ADP1762ACPZ-1.2-R7 [ADI]

2 A, Low VIN, Low Noise, CMOS Linear Regulator;
ADP1762ACPZ-1.2-R7
型号: ADP1762ACPZ-1.2-R7
厂家: ADI    ADI
描述:

2 A, Low VIN, Low Noise, CMOS Linear Regulator

输出元件 调节器
文件: 总19页 (文件大小:1002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 A, Low VIN, Low Noise,  
CMOS Linear Regulator  
ADP1762  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
2 A maximum output current  
Low input voltage supply range  
ADP1762  
V
= 1.5V  
C
OUT  
V
= 1.7V  
OUT  
IN  
VIN  
VOUT  
SENSE  
EN  
C
10µF  
IN  
10µF  
VIN = 1.10 V to 1.98 V, no external bias supply required  
R
ON  
PULL-UP  
Fixed output voltage range: VOUT_FIXED = 0.9 V to 1.5 V  
Adjustable output voltage range: VOUT_ADJ = 0.5 V to 1.5 V  
Ultralow noise: 2 μV rms, 100 Hz to 100 kHz  
Noise spectral density  
100k  
OFF  
PG  
PG  
SS  
VADJ  
C
SS  
10nF  
VREG  
REFCAP  
C
C
1µF  
REF  
GND  
REG  
4 nV/√Hz at 10 kHz  
1µF  
3 nV/√Hz at 100 kHz  
Figure 1. Fixed Output Operation  
Low dropout voltage: 62 mV typical at 2 A load  
Operating supply current: 4.5 mA typical at no load  
1.5ꢀ fixed output voltage accuracy over line, load, and  
temperature  
Excellent power supply rejection ratio (PSRR) performance  
62 dB typical at 10 kHz at 2 A load  
46 dB typical at 100 kHz at 2 A load  
Excellent load/line transient response  
Soft start to reduce inrush current  
Optimized for small 10 μF ceramic capacitors  
Current-limit and thermal overload protection  
Power-good indicator  
ADP1762  
V
= 1.7V  
R
V
= 1.5V  
IN  
OUT  
VIN  
VOUT  
C
C
OUT  
10µF  
IN  
10µF  
SENSE  
ON  
PULL-UP  
100k  
EN  
OFF  
PG  
PG  
SS  
VADJ  
C
R
VREG  
REFCAP  
SS  
10nF  
ADJ  
10kΩ  
C
C
REF  
REG  
1µF  
GND  
1µF  
Figure 2. Adjustable Output Operation  
Table 1. Related Devices  
Precision enable  
Input  
Voltage  
Maximum Fixed/  
16-lead, 3 mm × 3 mm LFCSP package  
Device  
Current  
Adjustable  
Package  
APPLICATIONS  
ADP1761 1.10 V to  
1.98 V  
ADP1763 1.10 V to  
1.98 V  
ADP1740/ 1.6 V to  
ADP1741 3.6 V  
ADP1752/ 1.6 V to  
ADP1753 3.6 V  
1 A  
Fixed/adjustable 16-lead  
LFCSP  
Regulation to noise sensitive applications such as radio  
frequency (RF) transceivers, analog-to-digital converter  
(ADC) and digital-to-analog converter (DAC) circuits,  
phase-locked loops (PLLs), voltage controlled oscillators  
(VCOs) and clocking integrated circuits  
Field-programmable gate array (FPGA) and digital signal  
processor (DSP) supplies  
Medical and healthcare  
3 A  
Fixed/adjustable 16-lead  
LFCSP  
2 A  
Fixed/adjustable 16-lead  
LFCSP  
0.8 A  
1.2 A  
Fixed/adjustable 16-lead  
LFCSP  
Fixed/adjustable 16-lead  
LFCSP  
ADP1754/ 1.6 V to  
ADP1755 3.6 V  
Industrial and instrumentation  
The ADP1762 is optimized for stable operation with small 10 μF  
ceramic output capacitors. The ADP1762 delivers optimal transient  
performance with minimal board area.  
GENERAL DESCRIPTION  
The ADP1762 is a low noise, low dropout (LDO) linear regulator. It  
is designed to operate from a single input supply with an input  
voltage as low as 1.10 V, without the requirement of an external  
bias supply, to increase efficiency and provide up to 2 A of  
output current.  
The ADP1762 is available in fixed output voltages ranging from  
0.9 V to 1.5 V. The output of the adjustable output model can be  
set from 0.5 V to 1.5 V through an external resistor connected  
between VADJ and ground.  
The low 62 mV typical dropout voltage at a 2 A load allows the  
ADP1762 to operate with a small headroom while maintaining  
regulation and providing better efficiency.  
The ADP1762 has an externally programmable soft start time by  
connecting a capacitor to the SS pin. Short-circuit and thermal  
overload protection circuits prevent damage in adverse conditions.  
The ADP1762 is available in a small 16-lead LFCSP package for the  
smallest footprint solution to meet a variety of applications.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP1762* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADP1762 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADP1761/ADP1762/ADP1763 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADP1762 EngineerZone Discussions.  
ADP1762: 2 A, Low VIN, Low Noise, CMOS Linear Regulator  
Data Sheet  
SAMPLE AND BUY  
User Guides  
Visit the product page to see pricing options.  
UG-954: Evaluating the ADP1761/ADP1762/ADP1763 Low  
VIN, Low Noise, CMOS Linear Regulators  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
ADI Linear Regulator Design Tool and Parametric Search  
• ADIsimPower™ Voltage Regulator Design Tool  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Press  
• Analog Devices’ Low Dropout Regulators Enable Cleaner  
and Faster Communications  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP1762  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Soft Start Function ..................................................................... 11  
Adjustable Output Voltage........................................................ 12  
Enable Feature ............................................................................ 12  
Power-Good (PG) Feature ........................................................ 12  
Applications Information .............................................................. 13  
Capacitor Selection .................................................................... 13  
Undervoltage Lockout ............................................................... 14  
Current-Limit and Thermal Overload Protection................. 14  
Thermal Considerations............................................................ 14  
PCB Layout Considerations...................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuits............................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor: Recommended Specifications . 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
9/2016—Rev. 0 to Rev. A  
Changes to Figure 23 and Figure 24............................................. 11  
4/2016—Revision 0: Initial Version  
Rev. A | Page 2 of 18  
 
Data Sheet  
ADP1762  
SPECIFICATIONS  
VIN = VOUT + 0.2 V or VIN = 1.1 V, whichever is greater, ILOAD = 10 mA, CIN = 10 µF, COUT = 10 µF, CREF = 1 µF, CREG = 1 µF, TA = 25°C,  
Minimum and maximum limits at TJ = −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
INPUT VOLTAGE SUPPLY RANGE  
CURRENT  
VIN  
TJ = −40°C to +125°C  
1.10  
1.98  
V
Operating Supply Current  
IGND  
ILOAD = 0 µA  
ILOAD = 10 mA  
ILOAD = 100 mA  
ILOAD = 2 A  
EN = GND  
TJ = −40°C to +85°C,  
VIN = (VOUT + 0.2 V) to 1.98 V  
TJ = 85°C to 125°C,  
VIN = (VOUT + 0.2 V) to 1.98 V  
4.5  
4.9  
5.5  
9.4  
2
8
8
8.5  
14  
mA  
mA  
mA  
mA  
µA  
Shutdown Current  
OUTPUT NOISE1  
IGND-SD  
180  
800  
µA  
µA  
OUTNOISE  
10 Hz to 100 kHz, VIN = 1.1 V, VOUT = 0.9 V  
100 Hz to 100 kHz, VIN = 1.1 V, VOUT = 0.9 V  
10 Hz to 100 kHz, VIN = 1.5 V, VOUT = 1.3 V  
100 Hz to 100 kHz, VIN = 1.5 V, VOUT = 1.3 V  
10 Hz to 100 kHz, VIN = 1.7 V, VOUT = 1.5 V  
100 Hz to 100 kHz, VIN = 1.7 V, VOUT = 1.5 V  
VOUT = 0.9 V to 1.5 V, ILOAD = 100 mA  
At 10 kHz  
12  
2
15  
2
21  
2
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
Noise Spectral Density  
OUTNSD  
PSRR  
4
3
nV/√Hz  
nV/√Hz  
At 100 kHz  
POWER SUPPLY REJECTION RATIO1  
ILOAD = 2 A, modulated VIN  
10 kHz, VOUT = 1.3 V, VIN = 1.6 V  
100 kHz, VOUT = 1.3 V, VIN = 1.6 V  
1 MHz, VOUT = 1.3 V, VIN = 1.6 V  
10 kHz, VOUT = 0.9 V, VIN = 1.2 V  
100 kHz, VOUT = 0.9 V, VIN = 1.2 V  
1 MHz, VOUT = 0.9 V, VIN = 1.2 V  
62  
46  
39  
63  
46  
34  
dB  
dB  
dB  
dB  
dB  
dB  
OUTPUT VOLTAGE  
Output Voltage Range  
TA = 25°C  
VOUT_FIXED  
VOUT_ADJ  
VOUT  
0.9  
0.5  
−0.5  
−1  
1.5  
1.5  
+0.5  
+1.5  
V
V
%
%
Fixed Output Voltage Accuracy  
ILOAD = 100 mA, TA = 25°C  
10 mA < ILOAD < 2 A, VIN = (VOUT + 0.2 V) to  
1.98 V, TJ = 0°C to 85°C  
10 mA < ILOAD < 2 A, VIN = (VOUT + 0.2 V) to  
1.98 V  
−1.5  
+1.5  
%
ADJUSTABLE PIN CURRENT  
IADJ  
AD  
TA = 25°C  
VIN = (VOUT + 0.2 V) to 1.98 V  
TA = 25°C  
49.5  
48.8  
50.0 50.5  
50.0 51.0  
3.0  
µA  
µA  
ADJUSTABLE OUTPUT VOLTAGE GAIN FACTOR  
VIN = (VOUT + 0.2 V) to 1.98 V  
2.95  
3.055  
REGULATION  
Line Regulation  
Load Regulation2  
DROPOUT VOLTAGE3  
∆VOUT/∆VIN  
∆VOUT/∆IOUT ILOAD = 10 mA to 2 A  
VIN = (VOUT + 0.2 V) to 1.98 V  
−0.15  
+0.15 %/V  
0.15 0.41  
%/A  
mV  
mV  
ms  
µA  
A
VDROPOUT  
ILOAD = 100 mA, VOUT = 1.2 V  
12  
62  
0.6  
10  
3
23  
95  
ILOAD = 2 A, VOUT = 1.2 V  
ILOAD = 10 nF, VOUT = 1 V  
1.1 V ≤ VIN ≤ 1.98 V  
START-UP TIME1, 4  
tSTART-UP  
ISS  
SOFT START CURRENT  
CURRENT-LIMIT THRESHOLD5  
8
12  
4
ILIMIT  
2.2  
Rev. A | Page 3 of 18  
 
ADP1762  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
TSSD  
TSSD-HYS  
TJ rising  
150  
15  
°C  
°C  
POWER-GOOD (PG) OUTPUT THRESHOLD  
Output Voltage  
Falling  
PGFALL  
PGRISE  
1.1 V ≤ VIN ≤ 1.98 V  
1.1 V ≤ VIN ≤ 1.98 V  
−7.5  
−5  
%
%
Rising  
PG OUTPUT  
Output Voltage Low  
Leakage Current  
Delay1  
PGLOW  
IPG-LKG  
PGDELAY  
1.1 V ≤ VIN ≤ 1.98 V, IPG ≤ 1 mA  
1.1 V ≤ VIN ≤ 1.98 V  
ENRISING to PGRISING  
0.35  
1
V
µA  
ms  
0.01  
0.75  
PRECISION EN INPUT  
Logic Input  
1.1 V ≤ VIN ≤ 1.98 V  
High  
Low  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
tIEN-DLY  
UVLO  
595  
550  
625  
580  
45  
0.01  
100  
690  
630  
mV  
mV  
mV  
µA  
µs  
Input Logic Hysteresis  
Input Leakage Current  
Input Delay Time  
UNDERVOLTAGE LOCKOUT  
Input Voltage  
Rising  
EN = VIN or GND  
From EN rising from 0 V to VIN to 0.1 × VOUT  
1
UVLORISE  
UVLOFALL  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
1.01 1.06  
0.93  
90  
V
V
mV  
Falling  
Hysteresis  
0.87  
1 Guaranteed by design and characterization; not production tested.  
2 Based on an endpoint calculation using 10 mA and 2 A loads.  
3 Dropout voltage is defined as the input to output voltage differential when the input voltage is set to the nominal output voltage, which applies only for output  
voltages above 1.1 V.  
4 Start-up time is defined as the time from the rising edge of EN to VOUT being at 90% of the nominal value.  
5 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 1.0 V, or 0.9 V.  
INPUT AND OUTPUT CAPACITOR: RECOMMENDED SPECIFICATIONS  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CAPACITANCE1  
TA = −40°C to +125°C  
Input  
Output  
Regulator  
Reference  
CIN  
7.0  
7.0  
0.7  
0.7  
10  
10  
1
µF  
µF  
µF  
µF  
COUT  
CREG  
CREF  
RESR  
1
CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)  
TA = −40°C to +125°C  
CIN, COUT  
CREG, CREF  
0.001  
0.001  
0.5  
0.2  
1 The minimum input and output capacitance must be >7.0 µF over the full range of the operating conditions. Consider the full range of the operating conditions in the  
application during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended. Y5V and Z5U  
capacitors are not recommended for use with any LDO.  
Rev. A | Page 4 of 18  
 
Data Sheet  
ADP1762  
ABSOLUTE MAXIMUM RATINGS  
The junction to ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA can vary, depending on  
PCB material, layout, and environmental conditions. The specified  
values of θJA are based on a 4-layer, 4 in × 3 in circuit board. For  
details about board construction, refer to JEDEC JESD51-7.  
Table 4.  
Parameter  
Rating  
VIN to GND  
EN to GND  
VOUT to GND  
SENSE to GND  
VREG to GND  
REFCAP to GND  
VADJ to GND  
SS to GND  
−0.3 V to +2.16 V  
−0.3 V to +3.96 V  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to +3.96 V  
−65°C to +150°C  
−40°C to +125°C  
125°C  
ΨJB is the junction to board thermal characterization parameter  
with units of °C /W. ΨJB of the package is based on modeling and  
a calculation using a 4-layer board. The JEDEC JESD51-12  
document, Guidelines for Reporting and Using Package Thermal  
Information, states that thermal characterization parameters are  
not the same as thermal resistances. ΨJB measures the component  
power flowing through multiple thermal paths rather than a single  
path, as in thermal resistance (θJB). Therefore, ΨJB thermal paths  
include convection from the top of the package as well as radiation  
from the package, factors that make ΨJB more useful in real-  
world applications. The maximum junction temperature (TJ) is  
calculated from the board temperature (TB) and power dissipation  
(PD), using the following formula:  
PG to GND  
Storage Temperature Range  
Operating Temperature Range  
Operating Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
300°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
Refer to the JEDEC JESD51-8 and JESD51-12 documents for  
more detailed information about ΨJB.  
THERMAL DATA  
THERMAL RESISTANCE  
Absolute maximum ratings apply only individually, not in  
combination. The ADP1762 can be damaged when junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that the junction temperature is within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature can need to be derated.  
θJA and ΨJB are specified for the worst case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 5. Thermal Resistance for a 4-Layer 6400 mm2  
Copper Size  
Package Type  
θJA  
ΨJB  
Unit  
16-Lead LFCSP  
56  
28.4  
°C/W  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long as  
the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction to ambient thermal resistance of the  
package (θJA). TJ is calculated using the following formula:  
ESD CAUTION  
TJ = TA + (PD × θJA)  
The junction to ambient thermal resistance (θJA) of the package  
is based on modeling and a calculation using a 4-layer board.  
Rev. A | Page 5 of 18  
 
 
 
 
ADP1762  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VIN 1  
12 VOUT  
11 VOUT  
VIN  
VIN  
VIN  
2
3
4
ADP1762  
TOP VIEW  
10  
9
VOUT  
VOUT  
(Not to Scale)  
NOTES  
1. THE EXPOSED PAD IS ELECTRICALLY  
CONNECTED TO GND. IT IS RECOMMENDED  
THAT THIS PAD BE CONNECTED TO A GROUND  
PLANE ON THE PCB. THE EXPOSED PAD IS  
ON THE BOTTOM OF THE PACKAGE.  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1 to 4  
VIN  
Regulator Input Supply. Bypass VIN to GND with a 10 µF or greater capacitor. Note that all four VIN pins must be  
connected to the source supply.  
5
6
REFCAP  
VREG  
Reference Filter Capacitor. Connect a 1 µF capacitor from the REFCAP pin to ground. Do not connect a load to  
ground.  
Regulated Input Supply to LDO Amplifier. Bypass VREG to GND with a 1 µF or greater capacitor. Do not connect  
a load to ground.  
7
8
GND  
VADJ  
Ground.  
Adjustable Voltage Pin for the Adjustable Output Option. Connect a 10 kΩ external resistor between the VADJ  
pin and ground to set the output voltage to 1.5 V. For the fixed output option, leave this pin floating.  
9 to 12  
13  
VOUT  
SENSE  
Regulated Output Voltage. Bypass VOUT to GND with a 10 µF or greater capacitor. Note that all four VOUT pins  
must be connected to the load.  
Sense Input. The SENSE pin measures the actual output voltage at the load and feeds it to the error amplifier.  
Connect VSENSE as close to the load as possible to minimize the effect of IR voltage drop between VOUT and the load.  
14  
15  
SS  
PG  
Soft Start Pin. A 10 nF capacitor connected to the SS pin and ground sets the start-up time to 0.6 ms.  
Power-Good Output. This open-drain output requires an external pull-up resistor. If the device is in shutdown  
mode, current-limit mode, or thermal shutdown mode, or if VOUT falls below 90% of the nominal output  
voltage, the PG pin immediately transitions low.  
16  
EN  
EP  
Enable Input. Drive the EN pin high to turn on the regulator. Drive the EN pin low to turn off the regulator. For  
automatic startup, connect the EN pin to the VIN pin.  
Exposed Pad. The exposed pad is electrically connected to GND. It is recommended that this pad be connected  
to a ground plane on the PCB. The exposed pad is on the bottom of the package.  
Rev. A | Page 6 of 18  
 
Data Sheet  
ADP1762  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 1.5 V, VOUT = 1.3 V, TA = 25°C, unless otherwise noted.  
14  
12  
10  
8
1.305  
NO LOAD  
I
I
I
I
= 10mA  
= 100mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
1.303  
1.301  
1.299  
1.297  
1.295  
= 2A  
6
4
2
NO LOAD  
LOAD  
LOAD  
I
I
I
= 10mA  
= 500mA  
= 2A  
LOAD  
LOAD  
LOAD  
I
I
= 100mA  
= 1A  
0
–50  
–25  
0
25  
50  
75  
100  
125  
150  
10  
2
–50  
–25  
0
25  
50  
75  
100  
125  
150  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 7. Ground Current vs. Junction Temperature  
Figure 4. Output Voltage (VOUT) vs. Junction Temperature  
12  
10  
8
1.3035  
1.3030  
1.3025  
1.3020  
1.3015  
6
4
2
0
0.01  
0.1  
1
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 8. Ground Current vs. Load Current  
Figure 5. Output Voltage (VOUT) vs. Load Current  
12  
10  
8
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.298  
I
I
I
I
= 100mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
= 1.5A  
= 2A  
6
4
2
NO LOAD  
LOAD  
LOAD  
I
I
I
= 10mA  
= 500mA  
= 2A  
LOAD  
LOAD  
LOAD  
I
I
= 100mA  
= 1A  
0
1.5  
1.6  
1.7  
1.8  
1.9  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. Ground Current vs. Input Voltage  
Figure 6. Output Voltage vs. Input Voltage  
Rev. A | Page 7 of 18  
 
ADP1762  
Data Sheet  
200  
12  
10  
8
V
V
V
V
V
V
= 1.5V  
= 1.7V  
= 1.9V  
= 1.6V  
= 1.8V  
= 1.98V  
IN  
IN  
IN  
IN  
IN  
IN  
180  
160  
140  
120  
100  
80  
6
60  
4
40  
20  
2
NO LOAD  
LOAD  
LOAD  
I
I
I
= 10mA  
= 500mA  
= 2A  
LOAD  
LOAD  
LOAD  
0
I
I
= 100mA  
= 1A  
–20  
–50  
0
1.1  
–25  
0
25  
50  
75  
100  
125  
150  
1.2  
1.3  
1.4  
1.5  
1.6  
JUNCTION TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 10. Shutdown Current vs. Junction Temperature at  
Various Input Voltages (VIN)  
Figure 13. Ground Current vs. Input Voltage (in Dropout), VOUT = 1.3 V  
70  
3A/µs SLEW RATE  
60  
50  
40  
30  
20  
10  
0
I
LOAD  
2
1
V
OUT  
B
CH2 1.00A M4.00µs  
W
CH1 50.0mV  
A CH2  
640mA  
0.1  
1
10  
T
18.70%  
LOAD CURRENT (A)  
Figure 11. Dropout Voltage vs. Load Current, VOUT = 1.3 V  
Figure 14. Load Transient Response, COUT = 10 μF, VIN = 1.7 V, VOUT = 1.3V  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
I
I
I
I
= 100mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
3A/µs SLEW RATE  
= 1.5A  
= 2A  
I
LOAD  
2
1
V
IN  
CH1 50.0mV  
CH2 1.00A  
M4.00µs  
19.00%  
A CH2  
640mA  
1.2  
1.3  
1.4  
1.5  
T
INPUT VOLTAGE (V)  
Figure 12. Output Voltage vs. Input Voltage (in Dropout), VOUT = 1.3 V  
Figure 15. Load Transient Response, COUT = 47 μF, VIN = 1.7 V, VOUT = 1.3 V  
Rev. A | Page 8 of 18  
Data Sheet  
ADP1762  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
V
V
V
V
V
V
= 1.1V  
= 1.2V  
= 1.3V  
= 1.4V  
= 1.5V  
= 1.6V  
IN  
IN  
IN  
IN  
IN  
IN  
1V/µs SLEW RATE  
V
IN  
V
OUT  
1
2
CH1 5.00mV  
CH2 500mV M2.00µs  
A CH2  
1.68V  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
T
17.50%  
FREQUENCY (Hz)  
Figure 16. Line Transient Response, Load Current = 2 A,  
VIN = 1.5 V to 1.98 V Step, VOUT = 1.3 V  
Figure 19. Power Supply Rejection Ratio (PSRR) vs. Frequency for Various VIN,  
OUT = 0.9 V, Load Current = 2 A  
V
16  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
V
V
V
V
V
V
= 1.5V  
IN  
IN  
IN  
IN  
IN  
IN  
V
= 1.3V (10Hz TO 100kHz)  
OUT  
= 1.6V  
= 1.7V  
= 1.8V  
= 1.9V  
= 1.98V  
14  
12  
10  
8
6
4
V
= 1.3V (100Hz TO 100kHz)  
OUT  
2
0
0.1  
1
LOAD CURRENT (A)  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 17. Noise vs. Load Current for Various Output Voltages  
Figure 20. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various VIN, VOUT = 1.3 V, Load Current = 2 A  
10k  
–10  
V
V
V
V
= 1.7V  
= 1.8V  
= 1.9V  
= 1.98V  
IN  
IN  
IN  
IN  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1k  
100  
10  
1
V
V
V
= 0.9V  
= 1.3V  
= 1.5V  
OUT  
OUT  
OUT  
0.1  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Noise Spectral Density vs. Frequency for Various Output Voltages,  
LOAD = 100 mA  
Figure 21. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various VIN, VOUT = 1.5 V, Load Current = 2 A  
I
Rev. A | Page 9 of 18  
ADP1762  
Data Sheet  
–10  
I
I
I
I
= 200mA  
= 500mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
= 2A  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various Loads, VOUT = 1.3 V, VIN = 1.6 V  
Rev. A | Page 10 of 18  
Data Sheet  
ADP1762  
THEORY OF OPERATION  
The ADP1762 is an LDO, low noise linear regulator that uses an  
advanced proprietary architecture to achieve high efficiency  
regulation. It also provides high PSRR and excellent line and load  
transient response using a small 10 F ceramic output capacitor.  
The device operates from a 1.10 V to 1.98 V input rail to  
provide up to 2 A of output current. Supply current in  
shutdown mode is 2 μA.  
The ADP1762 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. When EN is high, VOUT  
turns on. When EN is low, VOUT turns off. For automatic startup,  
tie EN to VIN.  
SOFT START FUNCTION  
For applications that require a controlled startup, the ADP1762  
provides a programmable soft start function. The programmable  
soft start is useful for reducing inrush current upon startup and  
for providing voltage sequencing. To implement soft start, connect  
a small ceramic capacitor from SS to ground. At startup, a 10 μA  
current source charges this capacitor. The voltage at SS limits the  
ADP1762 start-up output voltage, providing a smooth ramp-up  
to the nominal output voltage. To calculate the start-up time for  
the fixed output and adjustable output, use the following equations:  
ADP1762  
VIN  
VOUT  
SHORT-CIRCUIT,  
THERMAL  
PROTECTION  
INTERNAL  
BIAS SUPPLY  
VREG  
SENSE  
t
t
START-UP_FIXED = tDELAY + VREF × (CSS/ISS)  
START-UP_ADJ = tDELAY + VADJ × (CSS/ISS)  
(1)  
(2)  
PG  
SS  
REFERENCE,  
BIAS  
EN  
where:  
DELAY is a fixed delay of 100 μs.  
REF is a 0.5 V internal reference for the fixed output model option.  
t
V
GND  
SS BLOCK  
CSS is the soft start capacitance from SS to GND.  
REFCAP  
ISS is the current sourced from SS (10 μA).  
Figure 23. Functional Block Diagram, Fixed Output  
V
ADJ is the voltage at the VADJ pin equal to RADJ × IADJ.  
ADP1762  
1.7  
VIN  
VOUT  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
SHORT-CIRCUIT,  
INTERNAL  
THERMAL  
VREG  
SENSE  
BIAS SUPPLY  
PROTECTION  
I
ADJ  
EN  
VADJ  
3×  
PG  
SS  
0.3  
EN  
C
C
C
= 0µF  
= 10µF  
= 22µF  
SS  
SS  
SS  
0.1  
–0.1  
–0.0002  
GND  
SS BLOCK  
0.0003  
0.0008  
0.0013  
0.0018  
TIME (ms)  
Figure 25. Fixed VOUT Ramp-Up with External Soft Start Capacitor (VOUT, EN) vs. Time  
REFCAP  
2.0  
Figure 24. Functional Block Diagram, Adjustable Output  
Internally, the ADP1762 consists of a reference, an error amplifier,  
and a pass device. The output current is delivered via the pass  
device, which is controlled by the error amplifier, forming a  
negative feedback system that ideally drives the feedback  
voltage to equal the reference voltage. If the feedback voltage is  
lower than the reference voltage, the negative feedback drives  
more current, increasing the output voltage. If the feedback  
voltage is higher than the reference voltage, the negative feedback  
drives less current, decreasing the output voltage.  
1.5  
1.0  
0.5  
EN  
0
V
V
V
V
= 0.5V; C = 10nF  
SS  
OUT  
OUT  
OUT  
OUT  
= 0.5V; C = 22nF  
SS  
= 1.5V; C = 10nF  
SS  
= 1.5V; C = 22nF  
SS  
The ADP1762 is available in output voltages ranging from 0.9 V to  
1.5 V for a fixed output. Contact a local Analog Devices, Inc.,  
sales representative for other fixed voltage options. The  
adjustable output option can be set from 0.5 V to 1.5 V.  
–0.5  
–0.2  
0.3  
0.8  
1.3  
1.8  
TIME (ms)  
Figure 26. Adjustable VOUT Ramp-Up with External Soft Start  
Capacitor (VOUT, EN) vs. Time  
Rev. A | Page 11 of 18  
 
 
ADP1762  
Data Sheet  
ADJUSTABLE OUTPUT VOLTAGE  
POWER-GOOD (PG) FEATURE  
The output voltage of the ADP1762 can be set over a 0.5 V to  
1.5 V range. Connect a resistor (RADJ) from the VADJ pin to  
ground to set the output voltage. To calculate the output voltage,  
use the following equation:  
The ADP1762 provides a power-good pin (PG) to indicate the  
status of the output. This open-drain output requires an external  
pull-up resistor that can be connected to VIN or VOUT. If the  
device is in shutdown mode, current-limit mode, or thermal  
shutdown, or if it falls below 90% of the nominal output voltage,  
PG immediately transitions low. During soft start, the rising  
threshold of the power-good signal is 95% of the nominal  
output voltage.  
V
OUT = AD × (RADJ × IADJ  
)
(3)  
where:  
AD is the gain factor with a typical value of 3.0 between the  
VADJ pin and VOUT pin.  
The open-drain output is held low when the ADP1762 has a  
sufficient input voltage to turn on the internal PG transistor. An  
optional soft start delay can be detected. The PG transistor is  
terminated via a pull-up resistor to VOUT or VIN.  
I
ADJ is the 50.0 μA constant current out of the VADJ pin.  
ENABLE FEATURE  
The ADP1762 uses the EN pin to enable and disable the VOUT  
pins under normal operating conditions. As shown in Figure 27,  
when a rising voltage on EN crosses the active threshold, VOUT  
turns on. When a falling voltage on EN crosses the inactive  
threshold, VOUT turns off.  
Power-good accuracy is 92.5% of the nominal regulator output  
voltage when this voltage is rising, with a 95% trip point when  
this voltage is falling.  
Regulator input voltage brownouts or glitches trigger a power  
no good if VOUT falls below 92.5%.  
EN  
A normal power-down triggers a power good when VOUT is at 95%.  
V
OUT  
V
IN  
1
2
4
V
OUT  
1
B
B
W
CH1 200mV  
CH2 200mV  
M4.0ms  
A CH1  
768mV  
W
PG  
T
8.26ms  
Figure 27. Typical EN Pin Operation  
CH1 1.00V  
CH2 1.00V  
CH4 1.00V  
M100µs  
A CH4  
420mV  
As shown in Figure 28, the EN pin has hysteresis built in. This  
hysteresis prevents on/off oscillations that can occur due to  
noise on the EN pin as it passes through the threshold points.  
T
228.0000µs  
Figure 29. Typical PG Behavior vs. VOUT, VIN Rising (VOUT = 1.3 V)  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
IN  
1
2
4
V
OUT  
PG  
CH1 1.00V  
CH2 1.00V  
CH4 1.00V  
M200µs  
0.000000s  
A CH1  
3.00V  
0
0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65  
T
EN VOLTAGE (V)  
Figure 30. Typical PG Behavior vs. VOUT, VIN Falling (VOUT = 1.3 V)  
Figure 28. Output Voltage vs. Typical EN Pin Voltage, VOUT = 1.3 V  
Rev. A | Page 12 of 18  
 
 
 
 
 
Data Sheet  
ADP1762  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Input and Output Capacitor Properties  
Use any good quality ceramic capacitors with the ADP1762, as  
long as they meet the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate to  
ensure the minimum capacitance over the necessary temperature  
range and dc bias conditions. X5R or X7R dielectrics with a  
voltage rating of 6.3 V or 10 V are recommended. Y5V and Z5U  
dielectrics are not recommended, due to poor temperature and  
dc bias characteristics.  
Output Capacitor  
The ADP1762 is designed for operation with small, space-saving  
ceramic capacitors, but it can function with most commonly  
used capacitors as long as care is taken with the effective series  
resistance (ESR) value. The ESR of the output capacitor affects  
the stability of the LDO control loop. A minimum of 10 µF  
capacitance with an ESR of 500 mΩ or less is recommended to  
ensure the stability of the ADP1762. Transient response to  
changes in load current is also affected by output capacitance.  
Using a larger value of output capacitance improves the  
transient response of the ADP1762 to large changes in load  
current. Figure 31 and Figure 32 show the transient responses  
for output capacitance values of 10 µF and 47 µF, respectively.  
Figure 33 shows the capacitance vs. bias voltage characteristics  
of an 0805 case, 10 µF, 10 V, X5R capacitor. The voltage stability  
of a capacitor is strongly influenced by the capacitor size and  
voltage rating. In general, a capacitor in a larger package or with  
a higher voltage rating exhibits better stability. The temperature  
variation of the X5R dielectric is about 15% over the −40°C to  
+85°C temperature range and is not a function of package size  
or voltage rating.  
I
LOAD  
2
1
12  
V
10  
8
OUT  
6
B
CH1 50.0mV  
CH2 1.00A M1.00µs  
A CH2  
640mA  
W
4
T
18.70%  
Figure 31. Output Transient Response, COUT = 10 µF  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
I
LOAD  
2
1
Figure 33. Capacitance vs. DC Bias Voltage  
Use Equation 4 to determine the worst case capacitance,  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
V
IN  
CEFF = COUT × (1 − tempco) × (1 − TOL)  
(4)  
where:  
C
C
EFF is the effective capacitance at the operating voltage.  
OUT is the output capacitor.  
CH1 50.0mV  
CH2 1.00A  
M1.00µs  
19.00%  
A CH2  
640mA  
T
Tempco is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
Figure 32. Output Transient Response, COUT = 47 µF  
Input Bypass Capacitor  
In this example, the worst case temperature coefficient (tempco)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
Connecting a 10 µF capacitor from the VIN pin to the GND pin  
to ground reduces the circuit sensitivity to the PCB layout,  
especially when long input traces or high source impedance  
are encountered. If output capacitance greater than 10 µF is  
required, it is recommended that the input capacitor be increased  
to match it.  
C
OUT = 10 µF at 1.0 V, as shown in Figure 33.  
Substituting these values in Equation 4 yields  
EFF = 10 μF × (1 − 0.15) × (1 − 0.1) = 7.65 μF  
C
Rev. A | Page 13 of 18  
 
 
 
 
 
ADP1762  
Data Sheet  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temperature  
and tolerance at the chosen output voltage.  
THERMAL CONSIDERATIONS  
To guarantee reliable operation, the junction temperature of the  
ADP1762 must not exceed 125°C. To ensure that the junction  
temperature stays below this maximum value, the user needs to be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistance between  
the junction and ambient air (θJA). The θJA value is dependent  
on the package assembly compounds used and the amount of  
copper to which the GND pin and the exposed pad (EPAD) of the  
package are soldered on the PCB. Table 7 shows typical θJA values  
for the 16-lead LFCSP for various PCB copper sizes. Table 8  
shows typical ΨJB values for the 16-lead LFCSP.  
To guarantee the performance of the ADP1762, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
UNDERVOLTAGE LOCKOUT  
The ADP1762 has an internal undervoltage lockout circuit that  
disables all inputs and the output when the input voltage is less  
than approximately 1.06 V. The UVLO ensures that the ADP1762  
inputs and the output behave in a predictable manner during  
power-up.  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
Table 7. Typical θJA Values  
Copper Size (mm2)  
θJA (°C/W), LFCSP  
The ADP1762 is protected against damage due to excessive power  
dissipation by current-limit and thermal overload protection  
circuits. The ADP1762 is designed to reach the current limit  
when the output load reaches 3 A (typical). When the output  
load exceeds 3 A, the output voltage is reduced to maintain a  
constant current limit.  
25  
138.1  
102.9  
76.9  
67.3  
56  
100  
500  
1000  
6400  
Table 8. Typical ΨJB Values  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and power  
dissipation) when the junction temperature begins to rise above  
150°C, the output is turned off, reducing the output current to  
zero. When the junction temperature drops below 135°C (typical),  
the output is turned on again, and the output current is restored  
to the nominal value.  
Copper Size (mm2)  
ΨJB (°C/W) at 1 W  
100  
500  
1000  
33.3  
28.9  
28.5  
To calculate the junction temperature of the ADP1762, use the  
following equation:  
TJ = TA + (PD × θJA)  
where:  
TA is the ambient temperature.  
(5)  
Consider the case where a hard short from VOUT to ground  
occurs. At first, the ADP1762 reaches the current limit so that  
only 3 A is conducted into the short circuit. If self heating of the  
junction becomes great enough to cause the temperature to rise  
above 150°C, thermal shutdown activates, turning off the output  
and reducing the output current to zero. As the junction temp-  
erature cools and drops below 135°C, the output turns on and  
conducts 3 A into the short circuit, again causing the junction  
temperature to rise above 150°C. This thermal oscillation between  
135°C and 150°C causes a current oscillation between 3 A and  
0 A that continues as long as the short circuit remains at the output.  
PD is the power dissipation in the die, given by  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
VIN and VOUT are the input and output voltages, respectively.  
)
(6)  
ILOAD is the load current.  
IGND is the ground current.  
As shown in Equation 6, for a given ambient temperature  
and computed power dissipation, a minimum copper size  
requirement exists for the PCB to ensure that the junction  
temperature does not rise above 125°C.  
Current-limit and thermal overload protections are intended to  
protect the device against accidental overload conditions. For  
reliable operation, limit the device power externally so that  
junction temperatures do not exceed 125°C.  
Rev. A | Page 14 of 18  
 
 
 
 
 
Data Sheet  
ADP1762  
140  
120  
100  
80  
Figure 34 through Figure 39 show the junction temperature  
calculations for the different ambient temperatures, load  
currents, VIN to VOUT differentials, and areas of PCB copper.  
140  
T
MAX  
J
1A  
2A  
500mA  
T
MAX  
J
120  
100  
80  
60  
40  
20  
0
2A  
100mA  
10mA  
60  
1A  
40  
500mA  
20  
0
0.2  
100mA  
10mA  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
Figure 37. 6400 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
T
MAX  
J
V
IN  
OUT  
Figure 34. 6400 mm2 of PCB Copper, TA = 25°C  
2A  
1A  
500mA  
140  
120  
100  
80  
T
MAX  
J
1A  
2A  
100mA  
10mA  
60  
500mA  
40  
60  
20  
100mA  
10mA  
40  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
20  
Figure 38. 500 mm2 of PCB Copper, TA = 50°C  
0
140  
120  
100  
80  
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
T
MAX  
J
V
IN  
OUT  
Figure 35. 500 mm2 of PCB Copper, TA = 25°C  
2A  
1A  
500mA  
140  
120  
100  
80  
T
MAX  
J
1A  
2A  
100mA  
10mA  
500mA  
60  
40  
60  
20  
100mA  
40  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
10mA  
1.2  
IN  
OUT  
20  
Figure 39. 25 mm2 of PCB Copper, TA = 50°C  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.4  
1.6  
V
IN  
OUT  
Figure 36. 25 mm2 of PCB Copper, TA = 25°C  
Rev. A | Page 15 of 18  
 
 
ADP1762  
Data Sheet  
140  
120  
100  
80  
In cases where the board temperature is known, the thermal  
characterization parameter (ΨJB) can be used to estimate the  
junction temperature rise. The maximum junction temperature  
(TJ) is calculated from the board temperature (TB) and power  
dissipation (PD) using the following formula:  
T
MAX  
J
2A  
TJ = TB + (PD × ΨJB)  
(7)  
1A  
60  
Figure 40 through Figure 43 show the junction temperature  
calculations for the different board temperatures, load currents,  
VIN to VOUT differentials, and areas of PCB copper.  
140  
500mA  
100mA  
10mA  
40  
20  
T
MAX  
J
120  
100  
80  
60  
40  
20  
0
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
2A  
Figure 42. 1000 mm2 of PCB Copper, TB = 25°C  
140  
120  
100  
80  
1A  
2A  
500mA  
100mA  
10mA  
1A  
500mA  
60  
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
100mA  
10mA  
V
IN  
OUT  
40  
Figure 40. 500 mm2 of PCB Copper, TB = 25°C  
140  
120  
100  
80  
20  
T
MAX  
J
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
2A  
V
IN  
OUT  
1A  
Figure 43. 1000 mm2 of PCB Copper, TB = 50°C  
500mA  
60  
100mA  
10mA  
40  
20  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
Figure 41. 500 mm2 of PCB Copper, TB = 50°C  
Rev. A | Page 16 of 18  
 
 
Data Sheet  
ADP1762  
PCB LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP1762.  
However, as shown in Table 8, a point of diminishing returns is  
eventually reached, beyond which an increase in the copper size  
does not yield significant heat dissipation benefits.  
Use the following recommendations when designing PCBs:  
Place the input capacitor as close as possible to the VIN  
and GND pins.  
Place the output capacitor as close as possible to the VOUT  
and GND pins.  
Place the soft start capacitor (CSS) as close as possible to the  
SS pin.  
Place the reference capacitor (CREF) and regulator capacitor  
(CREG) as close as possible to the REFCAP pin and the  
VREG pin, respectively.  
Figure 45. Typical Board Layout, Top Side  
Connect the load as close as possible to the VOUT and  
SENSE pins.  
Use of 0603 or 0805 size capacitors and resistors achieves the  
smallest possible footprint solution on boards where area is  
limited.  
Figure 46. Typical Board Layout, Bottom Side  
Figure 44. Evaluation Board  
Rev. A | Page 17 of 18  
 
ADP1762  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 47. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-22)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Package  
Option  
Model1  
Temperature Range Voltage (V)2 Package Description  
Branding  
ADP1762ACPZ-R7  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Adjustable  
0.9  
0.95  
1.0  
1.1  
1.2  
1.25  
1.3  
1.5  
1.3  
1.1  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRS  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRT  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LUP  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRU  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRV  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRW  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRZ  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRX  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LRY  
Evaluation Board  
ADP1762ACPZ-0.9-R7  
ADP1762ACPZ0.95-R7  
ADP1762ACPZ-1.0-R7  
ADP1762ACPZ-1.1-R7  
ADP1762ACPZ-1.2-R7  
ADP1762ACPZ1.25-R7  
ADP1762ACPZ-1.3-R7  
ADP1762ACPZ-1.5-R7  
ADP1762-1.3-EVALZ  
ADP1762-ADJ-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For additional options, contact a local Analog Devices sales or distribution representative. Additional voltage output options available include the following: 0.5 V,  
0.55 V, 0.6 V, 0.65 V, 0.7 V, 0.75 V, 0.8 V, 0.85 V, 1.05 V, 1.15 V, 1.35 V, 1.4 V, or 1.45 V.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12922-0-9/16(A)  
Rev. A | Page 18 of 18  
 
 
 

相关型号:

ADP1762ACPZ-1.3-R7

2 A, Low VIN, Low Noise, CMOS Linear Regulator
ADI

ADP1762ACPZ-1.5-R7

2 A, Low VIN, Low Noise, CMOS Linear Regulator
ADI

ADP1762ACPZ-R7

2 A, Low VIN, Low Noise, CMOS Linear Regulator
ADI

ADP1762ACPZ0.95-R7

CMOS Linear Regulator
ADI

ADP1762ACPZ1.25-R7

CMOS Linear Regulator
ADI

ADP1763

CMOS Linear Regulator
ADI

ADP1763-1.3-EVALZ

CMOS Linear Regulator
ADI

ADP1763-ADJ-EVALZ

CMOS Linear Regulator
ADI

ADP1763-EVALZ

TABLE OF CONTENTS
ADI

ADP1763ACPZ-0.9-R7

CMOS Linear Regulator
ADI

ADP1763ACPZ-1.0-R7

CMOS Linear Regulator
ADI

ADP1763ACPZ-1.1-R7

CMOS Linear Regulator
ADI