ADP1873ARMZ-0.3-R7 [ADI]

Synchronous Current-Mode Buck Controller with Constant On-time, 0.6 V Reference Voltage, and Power Saving Mode;
ADP1873ARMZ-0.3-R7
型号: ADP1873ARMZ-0.3-R7
厂家: ADI    ADI
描述:

Synchronous Current-Mode Buck Controller with Constant On-time, 0.6 V Reference Voltage, and Power Saving Mode

开关 光电二极管 输出元件
文件: 总40页 (文件大小:1708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Synchronous Current-Mode with  
Constant On-Time, PWM Buck Controller  
Data Sheet  
ADP1872/ADP1873  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
V
= 2.75V TO 20V  
IN  
Power input voltage as low as 2.75 V to 20 V  
Bias supply voltage range: 2.75 V to 5.5 V  
Minimum output voltage: 0.6 V  
0.6 V reference voltage with 1.0% accuracy  
Supports all N-channel MOSFET power stages  
Available in 300 kHz, 600 KHz, and 1.0 MHz options  
No current-sense resistor required  
Power saving mode (PSM) for light loads (ADP1873 only)  
Resistor-programmable current-sense gain  
Thermal overload protection  
VIN  
C
C
ADP1872/  
ADP1873  
C
IN  
C
C2  
R
C
COMP/EN  
BST  
DRVH  
SW  
C
R
Q1  
BST  
TOP  
L
V
V
+
FB  
OUT  
OUT  
R
BOT  
C
GND  
VDD  
OUT  
Q2  
C
VDD2  
DRVL  
V
= 2.75V  
TO 5.5V  
DD  
PGND  
R
LOAD  
5A  
RES  
C
VDD  
Short-circuit protection  
Figure 1.  
Precision enable input  
Integrated bootstrap diode for high-side drive  
140 µA shutdown supply current  
Starts into a precharged load  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
V
= 5.5V, V = 5.5V (PSM)  
IN  
V
= 5.5V, V = 5.5V  
IN  
DD  
DD  
Small, 10-lead MSOP package  
V
= 5.5V, V = 13.0V (PSM)  
IN  
DD  
APPLICATIONS  
Telecom and networking systems  
Mid to high end servers  
Set-top boxes  
V
= 5.5V, V = 16.5V (PSM)  
IN  
DD  
T
= 25°C  
A
V
= 1.8V  
OUT  
= 300kHz  
DSP core power supplies  
f
SW  
WURTH INDUCTOR:  
744325120, L = 1.2µH, DCR = 1.8mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
Figure 2. ADP1872 Efficiency vs. Load Current (VOUT = 1.8 V, 300 kHz)  
GENERAL DESCRIPTION  
The ADP1872/ADP1873 are versatile current-mode, synchronous  
step-down controllers that provide superior transient response,  
optimal stability, and current limit protection by using a constant  
on-time, pseudo-fixed frequency with a programmable current-  
sense gain, current-control scheme. In addition, these devices offer  
optimum performance at low duty cycles by using valley current-  
mode control architecture. This allows the ADP1872/ADP1873  
to drive all N-channel power stages to regulate output voltages  
as low as 0.6 V.  
Available in three frequency options (300 kHz, 600 kHz, and  
1.0 MHz, plus the PSM option), the ADP1872/ADP1873 are  
well suited for a wide range of applications. These ICs not only  
operate from a 2.75 V to 5.5 V bias supply, but can also accept a  
power input as high as 20 V.  
In addition, an internally fixed, soft start period is included to limit  
input in-rush current from the input supply during startup and  
to provide reverse current protection during soft start for a pre-  
charged output. The low-side current-sense, current-gain scheme  
and integration of a boost diode, along with the PSM/forced pulse-  
width modulation (PWM) option, reduce the external part count  
and improve efficiency.  
The ADP1873 is the power saving mode (PSM) version of the  
device and is capable of pulse skipping to maintain output  
regulation while achieving improved system efficiency at light  
loads (see the Power Saving Mode (PSM) Version (ADP1873)  
section for more information).  
The ADP1872/ADP1873 operate over the −40°C to +125°C  
junction temperature range and are available in a 10-lead MSOP.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2009–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP1872/ADP1873  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timer Operation ........................................................................ 21  
Pseudo-Fixed Frequency........................................................... 22  
Applications Information.............................................................. 23  
Feedback Resistor Divider ........................................................ 23  
Inductor Selection...................................................................... 23  
Output Ripple Voltage (ΔVRR) .................................................. 23  
Output Capacitor Selection....................................................... 23  
Compensation Network ............................................................ 24  
Efficiency Consideration........................................................... 25  
Input Capacitor Selection.......................................................... 26  
Thermal Considerations............................................................ 27  
Design Example.......................................................................... 27  
External Component Recommendations.................................... 30  
Layout Considerations................................................................... 32  
IC Section (Left Side of Evaluation Board)............................. 37  
Power Section ............................................................................. 37  
Differential Sensing.................................................................... 37  
Typical Application Circuits ......................................................... 38  
Dual-Input, 300 kHz High Current Application Circuit ...... 38  
Single-Input, 600 kHz Application Circuit............................. 38  
Dual-Input, 300 kHz High Current Application Circuit ...... 39  
Outline Dimensions....................................................................... 40  
Ordering Guide .......................................................................... 40  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Boundary Condition.................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
ADP1872/ADP1873 Block Digram.............................................. 17  
Theory of Operation ...................................................................... 18  
Startup.......................................................................................... 18  
Soft Start ...................................................................................... 18  
Precision Enable Circuitry ........................................................ 18  
Undervoltage Lockout ............................................................... 18  
Thermal Shutdown..................................................................... 18  
Programming Resistor (RES) Detect Circuit.......................... 19  
Valley Current-Limit Setting .................................................... 19  
Hiccup Mode During Short Circuit......................................... 20  
Synchronous Rectifier................................................................ 21  
Power Saving Mode (PSM) Version (ADP1873).................... 21  
REVISION HISTORY  
7/12—Rev. A to Rev. B  
Changes to Table 9.......................................................................... 31  
Changes to Figure 82...................................................................... 32  
Changes to Figure 83...................................................................... 33  
Changes to Figure 84...................................................................... 34  
Changes to Figure 85...................................................................... 35  
Changes to Figure 86...................................................................... 36  
Changes to Differential Sensing Section and Figure 88............ 37  
Changes to Figure 89 and Figure 90............................................. 38  
Changes to Figure 91...................................................................... 39  
Updated Outline Dimensions....................................................... 40  
Changed RON = 15 mΩ/100 kꢀ Valley Current Level Value from  
7.5 to 3.87; Table 6 .......................................................................... 20  
Changes to Ordering Guide .......................................................... 40  
3/10—Rev. 0 to Rev. A  
Changes to Figure 1.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Figure 59 Caption and Figure 60 Caption .............. 16  
Changes to Figure 64...................................................................... 17  
Changes to Timer Operation Section .......................................... 22  
Changes to Table 7.......................................................................... 23  
Changes to Inductor Section......................................................... 28  
10/09—Revision 0: Initial Version  
Rev. B | Page 2 of 40  
 
Data Sheet  
ADP1872/ADP1873  
SPECIFICATIONS  
All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). VDD = 5 V,  
BST − SW = 5 V, VIN = 13 V. The specifications are valid for TJ = −40°C to +125°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY CHARACTERISTICS  
High Input Voltage Range  
VIN  
ADP1872ARMZ-0.3/ADP1873ARMZ-0.3 (300 kHz)  
ADP1872ARMZ-0.6/ADP1873ARMZ-0.6 (600 kHz)  
ADP1872ARMZ-1.0/ADP1873ARMZ-1.0 (1.0 MHz)  
CIN = 1 µF to PGND, CIN = 0.22 µF to GND  
2.75  
2.75  
3.0  
12  
12  
12  
20  
20  
20  
V
V
V
Low Input Voltage Range  
VDD  
ADP1872ARMZ-0.3/ADP1873ARMZ-0.3 (300 kHz)  
ADP1872ARMZ-0.6/ADP1873ARMZ-0.6 (600 kHz)  
ADP1872ARMZ-1.0/ADP1873ARMZ-1.0 (1.0 MHz)  
FB = 1.5 V, no switching  
2.75  
2.75  
3.0  
5
5
5
1.1  
140  
2.65  
190  
5.5  
5.5  
5.5  
V
V
V
mA  
µA  
V
Quiescent Current  
Shutdown Current  
Undervoltage Lockout  
UVLO Hysteresis  
IQ_DD + IQ_BST  
IDD, SD + IBST, SD COMP/EN < 285 mV  
UVLO Rising VDD (See Figure 34 for temperature variation)  
215  
Falling VDD from operational state  
mV  
SOFT START  
Soft Start Period  
See Figure 57  
3.0  
ms  
ERROR AMPLIFER  
FB Regulation Voltage  
VFB  
TJ = 25°C  
600  
mV  
TJ = −40°C to +85°C  
TJ = −40°C to +125°C  
595.5 600  
594.2 600  
605.4 mV  
606.5 mV  
Transconductance  
FB Input Leakage Current  
CURRENT-SENSE AMPLIFIER GAIN  
Programming Resistor (RES)  
Value from DRVL to PGND  
GM  
IFB, LEAK  
300  
515  
1
730  
50  
µs  
nA  
FB = 0.6 V, COMP/EN = released  
RES = 47 kΩ 1%  
2.7  
3
3.3  
V/V  
RES = 22 kΩ 1%  
RES = none  
RES = 100 kΩ 1%  
5.5  
11  
22  
6
12  
24  
6.5  
13  
26  
V/V  
V/V  
V/V  
SWITCHING FREQUENCY  
Typical values measured at 50% time points with  
0 nF at DRVH and DRVL; maximum values are  
guaranteed by bench evaluation1  
ADP1872ARMZ-0.3/  
300  
kHz  
ADP1873ARMZ-0.3 (300 kHz)  
On-Time  
Minimum On-Time  
Minimum Off-Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V  
84% duty cycle (maximum)  
1120 1200 1280 ns  
145  
320  
600  
190  
385  
ns  
ns  
kHz  
ADP1872ARMZ-0.6/  
ADP1873ARMZ-0.6 (600 kHz)  
On-Time  
Minimum On-Time  
Minimum Off-Time  
ADP1872ARMZ-1.0/  
ADP1873ARMZ-1.0 (1.0 MHz)  
On-Time  
Minimum On-Time  
Minimum Off-Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V, VOUT = 0.8 V  
65% duty cycle (maximum)  
500  
285  
520  
82  
320  
1.0  
580  
110  
385  
ns  
ns  
ns  
MHz  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V  
45% duty cycle (maximum)  
312  
60  
320  
340  
85  
385  
ns  
ns  
ns  
Rev. B | Page 3 of 40  
 
ADP1872/ADP1873  
Data Sheet  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT DRIVER CHARACTERISTICS  
High-Side Driver  
Output Source Resistance  
Output Sink Resistance  
Rise Time2  
ISOURCE = 1.5 A, 100 ns, positive pulse (0 V to 5 V)  
ISINK = 1.5 A, 100 ns, negative pulse (5 V to 0 V)  
BST − SW = 4.4 V, CIN = 4.3 nF (see Figure 59)  
BST − SW = 4.4 V, CIN = 4.3 nF (see Figure 60)  
2
3.5  
2
Ω
Ω
ns  
ns  
0.8  
25  
11  
tr, DRVH  
tf, DRVH  
Fall Time2  
Low-Side Driver  
Output Source Resistance  
Output Sink Resistance  
Rise Time2  
ISOURCE = 1.5 A, 100 ns, positive pulse (0 V to 5 V)  
ISINK = 1.5 A, 100 ns, negative pulse (5 V to 0 V)  
VDD = 5.0 V, CIN = 4.3 nF (see Figure 60)  
VDD = 5.0 V, CIN = 4.3 nF (see Figure 59)  
1.7  
0.75  
18  
3
2
Ω
Ω
ns  
ns  
tr, DRVL  
tf, DRVL  
Fall Time2  
16  
Propagation Delays  
DRVL Fall to DRVH Rise2  
DRVH Fall to DRVL Rise2  
SW Leakage Current  
Integrated Rectifier  
Channel Impedance  
PRECISION ENABLE THRESHOLD  
Logic High Level  
ttpdh, DRVH  
ttpdh, DRVL  
ISW, LEAK  
BST − SW = 4.4 V (see Figure 59)  
BST − SW = 4.4 V (see Figure 60)  
BST = 25 V, SW = 20 V, VDD = 5.5 V  
22  
24  
ns  
ns  
µA  
110  
330  
ISINK = 10 mA  
22  
Ω
VIN = 2.9 V to 20 V, VDD = 2.75 V to 5.5 V  
VIN = 2.9 V to 20 V, VDD = 2.75 V to 5.5 V  
235  
285  
35  
mV  
mV  
Enable Hysteresis  
COMP VOLTAGE  
COMP Clamp Low Voltage  
VCOMP (LOW)  
From disable state, release COMP/EN pin to enable  
device (2.75 V ≤ VDD ≤ 5.5 V)  
0.47  
V
COMP Clamp High Voltage  
COMP Zero Current Threshold  
THERMAL SHUTDOWN  
VCOMP (HIGH)  
VCOMP_ZCT  
TTMSD  
(2.75 V ≤ VDD ≤ 5.5 V)  
(2.75 V ≤ VDD ≤ 5.5 V)  
2.55  
V
V
1.15  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Hiccup Current Limit Timing  
Rising temperature  
155  
15  
6
°C  
°C  
ms  
1 The maximum specified values are with the closed loop measured at 10% to 90% time points (see Figure 59 and Figure 60), CGATE = 4.3 nF and upper- and lower-side  
MOSFETs being Infineon BSC042N03MS G.  
2 Not automatic test equipment (ATE) tested.  
Rev. B | Page 4 of 40  
 
Data Sheet  
ADP1872/ADP1873  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all other voltages are  
referenced to PGND.  
Parameter  
Rating  
VDD to GND  
VIN to PGND  
FB, COMP/EN to GND  
DRVL to PGND  
SW to PGND  
SW to PGND  
BST to SW  
BST to PGND  
DRVH to SW  
PGND to GND  
−0.3 V to +6 V  
THERMAL RESISTANCE  
−0.3 V to +28 V  
−0.3 V to (VDD + 0.3 V)  
−0.3 V to (VDD + 0.3 V)  
−0.3 V to +28 V  
−2 V pulse (20 ns)  
−0.6 V to (VDD + 0.3 V)  
−0.3 V to +28 V  
−0.3 V to VDD  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3. Thermal Resistance  
Package Type  
θJA (10-Lead MSOP)  
2-Layer Board  
θJA  
Unit  
213.1  
171.7  
°C/W  
°C/W  
0.3 V  
4-Layer Board  
Operating Junction Temperature  
Range  
−40°C to +125°C  
BOUNDARY CONDITION  
Storage Temperature Range  
Soldering Conditions  
Maximum Soldering Lead  
Temperature (10 sec)  
−65°C to +150°C  
JEDEC J-STD-020  
300°C  
In determining the values given in Table 2 and Table 3, natural  
convection was used to transfer heat to a 4-layer evaluation board.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 5 of 40  
 
 
 
 
 
 
ADP1872/ADP1873  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VIN  
COMP/EN  
FB  
1
2
3
4
5
10 BST  
9
8
7
6
SW  
ADP1872  
TOP VIEW  
(Not to Scale)  
DRVH  
PGND  
DRVL  
GND  
VDD  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
VIN  
COMP/EN  
FB  
High Input Voltage. Connect VIN to the drain of the upper-side MOSFET.  
Output of the Internal Error Amplifier/IC Enable. When this pin functions as EN, applying 0 V to this pin disables the IC.  
Noninverting Input of the Internal Error Amplifier. This is the node where the feedback resistor is connected.  
Analog Ground Reference Pin of the IC. All sensitive analog components should be connected to this ground  
plane (see the Layout Considerations Section).  
GND  
5
6
VDD  
Bias Voltage Supply for the ADP1872/ADP1873 Controller (Includes the Output Gate Drivers). A bypass capacitor  
of 1 µF directly from this pin to PGND and a 0.1 µF across VDD and GND are recommended.  
Drive Output for the External Lower Side, N-Channel MOSFET. This pin also serves as the current-sense gain  
setting pin (see Figure 68).  
DRVL  
7
8
9
PGND  
DRVH  
SW  
Power GND. Ground for the lower side gate driver and lower side, N-channel MOSFET.  
Drive Output for the External Upper Side, N-Channel MOSFET.  
Switch Node Connection.  
10  
BST  
Bootstrap for the Upper Side MOSFET Gate Drive Circuitry. An internal boot rectifier (diode) is connected  
between VDD and BST. A capacitor from BST to SW is required. An external Schottky diode can also be  
connected between VDD and BST for increased gate drive capability.  
Rev. B | Page 6 of 40  
 
Data Sheet  
ADP1872/ADP1873  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
VDD = 5.5V, VIN = 13V (PSM)  
DD = 5.5V, VIN = 5.5V (PSM)  
VDD = 5.5V, VIN = 13V (PSM)  
VDD = 5.5V, VIN = 5.5V  
V
DD = 5.5V, VIN = 5.5V  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
V
V
V
DD = 5.5V,  
IN = 16.5V (PSM)  
VDD = 3.6V, VIN = 5.5V  
DD = 5.5V, VIN = 13V  
DD = 3.6V, VIN = 13V  
VDD = 5.5V,  
IN = 5.5V  
(PSM)  
V
V
DD = 5.5V,  
IN = 16.5V  
VDD = 3.6V, VIN = 5.5V  
V
V
V
DD = 5.5V, VIN = 13V  
(PSM)  
V
VDD = 5.5V, VIN = 16.5V  
V
DD = 5.5V, VIN = 16.5V  
DD = 3.6V, VIN = 16.5V  
V
WURTH IND: 744355147, L = 0.47µH, DCR: 0.80m  
WURTH IND: 744355147, L = 0.47µH, DCR: 0.80mΩ  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
T
= 25°C  
T
= 25°C  
A
A
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. Efficiency—300 kHz, VOUT = 0.8 V  
Figure 7. Efficiency—600 kHz, VOUT = 0.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
VDD = 5.5V, VIN = 5.5V (PSM)  
V
DD = 5.5V, VIN = 5.5V  
VDD = 5.5V, VIN = 5.5V  
VDD = 5.5V, = VIN = 5.5(PSM)  
VDD = 5.5V, VIN = 16.5V (PSM)  
DD = 5.5V, VIN = 16.5V  
VDD = 5.5V, VIN = 16.5V  
VDD = 5.5V, VIN = 16.5V (PSM)  
V
V
DD = 5.5V, VIN = 13V (PSM)  
DD = 3.6V, VIN = 3.6V  
DD = 5.5V, VIN = 13V  
VDD = 5.5V, VIN = 13V (PSM)  
V
VDD = 3.6V, VIN = 5.5V  
V
VDD = 5.5V, VIN = 13V  
V
DD = 3.6V, VIN = 5.5V  
WURTH IND: 744325120, L = 1.2µH, DCR: 1.8mΩ  
WURTH IND: 744325120, L = 1.2µH, DCR: 1.8mΩ  
INFINEON FETS: BSC042N03MS G (UPPER/LOWER)  
T = 25°C  
A
INFINEON FETS: BSC042N03MS G (UPPER/LOWER)  
= 25°C  
T
A
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 5. Efficiency—300 kHz, VOUT = 1.8 V  
Figure 8. Efficiency—600 kHz, VOUT = 1.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VDD = 5.5V,  
IN = 13V (PSM)  
VDD = 3.6V,VIN = 13V  
VDD = 5.5V, VIN = 16.5V (PSM)  
V
VDD = 5.5V, VIN = 13V  
VDD = 5.5V,  
IN = 16V  
(PSM)  
VDD = 5.5V, VIN = 16.5V (PSM)  
V
VDD = 3.6V, VIN = 16.5V  
VDD = 5.5V, VIN = 16.5V  
V
= 2.7V  
V
= 3.6V  
V
= 5.5V  
DD  
DD  
DD  
13V  
13V  
13V  
IN  
16.5V  
IN  
16.5V  
IN  
16.5V  
IN  
IN  
IN  
WURTH IND: 7443551200, L = 2µH, DCR: 2.6mΩ  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
= 25°C  
WURTH IND: 7443551200, L = 2µH, DCR: 2.6mΩ  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
T = 25°C  
A
T
A
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 6. Efficiency—300 kHz, VOUT = 7 V  
Figure 9. Efficiency—600 kHz, VOUT = 5 V  
Rev. B | Page 7 of 40  
 
ADP1872/ADP1873  
Data Sheet  
100  
0.8030  
0.8025  
0.8020  
0.8015  
0.8010  
0.8005  
0.8000  
0.7995  
0.7990  
0.7985  
0.7980  
0.7975  
0.7970  
0.7965  
0.7960  
VDD = 5.5V, VIN = 13V (PSM)  
95  
VDD = 5.5V, VIN = 5.5V  
V
V
DD = 5.5V,  
IN = 5.5V (PSM)  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VDD = 5.5V,  
V
IN = 16.5V  
(PSM)  
V
DD = 5.5V, VIN = 16.5V  
VDD = 5.5V, VIN = 13V  
V
= 13V  
V
= 16.5V  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
VDD = 3.6V, VIN = 5.5V  
VDD = 3.6V, VIN = 3.6V  
V
= 5.5V  
IN  
WURTH IND: 744303012, L = 0.12µH, DCR: 0.33m  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
+125°C  
+25°C  
–40°C  
T
= 25°C  
A
100  
1k  
10k  
100k  
0
2000  
4000  
6000  
8000 10,000 12,000 14,000 16,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 10. Efficiency—1.0 MHz, VOUT = 0.8 V  
Figure 13. Output Voltage Accuracy—300 kHz, VOUT = 0.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
1.821  
VDD = 5.5V, VIN = 5V (PSM)  
VDD = 5.5V,  
V
IN = 16.5V (PSM)  
1.816  
1.811  
1.806  
1.801  
1.796  
1.791  
1.786  
V
V
DD = 5.5V,  
IN = 5V  
VDD = 5.5V,  
IN = 13V  
(PSM)  
VDD = 5.5V, VIN = 16.5V  
V
VDD = 3.6V, VIN = 13V  
DD = 3.6V, VIN = 16.5V  
V
VDD = 5.5V, VIN = 13V  
V
= 5.5V  
+125°C  
+25°C  
–40°C  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
IN  
IN  
IN  
+125°C  
+25°C  
–40°C  
WURTH IND: 744303022, L = 0.22µH, DCR: 0.33mΩ  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
= 25°C  
T
A
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000  
LOAD CURRENT (mA)  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
Figure 11. Efficiency—1.0 MHz, VOUT = 1.8 V  
Figure 14. Output Voltage Accuracy—300 kHz, VOUT = 1.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
7.000  
6.995  
6.990  
6.985  
6.980  
6.975  
6.970  
6.965  
6.960  
6.955  
VDD = 5.5V, VIN = 5V (PSM) VDD = 5.5V, VIN = 16.5V (PSM)  
V
V
= 3.6V, V = 13V  
IN  
= 3.6V, V = 16.5V  
IN  
DD  
DD  
VDD = 5V,  
IN = 13V  
V
V
DD = 5V, VIN = 16.5V  
WURTH IND: 744325072, L = 0.72µH, DCR: 1.65m  
INFINEON FETs: BSC042N03MS G (UPPER/LOWER)  
= 25°C  
+125°C  
+25°C  
–40°C  
V
V
= 5.5V, V = 13V  
IN  
= 5.5V, V = 16.5V  
IN  
DD  
DD  
T
A
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
100  
1k  
LOAD CURRENT (mA)  
10k  
Figure 12. Efficiency—1.0 MHz, VOUT = 4 V  
Figure 15. Output Voltage Accuracy—300 kHz, VOUT = 7 V  
Rev. B | Page 8 of 40  
 
Data Sheet  
ADP1872/ADP1873  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
1.793  
1.792  
1.791  
1.790  
1.789  
1.810  
1.809  
1.808  
1.807  
1.806  
1.805  
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
1.797  
V
= 5.5V  
+125°C  
+25°C  
–40°C  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
IN  
V
= 5.5V  
V
= 13V  
V
= 16.5V  
IN  
IN  
IN  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000  
LOAD CURRENT (mA)  
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000  
LOAD CURRENT (mA)  
Figure 16. Output Voltage Accuracy—600 kHz, VOUT = 1.8 V  
Figure 19. Output Voltage Accuracy—1.0 MHz, VOUT = 1.8 V  
5.044  
4.050  
4.045  
4.040  
4.035  
4.030  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
3.995  
3.990  
3.985  
3.980  
3.975  
3.970  
5.042  
5.040  
5.038  
5.036  
5.034  
5.032  
5.030  
5.028  
5.026  
5.024  
5.022  
5.020  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
+125°C  
+25°C  
–40°C  
V
V
= 5.5V, V = 13V  
IN  
DD  
DD  
= 5.5V, V = 16.5V  
IN  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000  
LOAD CURRENT (mA)  
Figure 17. Output Voltage Accuracy—600 kHz, VOUT = 5 V  
Figure 20. Output Voltage Accuracy—1.0 MHz, VOUT = 4 V  
0.807  
0.806  
0.805  
0.804  
0.803  
0.802  
0.801  
0.800  
0.799  
0.798  
0.6030  
V
= 5.5V  
+125°C  
+25°C  
–40°C  
IN  
0.6025  
0.6020  
0.6015  
0.6010  
0.6005  
0.6000  
0.5995  
0.5990  
0.5985  
0.5980  
0.5975  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
IN  
IN  
V
V
V
= 2.7V, V = 2.7V, 3.6V  
IN  
= 3.6V, V = 3.6V TO 16.5V  
IN  
= 5.5V, V = 5.5V, 13V, 16.5V  
IN  
DD  
DD  
DD  
+125°C  
+25°C  
–40°C  
0
2000  
4000  
6000  
8000 10,000 12,000 14,000 16,000  
–40.0  
–7.5  
25.0  
57.5  
90.0  
122.5  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 18. Output Voltage Accuracy—1 MHz, VOUT = 0.8 V  
Figure 21. Feedback Voltage vs. Temperature  
Rev. B | Page 9 of 40  
ADP1872/ADP1873  
Data Sheet  
335  
340  
325  
310  
295  
280  
265  
250  
235  
220  
205  
190  
V
V
= 5.5V  
= 3.6V  
+125°C  
+25°C  
–40°C  
NO LOAD  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
DD  
DD  
IN  
IN  
IN  
325  
315  
305  
295  
285  
275  
265  
255  
245  
235  
225  
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2  
0
2000  
4000  
6000  
8000 10,000 12,000 14,000 16,000  
V
(V)  
LOAD CURRENT (mA)  
IN  
Figure 25. Frequency vs. Load Current, 300 kHz, VOUT = 0.8 V  
Figure 22. Switching Frequency vs. High Input Voltage,  
300 kHz, ±±0% of ±2 V  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
650  
600  
550  
500  
450  
400  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
V
V
= 5.5V  
= 3.6V  
+125°C  
+25°C  
–40°C  
NO LOAD  
IN  
IN  
IN  
DD  
DD  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000  
LOAD CURRENT (mA)  
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2  
V
(V)  
IN  
Figure 26. Frequency vs. Load Current, 300 kHz, VOUT = ±.8 V  
Figure 23. Switching Frequency vs. High Input Voltage,  
600 kHz, VOUT = ±.8 V, ±±0% of ±2 V  
358  
354  
350  
346  
342  
338  
334  
330  
326  
322  
318  
314  
310  
306  
302  
298  
294  
290  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
V
V
= 5.5V  
= 3.6V  
+125°C  
+25°C  
–40°C  
NO LOAD  
IN  
IN  
DD  
DD  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600  
LOAD CURRENT (mA)  
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2  
V
(V)  
IN  
Figure 24. Switching Frequency vs. High Input Voltage,  
±.0 MHz, ± ±0% of ±2 V  
Figure 27. Frequency vs. Load Current, 300 kHz, VOUT = 7 V  
Rev. B | Page 10 of 40  
 
Data Sheet  
ADP1872/ADP1873  
700  
1300  
1125  
1150  
1075  
1000  
925  
V
V
= 5.5V  
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
IN  
IN  
IN  
IN  
670  
640  
V
610  
580  
550  
520  
490  
460  
430  
400  
370  
340  
310  
280  
250  
220  
190  
850  
775  
700  
625  
550  
475  
400  
0
2000  
4000  
6000  
8000 10,000 12,000 14,000 16,000  
0
2000  
4000  
6000  
8000 10,000 12,000 14,000 16,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 28. Frequency vs. Load Current, 600 kHz, VOUT = 0.8 V  
Figure 31. Frequency vs. Load Current, VOUT = 1.0 MHz, 0.8 V  
815  
795  
775  
755  
735  
715  
695  
675  
655  
635  
615  
595  
575  
555  
535  
515  
495  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
IN  
IN  
IN  
1450  
1375  
1300  
1225  
1150  
1075  
1000  
925  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
IN  
IN  
IN  
MIN-OFF TIME  
ENCROACHMENT  
850  
775  
700  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
625  
550  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000  
LOAD CURRENT (mA)  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000  
LOAD CURRENT (mA)  
Figure 32. Frequency vs. Load Current, 1.0 MHz, VOUT = 1.8 V  
Figure 29. Frequency vs. Load Current, 600 kHz, VOUT = 1.8 V  
1450  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
705  
698  
691  
684  
677  
670  
663  
656  
649  
642  
635  
628  
621  
614  
607  
600  
IN  
IN  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600  
LOAD CURRENT (mA)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000  
LOAD CURRENT (mA)  
Figure 30. Frequency vs. Load Current, 600 kHz, VOUT =5 V  
Figure 33. Frequency vs. Load Current, 1.0 MHz, VOUT = 4 V  
Rev. B | Page 11 of 40  
 
ADP1872/ADP1873  
Data Sheet  
2.658  
2.657  
2.656  
2.655  
2.654  
2.653  
2.652  
2.651  
2.650  
2.649  
680  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
DD  
DD  
DD  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 34. UVLO vs. Temperature  
Figure 37. Minimum Off-Time vs. Temperature  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
680  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
DD  
DD  
DD  
300  
400  
500  
600  
700  
800  
900  
1000  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
FREQUENCY (kHz)  
V
DD  
Figure 35. Maximum Duty Cycle vs. Frequency  
Figure 38. Minimum Off-Time vs. VDD (Low Input Voltage)  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
V
V
= 3.6V  
= 5.5V  
+125°C  
+25°C  
–40°C  
DD  
DD  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
+125°C  
+25°C  
–40°C  
DD  
DD  
DD  
3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 13.2 14.4 15.6  
300  
400  
500  
600  
700  
800  
900  
1000  
V
(V)  
IN  
FREQUENCY (kHz)  
Figure 36. Maximum Duty Cycle vs. High Voltage Input (VIN)  
Figure 39. Internal Rectifier Drop vs. Frequency  
Rev. B | Page 12 of 40  
 
Data Sheet  
ADP1872/ADP1873  
1280  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
1MHz  
300kHz  
T
= 25°C  
IN  
IN  
IN  
A
1200  
1120  
1040  
960  
880  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
OUTPUT VOLTAGE  
1
2
INDUCTOR CURRENT  
SW NODE  
3
4
LOW SIDE  
B
CH1 50mV  
CH3 10V  
CH2 5A M400ns  
35.8%  
A
CH2  
3.90A  
W
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
B
T
CH4 5V  
W
V
(V)  
DD  
Figure 43. Power Saving Mode (PSM) Operational Waveform, 100 mA  
Figure 40. Internal Boost Rectifier Drop vs. VDD (Low Input Voltage)  
over VIN Variation  
720  
300kHz  
1MHz  
+125°C  
+25°C  
–40°C  
OUTPUT VOLTAGE  
640  
560  
480  
400  
320  
240  
160  
80  
1
INDUCTOR CURRENT  
2
SW NODE  
3
LOW SIDE  
4
B
CH1 50mV  
CH3 10V  
CH2 5A M4.0µs  
35.8%  
A
CH2  
3.90A  
W
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
B
T
CH4 5V  
W
V
(V)  
DD  
Figure 41. Internal Boost Rectifier Drop vs. VDD  
Figure 44. PSM Waveform at Light Load, 500 mA  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
OUTPUT VOLTAGE  
300kHz  
1MHz  
+125°C  
+25°C  
–40°C  
4
INDUCTOR CURRENT  
1
3
SW NODE  
CH1 5A  
CH3 10V  
M400ns  
30.6%  
A
CH3  
2.20V  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
B
T
CH4 100mV  
W
V
DD  
Figure 42. Lower Side MOSFET Body Conduction Time vs. VDD (Low Input Voltage)  
Figure 45. CCM Operation at Heavy Load, 18 A  
(See Figure 91 for Application Circuit)  
Rev. B | Page 13 of 40  
ADP1872/ADP1873  
Data Sheet  
OUTPUT VOLTAGE  
2
4
OUTPUT VOLTAGE  
20A STEP  
LOW SIDE  
20A STEP  
1
3
1
2
SW NODE  
SW NODE  
LOW SIDE  
A CH1 3.40A  
4
3
B
CH1 10A  
CH3 20V  
CH2 200mV  
CH4 5V  
M2ms  
CH1 10A  
CH3 20V  
CH2 5V  
CH4 200mV  
M2ms  
15.6%  
A CH1  
6.20A  
W
B
T
75.6%  
T
W
Figure 46. Load Transient Step—PSM Enabled, 20 A  
(See Figure 91 Application Circuit)  
Figure 49. Load Transient Step—Forced PWM at Light Load, 20 A  
(See Figure 91 Application Circuit)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
4
2
20A POSITIVE STEP  
20A POSITIVE STEP  
SW NODE  
1
2
3
LOW SIDE  
1
3
SW NODE  
LOW SIDE  
4
B
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M20µs  
A CH1  
3.40A  
CH1 10A CH2 5V  
M20µs  
43.8%  
A CH1  
6.20A  
W
B
T
30.6%  
CH3 20V  
CH4 200mV  
T
W
Figure 50. Positive Step During Heavy Load Transient Behavior—Forced PWM  
at Light Load, 20 A, VOUT = 1.8 V (See Figure 91 Application Circuit)  
Figure 47. Positive Step During Heavy Load Transient Behavior—PSM Enabled,  
20 A, VOUT = 1.8 V (See Figure 91 Application Circuit)  
OUTPUT VOLTAGE  
2
2
OUTPUT VOLTAGE  
20A NEGATIVE STEP  
20A NEGATIVE STEP  
1
1
SW NODE  
SW NODE  
3
3
LOW  
SIDE  
LOW SIDE  
4
4
B
B
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M10µs  
A CH1  
5.60A  
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M20µs  
A CH1  
3.40A  
W
W
T
23.8%  
T
48.2%  
Figure 48. Negative Step During Heavy Load Transient Behavior—PSM Enabled,  
20 A (See Figure 91 Application Circuit)  
Figure 51. Negative Step During Heavy Load Transient Behavior—Forced PWM  
at Light Load, 20 A (See Figure 91 Application Circuit)  
Rev. B | Page 14 of 40  
Data Sheet  
ADP1872/ADP1873  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
1
2
4
1
INDUCTOR CURRENT  
INDUCTOR CURRENT  
LOW SIDE  
LOW SIDE  
SW NODE  
2
4
SW NODE  
3
3
B
B
W
CH1 2V  
CH3 10V  
CH2 5A  
CH4 5V  
M4ms  
49.4%  
A CH1  
920mV  
CH1 2V  
CH3 10V  
CH2 5A  
CH4 5V  
M4ms  
41.6%  
A CH1  
720mV  
W
T
T
Figure 52. Output Short-Circuit Behavior Leading to Hiccup Mode  
Figure 55. Power-Down Waveform During Heavy Load  
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
1
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
2
SW NODE  
SW NODE  
3
3
4
LOW SIDE  
LOW SIDE  
4
B
B
W
CH1 5V  
CH3 10V  
CH2 10A  
CH4 5V  
M10µs  
36.2%  
A CH2  
8.20A  
CH1 50mV  
CH2 5A  
CH4 5V  
M2µs  
35.8%  
A CH2  
3.90A  
W
B
T
CH3 10V  
T
W
Figure 53. Magnified Waveform During Hiccup Mode  
Figure 56. Output Voltage Ripple Waveform During PSM Operation  
at Light Load, 2 A  
OUTPUT VOLTAGE  
1
OUTPUT VOLTAGE  
1
INDUCTOR CURRENT  
LOW SIDE  
4
2
4
LOW SIDE  
SW NODE  
3
INDUCTOR CURRENT  
2
SW NODE  
B
3
B
CH1 2V  
CH2 5A  
CH4 5V  
M2ms  
32.8%  
A CH1  
720mV  
CH1 1V  
CH2 5A  
M1ms  
63.2%  
A CH1  
1.56V  
W
W
B
T
CH3 10V  
T
CH3 10V  
CH4 2V  
W
Figure 54. Start-Up Behavior at Heavy Load, 18 A, 300 kHz  
(See Figure 91 Application Circuit)  
Figure 57. Soft Start and RES Detect Waveform  
Rev. B | Page 15 of 40  
 
ADP1872/ADP1873  
Data Sheet  
V
V
V
= 5.5V  
= 3.6V  
= 2.7V  
DD  
DD  
DD  
T
= 25°C  
A
LOW SIDE  
570  
550  
530  
510  
490  
470  
450  
430  
4
HIGH SIDE  
SW NODE  
3
M
HS MINUS  
SW  
CH2 5V  
CH4 2V  
M40ns  
29.0%  
A
CH2  
4.20V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CH3 5V  
MATH 2V 40ns  
T
TEMPERATURE (°C)  
Figure 61. Transconductance (GM) vs. Temperature  
Figure 58. Output Drivers and SW Node Waveforms  
680  
630  
580  
530  
480  
430  
380  
330  
T
= 25°C  
+125°C  
+25°C  
–40°C  
A
LOW SIDE  
16ns (t , DRVL)  
f
4
22ns (  
t
)
pdh, DRVH  
HIGH SIDE  
25ns (  
t
)
, DRVH  
r
SW NODE  
3
HS MINUS  
SW  
M
CH2 5V  
CH4 2V  
M40ns  
29.0%  
A
CH2  
4.20V  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
(V)  
4.5  
4.8  
5.1  
5.4  
CH3 5V  
MATH 2V 40ns  
T
V
DD  
Figure 59. Upper Side Driver Rising and Lower Side Falling Edge Waveforms  
(CGATE = 4.3 nF (Upper/Lower Side MOSFET),  
Figure 62. Transconductance (GM) vs. VDD  
QTOTAL = 27 nC (VGS = 4.4 V (Q1), VGS = 5 V (Q3))  
1.30  
18ns (  
t
)
, DRVL  
LOW SIDE  
r
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
+125°C  
+25°C  
–40°C  
4
HIGH SIDE  
24ns (  
t
)
pdh, DRVL  
HS MINUS  
SW  
11ns (t , DRVH  
f
)
SW NODE  
3
M
T
= 25°C  
A
CH2 5V  
CH4 2V  
M20ns  
T 39.2%  
A
CH2  
4.20V  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
CH3 5V  
MATH 2V 20ns  
V
DD  
Figure 63. Quiescent Current vs. VDD (VIN = 13 V)  
Figure 60. Upper Side Driver Falling and Lower Side Rising Edge Waveforms  
(CGATE = 4.3 nF (Upper/Lower Side MOSFET),  
QTOTAL = 27 nC (VGS = 4.4 V (Q1), VGS = 5 V (Q3))  
Rev. B | Page 16 of 40  
 
 
Data Sheet  
ADP1872/ADP1873  
ADP1872/ADP1873 BLOCK DIGRAM  
ADP1872/  
ADP1873  
PRECISION ENABLE  
BLOCK  
TO ENABLE  
ALL BLOCKS  
COMP/EN  
VDD  
tON  
VIN  
BIAS  
BLOCK  
FILTER  
V
V
DD  
DD  
BST  
REF_ZERO  
I
SS  
DRVH  
SW  
PFM  
SS  
COMP  
STATE  
MACHINE  
DRIVERS  
C
SS  
SS_REF  
ERROR  
AMP  
DRVL  
FB  
PGND  
0.6V  
PWM  
I
REV  
COMP  
V
REG  
800kΩ  
CS  
AMP  
LOWER  
COMP  
CLAMP  
CS GAIN  
PROGRAMMING  
ADC  
REF_ZERO  
CS GAIN SET  
GND  
Figure 64. ADP1872/ADP1873 Block Diagram  
Rev. B | Page 17 of 40  
 
ADP1872/ADP1873  
Data Sheet  
THEORY OF OPERATION  
ADP1872/ADP1873  
The ADP1872/ADP1873 are versatile current-mode, synchronous  
step-down controllers that provide superior transient response,  
optimal stability, and current limit protection by using a constant  
on-time, pseudo-fixed frequency with a programmable current-  
sense gain, current-control scheme. In addition, these devices offer  
optimum performance at low duty cycles by using valley current-  
mode control architecture. This allows the ADP1872/  
ADP1873 to drive all N-channel power stages to regulate output  
voltages as low as 0.6 V.  
FB  
V
DD  
SS  
ERROR  
AMPLIFIER  
0.6V  
COMP/EN  
C
C
PRECISION  
ENABLE  
C
C2  
R
C
TO ENABLE  
ALL BLOCKS  
STARTUP  
The ADP1872/ADP1873 have an input low voltage pin (VDD) for  
biasing and supplying power for the integrated MOSFET drivers. A  
bypass capacitor should be located directly across the VDD (Pin 5)  
and PGND (Pin 7) pins. Included in the power-up sequence is  
the biasing of the current-sense amplifier, the current-sense gain  
circuit (see the Programming Resistor (RES) Detect Circuit  
section), the soft start circuit, and the error amplifier.  
285mV  
Figure 65. Release COMP/EN Pin to Enable the ADP1872/ADP1873  
COMP/EN  
>2.4V  
2.4V  
HICCUP MODE INITIALIZED  
MAXIMUM CURRENT (UPPER CLAMP)  
The current-sense blocks provide valley current information  
(see the Programming Resistor (RES) Detect Circuit section)  
and are a variable of the compensation equation for loop stability  
(see the Compensation Network section). The valley current  
information is extracted by forcing 0.4 V across the DRVL output  
and the PGND pin, which generates a current depending on the  
resistor across DRVL and PGND in a process performed by the  
RES detect circuit. The current through the resistor is used to set  
the current-sense amplifier gain. This process takes approximately  
800 µs, after which the drive signal pulses appear at the DRVL  
and DRVH pins synchronously and the output voltage begins to  
rise in a controlled manner through the soft start sequence.  
1.0V  
ZERO CURRENT  
USABLE RANGE ONLY AFTER SOFT START  
PERIOD IF CONTUNUOUS CONDUCTION  
MODE OF OPERATION IS SELECTED.  
500mV  
LOWER CLAMP  
285mV  
0V  
PRECISION ENABLE THRESHOLD  
35mV HYSTERESIS  
Figure 66. COMP/EN Voltage Range  
UNDERVOLTAGE LOCKOUT  
The rise time of the output voltage is determined by the soft start  
and error amplifier blocks (see the Soft Start section). At the  
beginning of a soft start, the error amplifier charges the external  
compensation capacitor, causing the COMP/EN pin to rise above the  
enable threshold of 285 mV, thus enabling the ADP1872/ADP1873.  
The undervoltage lockout (UVLO) feature prevents the part  
from operating both the upper side and lower side MOSFETs  
at extremely low or undefined input voltage (VDD) ranges.  
Operation at an undefined bias voltage may result in the incorrect  
propagation of signals to the high-side power switches. This, in  
turn, results in invalid output behavior that can cause damage  
to the output devices, ultimately destroying the device tied at  
the output. The UVLO level has been set at 2.65 V (nominal).  
SOFT START  
The ADP1872/ADP1873 have digital soft start circuitry, which  
involves a counter that initiates an incremental increase in current,  
by 1 µA, via a current source on every cycle through a fixed internal  
capacitor. The output tracks the ramping voltage by producing  
PWM output pulses to the upper side MOSFET. The purpose is to  
limit the in-rush current from the high voltage input supply (VIN)  
to the output (VOUT).  
THERMAL SHUTDOWN  
The thermal shutdown is a self-protection feature to prevent the IC  
from damage due to a very high operating junction temperature.  
If the junction temperature of the device exceeds 155°C, the  
part enters the thermal shutdown state. In this state, the device  
shuts off both the upper side and lower side MOSFETs and  
disables the entire controller immediately, thus reducing the  
power consumption of the IC. The part resumes operation after  
the junction temperature of the part cools to less than 140°C.  
PRECISION ENABLE CIRCUITRY  
The ADP1872/ADP1873 employ precision enable circuitry. The  
enable threshold is 285 mV typical with 35 mV of hysteresis.  
The devices are enabled when the COMP/EN pin is released,  
allowing the error amplifier output to rise above the enable  
threshold (see Figure 65). Grounding this pin disables the  
ADP1872/ADP1873, reducing the supply current of the devices  
to approximately 140 µA. For more information, see Figure 66.  
Rev. B | Page 18 of 40  
 
 
 
 
 
 
 
 
Data Sheet  
ADP1872/ADP1873  
PROGRAMMING RESISTOR (RES) DETECT CIRCUIT  
VALLEY CURRENT-LIMIT SETTING  
Upon startup, one of the first blocks to become active is the RES  
detect circuit. This block powers up before soft start begins. It  
forces a 0.4 V reference value at the DRVL output (see Figure 67)  
and is programmed to identify four possible resistor values: 47 kΩ,  
22 kΩ, open, and 100 kΩ.  
The architecture of the ADP1872/ADP1873 is based on valley  
current-mode control. The current limit is determined by three  
components: the RON of the lower side MOSFET, the error amplifier  
output voltage swing (COMP), and the current-sense gain. The  
COMP range is internally fixed at 1.4 V. The current-sense gain  
is programmable via an external resistor at the DRVL pin (see  
the Programming Resistor (RES) Detect Circuit section). The  
The RES detect circuit digitizes the value of the resistor at the  
DRVL pin (Pin 6). An internal ADC outputs a 2-bit digital code  
that is used to program four separate gain configurations in the  
current-sense amplifier (see Figure 68). Each configuration  
corresponds to a current-sense gain (ACS) of 3 V/V, 6 V/V, 12 V/V,  
24 V/V, respectively (see Table 5 and Table 6). This variable is used  
for the valley current-limit setting, which sets up the appropriate  
current-sense gain for a given application and sets the compensation  
necessary to achieve loop stability (see the Valley Current-Limit  
Setting and Compensation Network sections).  
RON of the lower side MOSFET can vary over temperature and  
usually has a positive TC (meaning that it increases with  
temperature); therefore, it is recommended to program the  
current-sense gain resistor based on the rated RON of the  
MOSFET at 125°C.  
Because the ADP1872/ADP1873 are based on valley current  
control, the relationship between ICLIM and ILOAD is  
KI  
2
ICLIM ILOAD 1   
ADP1872  
Q1  
DRVH  
where:  
ICLIM is the desired valley current limit.  
SW  
ILOAD is the current load.  
Q2  
DRVL  
KI is the ratio between the inductor ripple current and the  
desired average load current (see Figure 10). Establishing KI  
helps to determine the inductor value (see the Inductor  
Selection section), but in most cases, KI = 0.33.  
R
RES  
CS GAIN  
PROGRAMMING  
Figure 67. Programming Resistor Location  
SW  
PGND  
CS  
AMP  
I
LOAD  
RIPPLE CURRENT =  
3
LOAD CURRENT  
ADC  
CS GAIN SET  
DRVL  
0.4V  
VALLEY CURRENT LIMIT  
Figure 69. Valley Current Limit to Average Current Relation  
RES  
When the desired valley current limit (ICLIM) has been determined,  
the current-sense gain can be calculated by  
Figure 68. RES Detect Circuit for Current-Sense Gain Programming  
1.4 V  
ICLIM  
Table 5. Current-Sense Gain Programming  
A
CS RON  
Resistor  
ACS (V/V)  
where:  
ACS is the current-sense gain multiplier (see Table 5 and Table 6).  
ON is the channel impedance of the lower side MOSFET.  
47 kΩ  
22 kΩ  
Open  
100 kΩ  
3
6
12  
24  
R
Although the ADP1872/ADP1873 have only four discrete current-  
sense gain settings for a given RON variable, Table 6 and Figure 70  
outline several available options for the valley current setpoint  
based on various RON values.  
Rev. B | Page 19 of 40  
 
 
 
 
 
ADP1872/ADP1873  
Data Sheet  
Table 6. Valley Current Limit Program1  
The valley current limit is programmed as outlined in Table 6  
and Figure 70. The inductor chosen must be rated to handle the  
peak current, which is equal to the valley current from Table 6  
plus the peak-to-peak inductor ripple current (see the Inductor  
Selection section). In addition, the peak current value must be  
used to compute the worst-case power dissipation in the MOSFETs  
(see Figure 71).  
Valley Current Level  
47 kΩ  
22 kΩ  
Open  
100 kΩ  
RON  
(mΩ) ACS = 3 V/V ACS = 6 V/V ACS = 12 V/V ACS = 24 V/V  
1.5  
2
38.9  
29.2  
23.3  
19.5  
16.7  
13  
11.7  
10.6  
5.83  
3.87  
3.25  
2.5  
3
3.5  
4.5  
5
5.5  
10  
15  
18  
49A  
39.0  
33.4  
26.0  
23.4  
21.25  
11.7  
7.75  
6.5  
MAXIMUM DC LOAD  
CURRENT  
39.5A  
I = 65%  
OF 37A  
INDUCTOR  
CURRENT  
COMP  
OUTPUT  
37A  
35A  
23.3  
15.5  
13.0  
I = 45%  
OF 32.25A  
32.25A  
I = 33%  
OF 30A  
31.0  
26.0  
30A  
2.4V  
1 Refer to Figure 70 for more information and a graphical representation.  
VALLEY CURRENT LIMIT  
THRESHOLD (SET FOR 25A)  
39  
37  
35  
COMP  
OUTPUT  
SWING  
RES = 47k  
= 3V/V  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
A
CS  
0A  
1V  
Figure 71. Valley Current-Limit Threshold in Relation to Inductor Ripple Current  
RES = 22kΩ  
= 6V/V  
A
RES = NO RES  
= 12V/V  
CS  
A
CS  
HICCUP MODE DURING SHORT CIRCUIT  
A current-limit violation occurs when the current across the  
source and drain of the lower side MOSFET exceeds the current-  
limit setpoint. When 32 current-limit violations are detected,  
the controller enters idle mode and turns off the MOSFETs for  
6 ms, allowing the converter to cool down. Then, the controller  
re-establishes soft start and begins to cause the output to ramp  
up again (see Figure 72). While the output ramps up, COMP is  
monitored to determine if the violation is still present. If it is still  
present, the idle event occurs again, followed by the full-chip  
power-down sequence. This cycle continues until the violation  
no longer exists. If the violation disappears, the converter is  
allowed to switch normally, maintaining regulation.  
RES = 100kΩ  
A
= 24V/V  
7
5
3
CS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
(m)  
R
ON  
Figure 70. Valley Current-Limit Value vs. RON of the Lower Side MOSFET  
for Each Programming Resistor (RES)  
REPEATED CURRENT LIMIT  
VIOLATION DETECTED  
HS  
A PREDETERMINED NUMBER SOFT START IS  
OF PULSES IS COUNTED TO REINITIALIZED TO  
ALLOW THE CONVERTER MONITOR IF THE  
CLIM  
TO COOL DOWN  
VIOLATION  
STILL EXISTS  
ZERO  
CURRENT  
Figure 72. Idle Mode Entry Sequence Due to Current-Limit Violations  
Rev. B | Page 20 of 40  
 
 
 
 
 
Data Sheet  
ADP1872/ADP1873  
As soon as the forward current through the lower side MOSFET  
decreases to a level where  
SYNCHRONOUS RECTIFIER  
The ADP1872/ADP1873 employ an internal lower side MOSFET  
driver to drive the external upper side and lower side MOSFETs.  
The synchronous rectifier not only improves overall conduction  
efficiency but also ensures proper charging to the bootstrap  
capacitor located at the upper side driver input. This is beneficial  
during startup to provide sufficient drive signal to the external  
upper side MOSFET and attain fast turn-on response, which is  
essential for minimizing switching losses. The integrated upper  
and lower side MOSFET drivers operate in complementary  
fashion with built-in anticross conduction circuitry to prevent  
unwanted shoot-through current that may potentially damage the  
MOSFETs or reduce efficiency as a result of excessive power loss.  
10 mV = IQ2 × RON(Q2)  
the zero-cross comparator (or IREV comparator) emits a signal to  
turn off the lower side MOSFET. From this point, the slope of the  
inductor current ramping down becomes steeper (see Figure 75)  
as the body diode of the lower side MOSFET begins to conduct  
current and continues conducting current until the remaining  
energy stored in the inductor has been depleted.  
ANOTHER tON EDGE IS  
TRIGGERED WHEN V  
OUT  
FALLS BELOW REGULATION  
SW  
tON  
POWER SAVING MODE (PSM) VERSION (ADP1873)  
The power saving mode version of the ADP1872 is the ADP1873.  
The ADP1873 operates in the discontinuous conduction mode  
(DCM) and pulse skips at light load to midload currents. It  
outputs pulses as necessary to maintain output regulation. Unlike  
the continuous conduction mode (CCM), DCM operation  
prevents negative current, thus allowing improved system  
efficiency at light loads. Current in the reverse direction through  
this pathway, however, results in power dissipation and therefore  
a decrease in efficiency.  
HS AND LS  
IN IDLE MODE  
LS  
ZERO-CROSS COMPARATOR  
DETECTS 10mV OFFSET AND  
TURNS OFF LS  
I
LOAD  
0A  
10mV = R  
× I  
LOAD  
ON  
HS  
tON  
Figure 75. 10 mV Offset to Ensure Prevention of Negative Inductor Current  
The system remains in idle mode until the output voltage drops  
below regulation. A PWM pulse is then produced, turning on the  
upper side MOSFET to maintain system regulation. The ADP1873  
does not have an internal clock; therefore, it switches purely as a  
hysteretic controller, as described in this section.  
HS AND LS ARE OFF  
OR IN IDLE MODE  
LS  
tOFF  
TIMER OPERATION  
The ADP1872/ADP1873 employ a constant on-time architecture,  
which provides a variety of benefits, including improved load  
and line transient response when compared with a constant  
(fixed) frequency current-mode control loop of comparable  
loop design. The constant on-time timer, or tON timer, senses  
the high input voltage (VIN) and the output voltage (VOUT) using  
SW waveform information to produce an adjustable one-shot  
PWM pulse that varies the on-time of the upper side MOSFET in  
response to dynamic changes in input voltage, output voltage, and  
load current conditions to maintain regulation. It then generates  
an on-time (tON) pulse that is inversely proportional to VIN.  
AS THE INDUCTOR  
CURRENT APPROACHES  
ZERO CURRENT, THE STATE  
I
LOAD  
0A  
MACHINE TURNS OFF THE  
LOWER SIDE MOSFET.  
Figure 73. Discontinuous Mode of Operation (DCM)  
To minimize the chance of negative inductor current buildup,  
an on-board, zero-cross comparator turns off all upper side  
and lower side switching activities when the inductor current  
approaches the zero current line, causing the system to enter  
idle mode, where the upper side and lower side MOSFETs are  
turned off. To ensure idle mode entry, a 10 mV offset, connected  
in series at the SW node, is implemented (see Figure 74).  
ZERO-CROSS  
VOUT  
tON K   
VIN  
where K is a constant that is trimmed using an RC timer product  
for the 300 kHz, 600 kHz, and 1.0 MHz frequency options.  
SW  
COMPARATOR  
I
Q2  
10mV  
Q2  
LS  
Figure 74. Zero-Cross Comparator with 10 mV of Offset  
Rev. B | Page 21 of 40  
 
 
 
 
 
ADP1872/ADP1873  
Data Sheet  
VDD  
VIN  
To illustrate this feature more clearly, this section describes  
tON  
one such load transient event—a positive load step—in detail.  
During load transient events, the high-side driver output pulse  
width stays relatively consistent from cycle to cycle; however,  
the off-time (DRVL on-time) dynamically adjusts according to  
the instantaneous changes in the external conditions mentioned.  
C
I
SW  
INFORMATION  
When a positive load step occurs, the error amplifier (out of  
phase of the output, VOUT) produces new voltage information  
at its output (COMP). In addition, the current-sense amplifier  
senses new inductor current information during this positive  
load transient event. The error amplifiers output voltage  
reaction is compared to the new inductor current information  
that sets the start of the next switching cycle. Because current  
information is produced from valley current sensing, it is sensed  
at the down ramp of the inductor current, whereas the voltage  
loop information is sensed through the counter action upswing  
of the error amplifiers output (COMP).  
R (TRIMMED)  
Figure 76. Constant On-Time Timer  
The constant on-time (tON) is not strictly constant because it varies  
with VIN and VOUT. However, this variation occurs in such a  
way as to keep the switching frequency virtually independent  
of VIN and VOUT  
.
The tON timer uses a feedforward technique, applied to the constant  
on-time control loop, making it pseudo-fixed frequency to a first  
order. Second-order effects, such as dc losses in the external power  
MOSFETs (see the Efficiency Consideration section), cause some  
variation in frequency vs. load current and line voltage. These  
effects are shown in Figure 22 to Figure 33. The variations in  
frequency are much reduced compared with the variations  
generated when the feedforward technique is not used.  
The result is a convergence of these two signals (see Figure 77),  
which allows an instantaneous increase in switching frequency  
during the positive load transient event. In summary, a positive  
load step causes VOUT to transient down, which causes COMP to  
transient up and therefore shortens the off time. This resulting  
increase in frequency during a positive load transient helps to  
quickly bring VOUT back up in value and within the regulation  
window.  
The feedforward technique establishes the following relationship:  
f
SW = 1/K  
where fSW is the controller switching frequency (300 kHz,  
600 kHz, and 1.0 MHz).  
Similarly, a negative load step causes the off time to lengthen in  
response to VOUT rising. This effectively increases the inductor  
demagnetizing phase, helping to bring VOUT to within regulation.  
In this case, the switching frequency decreases, or experiences a  
foldback, to help facilitate output voltage recovery.  
The tON timer senses VIN and VOUT to minimize frequency variation  
with VIN and VOUT as previously explained. This provides a  
pseudo-fixed frequency, see the Pseudo-Fixed Frequency section  
for additional information. To allow headroom for VIN/VOUT  
sensing, the following two equations must be adhered to. For  
typical applications where VDD is 5 V, these equations are not  
relevant; however, for lower VDD, care may be required.  
Because the ADP1872/ADP1873 has the ability to respond  
rapidly to sudden changes in load demand, the recovery period  
in which the output voltage settles back to its original steady  
state operating point is much quicker than it would be for a  
fixed-frequency equivalent. Therefore, using a pseudo-fixed  
frequency, results in significantly better load transient  
performance than using a fixed frequency.  
V
DD VIN/8 + 1.5  
VDD ≥ VOUT/4  
PSEUDO-FIXED FREQUENCY  
The ADP1872/ADP1873 employ a constant on-time control  
scheme. During steady state operation, the switching frequency  
stays relatively constant, or pseudo-fixed. This is due to the one-  
shot tON timer that produces a high-side PWM pulse with a fixed  
duration, given that external conditions such as input voltage,  
output voltage, and load current are also at steady state. During  
load transients, the frequency momentarily changes for the  
duration of the transient event so that the output comes back  
within regulation quicker than if the frequency were fixed or if  
it were to remain unchanged. After the transient event is complete,  
the frequency returns to a pseudo-fixed value to a first-order.  
LOAD CURRENT  
DEMAND  
CS AMP  
OUTPUT  
ERROR AMP  
OUTPUT  
VALLEY  
TRIP POINTS  
PWM OUTPUT  
fSW  
>fSW  
Figure 77. Load Transient Response Operation  
Rev. B | Page 22 of 40  
 
 
Data Sheet  
ADP1872/ADP1873  
APPLICATIONS INFORMATION  
FEEDBACK RESISTOR DIVIDER  
Table 7. Recommended Inductors  
L
DCR  
ISAT  
Dimensions  
(mm)  
The required resistor divider network can be determine for a  
given VOUT value because the internal band gap reference (VREF  
is fixed at 0.6 V. Selecting values for RT and RB determines the  
minimum output load current of the converter. Therefore, for a  
given value of RB, the RT value can be determined by  
(µH) (mΩ) (A)  
Manufacturer  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Sumida  
Model No.  
744303012  
744303022  
744355147  
744325072  
744355090  
744325120  
7443552100  
744318180  
7443551200  
CEP125U-0R8  
)
0.12  
0.22  
0.47  
0.72  
0.9  
1.2  
1.0  
1.4  
2.0  
0.33  
0.33  
0.8  
1.65  
1.6  
1.8  
3.3  
3.2  
2.6  
55  
30  
50  
35  
28  
25  
20  
24  
22  
27.5  
10.2 × 7  
10.2 × 7  
14.2 × 12.8  
10.5 × 10.2  
13 × 12.8  
10.5 × 10.2  
10.5 × 10.2  
14 × 12.8  
13.2 × 12.8  
(VOUT 0.6 V)  
RT = RB ×  
0.6 V  
INDUCTOR SELECTION  
The inductor value is inversely proportional to the inductor  
ripple current. The peak-to-peak ripple current is given by  
0.8  
ILOAD  
3
OUTPUT RIPPLE VOLTAGE (ΔVRR)  
IL = K I × ILOAD  
The output ripple voltage is the ac component of the dc output  
voltage during steady state. For a ripple error of 1.0%, the output  
capacitor value needed to achieve this tolerance can be determined  
using the following equation. (Note that an accuracy of 1.0% is  
only possible during steady state conditions, not during load  
transients.)  
where KI is typically 0.33.  
The equation for the inductor value is given by  
(VIN VOUT  
IL × fSW  
)
VOUT  
VIN  
L =  
×
ΔVRR = (0.01) × VOUT  
where:  
VIN is the high voltage input.  
OUT is the desired output voltage.  
SW is the controller switching frequency (300 kHz, 600 kHz,  
OUTPUT CAPACITOR SELECTION  
V
f
The primary objective of the output capacitor is to facilitate  
the reduction of the output voltage ripple; however, the output  
capacitor also assists in the output voltage recovery during load  
transient events. For a given load current step, the output voltage  
ripple generated during this step event is inversely proportional  
to the value chosen for the output capacitor. The speed at which  
the output voltage settles during this recovery period depends  
on where the crossover frequency (loop bandwidth) is set. This  
crossover frequency is determined by the output capacitor, the  
equivalent series resistance (ESR) of the capacitor, and the  
compensation network.  
and 1.0 MHz).  
When selecting the inductor, choose an inductor saturation rating  
that is above the peak current level and then calculate the  
inductor current ripple (see the Valley Current-Limit Setting  
section and Figure 78).  
52  
50  
ΔI = 50%  
ΔI = 40%  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
To calculate the small signal voltage ripple (output ripple  
voltage) at the steady state operating point, use the following  
equation:  
ΔI = 33%  
1
COUT = ∆IL ×  
8× fSW  
×
[
VRIPPLE (IL × ESR)  
]
where ESR is the equivalent series resistance of the output  
capacitors.  
6
8
10 12 14 16 18 20 22 24 26 28 30  
VALLEY CURRENT LIMIT (A)  
To calculate the output load step, use the following equation:  
Figure 78. Peak Current vs. Valley Current Threshold for  
33%, 40%, and 50% of Inductor Ripple Current  
ILOAD  
COUT = 2 ×  
fSW ×(VDROOP (ILOAD × ESR))  
where ΔVDROOP is the amount that VOUT is allowed to deviate for  
a given positive load current step (ΔILOAD).  
Rev. B | Page 23 of 40  
 
 
 
 
 
 
 
ADP1872/ADP1873  
Data Sheet  
Ceramic capacitors are known to have low ESR. However, the  
trade-off of using X5R technology is that up to 80% of its capaci-  
tance may be lost due to derating because the voltage applied  
across the capacitor is increased (see Figure 79). Although X7R  
series capacitors can also be used, the available selection is  
limited to only up to 22 µF.  
Error Amplifier Output Impedance (ZCOMP  
)
Assuming CC2 is significantly smaller than CCOMP, CC2 can be  
omitted from the output impedance equation of the error amplifier.  
The transfer function simplifies to  
R
COMP ( fCROSS + fZERO )  
ZCOMP  
=
fCROSS  
20  
10  
and  
X7R (50V)  
0
1
12  
–10  
–20  
–30  
–40  
fCROSS  
=
× fSW  
where fZERO, the zero frequency, is set to be 1/4th of the crossover  
frequency for the ADP1872.  
–50  
Error Amplifier Gain (GM)  
The error amplifier gain (transconductance) is  
GM = 500 µA/V  
X5R (25V)  
–60  
–70  
X5R (16V)  
–80  
10µF TDK 25V, X7R, 1210 C3225X7R1E106M  
22µF MURATA 25V, X7R, 1210 GRM32ER71E226KE15L  
47µF MURATA 16V, X5R, 1210 GRM32ER61C476KE15L  
–90  
Current-Sense Loop Gain (GCS)  
The current-sense loop gain is  
1
–100  
0
5
10  
15  
20  
25  
30  
DC VOLTAGE (V  
)
DC  
Figure 79. Capacitance vs. DC Voltage Characteristics for Ceramic Capacitors  
GCS  
=
(A/V)  
A
CS ×RON  
Electrolytic capacitors satisfy the bulk capacitance requirements  
for most high current applications. Because the ESR of electrolytic  
capacitors is much higher than that of ceramic capacitors, when  
using electrolytic capacitors, several MLCCs should be mounted  
in parallel to reduce the overall series resistance.  
where:  
CS (V/V) is programmable for 3 V/V, 6 V/V, 12 V /V, and 24 V/V  
A
(see the Programming Resistor (RES) Detect Circuit and Valley  
Current-Limit Setting sections).  
RON is the channel impedance of the lower side MOSFET.  
COMPENSATION NETWORK  
Crossover Frequency  
Due to its current-mode architecture, the ADP1872/ADP1873  
require Type II compensation. To determine the component  
values needed for compensation (resistance and capacitance  
values), it is necessary to examine the converters overall loop  
gain (H) at the unity gain frequency (fSW/10) when H = 1 V/V.  
The crossover frequency is the frequency at which the overall  
loop (system) gain is 0 dB (H = 1 V/V). It is recommended for  
current-mode converters, such as the ADP1872, that the user  
set the crossover frequency between 1/10th and 1/15th of the  
switching frequency.  
VOUT  
VREF  
H =1 V/V = GM ×GCS  
×
× ZCOMP × ZFILT  
1
12  
fCROSS  
=
fSW  
Examining each variable at high frequency enables the unity  
gain transfer function to be simplified to provide expressions  
for the RCOMP and CCOMP component values.  
The relationship between CCOMP and fZERO (zero frequency) is  
1
fZERO  
=
2π× RCOMP ×CCOMP  
Output Filter Impedance (ZFILT  
)
The zero frequency is set to 1/4th of the crossover frequency.  
Combining all of the above parameters results in  
Examining the filters transfer function at high frequencies  
simplifies to  
1
fCROSS  
CROSS + fZERO  
fCROSSCOUT VOUT  
ZFILTER  
=
RCOMP  
=
=
×
×
sCOUT  
at the crossover frequency (s = 2πfCROSS).  
f
GMGCS  
VREF  
1
CCOMP  
2× π× RCOMP × fZERO  
Rev. B | Page 24 of 40  
 
 
Data Sheet  
ADP1872/ADP1873  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
EFFICIENCY CONSIDERATION  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
DD  
DD  
DD  
One of the important criteria to consider in constructing a dc-to-dc  
converter is efficiency. By definition, efficiency is the ratio of the  
output power to the input power. For high power applications at  
load currents up to 20 A, the following are important MOSFET  
parameters that aid in the selection process:  
VGS (TH): the MOSFET support voltage applied between the  
gate and the source.  
RDS (ON): the MOSFET on resistance during channel  
conduction.  
+125°C  
+25°C  
–40°C  
QG: the total gate charge  
CN1: the input capacitance of the upper side switch  
CN2: the input capacitance of the lower side switch  
300  
400  
500  
600  
700  
800  
900  
1000  
FREQUENCY (kHz)  
Figure 80. Internal Rectifier Voltage Drop vs. Switching Frequency  
The following are the losses experienced through the external  
component during normal switching operation:  
MOSFET Switching Loss  
The SW node transitions due to the switching activities of the  
upper side and lower side MOSFETs. This causes removal and  
replenishing of charge to and from the gate oxide layer of the  
MOSFET, as well as to and from the parasitic capacitance  
associated with the gate oxide edge overlap and the drain and  
source terminals. The current that enters and exits these charge  
paths presents additional loss during these transition times.  
This can be approximately quantified by using the following  
equation, which represents the time in which charge enters and  
exits these capacitive regions.  
Channel conduction loss (both the MOSFETs)  
MOSFET driver loss  
MOSFET switching loss  
Body diode conduction loss (lower side MOSFET)  
Inductor loss (copper and core loss)  
Channel Conduction Loss  
During normal operation, the bulk of the loss in efficiency is due  
to the power dissipated through MOSFET channel conduction.  
Power loss through the upper side MOSFET is directly proportional  
to the duty cycle (D) for each switching period, and the power  
loss through the lower side MOSFET is directly proportional to  
1 − D for each switching period. The selection of MOSFETs is  
governed by the amount of maximum dc load current that the  
converter is expected to deliver. In particular, the selection of  
the lower side MOSFET is dictated by the maximum load  
current because a typical high current application employs duty  
cycles of less than 50%. Therefore, the lower side MOSFET is in  
the on state for most of the switching period.  
t
SW-TRANS = RGATE × CTOTAL  
where:  
GATE is the gate input resistance of the MOSFET.  
TOTAL is the CGD + CGS of the external MOSFET used.  
R
C
The ratio of this time constant to the period of one switching cycle  
is the multiplying factor to be used in the following expression:  
tSW-TRANS  
PSW(LOSS)  
ILOAD VIN 2  
tSW  
IL2OAD  
N1, N2 (CL) = [D × RN1 (ON) + (1 − D) × RN2 (ON)] ×  
or  
P
P
SW (LOSS) = fSW × RGATE × CTOTAL × ILOAD × VIN × 2  
MOSFET Driver Loss  
Other dissipative elements are the MOSFET drivers. The  
contributing factors are the dc current flowing through the  
driver during operation and the QGATE parameter of the external  
MOSFETs.  
P
DR(LOSS)   
V
DR   
fSW  
C
V
DR IBIAS  
  
V
DD   
fSWClowerFET  
V
DD uppIerBFIEATS   
where:  
C
C
upperFET is the input gate capacitance of the upper-side MOSFET.  
lowerFET is the input gate capacitance of the lower-side MOSFET.  
V
DR is the driver bias voltage (that is, the low input voltage (VDD)  
minus the rectifier drop (see Figure 80)).  
BIAS is the dc current flowing into the upper- and lower-side drivers.  
DD is the bias voltage.  
I
V
Rev. B | Page 25 of 40  
 
 
 
ADP1872/ADP1873  
Data Sheet  
Body Diode Conduction Loss  
INPUT CAPACITOR SELECTION  
The ADP1872/ADP1873 employ anticross conduction circuitry  
that prevents the upper side and lower side MOSFETs from  
conducting current simultaneously. This overlap control is  
beneficial, avoiding large current flow that may lead to  
irreparable damage to the external components of the power  
stage. However, this blanking period comes with the trade-off of  
a diode conduction loss occurring immediately after the  
MOSFETs change states and continuing well into idle mode.  
The amount of loss through the body diode of the lower side  
MOSFET during the antioverlap state is given by  
The goal in selecting an input capacitor is to reduce or to minimize  
input voltage ripple and to reduce the high frequency source  
impedance, which is essential for achieving predictable loop  
stability and transient performance.  
The problem with using bulk capacitors, other than their physical  
geometries, is their large equivalent series resistance (ESR) and  
large equivalent series inductance (ESL). Aluminum electrolytic  
capacitors have such high ESR that they cause undesired input  
voltage ripple magnitudes and are generally not effective at high  
switching frequencies.  
tBODY(LOSS)  
If bulk capacitors are to be used, it is recommended to use multi-  
layered ceramic capacitors (MLCC) in parallel due to their low  
ESR values. This dramatically reduces the input voltage ripple  
amplitude as long as the MLCCs are mounted directly across  
the drain of the upper side MOSFET and the source terminal of  
the lower side MOSFET (see the Layout Considerations section).  
Improper placement and mounting of these MLCCs may cancel  
their effectiveness due to stray inductance and an increase in  
trace impedance.  
PBODY(LOSS)   
ILOAD VF 2  
tSW  
where:  
t
BODY (LOSS) is the body conduction time (refer to Figure 81 for  
dead time periods).  
SW is the period per switching cycle.  
t
VF is the forward drop of the body diode during conduction.  
(Refer to the selected external MOSFET data sheet for more  
information about the VF parameter.)  
80  
VOUT  
VIN VOUT  
+125°C  
+25°C  
–40°C  
1MHz  
300kHz  
ICIN ,RMS ILOAD,MAX  
72  
64  
56  
48  
40  
32  
24  
16  
8
VOUT  
The maximum input voltage ripple and maximum input capacitor  
rms current occur at the end of the duration of 1 − D while the  
upper side MOSFET is in the off state. The input capacitor rms  
current reaches its maximum at time D. When calculating the  
maximum input voltage ripple, account for the ESR of the input  
capacitor as follows:  
V
MAX, RIPPLE = VRIPP + (ILOAD, MAX × ESR)  
where:  
V
RIPP is usually 1% of the minimum voltage input.  
2.7  
3.4  
4.1  
(V)  
4.8  
5.5  
I
LOAD, MAX is the maximum load current.  
V
DD  
ESR is the equivalent series resistance rating of the input  
capacitor used.  
Figure 81. Body Diode Conduction Time vs. Low Voltage Input (VDD  
)
Inductor Loss  
Inserting VMAX, RIPPLE into the charge balance equation to calculate  
the minimum input capacitor requirement gives  
During normal conduction mode, further power loss is caused  
by the conduction of current through the inductor windings,  
which have dc resistance (DCR). Typically, larger sized inductors  
have smaller DCR values.  
ILOAD, MAX  
D(1D)  
CIN,min  
VMAX, RIPPLE  
fSW  
or  
The inductor core loss is a result of the eddy currents generated  
within the core material. These eddy currents are induced by the  
changing flux, which is produced by the current flowing through  
the windings. The amount of inductor core loss depends on the  
core material, the flux swing, the frequency, and the core volume.  
Ferrite inductors have the lowest core losses, whereas powdered iron  
inductors have higher core losses. It is recommended to use shielded  
ferrite core material type inductors with the ADP1872/ADP1873  
for a high current, dc-to-dc switching application to achieve  
minimal loss and negligible electromagnetic interference (EMI).  
ILOAD, MAX  
4 fSWVMAX, RIPPLE  
CIN,min  
where D = 50%.  
2
P
DCR (LOSS) = DCR ×  
+ Core Loss  
ILOAD  
Rev. B | Page 26 of 40  
 
 
Data Sheet  
ADP1872/ADP1873  
For example, if the external MOSFET characteristics are θJA  
(10-lead MSOP) = 171.2°C/W, fSW = 300 kHz, IBIAS = 2 mA,  
THERMAL CONSIDERATIONS  
The ADP1872/ADP1873 are used for dc-to-dc, step down, high  
current applications that have an on-board controller and on-board  
MOSFET drivers. Because applications may require up to 20 A of  
load current delivery and be subjected to high ambient temperature  
surroundings, the selection of external upper side and lower side  
MOSFETs must be associated with careful thermal consideration  
to not exceed the maximum allowable junction temperature  
of 125°C. To avoid permanent or irreparable damage if the  
junction temperature reaches or exceeds 155°C, the part enters  
thermal shutdown, turning off both external MOSFETs, and  
does not re-enable until the junction temperature cools to 140°C  
(see the Thermal Shutdown section).  
CupperFET = 3.3 nF, ClowerFET = 3.3 nF, VDR = 5.12 V, and VDD = 5 . 5 V,  
then the power loss is  
P
DR (LOSS) = [VDR × (fSWCupperFETVDR + IBIAS)] + [VDD ×  
(fSWClowerFETVDD + IBIAS)]  
= [5.12 × (300 × 103 × 3.3 × 10−9 × 5.12 + 0.002)] +  
[5.5 × (300 × 103 ×3.3 × 10−9 × 5.5 + 0.002)]  
= 77.13 mW  
The rise in package temperature is  
TR = θJA × PDR (LOSS)  
= 171.2°C × 77.13 mW  
= 13.2°C  
The maximum junction temperature allowed for the ADP1872/  
ADP1873 ICs is 125°C. This means that the sum of the ambient  
temperature (TA) and the rise in package temperature (TR), which  
is caused by the thermal impedance of the package and the internal  
power dissipation, should not exceed 125°C, as dictated by  
Assuming a maximum ambient temperature environment of 85°C,  
the junction temperature is  
TJ = TR × TA = 13.2°C + 85°C = 98.2°C  
which is below the maximum junction temperature of 125°C.  
DESIGN EXAMPLE  
TJ = TR × TA  
where:  
The ADP1872/ADP1873 are easy to use, requiring only a few  
design criteria. For example, the example outlined in this section  
uses only four design criteria: VOUT = 1.8 V, ILOAD = 15 A (pulsing),  
VIN = 12 V (typical), and fSW = 300 kHz.  
TJ is the maximum junction temperature.  
TR is the rise in package temperature due to the power  
dissipated from within.  
TA is the ambient temperature.  
Input Capacitor  
The rise in package temperature is directly proportional to its  
thermal impedance characteristics. The following equation  
represents this proportionality relationship:  
The maximum input voltage ripple is usually 1% of the  
minimum input voltage (11.8 V × 0.01 = 120 mV).  
VRIPP = 120 mV  
TR = θJA × PDR (LOSS)  
VMAX, RIPPLE = VRIPP − (ILOAD, MAX × ESR)  
where:  
= 120 mV − (15 A × 0.001) = 45 mV  
ILOAD, MAX  
4 fSWVMAX, RIPPLE 4×300×103 ×105 mV  
θ
JA is the thermal resistance of the package from the junction to  
the outside surface of the die, where it meets the surrounding air.  
DR (LOSS) is the overall power dissipated by the IC.  
15 A  
CIN, min  
=
=
P
The bulk of the power dissipated is due to the gate capacitance  
of the external MOSFETs. The power loss equation of the  
MOSFET drivers (see the MOSFET Driver Loss section in the  
Efficiency Consideration section) is  
= 120 µF  
Choose five 22 µF ceramic capacitors. The overall ESR of five  
22 µF ceramic capacitors is less than 1 mΩ.  
IRMS = ILOAD/2 = 7.5 A  
P
DR (LOSS) = [VDR × (fSWCupperFET  
(fSWClowerFET DD + IBIAS)]  
where:  
VDR + IBIAS)] + [VDD ×  
P
CIN = (IRMS)2 × ESR = (7.5A)2 × 1 mΩ = 56.25 mW  
V
Inductor  
Determining inductor ripple current amplitude:  
CupperFET is the input gate capacitance of the upper side MOSFET.  
C
lowerFET is the input gate capacitance of the lower side MOSFET.  
ILOAD  
3
IL ≈  
= 5 A  
I
BIAS is the dc current (2 mA) flowing into the upper side and  
lower side drivers.  
DR is the driver bias voltage (that is, the low input voltage (VDD  
minus the rectifier drop (see Figure 80)).  
DD is the bias voltage  
so calculating for the inductor value  
V
)
(VIN, MAX VOUT  
IL × fSW  
)
VOUT  
VIN, MAX  
L =  
×
V
(13.2 V 1.8 V) 1.8 V  
×
=
5 V ×300×103 13.2 V  
= 1.03 µH  
Rev. B | Page 27 of 40  
 
 
ADP1872/ADP1873  
Data Sheet  
The inductor peak current is approximately  
15 A + (5 A × 0.5) = 17.5 A  
Choose five 270 µF polymer capacitors.  
The rms current through the output capacitor is  
(VIN,MAX VOUT  
L× fSW  
)
Therefore, an appropriate inductor selection is 1.0 µH with  
DCR = 3.3 mΩ (7443552100) from Table 7 with peak current  
handling of 20 A.  
PDCR (LOSS) = DCR× IL2OAD  
= 0.003 × (15 A)2 = 675 mW  
Current Limit Programming  
The valley current is approximately  
15 A − (5 A × 0.5) = 12.5 A  
VOUT  
VIN,MAX  
1
2
1
3
IRMS  
=
×
×
(13.2 V 1.8 V) 1.8 V  
×
1
2
1
3
=
×
= 1.49 A  
1μF×300×103 13.2 V  
The power loss dissipated through the ESR of the output  
capacitor is  
P
COUT = (IRMS)2 × ESR = (1.5 A)2 × 1.4 mΩ = 3.15 mW  
Feedback Resistor Network Setup  
It is recommended to use RB = 15 kΩ. Calculate RT as  
(1.8 V 0.6 V)  
Assuming a lower side MOSFET RON of 4.5 mΩ, choosing 13 A  
as the valley current limit from Table 6 and Figure 70 indicates  
that a programming resistor (RES) of 100 kΩ corresponds to an  
RT =15 kΩ×  
= 30 kΩ  
0.6 V  
Compensation Network  
A
CS of 24 V /V.  
Choose a programmable resistor of RRES = 100 kΩ for a current-  
sense gain of 24 V /V.  
To calculate RCOMP, CCOMP, and CPAR, the transconductance  
parameter and the current-sense gain variable are required. The  
transconductance parameter (GM) is 500 µA/V, and the current-  
sense loop gain is  
Output Capacitor  
Assume a load step of 15 A occurs at the output and no more  
than 5% is allowed for the output to deviate from the steady  
state operating point. The ADP1872s advantage is, because the  
frequency is pseudo-fixed, the converter is able to respond  
quickly because of the immediate, though temporary, increase  
in switching frequency.  
1
1
GCS  
=
=
= 8.33 A/V  
ACSRON 24×0.005  
where ACS and RON are taken from setting up the current limit  
(see the Programming Resistor (RES) Detect Circuit and Valley  
Current-Limit Setting sections).  
ΔVDROOP = 0.05 × 1.8 V = 90 mV  
The crossover frequency is 1/12th of the switching frequency:  
Assuming the overall ESR of the output capacitor ranges from  
5 mΩ to 10 mΩ,  
300 kHz/12 = 25 kHz  
The zero frequency is 1/4th of the crossover frequency:  
25 kHz/4 = 6.25 kHz  
ILOAD  
COUT = 2×  
f
SW ×(VDROOP  
15A  
)
= 2×  
fCROSS  
CROSS + fZERO  
2πfCROSSCOUT VOUT  
300×103 ×(90 mV)  
RCOMP  
=
×
×
f
GMGCS  
VREF  
= 1.11 mF  
25×103  
2×3.141×25×103 ×1.11×103 1.8  
=
×
×
Therefore, an appropriate inductor selection is five 270 µF  
polymer capacitors with a combined ESR of 3.5 mΩ.  
25×103 + 6.25×103  
500×106 ×8.3  
0.6  
= 100 kΩ  
Assuming an overshoot of 45 mV, determine if the output  
capacitor that was calculated previously is adequate:  
1
CCOMP  
=
2πRCOMP fZERO  
(L × I2  
)
LOAD  
COUT  
=
1
(VOUT − ∆VOVSHT )2 −  
1×106 ×(15 A)2  
(1.8 45 mV)2 (1.8)2  
(
VOUT  
)
)
=
2
(
2×3.14×100×103 ×6.25×103  
= 250 pF  
=
= 1.4 mF  
Rev. B | Page 28 of 40  
Data Sheet  
ADP1872/ADP1873  
Loss Calculations  
PSW (LOSS) = fSW × RGATE × CTOTAL × ILOAD × VIN × 2  
= 300 × 103 × 1.5 Ω × 3.3 × 10−9 × 15 A × 12 × 2  
= 534.6 mW  
Duty cycle = 1.8/12 V = 0.15  
RON (N2) = 5.4 mΩ  
PDR (LOSS)  
VDD  
=
[
VDR  
×
(
fSWCupperFETVDR  
IBIAS  
+
IBIAS  
)
]
+
tBODY(LOSS) = 20 ns (body conduction time)  
[
×
(
fSWClowerFETVDD  
+
)
]
VF = 0.84 V (MOSFET forward voltage)  
= (5.12 × (300 × 103 × 3.3 × 10−9 × 5.12 + 0.002)) +  
(5.5 × (300 × 103 ×3.3 ×10−9 ×5.5 + 0.002))  
= 77.13 mW  
CIN = 3.3 nF (MOSFET gate input capacitance)  
Q
N1, N2 = 17 nC (total MOSFET gate charge)  
P
COUT = (IRMS)2 × ESR = (1.5 A)2 × 1.4 mΩ = 3.15 mW  
RGATE = 1.5 Ω (MOSFET gate input resistance)  
= 0.003 × (15 A)2 = 675 mW  
2
× IL2OAD  
PDCR (LOSS) = DCR× ILOAD  
PN1, N2(CL)  
=
[
D × RN1(ON)  
+
(
1D  
)
× RN2(ON)  
]
= (0.15 × 0.0054 + 0.85 × 0.0054) × (15 A)2  
= 1.215 W  
P
CIN = (IRMS)2 × ESR = (7.5 A)2 × 1 mΩ = 56.25 mW  
P
LOSS = PN1, N2 + PBODY (LOSS) + PSW + PDCR + PDR + PCOUT + PCIN  
tBODY(LOSS)  
= 1.215 W + 151.2 mW + 534.6 mW + 77.13 mW +  
3.15 mW + 675 mW + 56.25 mW  
= 2.62 W  
PBODY(LOSS)  
=
× ILOAD ×VF ×2  
tSW  
= 20 ns × 300 × 103 × 15 A × 0.84 × 2  
= 151.2 mW  
Rev. B | Page 29 of 40  
ADP1872/ADP1873  
Data Sheet  
EXTERNAL COMPONENT RECOMMENDATIONS  
The configurations listed in Table 8 are with fCROSS = 1/12 × fSW, fZERO = ¼ × fCROSS, RRES = 100 kΩ, RBOT = 15 kΩ, RON = 5.4 mΩ (BSC042N03MS G),  
V
DD = 5 V, and a maximum load current of 14 A.  
The ADP1873 models listed in Table 8 are the PSM versions of the device.  
Table 8. External Component Values  
Marking Code  
VOUT VIN  
L1  
(µH) (kΩ) (pF)  
RC  
CCOMP CPAR  
RTOP  
SAP Model  
ADP1872  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDT  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDU  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
LDV  
ADP1873  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDF  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDK  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
LDL  
(V)  
0.8  
1.2  
1.8  
2.5  
3.3  
5
(V)  
13  
13  
13  
13  
13  
13  
13  
CIN (µF)  
5 × 222  
5 × 222  
4 × 222  
4 × 222  
5 × 222  
4 × 222  
4 × 222  
COUT (µF)  
5 × 5603  
4 × 5603  
4 × 2704  
3 × 2704  
2 × 3305  
3305  
222 + (4 × 476)  
4 × 5603  
4 × 2704  
4 × 2704  
2 × 3305  
2 × 1507  
222 + 4 × 476  
4 × 5603  
4 × 2704  
3 × 2704  
3 × 1808  
5 × 2704  
3 × 3305  
3 × 2704  
2 × 2704  
1507  
4 × 2704  
2 × 3305  
3 × 2704  
3305  
4 × 476  
3 × 476  
4 × 2704  
2 × 3305  
3 × 1808  
2704  
3 × 3305  
3 × 2704  
2704  
(pF) (kΩ)  
ADP1872ARMZ-0.3-R7/  
ADP1873ARMZ-0.3-R7  
0.72  
1.0  
47  
47  
47  
47  
47  
34  
34  
47  
47  
47  
47  
34  
34  
47  
47  
47  
47  
47  
47  
47  
47  
34  
47  
47  
47  
47  
34  
34  
47  
47  
47  
47  
47  
47  
47  
47  
34  
47  
47  
47  
47  
740  
740  
571  
571  
571  
800  
800  
740  
592  
592  
592  
829  
829  
339  
326  
271  
271  
407  
307  
307  
307  
430  
362  
326  
326  
296  
415  
380  
223  
223  
163  
163  
233  
210  
210  
210  
268  
326  
261  
233  
217  
74  
74  
57  
57  
57  
80  
80  
74  
59  
59  
59  
83  
83  
34  
33  
27  
27  
41  
31  
31  
31  
43  
36  
33  
33  
30  
41  
38  
22  
22  
16  
16  
23  
21  
21  
21  
27  
33  
26  
23  
22  
5.0  
15.0  
30.0  
47.5  
67.5  
110.0  
160.0  
15.0  
30.0  
47.5  
67.5  
110.0  
160.0  
5.0  
15.0  
30.0  
47.5  
15.0  
30.0  
47.5  
67.5  
110.0  
15.0  
30.0  
47.5  
67.5  
110.0  
160.0  
5.0  
15.0  
30.0  
47.5  
15.0  
30.0  
47.5  
67.5  
110.0  
15.0  
30.0  
47.5  
67.5  
1.0  
1.53  
2.0  
3.27  
3.44  
1.0  
7
1.2  
1.8  
2.5  
3.3  
5
16.5 4 × 222  
16.5 3 × 222  
16.5 3 × 222  
16.5 3 × 222  
16.5 3 × 222  
16.5 3 × 222  
1.0  
1.67  
2.00  
3.84  
4.44  
0.22  
0.47  
0.47  
0.47  
0.47  
0.47  
0.90  
1.00  
1.76  
0.47  
0.72  
0.90  
1.0  
7
ADP1872ARMZ-0.6-R7/  
ADP1873ARMZ-0.6-R7  
0.8  
1.2  
1.8  
2.5  
1.2  
1.8  
2.5  
3.3  
5
1.2  
1.8  
2.5  
3.3  
5
5.5  
5.5  
5.5  
5.5  
13  
13  
13  
13  
13  
5 × 222  
5 × 222  
5 × 222  
5 × 222  
3 × 222  
5 × 109  
5 × 109  
5 × 109  
5 × 109  
16.5 3 × 109  
16.5 4 × 109  
16.5 4 × 109  
16.5 4 × 109  
16.5 4 × 109  
16.5 4 × 109  
2.0  
2.0  
7
ADP1872ARMZ-1.0-R7/  
ADP1873ARMZ-1.0-R7  
0.8  
1.2  
1.8  
2.5  
1.2  
1.8  
2.5  
3.3  
5
1.2  
1.8  
2.5  
3.3  
5.5  
5.5  
5.5  
5.5  
13  
13  
13  
13  
13  
5 × 222  
5 × 222  
3 × 222  
3 × 222  
3 × 109  
4 × 109  
4 × 109  
5 × 109  
4 × 109  
0.22  
0.22  
0.22  
0.22  
0.22  
0.47  
0.47  
0.72  
1.0  
2704  
3 × 476  
4 × 2704  
3 × 2704  
3 × 1808  
2704  
16.5 3 × 109  
16.5 3 × 109  
16.5 4 × 109  
16.5 4 × 109  
0.47  
0.47  
0.72  
0.72  
Rev. B | Page 30 of 40  
 
 
Data Sheet  
ADP1872/ADP1873  
Marking Code  
ADP1872 ADP1873  
VOUT VIN  
L1  
(µH) (kΩ) (pF)  
RC  
CCOMP CPAR  
RTOP  
SAP Model  
(V)  
(V)  
CIN (µF)  
COUT (µF)  
3 × 476  
222 + 476  
(pF) (kΩ)  
LDV  
LDV  
LDL  
LDL  
5
7
16.5 3 × 109  
16.5 3 × 109  
1.0  
1.0  
34  
34  
268  
228  
27  
23  
110.0  
160.0  
1 See the Inductor Selection section (See Table 9).  
2 22 µF Murata 25 V, X7R, 1210 GRM32ER71E226KE15L (3.2 mm × 2.5 mm × 2.5 mm).  
3 560 µF Panasonic (SP-series) 2 V, 7 mΩ, 3.7 A EEFUE0D561LR (4.3 mm × 7.3 mm × 4.2 mm).  
4 270 µF Panasonic (SP-series) 4 V, 7 mΩ, 3.7 A EEFUE0G271LR (4.3 mm × 7.3 mm × 4.2 mm).  
5 330 µF Panasonic (SP-series) 4 V, 12 mΩ, 3.3 A EEFUE0G331R (4.3 mm × 7.3 mm × 4.2 mm).  
6 47 µF Murata 16 V, X5R, 1210 GRM32ER61C476KE15L (3.2 mm × 2.5 mm × 2.5 mm).  
7 150 µF Panasonic (SP-series) 6.3 V, 10 mΩ, 3.5 A EEFUE0J151XR (4.3 mm × 7.3 mm × 4.2 mm).  
8 180 µF Panasonic (SP-series) 4 V, 10 mΩ, 3.5 A EEFUE0G181XR (4.3 mm × 7.3 mm × 4.2 mm).  
9 10 µF TDK 25 V, X7R, 1210 C3225X7R1E106M.  
Table 9. Recommended Inductors  
L (µH)  
0.12  
0.22  
0.47  
0.72  
0.9  
1.2  
1.0  
1.4  
2.0  
DCR (mΩ)  
0.33  
0.33  
0.8  
1.65  
1.6  
1.8  
3.3  
3.2  
2.6  
ISAT (A)  
55  
30  
50  
35  
28  
25  
20  
24  
Dimension (mm)  
10.2 × 7  
10.2 × 7  
14.2 × 12.8  
10.5 × 10.2  
13 × 12.8  
10.5 × 10.2  
10.5 × 10.2  
14 × 12.8  
Manufacturer  
Model Number  
744303012  
744303022  
744355147  
744325072  
744355090  
744325120  
7443552100  
744318180  
7443551200  
CEP125U-0R8  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Würth Elektronic  
Sumida  
22  
27.5  
13.2 × 12.8  
0.8  
Table 10. Recommended MOSFETs  
RON  
(mΩ)  
ID  
(A)  
VDS  
(V)  
CIN  
(nF)  
QTOTAL  
(nC)  
VGS = 4.5 V  
Package  
Manufacturer  
Model Number  
Upper-Side MOSFET  
(Q1/Q2)  
5.4  
47  
30  
3.2  
20  
PG-TDSON8  
Infineon  
BSC042N03MS G  
10.2  
6.0  
9
53  
19  
14  
47  
30  
30  
30  
30  
1.6  
10  
35  
25  
20  
PG-TDSON8  
SO-8  
SO-8  
Infineon  
Vishay  
International Rectifier  
Infineon  
BSC080N03MS G  
Si4842DY  
IRF7811  
2.4  
3.2  
Lower-Side MOSFET  
(Q3/Q4)  
5.4  
PG-TDSON8  
BSC042N03MS G  
10.2  
6.0  
82  
19  
30  
30  
1.6  
10  
35  
PG-TDSON8  
SO-8  
Infineon  
Vishay  
BSC080N03MS G  
Si4842DY  
Rev. B | Page 31 of 40  
 
ADP1872/ADP1873  
Data Sheet  
LAYOUT CONSIDERATIONS  
Figure 82 shows the schematic of a typical ADP1872/ADP1873  
used for a high power application. Blue traces denote high current  
pathways. VIN, PGND, and VOUT traces should be wide and  
possibly replicated, descending down into the multiple layers.  
Vias should populate, mainly around the positive and negative  
terminals of the input and output capacitors, alongside the source  
of Q1/Q2, the drain of Q3/Q4, and the inductor.  
The performance of a dc-to-dc converter depends highly on  
how the voltage and current paths are configured on the printed  
circuit board (PCB). Optimizing the placement of sensitive  
analog and power components are essential to minimize output  
ripple, maintain tight regulation specifications, and reduce  
PWM jitter and electromagnetic interference.  
LOW VOLTAGE INPUT  
HIGH VOLTAGE INPUT  
V
= 5.0V  
VIN = 12V  
DD  
JP1  
C3  
C4  
C5  
C6  
C7  
C
C
571pF  
ADP1872/  
ADP1873  
22µF  
22µF  
22µF  
22µF  
22µF  
C12  
100nF  
C
R
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
Q4  
VIN  
BST  
57pF  
47kΩ  
COMP/EN  
FB  
SW  
1.0µH  
V
= 1.8V, 15A  
OUT  
R1 30kΩ  
V
8
DRVH  
OUT  
+
+
+
+
C20  
270µF  
C21  
270µF  
C22  
270µF  
C23  
270µF  
R6  
2Ω  
R2  
15kΩ  
4
5
7
6
GND  
VDD  
PGND  
DRVL  
C13  
1.5nF  
C2  
0.1µF  
C1  
1µF  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15 L  
PANASONIC: (OUTPUT CAPACITORS)  
270µF (SP-SERIES) 4V, 7mΩ EEFUE0G271LR  
R5  
100kΩ  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER-SIDE)  
BSC080N03MS G (UPPER-SIDE)  
WURTH INDUCTORS:  
1µH, 3.3mΩ, 20A 7443552100  
Figure 82. ADP1872/ADP1873 High Current Evaluation Board Schematic (Blue Traces Indicate High Current Paths)  
Rev. B | Page 32 of 40  
 
 
Data Sheet  
ADP1872/ADP1873  
SENSITIVE ANALOG  
COMPONENTS  
LOCATED FAR  
FROM THE NOISY  
POWER SECTION.  
SW  
SEPARATE ANALOG GROUND  
PLANE FOR THE ANALOG  
COMPONENTS (THAT IS,  
COMPENSATION AND  
FEEDBACK RESISTORS).  
OUTPUT CAPACITORS  
ARE MOUNTED ON THE  
RIGHTMOST AREA OF  
THE EVB, WRAPPING  
BACK AROUND TO THE  
MAIN POWER GROUND  
PLANE, WHERE IT MEETS  
WITH THE NEGATIVE  
TERMINALS OF THE  
BYPASS POWER CAPACITOR (C1)  
FOR VREG BIAS DECOUPLING  
AND HIGH FREQUENCY  
CAPACITOR (C2) AS CLOSE AS  
POSSIBLE TO THE IC.  
INPUT CAPACITORS  
INPUT CAPACITORS  
ARE MOUNTED CLOSE  
TO DRAIN OF Q1/Q2  
AND SOURCE OF Q3/Q4.  
Figure 83. Overall Layout of the ADP1872 High Current Evaluation Board  
Rev. B | Page 33 of 40  
 
ADP1872/ADP1873  
Data Sheet  
Figure 84. Layer 2 of Evaluation Board  
Rev. B | Page 34 of 40  
Data Sheet  
ADP1872/ADP1873  
TOP RESISTOR  
FEEDBACK TAP  
VOUT SENSE TAP LINE EXTENDING BACK  
TO THE TOP RESISTOR IN THE FEEDBACK  
DIVIDER NETWORK (SEE FIGURE 82). THIS  
OVERLAPS WITH PGND SENSE TAP LINE  
EXTENDING BACK TO THE ANALOG  
PLANE (SEE FIGURE 86, LAYER 4 FOR  
PGND TAP).  
Figure 85. Layer 3 of Evaluation Board  
Rev. B | Page 35 of 40  
 
ADP1872/ADP1873  
Data Sheet  
BOTTOM RESISTOR  
TAP TO THE ANALOG  
GROUND PLANE  
PGND SENSE TAP FROM  
NEGATIVE TERMINALS OF  
OUTPUT BULK CAPACITORS.  
THIS TRACK PLACEMENT  
SHOULD BE DIRECTLY  
BELOW THE VOUT SENSE  
LINE FROM FIGURE 84.  
Figure 86. Layer 4 (Bottom Layer) of Evaluation Board  
Rev. B | Page 36 of 40  
 
Data Sheet  
ADP1872/ADP1873  
IC SECTION (LEFT SIDE OF EVALUATION BOARD)  
A dedicated plane for the analog ground plane (GND) should  
be separate from the main power ground plane (PGND). With  
the shortest path possible, connect the analog ground plane to  
the GND pin (Pin 4). This plane should only be on the top layer  
of the evaluation board. To avoid crosstalk interference, there  
should not be any other voltage or current pathway directly  
below this plane on Layer 2, Layer 3, or Layer 4. Connect the  
negative terminals of all sensitive analog components to the  
analog ground plane. Examples of such sensitive analog com-  
ponents include the resistor dividers bottom resistor, the high  
frequency bypass capacitor for biasing (0.1 µF), and the  
compensation network.  
SW  
VOUT  
Mount a 1 µF bypass capacitor directly across the VDD pin  
(Pin 5) and the PGND pin (Pin 7). In addition, a 0.1 µF should  
be tied across the VDD pin (Pin 5) and the GND pin (Pin 4).  
VIN  
PGND  
Figure 87. Primary Current Pathways During the On State of the Upper-Side  
MOSFET (Left Arrow) and the On State of the Lower-Side MOSFET (Right Arrow)  
POWER SECTION  
DIFFERENTIAL SENSING  
As shown in Figure 83, an appropriate configuration to localize  
large current transfer from the high voltage input (VIN) to the  
output (VOUT) and then back to the power ground is to put the  
VIN plane on the left, the output plane on the right, and the main  
power ground plane in between the two. Current transfers from  
the input capacitors to the output capacitors, through Q1/Q2,  
during the on state (see Figure 87). The direction of this current  
(yellow arrow) is maintained as Q1/Q2 turns off and Q3/Q4  
turns on. When Q3/Q4 turns on, the current direction continues to  
be maintained (red arrow) as it circles from the bulk capacitors  
power ground terminal to the output capacitors, through the  
Q3/Q4. Arranging the power planes in this manner minimizes  
the area in which changes in flux occur if the current through  
Q1/Q2 stops abruptly. Sudden changes in flux, usually at source  
terminals of Q1/Q2 and drain terminals of Q3/Q4, cause large  
dV/dts at the SW node.  
Because the ADP1872/ADP1873 operate in valley current-  
mode control, a differential voltage reading is taken across the  
drain and source of the lower-side MOSFET. The drain of the  
lower-side MOSFET should be connected as close as possible to  
the SW pin (Pin 9) of the IC. Likewise, the source should be  
connected as close as possible to the PGND pin (Pin 7) of the  
IC. When possible, both of these track lines should be narrow  
and away from any other active device or voltage/current paths.  
SW  
PGND  
The SW node is near the top of the evaluation board. The SW  
node should use the least amount of area possible and be away  
from any sensitive analog circuitry and components because  
this is where most sudden changes in flux density occur. When  
possible, replicate this pad onto Layer 2 and Layer 3 for thermal  
relief and eliminate any other voltage and current pathways directly  
beneath the SW node plane. Populate the SW node plane with  
vias, mainly around the exposed pad of the inductor terminal  
and around the perimeter of the source of Q1/Q2 and the drain  
of Q3/Q4. The output voltage power plane (VOUT) is at the right-  
most end of the evaluation board. This plane should be replicated,  
descending down to multiple layers with vias surrounding the  
inductor terminal and the positive terminals of the output bulk  
capacitors. Ensure that the negative terminals of the output  
capacitors are placed close to the main power ground (PGND),  
as previously mentioned. All of these points form a tight circle  
(component geometry permitting) that minimizes the area of  
flux change as the event switches between D and 1 − D.  
LAYER 1: SENSE LINE FOR SW  
(DRAIN OF LOWER MOSFET)  
LAYER 1: SENSE LINE FOR PGND  
(SOURCE OF LOWER MOSFET)  
Figure 88. Drain/Source Tracking Tapping of the Lower-Side MOSFET for CS  
Amp Differential Sensing (Yellow Sense Line on Layer 2)  
Differential sensing should also be applied between the  
outermost output capacitor to the feedback resistor divider (see  
Figure 85 and Figure 86). Connect the positive terminal of the  
output capacitor to the top resistor (RT). Connect the negative  
terminal of the output capacitor to the negative terminal of the  
bottom resistor, which connects to the analog ground plane as  
well. Both of these track lines, as previously mentioned, should  
be narrow and away from any other active device or voltage/  
current paths.  
Rev. B | Page 37 of 40  
 
 
 
 
ADP1872/ADP1873  
Data Sheet  
TYPICAL APPLICATION CIRCUITS  
DUAL-INPUT, 300 kHz HIGH CURRENT APPLICATION CIRCUIT  
LOW VOLTAGE INPUT  
= 5.0V  
HIGH VOLTAGE INPUT  
VIN = 12V  
V
DD  
JP1  
C3  
C4  
C5  
C6  
C7  
C
C
571pF  
ADP1872/  
ADP1873  
22µF  
22µF  
22µF  
22µF  
22µF  
C12  
100nF  
C
R
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
Q4  
VIN  
BST  
57pF  
47kΩ  
COMP/EN  
FB  
SW  
1.0µH  
V
= 1.8V, 15A  
OUT  
R1 30kΩ  
V
8
DRVH  
OUT  
+
+
+
+
C20  
270µF  
C21  
270µF  
C22  
270µF  
C23  
270µF  
R6  
2Ω  
R2  
15kΩ  
4
5
7
6
GND  
VDD  
PGND  
DRVL  
C13  
1.5nF  
C2  
0.1µF  
C1  
1µF  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15 L  
PANASONIC: (OUTPUT CAPACITORS)  
270µF (SP-SERIES) 4V, 7mΩ EEFUE0G271LR  
R5  
100kΩ  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER-SIDE)  
BSC080N03MS G (UPPER-SIDE)  
WURTH INDUCTORS:  
1µH, 3.3mΩ, 20A 7443552100  
Figure 89. Application Circuit for 12 V Input, 1.8 V Output, 15 A, 300 kHz (Q2/Q4 No Connect).  
SINGLE-INPUT, 600 kHz APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
VIN = 5.5V  
JP1  
C3  
C4  
C5  
C6  
C7  
C
C
271pF  
ADP1872/  
ADP1873  
22µF  
22µF  
22µF  
22µF  
22µF  
C12  
100nF  
C
27pF  
R
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
Q4  
VIN  
BST  
47kΩ  
COMP/EN  
FB  
SW  
0.47µH  
V
= 2.5V, 15A  
OUT  
R1 47.5kΩ  
V
8
DRVH  
OUT  
+
+
+
C20  
180µF  
C21  
180µF  
C22  
180µF  
R6  
2Ω  
R2  
15kΩ  
4
5
7
6
GND  
VDD  
PGND  
DRVL  
C13  
1.5nF  
C2  
0.1µF  
C1  
1µF  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15 L  
PANASONIC: (OUTPUT CAPACITORS)  
180µF (SP-SERIES) 4V, 10mΩ EEFUE0G181XR  
R5  
100kΩ  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER-SIDE)  
BSC080N03MS G (UPPER-SIDE)  
WURTH INDUCTORS:  
0.47µH, 0.8mΩ, 50A 744355147  
Figure 90. Application Circuit for 5.5 V Input, 2.5 V Output, 15 A, 600 kHz (Q2/Q4 No Connect)  
Rev. B | Page 38 of 40  
 
 
 
Data Sheet  
ADP1872/ADP1873  
DUAL-INPUT, 300 kHz HIGH CURRENT APPLICATION CIRCUIT  
LOW VOLTAGE INPUT  
= 5V  
HIGH VOLTAGE INPUT  
VIN = 13V  
V
DD  
JP1  
C3  
C4  
C5  
C6  
C7  
C
800pF  
R
C
ADP1872/  
ADP1873  
22µF  
22µF  
22µF  
22µF  
22µF  
C12  
100nF  
C
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
Q4  
VIN  
BST  
80pF  
33.5kΩ  
COMP/EN  
FB  
SW  
0.8µH  
V
= 1.8V, 20A  
OUT  
R1 30kΩ  
V
8
DRVH  
OUT  
+
+
+
+
C20  
270µF  
C21  
270µF  
C22  
270µF  
C23  
270µF  
R6  
2Ω  
R2  
15kΩ  
4
5
7
6
GND  
VDD  
PGND  
DRVL  
C13  
1.5nF  
C2  
0.1µF  
C1  
1µF  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15 L  
PANASONIC: (OUTPUT CAPACITORS)  
270µF (SP-SERIES) 4V, 7mΩ EEFUE0G271LR  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER-SIDE)  
BSC080N03MS G (UPPER-SIDE)  
WURTH INDUCTORS:  
0.72µH, 1.65mΩ, 35A 744325072  
Figure 91. Application Circuit for 13 V Input, 1.8 V Output, 20 A, 300 kHz (Q2/Q4 No Connect)  
Rev. B | Page 39 of 40  
 
 
ADP1872/ADP1873  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 92. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
LDT  
LDU  
ADP1872ARMZ-0.3-R7  
ADP1872ARMZ-0.6-R7  
ADP1872ARMZ-1.0-R7  
ADP1872-0.3-EVALZ  
ADP1872-0.6-EVALZ  
ADP1872-1.0-EVALZ  
ADP1873ARMZ-0.3-R7  
ADP1873ARMZ-0.6-R7  
ADP1873ARMZ-1.0-R7  
ADP1873-0.3-EVALZ  
ADP1873-0.6-EVALZ  
ADP1873-1.0-EVALZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
Forced PWM, 300 kHz Evaluation Board  
Forced PWM, 600 kHz Evaluation Board  
Forced PWM, 1 MHz Evaluation Board  
RM-10  
RM-10  
RM-10  
LDV  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
Power Saving Mode, 300 kHz Evaluation Board  
Power Saving Mode, 600 kHz Evaluation Board  
Power Saving Mode, 1 MHz Evaluation Board  
RM-10  
RM-10  
RM-10  
LDF  
LDK  
LDL  
1 Z = RoHS Compliant Part.  
©2009–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08297-0-7/12(B)  
Rev. B | Page 40 of 40  
 
 
 

相关型号:

ADP1873ARMZ-0.6-R7

Synchronous Current-Mode Buck Controller with Constant On-time, 0.6 V Reference Voltage, and Power Saving Mode
ADI

ADP1874

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1874-0.3-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1874-0.6-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1874-1.0-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1874ARQZ-0.3-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1874ARQZ-0.6-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1874ARQZ-1.0-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1875

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1875-0.3-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1875-0.6-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1875-1.0-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI