND with a 2.2 μF or greater capacitor.  
Regulated Output Voltage. Bypass OUT to GND with a 2.2 μF or greater  
capacitor.  
4
SS  
ADJ  
TRK  
Soft Start. A capacitor connected to this pin determines the soft-start time.  
Adjust. A resistor divider from OUT to ADJ sets the output voltage.  
Track. The output will follow the voltage placed on the TRK pin. (See the  
Theory of Operation section for a more detailed description.)  
4
4
5, 6, 7, 8  
5, 6, 7, 8  
5, 6, 7, 8  
GND  
Ground.  
Rev. 0 | Page 5 of 20  
 
ADP1715/ADP1716  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.8 V, IOUT = 10 mA, CIN = 2.2 μF, COUT = 2.2 μF, TA = 25°C, unless otherwise noted.  
3.364  
3.354  
3.344  
3.334  
3.324  
3.314  
3.304  
3.294  
3.284  
3.274  
3.264  
3.254  
3.244  
3.234  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
= 500mA  
LOAD  
I
= 100mA  
LOAD  
I
= 10mA  
LOAD  
I
= 360mA  
LOAD  
I
= 100µA  
= 500mA  
LOAD  
LOAD  
I
= 250mA  
LOAD  
I
= 100mA  
LOAD  
I
I
= 10mA  
LOAD  
I
= 360mA  
LOAD  
25  
I
= 250mA  
125  
LOAD  
I
= 100µA  
125  
LOAD  
0
–40  
–5  
85  
–40  
–5  
25  
(°C)  
85  
T
(°C)  
T
J
J
Figure 7. Output Voltage vs. Junction Temperature  
Figure 10. Ground Current vs. Junction Temperature  
3.325  
3.315  
3.305  
3.295  
3.285  
3.275  
3.265  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0.1  
0.1  
1
10  
(mA)  
100  
1000  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 8. Output Voltage vs. Load Current  
Figure 11. Ground Current vs. Load Current  
3.325  
3.315  
3.305  
3.295  
3.285  
3.275  
3.265  
600  
500  
400  
300  
200  
100  
0
I
= 100µA  
LOAD  
I
= 500mA  
LOAD  
I
= 10mA  
LOAD  
I
= 360mA  
LOAD  
I
= 100mA  
LOAD  
I
= 250mA  
LOAD  
I
= 250mA  
LOAD  
I
= 100mA  
LOAD  
I
= 10mA  
I
= 360mA  
LOAD  
LOAD  
I
= 500mA  
4.3  
LOAD  
I
= 100µA  
LOAD  
3.3  
3.8  
4.8  
5.3  
3.3  
3.8  
4.3  
4.8  
5.3  
V
(V)  
V
(V)  
IN  
IN  
Figure 9. Output Voltage vs. Input Voltage  
Figure 12. Ground Current vs. Input Voltage  
Rev. 0 | Page 6 of 20  
 
 
ADP1715/ADP1716  
350  
300  
250  
200  
150  
100  
50  
1
SWITCH SIGNAL TO CHANGE  
OUTPUT LOAD FROM 25mA TO 475mA  
V
OUT  
2
V
V
= 5V  
IN  
= 3.3V  
OUT  
C
C
= 2.2µF  
IN  
0
0.1  
= 2.2µF  
OUT  
1
10  
(mA)  
100  
1000  
I
TIME (10µs/DIV)  
LOAD  
Figure 13. Dropout Voltage vs. Load Current  
Figure 16. Load Transient Response  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
1
SWITCH SIGNAL TO CHANGE  
OUTPUT LOAD FROM 25mA TO 475mA  
I
I
I
I
I
I
= 100µA  
= 10mA  
V
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
OUT  
2
= 100mA  
= 250mA  
= 360mA  
= 500mA  
V
V
C
= 5V  
IN  
= 3.3V  
OUT  
= 22µF  
IN  
C
= 22µF  
OUT  
3.2  
3.3  
3.4  
(V)  
3.5  
3.6  
V
TIME (10µs/DIV)  
IN  
Figure 17. Load Transient Response  
Figure 14. Output Voltage vs. Input Voltage (in Dropout)  
700  
I
=
LOAD  
500mA  
600  
500  
400  
300  
200  
100  
0
I
=
LOAD  
V
STEP FROM 4V TO 5V  
360mA  
IN  
I
=
LOAD  
250mA  
1
2
I
=
V
LOAD  
OUT  
100mA  
I
=
LOAD  
10mA  
I
=
V
V
= 5V  
LOAD  
IN  
100µA  
= 3.3V  
OUT  
C
C
I
= 2.2µF  
IN  
= 2.2µF  
OUT  
LOAD  
= 500mA  
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
V
TIME (100µs/DIV)  
IN  
Figure 18. Line Transient Response  
Figure 15. Ground Current vs. Input Voltage (in Dropout)  
Rev. 0 | Page 7 of 20  
ADP1715/ADP1716  
18  
16  
14  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
V
V
= 50mV p-p  
RIPPLE  
= 5V  
IN  
= 0.75V  
= 2.2µF  
= 10mA  
OUT  
C
OUT  
I
LOAD  
6
4
2
0
0
5
10  
15  
20  
25  
10  
100  
1k  
10k  
100k  
1M  
10M  
C
(nF)  
SS  
FREQUENCY (Hz)  
Figure 19. Output Voltage Ramp-Up Time vs. Soft-Start Capacitor Value  
Figure 21. Power Supply Rejection Ratio vs. Frequency  
0
0
V
V
V
= 50mV p-p  
V
V
V
= 50mV p-p  
RIPPLE  
RIPPLE  
= 5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IN  
IN  
= 0.75V  
= 2.2µF  
= 100mA  
= 0.75V  
= 2.2µF  
= 100µA  
OUT  
OUT  
C
I
C
OUT  
OUT  
I
LOAD  
LOAD  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Power Supply Rejection Ratio vs. Frequency  
Figure 22. Power Supply Rejection Ratio vs. Frequency  
Rev. 0 | Page 8 of 20  
ADP1715/ADP1716  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
V
V
= 50mV p-p  
V
V
V
= 50mV p-p  
RIPPLE  
RIPPLE  
= 5V  
= 5V  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 2.2µF  
= 100µA  
= 3.3V  
= 2.2µF  
= 100mA  
C
C
OUT  
OUT  
I
I
LOAD  
LOAD  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Power Supply Rejection Ratio vs. Frequency  
Figure 25. Power Supply Rejection Ratio vs. Frequency  
0
V
V
V
= 50mV p-p  
RIPPLE  
= 5V  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 3.3V  
OUT  
C
= 2.2µF  
= 10mA  
OUT  
I
LOAD  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 24. Power Supply Rejection Ratio vs. Frequency  
Rev. 0 | Page 9 of 20  
ADP1715/ADP1716  
THEORY OF OPERATION  
connect a small ceramic capacitor from SS to GND. Upon  
startup, a 1.2 μA current source charges this capacitor. The  
ADP1715 start-up output voltage is limited by the voltage at SS,  
providing a smooth ramp up to the nominal output voltage. The  
soft-start time is calculated by  
The ADP1715/ADP1716 are low dropout, CMOS linear  
regulators that use an advanced, proprietary architecture to  
provide high power supply rejection ratio (PSRR) and excellent  
line and load transient response with just a small 2.2 μF ceramic  
output capacitor. Both devices operate from a 2.5 V to 5.5 V  
input rail and provide up to 500 mA of output current. Supply  
current in shutdown mode is typically 100 nA.  
T
SS = VREF ×(CSS/ISS)  
where:  
SS is the soft-start period.  
(1)  
T
IN  
OUT  
V
C
I
REF is the 0.8 V reference voltage.  
SS is the soft-start capacitance from SS to GND.  
SS is the current sourced from SS (1.2 μA).  
CURRENT LIMIT  
THERMAL PROTECT  
When the ADP1715 is disabled (using EN), the soft-start capacitor  
is discharged to GND through an internal 100 Ω resistor.  
SHUTDOWN  
SS/  
ADJ/  
TRK  
EN  
EN  
SOFT  
START  
REFERENCE  
GND  
Figure 26. Internal Block Diagram  
1
Internally, the ADP1715/ADP1716 consist of a reference, an  
error amplifier, a feedback voltage divider, and a PMOS pass  
transistor. Output current is delivered via the PMOS pass  
device, which is controlled by the error amplifier. The error  
amplifier compares the reference voltage with the feedback  
voltage from the output and amplifies the difference. If the  
feedback voltage is lower than the reference voltage, the gate of  
the PMOS device is pulled lower, allowing more current to pass  
and increasing the output voltage. If the feedback voltage is  
higher than the reference voltage, the gate of the PMOS device  
is pulled higher, allowing less current to pass and decreasing the  
output voltage.  
OUT  
V
V
C
C
= 5V  
IN  
= 3.3V  
OUT  
= 2.2µF  
OUT  
2
= 22nF  
SS  
I
= 500mA  
LOAD  
TIME (4ms/DIV)  
Figure 27. OUT Ramp-Up with External Soft-Start Capacitor  
The ADP1715 adjustable version and the ADP1716 have no  
pins for soft start, so the function is switched to an internal soft-  
start capacitor. This sets the soft-start ramp-up period to  
approximately 24 μs. For the worst-case output voltage of 5 V,  
using the suggested 2.2 μF output capacitor, the resulting input  
inrush current is approximately 460 mA, which is less than the  
maximum 500 mA load current.  
The ADP1715 is available in two versions, one with fixed output  
voltage options and one with an adjustable output voltage. The  
fixed output voltage options are set internally to one of sixteen  
values between 0.75 V and 3.3 V, using an internal feedback  
network. The adjustable output voltage can be set to between  
0.8 V and 5.0 V by an external voltage divider connected from  
OUT to ADJ. The fixed output version of ADP1715 allows for  
connection of an external soft-start capacitor, which controls  
the output voltage ramp during startup. The ADP1716 features  
a track pin and is available with fixed output voltage options. All  
devices are controlled by an enable pin (EN).  
EN  
1
SOFT-START FUNCTION (ADP1715)  
V
V
C
= 5V  
= 1.6V  
IN  
OUT  
OUT  
For applications that require a controlled startup, the ADP1715  
provides a programmable soft-start function. Programmable  
soft start is useful for reducing inrush current upon startup and  
for providing voltage sequencing. To implement soft start,  
2
= 2.2µF  
= 10mA  
OUT  
I
LOAD  
TIME (20µs/DIV)  
Figure 28. OUT Ramp-Up with Internal Soft-Start  
Rev. 0 | Page 10 of 20  
 
 
ADP1715/ADP1716  
ADJUSTABLE OUTPUT VOLTAGE  
(ADP1715 ADJUSTABLE)  
ENABLE FEATURE  
The ADP1715/ADP1716 use the EN pin to enable and disable  
the OUT pin under normal operating conditions. As shown in  
Figure 30, when a rising voltage on EN crosses the active  
threshold, OUT turns on. When a falling voltage on EN crosses  
the inactive threshold, OUT turns off.  
The ADP1715 adjustable version can have its output voltage  
set over a 0.8 V to 5.0 V range. The output voltage is set by  
connecting a resistive voltage divider from OUT to ADJ. The  
output voltage is calculated using the equation  
V
OUT = 0.8 V (1 + R1/R2)  
(2)  
where:  
R1 is the resistor from OUT to ADJ.  
R2 is the resistor from ADJ to GND.  
EN  
The maximum bias current into ADJ is 100 nA, so for less  
than 0.5% error due to the bias current, use values less than  
60 kΩ for R2.  
1
OUT  
V
V
C
= 5V  
= 1.6V  
IN  
OUT  
TRACK MODE (ADP1716)  
= 2.2µF  
= 10mA  
OUT  
The ADP1716 includes a tracking mode feature. As shown in  
I
LOAD  
Figure 29, if the voltage applied at the TRK pin is less than the  
nominal output voltage, OUT is equal to the voltage at TRK.  
TIME (1ms/DIV)  
Figure 30. ADP1715 Adjustable Typical EN Pin Operation  
Otherwise, OUT regulates to its nominal output value.  
4
As can be seen, the EN pin has hysteresis built in. This prevents  
on/off oscillations that can occur due to noise on the EN pin as  
it passes through the threshold points.  
3
2
1
0
The EN pin active/inactive thresholds are derived from the IN  
voltage. Therefore, these thresholds vary with changing input  
voltage. Figure 31 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.5 V to 5.5 V.  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
EN ACTIVE  
0
1
2
3
4
5
HYSTERESIS  
V
(V)  
TRK  
Figure 29. ADP1716 Output Voltage vs. Tracking Voltage  
with Nominal Output Voltage Set to 3 V  
For example, consider an ADP1716 with a nominal output  
voltage of 3 V. If the voltage applied to its TRK pin is greater  
than 3 V, OUT maintains a nominal output voltage of 3 V. If  
the voltage applied to TRK is reduced below 3 V, OUT tracks  
this voltage. OUT can track the TRK pin voltage from the  
nominal value all the way down to 0 V. A voltage divider is  
present from TRK to the error amplifier input with a divider  
ratio equal to the divider from OUT to the error amplifier.  
This sets the output voltage equal to the tracking voltage. Both  
divider ratios are set by post-package trim, depending on the  
desired output voltage.  
EN INACTIVE  
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
IN  
Figure 31. Typical EN Pin Thresholds vs. Input Voltage  
Rev. 0 | Page 11 of 20  
 
 
 
 
ADP1715/ADP1716  
APPLICATION INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the  
ADP1715/ADP1716, as long as they meet the minimum  
capacitance and maximum ESR requirements. Ceramic  
capacitors are manufactured with a variety of dielectrics, each  
with different behavior over temperature and applied voltage.  
Capacitors must have a dielectric adequate to ensure the  
minimum capacitance over the necessary temperature range  
and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 6.3 V or 10 V are recommended. Y5V and Z5U  
dielectrics are not recommended, due to their poor temperature  
and dc bias characteristics.  
The ADP1715/ADP1716 are designed for operation with small,  
space-saving ceramic capacitors, but they will function with most  
commonly used capacitors as long as care is taken about the  
effective series resistance (ESR) value. The ESR of the output  
capacitor affects stability of the LDO control loop. A minimum of  
2.2 μF capacitance with an ESR of 500 mΩ or less is recommended  
to ensure stability of the ADP1715/ADP1716. Transient response  
to changes in load current is also affected by output capacitance.  
Using a larger value of output capacitance improves the transient  
response of the ADP1715/ADP1716 to large changes in load  
current. Figure 32 and Figure 33 show the transient responses for  
output capacitance values of 2.2 μF and 22 μF.  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP1715/ADP1716 are protected against damage due to  
excessive power dissipation by current and thermal overload  
protection circuits. The ADP1715/ADP1716 are designed to  
current limit when the output load reaches 750 mA (typical).  
When the output load exceeds 750 mA, the output voltage is  
reduced to maintain a constant current limit.  
SWITCH SIGNAL TO CHANGE  
OUTPUT LOAD FROM 25mA TO 475mA  
1
2
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and  
power dissipation) when the junction temperature starts to rise  
above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
135°C, the output is turned on again and output current is  
restored to its nominal value.  
V
OUT  
V
V
C
C
= 5V  
IN  
= 3.3V  
OUT  
= 2.2µF  
IN  
= 2.2µF  
OUT  
TIME (2µs/DIV)  
Figure 32. Output Transient Response  
Consider the case where a hard short from OUT to ground  
occurs. At first the ADP1715/ADP1716 will current limit, so  
that only 750 mA is conducted into the short. If self heating of  
the junction is great enough to cause its temperature to rise  
above 150°C, thermal shutdown will activate, turning off the  
output and reducing the output current to zero. As the  
junction temperature cools and drops below 135°C, the output  
turns on and conducts 750 mA into the short, again causing  
the junction temperature to rise above 150°C. This thermal  
oscillation between 135°C and 150°C causes a current  
oscillation between 750 mA and 0 mA that continues as long  
as the short remains at the output.  
SWITCH SIGNAL TO CHANGE  
OUTPUT LOAD FROM 25mA TO 475mA  
1
2
V
OUT  
V
V
C
= 5V  
IN  
= 3.3V  
OUT  
= 22µF  
IN  
C
= 22µF  
OUT  
TIME (2µs/DIV)  
Figure 33. Output Transient Response  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation should be externally limited  
so junction temperatures do not exceed 125°C.  
Input Bypass Capacitor  
Connecting a 2.2 μF capacitor from the IN pin to GND reduces  
the circuit sensitivity to printed circuit board (PCB) layout,  
especially when long input traces, or high source impedance, is  
encountered. If greater than 2.2 μF of output capacitance is  
required, the input capacitor should be increased to match it.  
THERMAL CONSIDERATIONS  
To guarantee reliable operation, the junction temperature of the  
ADP1715/ADP1716 should not exceed 125°C. To ensure the  
junction temperature stays below this maximum value, the user  
Rev. 0 | Page 12 of 20  
 
 
 
ADP1715/ADP1716  
140  
120  
100  
80  
should be aware of the parameters that contribute to junction  
temperature changes. These parameters include ambient  
temperature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The θJA  
number is dependent on the package assembly compounds used  
and the amount of copper to which the GND pins of the package  
are soldered to on the PCB. Table 5 shows typical θJA values of the  
8-lead thermally enhanced MSOP package for various PCB  
copper sizes.  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
J
60  
40  
20  
Table 5.  
1mA  
10mA  
50mA  
100mA  
250mA  
500mA  
Copper Size (mm2)  
360mA (LOAD CURRENT)  
θJA (°C/W)  
0
01  
118  
99  
77  
75  
74  
0
0
0
1
2
3
4
5
5
5
V
– V  
(V)  
IN  
OUT  
100  
300  
500  
700  
Figure 34. 700 mm2 of PCB Copper, TA = 25°C  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
1 Device soldered to minimum size pin traces.  
MAX T  
J
The junction temperature of the ADP1715/ADP1716 can be  
calculated from the following equation:  
TJ = TA + (PD × θJA)  
(3)  
(4)  
60  
where:  
40  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
20  
1mA  
50mA  
250mA  
500mA  
10mA  
100mA  
360mA (LOAD CURRENT)  
0
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
1
2
3
4
V
– V  
(V)  
IN  
OUT  
where:  
Figure 35. 300 mm2 of PCB Copper, TA = 25°C  
I
I
V
LOAD is the load current.  
GND is ground current.  
IN and VOUT are input and output voltages, respectively.  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
J
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(5)  
60  
As shown in Equation 5, for a given ambient temperature, input  
to output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB to  
ensure the junction temperature does not rise above 125°C. The  
following figures show junction temperature calculations for  
different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
40  
20  
1mA  
50mA  
250mA  
500mA  
10mA  
100mA  
360mA (LOAD CURRENT)  
0
1
2
3
4
V
– V  
(V)  
IN  
OUT  
Figure 36. 100 mm2 of PCB Copper, TA = 25°C  
Rev. 0 | Page 13 of 20  
 
 
ADP1715/ADP1716  
140  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
DO NOT OPERATE ABOVE THIS POINT  
120  
100  
80  
60  
40  
20  
0
MAX T  
MAX T  
J
J
60  
40  
20  
1mA  
50mA  
250mA  
500mA  
1mA  
50mA  
250mA  
500mA  
10mA  
100mA  
360mA (LOAD CURRENT)  
10mA  
100mA  
360mA (LOAD CURRENT)  
0
0
0
0
1
2
3
4
5
5
5
0
0
0
1
2
3
4
5
5
5
V
– V  
(V)  
V
– V (V)  
OUT  
IN  
OUT  
IN  
Figure 37. 0 mm2 of PCB Copper, TA = 25°C  
Figure 40. 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
MAX T  
J
J
60  
60  
40  
40  
20  
20  
1mA  
10mA  
50mA  
100mA  
250mA  
500mA  
1mA  
50mA  
250mA  
500mA  
360mA (LOAD CURRENT)  
10mA  
100mA  
360mA (LOAD CURRENT)  
0
0
1
2
3
4
1
2
3
4
V
– V  
(V)  
V
– V (V)  
OUT  
IN  
OUT  
IN  
Figure 38. 700 mm2 of PCB Copper, TA = 50°C  
Figure 41. 0 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
MAX T  
J
J
60  
60  
40  
40  
20  
20  
1mA  
10mA  
50mA  
100mA  
250mA  
500mA  
1mA  
50mA  
250mA  
500mA  
360mA (LOAD CURRENT)  
10mA  
100mA  
360mA (LOAD CURRENT)  
0
0
1
2
3
4
1
2
3
4
V
– V  
(V)  
V
– V (V)  
OUT  
IN  
OUT  
IN  
Figure 39. 300 mm2 of PCB Copper, TA = 50°C  
Figure 42. 700 mm2 of PCB Copper, TA = 85°C  
Rev. 0 | Page 14 of 20  
ADP1715/ADP1716  
140  
120  
100  
80  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
J
The 8-lead MSOP package has the four GND pins fused together  
internally, which enhances its thermal characteristics. Heat  
dissipation from the package is increased by connecting as much  
copper as possible to the four GND pins of the ADP1715/  
ADP1716. From Table 5 it can be seen that a point of  
diminishing returns eventually is reached, beyond which an  
increase in the copper size does not yield additional heat  
dissipation benefits.  
60  
40  
20  
1mA  
50mA  
250mA  
500mA  
10mA  
100mA  
360mA (LOAD CURRENT)  
Figure 46 shows a typical layout for the ADP1715/ADP1716.  
The four GND pins are connected to a large copper pad. If a  
second layer is available, multiple vias can be used to connect  
them, increasing the overall copper area. The input capacitor  
should be placed as close as possible to the IN and GND pins.  
The output capacitor should be placed as close as possible to the  
OUT and GND pins. 0603 or 0402 size capacitors and resistors  
should be used to achieve the smallest possible footprint  
solution on boards where area is limited.  
0
0
0
0
1
2
3
4
5
5
5
V
– V  
(V)  
IN  
OUT  
Figure 43. 300 mm2 of PCB Copper, TA = 85°C  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
J
GND (TOP)  
60  
40  
20  
1mA  
10mA  
50mA  
100mA  
250mA  
500mA  
360mA (LOAD CURRENT)  
ADP1715/  
ADP1716  
0
C1  
C2  
1
2
3
4
V
– V  
(V)  
IN  
OUT  
Figure 44. 100 mm2 of PCB Copper, TA = 85°C  
IN  
OUT  
140  
120  
100  
80  
DO NOT OPERATE ABOVE THIS POINT  
MAX T  
J
R1  
R2  
C3  
60  
EN  
GND (BOTTOM)  
40  
Figure 46. Example PCB Layout  
20  
1mA  
10mA  
50mA  
100mA  
250mA  
500mA  
360mA (LOAD CURRENT)  
0
1
2
3
4
V
– V  
(V)  
IN  
OUT  
Figure 45. 0 mm2 of PCB Copper, TA = 85°C  
Rev. 0 | Page 15 of 20  
 
 
ADP1715/ADP1716  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 47. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions show in millimeters  
Rev. 0 | Page 16 of 20  
 
ADP1715/ADP1716  
ORDERING GUIDE  
Output Voltage  
(V)  
Package  
Description  
Package  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Option  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
Branding  
L29  
L2A  
L2C  
L2D  
L2E  
ADP1715ARMZ-0.75R71  
ADP1715ARMZ-0.8-R71  
ADP1715ARMZ-0.85R71  
ADP1715ARMZ-0.9-R71  
ADP1715ARMZ-0.95R71  
ADP1715ARMZ-1.0-R71  
ADP1715ARMZ-1.05R71  
ADP1715ARMZ-1.1-R71  
ADP1715ARMZ-1.15R71  
ADP1715ARMZ-1.2-R71  
ADP1715ARMZ-1.3-R71  
ADP1715ARMZ-1.5-R71  
ADP1715ARMZ-1.8-R71  
ADP1715ARMZ-2.5-R71  
ADP1715ARMZ-3.0-R71  
ADP1715ARMZ-3.3-R71  
ADP1715ARMZ-R71  
ADP1716ARMZ-0.75R71  
ADP1716ARMZ-0.8-R71  
ADP1716ARMZ-0.85R71  
ADP1716ARMZ-0.9-R71  
ADP1716ARMZ-0.95R71  
ADP1716ARMZ-1.0-R71  
ADP1716ARMZ-1.05R71  
ADP1716ARMZ-1.1-R71  
ADP1716ARMZ-1.15R71  
ADP1716ARMZ-1.2-R71  
ADP1716ARMZ-1.3-R71  
ADP1716ARMZ-1.5-R71  
ADP1716ARMZ-1.8-R71  
ADP1716ARMZ-2.5-R71  
ADP1716ARMZ-3.0-R71  
ADP1716ARMZ-3.3-R71  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.30  
1.50  
1.80  
2.50  
3.00  
3.30  
0.8 to 5.0  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.30  
1.50  
1.80  
2.50  
3.00  
3.30  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
L2F  
L2G  
L2H  
L2J  
L2K  
L32  
L2L  
L3R  
L33  
L34  
L35  
L3K  
L2N  
L2P  
L2Q  
L2R  
L2S  
L2T  
L3D  
L2U  
L2 V  
L2W  
L2X  
L2Y  
L31  
L37  
L38  
L39  
1 Z = Pb-free part.  
Rev. 0 | Page 17 of 20  
 
ADP1715/ADP1716  
NOTES  
Rev. 0 | Page 18 of 20  
ADP1715/ADP1716  
NOTES  
Rev. 0 | Page 19 of 20  
ADP1715/ADP1716  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06110-0-9/06(0)  
Rev. 0 | Page 20 of 20  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY