ADP2165ACPZ-3.3-R7 [ADI]

5.5 V, 5 A/6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking;
ADP2165ACPZ-3.3-R7
型号: ADP2165ACPZ-3.3-R7
厂家: ADI    ADI
描述:

5.5 V, 5 A/6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking

文件: 总23页 (文件大小:670K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5.5 V, 5 A/6 A, High Efficiency, Step-Down  
DC-to-DC Regulators with Output Tracking  
Data Sheet  
ADP2165/ADP2166  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Continuous output current  
ADP2165: 5 A  
ADP2166: 6 A  
Integrated MOSFET  
ADP2165/  
ADP2166  
PVIN  
AVIN  
EN  
BST  
SW  
V
PVIN  
C
BST  
L1  
R
C
IN  
V
OUT  
C
OUT  
PGOOD  
SYNC  
RT  
High-side on resistance: 19 mΩ  
Low-side on resistance: 15 mΩ  
Reference voltage: 0.6 V 1% over temperature range  
Input voltage range: 2.7 V to 5.5 V  
Current mode architecture  
TOP  
R
RT  
FB  
COMP  
TRK  
C
VREG  
C
R
CP  
C
R
BOT  
VREG  
SS  
C
C
GND PGND  
C
SS  
Switching frequency  
Fixed frequency: 620 kHz or 1.2 MHz  
Adjustable frequency: 250 kHz to 1.4 MHz  
Synchronizes to external clock: 250 kHz to 1.4 MHz  
Selectable synchronize phase shift: in phase or out of phase  
External compensation  
Figure 1.  
The ADP2165/ADP2166 are designed to be extremely flexible  
with the addition of a minimal amount of external components  
to program soft start and control loop compensation.  
Programmable soft start  
The ADP2165/ADP2166 are supplied from an input voltage of  
2.7 V to 5.5 V. Output voltage options include 3.3 V, 2.5 V, 1.8 V,  
1.5 V, 1.2 V, or 1.0 V fixed outputs and adjustable options capable  
of supporting an output voltage range from 0.6 V to 90% of the  
input voltage. Protection features include undervoltage lockout  
(UVLO), overvoltage protection (OVP), overcurrent protection  
(OCP), and thermal shutdown (TSD) for robust performance.  
Startup into a precharged output  
Voltage tracking input  
Power-good output and precision enable input  
Accurate current limit  
Available in 24-lead, 4 mm × 4 mm LFCSP package  
Supported by ADIsimPower™ design tool  
APPLICATIONS  
The ADP2165/ADP2166 operate over the −40°C to +125°C  
junction temperature range and are available in a 24-lead  
LFCSP package.  
Point of load regulation  
Communications and networking  
High end consumer  
Industrial, instrumentation, and healthcare  
100  
V
= 3.3V  
PVIN  
GENERAL DESCRIPTION  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
The ADP2165/ADP2166 are high efficiency, current mode  
control, step-down dc-to-dc regulators with an integrated 19 mΩ  
high-side FET and a 15 mΩ synchronous rectified FET. The  
ADP2165/ADP2166 combine a small size, 4 mm × 4 mm LFCSP  
package with an accurate current limit, resulting in a smaller  
inductor size and a high power density, point of load solution.  
V
= 5V  
PVIN  
Key features include precision enable, power-good monitor,  
and output voltage tracking to facilitate robust sequencing.  
The switching frequency can be programmed from 250 kHz  
to 1.4 MHz, or it can be fixed at 620 kHz or 1.2 MHz. The  
synchronization function allows the switching frequency to  
synchronize to an external clock, minimizing the  
V
= 1.8V  
OUT  
fSW = 600kHz  
0
1
2
3
4
5 6  
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current  
electromagnetic interference (EMI) of the system.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP2165/ADP2166  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Undervoltage Lockout ............................................................... 13  
Thermal Shutdown .................................................................... 13  
Applications Information .............................................................. 14  
ADIsimPower Design Tool ....................................................... 14  
Input Capacitor Selection.......................................................... 14  
Output Voltage Setting .............................................................. 14  
Voltage Conversion Limitations............................................... 14  
Inductor Selection...................................................................... 15  
Output Capacitor Selection....................................................... 15  
Compensation Design ............................................................... 16  
Design Example.............................................................................. 17  
Output Voltage Setting .............................................................. 17  
Frequency Setting....................................................................... 17  
Inductor Selection...................................................................... 17  
Output Capacitor Selection....................................................... 18  
Compensation Components..................................................... 18  
Soft Start Time Program ........................................................... 18  
Input Capacitor Selection.......................................................... 18  
Recommended External Components .................................... 19  
Printed Circuit Board Layout Recommendations ..................... 20  
Reference Designs .......................................................................... 21  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 12  
Control Scheme .......................................................................... 12  
PWM Mode................................................................................. 12  
Enable/Shutdown ....................................................................... 12  
Internal Regulator (VREG)....................................................... 12  
Bootstrap Circuitry .................................................................... 12  
Oscillator and Synchronization................................................ 12  
Soft Start ...................................................................................... 13  
Tracking ....................................................................................... 13  
Power-Good (PGOOD)............................................................. 13  
Peak Current-Limit and Short-Circuit Protection................. 13  
Overvoltage Protection.............................................................. 13  
REVISION HISTORY  
8/2017—Rev. A to Rev. B  
Changed LFCSP_WQ to LFCSP ..........................................Throughout  
Updated Outline Dimensions .................................................................23  
Changes to Ordering Guide.....................................................................23  
9/2016—Rev. 0 to Rev. A  
Change to Compensation Components Section ........................ 18  
Change to Table 8 ........................................................................... 19  
8/2014—Revision 0: Initial Version  
Rev. B | Page 2 of 23  
 
Data Sheet  
ADP2165/ADP2166  
FUNCTIONAL BLOCK DIAGRAM  
EN  
EN_BUF  
UVLO  
PVIN  
1.2V  
A
CS  
+
HICCUP  
MODE  
OCP  
I
SLOPE RAMP  
MAX  
V
Σ
PVIN  
BST  
COMP  
0.6V  
NFET1  
+
+
+
I
SS  
+
CMP  
DRIVER  
SS  
TRK  
FB  
AMP  
SW  
CLK  
OVP  
CONTROL  
LOGIC  
0.7V  
V
+
PVIN  
NFET2  
DRIVER  
0.66V  
+
PGND  
+
NEG CURRENT  
CMP  
+
0.54V  
I
NEG  
PGOOD  
AVIN  
VREG  
GND  
DEGLITCH  
OSC  
EN_BUF  
3.3V  
REGULATOR  
CLK  
SYNC  
RT  
SLOPE RAMP  
Figure 3. ADP2165/ADP2166 Functional Block Diagram  
Rev. B | Page 3 of 23  
 
ADP2165/ADP2166  
SPECIFICATIONS  
Data Sheet  
VPVIN = VAVIN = 5 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise  
noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PVIN AND AVIN  
VPVIN Voltage Range  
VAVIN Voltage Range  
Quiescent Current  
Shutdown Current  
VAVIN Undervoltage Lockout Threshold  
VPVIN  
VAVIN  
IQ  
ISHDN  
UVLO  
2.7  
2.7  
5.5  
5.5  
10  
150  
2.7  
V
V
mA  
µA  
V
No switching, fSW = 600 kHz  
EN = 0 V  
VAVIN rising  
2
25  
2.6  
2.5  
VAVIN falling  
2.35  
V
FB  
FB Regulation Voltage  
Fixed Output Version  
FB Bias Current  
VFB  
VOUT  
IFB  
VPVIN = 2.7 V to 5.5 V  
0.594  
−1  
0.6  
0.606  
+1  
0.1  
V
%
µA  
0.01  
ERROR AMPLIFIER (EA)  
Transconductance  
EA Source Current  
EA Sink Current  
gm  
ISOURCE  
ISINK  
430  
3.1  
500  
75  
85  
570  
3.5  
µS  
µA  
µA  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
3.3  
140  
50  
V
mV  
mA  
Dropout Voltage  
Regulator Current Limit  
SW  
IVREG = 10 mA  
High-Side On Resistance1  
VBST − VSW = 5 V  
VBST − VSW = 3.3 V  
VPVIN = 5 V  
VPVIN = 3.3 V  
ADP2165  
19  
22  
15  
16  
8
29  
34  
23  
26  
9.5  
10.5  
mΩ  
mΩ  
mΩ  
mΩ  
A
Low-Side On Resistance1  
High-Side Peak Current Limit  
6.5  
7.5  
ADP2166  
9
A
Low-Side Negative Current Limit  
SW Minimum Off Time2  
SW Minimum On Time2  
OSCILLATOR (RT)  
2.4  
100  
100  
A
ns  
ns  
tOFF_MIN  
tON_MIN  
Switching Frequency  
fSW  
RT pin floating  
RT pin connected to VREG  
RRT = 95.3 kΩ  
525  
1.08  
500  
250  
620  
1.2  
590  
715  
1.32  
680  
kHz  
MHz  
kHz  
kHz  
Switching Frequency Range  
SYNC  
1400  
Synchronization Range  
SYNC Minimum Pulse Width  
SYNC Minimum Off Time  
SYNC Input High Voltage  
SYNC Input Low Voltage  
SOFT START (SS)  
250  
100  
100  
1.3  
1400  
kHz  
ns  
ns  
V
0.4  
4.3  
V
SS Pull-Up Current  
ISS  
2.7  
3.5  
µA  
TRK  
TRK Input Voltage Range  
TRK-to-FB Offset Voltage  
TRK Input Bias Current  
0
−9  
600  
+9  
100  
mV  
mV  
nA  
TRK = 300 mV to 500 mV  
Rev. B | Page 4 of 23  
 
Data Sheet  
ADP2165/ADP2166  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
107  
87  
Typ  
Max  
Unit  
PGOOD  
Power-Good Range  
FB rising threshold  
FB rising hysteresis  
FB falling threshold  
FB falling hysteresis  
From FB to PGOOD  
VPGOOD = 5 V  
111  
3
90.5  
3
16  
0.1  
27  
115  
%
%
%
%
94.5  
Power-Good Deglitch Time  
PGOOD Leakage Current  
PGOOD Output Low Voltage  
EN  
Clock cycles  
µA  
mV  
1
45  
IPGOOD = 1 mA  
EN Threshold  
EN Hysteresis  
EN Pull-Down Resistor  
THERMAL  
1.12  
1.2  
100  
1
1.28  
V
mV  
MΩ  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
25  
°C  
°C  
1 Pin-to-pin measurement.  
2 Guaranteed by design.  
Rev. B | Page 5 of 23  
ADP2165/ADP2166  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board (4-layer, JEDEC standard board) for  
surface-mount packages.  
Parameter  
Rating  
PVIN, AVIN, EN, PGOOD, FB  
SW  
−0.3 V to +6 V  
−1 V to +6 V  
BST  
SW + 6 V  
Table 3. Thermal Resistance  
Package Type  
24-Lead LFCSP  
SS, COMP, TRK, VREG, SYNC, RT  
PGND to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
θJA  
Unit  
38.3  
°C/W  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 6 of 23  
 
 
 
Data Sheet  
ADP2165/ADP2166  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
18  
17  
16  
15  
14  
13  
SYNC  
RT  
PVIN  
SW  
ADP2165/  
ADP2166  
SW  
TRK  
SS  
TOP VIEW  
SW  
4
5
6
(Not to Scale)  
COMP  
FB  
SW  
PGND  
NOTES  
1. EXPOSED PAD. SOLDER THE EXPOSED  
PAD TO AN EXTERNAL GROUND PLANE  
UNDERNEATH THE IC FOR THERMAL  
DISSIPATION.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
SYNC  
Synchronization Input. Connect this pin to an external clock between 250 kHz and 1.4 MHz to synchronize the  
switching frequency to the external clock. RT can be used to program the phase shift when synchronizing the  
external clock.  
Frequency Setting. Connect a resistor between the RT and GND pins to program the switching frequency between  
250 kHz to 1.4 MHz. When the RT pin is floating, the frequency is set to 620 kHz, and when the RT pin is connected  
to VREG, the frequency is set to 1.2 MHz.  
RT  
TRK  
Tracking Input. This pin can be used for tracking and sequencing. If the tracking function is not used, connect TRK  
to VREG.  
4
5
6
7
8
9
SS  
COMP  
FB  
GND  
PGOOD  
BST  
Soft Start Control. Connect a capacitor from the SS pin to the GND pin to program the soft start time.  
Error Amplifier Output. Connect a compensation network from the COMP pin to the GND pin.  
Feedback Voltage Sense Input. Connect to a resistor divider from VOUT  
.
Analog Ground. Connect to the ground plane.  
Power-Good Output (Open-Drain). A pull-up resistor of 100 kΩ is recommended.  
Supply Rail for the High-Side MOSFET Gate Drive. Place a 0.1 µF capacitor between the SW pin and the BST pin.  
Power Ground. Connect this pin to the ground plane and to the output return side of the output capacitor.  
10, 11,  
12, 13  
PGND  
14, 15,  
16, 17  
SW  
Switching Node.  
18, 19,  
20, 21  
PVIN  
AVIN  
EN  
Power Input. Connect this pin to the input power source and connect a bypass capacitor between this pin and  
ground.  
Bias Voltage Input Pin. Connect a bypass capacitor between this pin and GND and a small (10 Ω) resistor between  
this pin and PVIN.  
Precision Enable Input Pin. An external resistor divider can be used to set the turn-on threshold. To enable the  
device automatically, connect the EN pin to PVIN. This pin has a 1 MΩ pull-down resistor to GND.  
Internal Bias Regulator Output. It supplies the regulated voltage to the internal circuitry. Bypass the VREG pin to  
the GND pin with a high quality, low ESR 1 µF ceramic capacitor.  
22  
23  
24  
VREG  
EPAD  
Exposed Pad. Solder the exposed pad to an external ground plane underneath the IC for thermal dissipation.  
Rev. B | Page 7 of 23  
 
ADP2165/ADP2166  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VPVIN = VAVIN = 5 V, VOUT = 1.2 V, L = 1 µH, CIN = 47 µF, COUT = 100 µF, fSW = 600 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 2.5V  
V
= 3.3V  
V
= 2.5V  
OUT  
OUT  
OUT  
V
= 1.8V  
OUT  
V
= 1.8V  
V
OUT  
V
= 1.5V  
= 1.5V  
OUT  
OUT  
V
= 1.2V  
V
= 1.2V  
OUT  
OUT  
V = 1.0V  
OUT  
V
= 1.0V  
OUT  
INDUCTOR: WÜRTH ELEKTRONIK 744311100  
INDUCTOR: WÜRTH ELEKTRONIK 744311100  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency (fSW = 600 kHz, VPVIN = 3.3 V) vs. Output Current  
Figure 8. Efficiency (fSW = 600 kHz, VPVIN = 5 V) vs. Output Current  
100  
100  
V
= 3.3V  
V
= 2.5V  
OUT  
OUT  
V
= 2.5V  
OUT  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 1.8V  
V
= 1.5V  
OUT  
V
= 1.5V  
OUT  
OUT  
V
= 1.2V  
OUT  
V
= 1.2V  
V
= 1.8V  
OUT  
OUT  
V
= 1.0V  
V
= 1.0V  
OUT  
OUT  
INDUCTOR: WÜRTH ELEKTRONIK 744314047  
INDUCTOR: WÜRTH ELEKTRONIK 744314047  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 6. Efficiency (fSW = 1.2 MHz, VPVIN = 3.3 V) vs. Output Current  
Figure 9. Efficiency (fSW = 1.2 MHz, VPVIN = 5 V) vs. Output Current  
2.3  
2.2  
40  
35  
+125ºC  
2.1  
+125ºC  
30  
2.0  
+25ºC  
1.9  
25  
–40ºC  
+25ºC  
1.8  
1.7  
1.6  
1.5  
20  
–40ºC  
15  
10  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
PVIN  
PVIN  
Figure 7. Quiescent Current vs. VPVIN (No Switching)  
Figure 10. Shutdown Current vs. VPVIN  
Rev. B | Page 8 of 23  
 
Data Sheet  
ADP2165/ADP2166  
40  
35  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
5
+125ºC  
+125ºC  
+25ºC  
+25ºC  
–40ºC  
–40ºC  
0
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
PVIN  
PVIN  
Figure 11. High-Side NFET Resistor vs. VPVIN (Pin-to-Pin Measurements)  
Figure 14. Low-Side NFET Resistor vs. VPVIN (Pin-to-Pin Measurements)  
605  
604  
603  
602  
601  
600  
599  
598  
597  
596  
595  
610  
600  
+125ºC  
590  
+25ºC  
580  
570  
–40ºC  
560  
550  
540  
530  
–40  
0
25  
85  
125  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
TEMPERATURE (°C)  
PVIN  
Figure 12. Feedback Voltage vs. Temperature, VPVIN = 5 V  
Figure 15. Switching Frequency vs. VPVIN (RRT = 95.3 kΩ)  
1300  
660  
650  
640  
630  
620  
610  
600  
590  
580  
570  
560  
1275  
1250  
1225  
1200  
1175  
1150  
1125  
1100  
+125ºC  
+125ºC  
+25ºC  
–40°C  
+25ºC  
–40ºC  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
V
PVIN  
PVIN  
Figure 13. Switching Frequency vs. VPVIN at 1.2 MHz (RT = VREG)  
Figure 16. Switching Frequency vs. VPVIN at 620 kHz (RT Floating)  
Rev. B | Page 9 of 23  
ADP2165/ADP2166  
Data Sheet  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
+125ºC  
+25ºC  
+125ºC  
+25ºC  
–40ºC  
–40ºC  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
V
V
PVIN  
PVIN  
Figure 17. ADP2165 Peak Current Limit vs. VPVIN  
Figure 20. ADP2166 Peak Current Limit vs. VPVIN  
T
T
EN  
EN  
2
2
V
OUT  
1
3
V
OUT  
PGOOD  
1
PGOOD  
3
4
I
L
I
L
4
B
B
CH1 500mV  
CH3 5.00V  
CH2 5.00V  
M1.00ms  
T 10.00%  
W
A
CH2  
3.80V  
W
W
B
B
B
W
CH1 500mV  
CH3 5.00V  
CH2 5.0V  
CH4 2.00A Ω  
M1.00ms  
10.00%  
A
CH2  
3.80V  
W
B
CH4 5.00A Ω  
W
B
B
W
T
W
Figure 18. Soft Start with Full Load (600 kHz, VPVIN = 5 V)  
Figure 21. Soft Start with Precharge (600 kHz, VPVIN = 5 V)  
T
T
V
(AC)  
V
(AC)  
OUT  
OUT  
1
1
I
I
OUT  
OUT  
4
4
B
B
CH1 50.0mV  
M200µs  
30.20%  
A
CH4  
2.80A  
CH1 50.0mV  
M200µs  
20.60%  
A
CH4  
4.60A  
W
W
B
B
CH4 2.00A Ω  
T
CH4 5.00A Ω  
T
W
W
Figure 22. Load Transient (1.2 MHz, 0.5 A to 5.5 A Load Step)  
Figure 19. Load Transient (600 kHz, 1.5 A to 4.5 A Load Step)  
Rev. B | Page 10 of 23  
Data Sheet  
ADP2165/ADP2166  
T
T
1
V
(AC)  
OUT  
TRK  
2
SW  
FB  
2
I
L
4
B
CH1 5.00mV  
CH2 5.00V  
CH4 5.00A   
M1.00µs  
40.20%  
A
CH2  
4.00V  
W
CH2 500mV  
M2.00ms  
20.20%  
A
CH3  
300mV  
T
CH3 500mV  
T
Figure 23. Steady Waveform  
Figure 26. Tracing Function  
T
T
V
OUT  
V
OUT  
2
1
4
2
1
4
SW  
SW  
I
L
I
L
B
CH1 5.00V CH2 500mV  
M10.0ms  
20.40%  
A
CH2  
600mV  
W
B
W
CH1 5.00V CH2 500mV  
M10.0ms  
80.40%  
A
CH2  
600mV  
CH4 5.00A Ω  
T
CH4 5.00A Ω  
T
Figure 24. Output Short  
Figure 27. Output Short Recovery  
T
T
SYNC  
3
3
SYNC  
SW  
SW  
2
2
CH2 2.00V  
M400ns  
20.40%  
A
CH3  
400mV  
CH2 2.00V  
M400ns  
20.40%  
A
CH3  
400mV  
CH3 5.00V  
T
CH3 5.00V  
T
Figure 25. Synchronized to 1 MHz in Phase  
Figure 28. Synchronized to 1 MHz 180° Out of Phase  
Rev. B | Page 11 of 23  
ADP2165/ADP2166  
Data Sheet  
THEORY OF OPERATION  
The ADP2165/ADP2166 are step-down, dc-to-dc regulators.  
They use a current mode architecture with an integrated high-side  
and low-side switch. They target high performance applications  
that require high efficiency and design simplicity.  
INTERNAL REGULATOR (VREG)  
The internal regulator provides a stable supply for the internal  
control circuits. It is recommended to place a 1 μF ceramic  
capacitor between the VREG and GND pins. The internal  
regulator also includes a current-limit circuit to protect the  
circuit if the maximum external load is added.  
The ADP2165/ADP2166 can operate with an input voltage from  
2.7 V to 5.5 V and regulate the output voltage down to 0.6 V.  
Additional features for flexible design include programmable  
switching frequency, programmable soft start, external  
compensation, and enable and power-good pins. The  
ADP2165/ADP2166 are also available with preset output  
voltage options of 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, and 1.0 V.  
The AVIN pin provides the power supply for the internal regulator.  
When device is enabled, the internal regulator is active.  
BOOTSTRAP CIRCUITRY  
The ADP2165/ADP2166 integrate the boot regulator to provide  
the gate drive voltage for the high-side NFET. A capacitor between  
the BST and SW pins is charged from the PVIN pin while the  
low-side NFET is on.  
CONTROL SCHEME  
The ADP2165/ADP2166 use a fixed frequency, current mode  
PWM control architecture for good line and load transient  
performance. In fixed frequency PWM mode, adjust the duty  
cycle of the integrated MOSFET to regulate the output voltage  
that has a low output ripple voltage.  
Placing an X7R or X5R 0.1 μF ceramic capacitor between the  
BST and SW pins is recommended.  
OSCILLATOR AND SYNCHRONIZATION  
The switching frequency of the ADP2165/ADP2166 can be set  
by connecting a resistor between the RT pin and the GND pin.  
Use the following equation to set the switching frequency:  
PWM MODE  
At the start of each oscillator cycle, the high-side NFET (N-  
channel MOSFET) switch turns on and transmits a positive  
voltage across the inductor. Current in the inductor increases  
until the current sense signal crosses the peak inductor current  
level set by the voltage on the COMP pin. The high-side NFET  
then turns off, and the low-side NFET synchronous rectifier  
then turns on. This puts a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle.  
R
RT (kΩ) = 60,000/[fSW (kHz) + 10] − 5  
A 191 kΩ resistor sets the frequency to 300 kHz, and a 93.1 kΩ  
resistor sets frequency to 600 kHz. Figure 29 shows the typical  
relationship between RRT and fSW.  
1600  
1400  
1200  
1000  
800  
ENABLE/SHUTDOWN  
The EN input pin has a precision analog threshold of 1.2 V  
(typical) with 100 mV of hysteresis. When the enable voltage  
exceeds 1.2 V, the regulator turns on, and when it falls below  
1.1 V (typical), the regulator turns off. To force the devices to  
automatically start when input power is applied, connect the EN  
pin to the PVIN pin.  
600  
400  
When the ADP2165/ADP2166 are shut down, the soft start  
capacitor discharges. When the devices are reenabled, a new  
soft start cycle begins.  
200  
20  
40  
60  
80  
100  
(k)  
120  
140  
160  
180  
R
RT  
If the EN pin is not externally connected, an internal pull-down  
resistor (1 MΩ) prevents an accidental enable.  
Figure 29. Frequency (fSW) vs. RT Resistor  
To synchronize the ADP2165/ADP2166, drive an external clock  
at the SYNC pin. The frequency of the external clock can be in  
the 250 kHz to 1.4 MHz range.  
During the synchronization, the RT pin can be used to program  
the phase shift. When the RT pin is connected to the VREG pin,  
the rising edge of the SW pin is 180° out of phase with the external  
clock. If the RT pin is floating, the rising edge of the SW pin is in  
phase with the external clock.  
Rev. B | Page 12 of 23  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2165/ADP2166  
SOFT START  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The SS pin is used to program the soft start time. By connecting  
a capacitor between the SS and GND pins, the internal current  
then charges this capacitor and establishes the soft start ramp-up.  
The soft start time can be calculated by the following equation:  
The ADP2165/ADP2166 have a peak current-limit protection  
circuit to prevent current runaway. When the inductor peak  
current reaches the current-limit value, the high-side NFET  
turns off, and the low-side NFET turns on until the next cycle,  
while the overcurrent counter increments. If the overcurrent  
counter count exceeds 10, the device enters hiccup mode, and  
the high-side NFET and low-side NFET both turn off. The  
devices remain in this mode for seven times the soft start time  
and then attempt to restart from the soft start. If the current-  
limit fault clears, the devices resume normal operation.  
Otherwise, they reenter hiccup mode after counting 10 current-  
limit violations.  
0.6V ×CSS  
tSS  
=
ISS  
where:  
SS is the soft start capacitance.  
SS is the soft start pull-up current (3.5 µA).  
C
I
If the output voltage is precharged prior to startup, the  
ADP2165/ADP2166 prevent reverse inductor current that  
discharges the output capacitor until the soft start voltage  
exceeds the voltage on the FB pin.  
OVERVOLTAGE PROTECTION  
When the channel is disabled or a current fault happens, the  
soft start capacitor discharges.  
The ADP2165/ADP2166 provide an overvoltage protection  
feature that protects the system from an output short to a higher  
voltage supply or from a strong unload transient. If the feedback  
voltage increases to 0.7 V, the internal high-side NFET turns off  
and the low-side NFET turns on until the current through the  
low-side NFET reaches the negative current limit. Thereafter, both  
the high-side and low-side NFET are held in the off state until  
the voltage at FB decreases to 0.63 V, and the devices resume  
normal operation.  
TRACKING  
The ADP2165/ADP2166 have a tracking input feature, TRK,  
that allows the output voltage to track another voltage (master  
voltage). It is especially useful in core and I/O voltage tracking for  
field programmable gate arrays (FPGAs), digital signal processors  
(DSPs), and application specific integrated circuits (ASICs).  
The internal error amplifier includes three positive inputs: the  
internal reference voltage, the soft start voltage, and the TRK  
voltage. The error amplifier regulates the FB voltage to the  
lowest of the three voltages. To track a master voltage, tie the  
TRK pin to a resistor divider from the master voltage.  
UNDERVOLTAGE LOCKOUT  
Undervoltage lockout circuitry is integrated in the ADP2165/  
ADP2166. If AVIN drops below 2.5 V, the devices turn off.  
When the AVIN voltage rises above 2.6 V, the soft start period  
initiates, and the devices are enabled.  
If the TRK function is not used, connect the TRK pin to the VREG.  
THERMAL SHUTDOWN  
POWER-GOOD (PGOOD)  
In the event that the junction temperatures of the ADP2165/  
ADP2166 rise above 150°C, the thermal shutdown circuit turns  
the regulator off. Extreme junction temperatures can be the result  
of high current operation, poor circuit board design, and/or  
high ambient temperature. A 25°C hysteresis is included so that  
when thermal shutdown occurs, the ADP2165/ADP2166 do not  
return to operation until the on-chip temperature drops below  
125°C. When coming out of thermal shutdown, soft start initiates.  
The PGOOD pin is an active high, open-drain output that requires  
a pull-up resistor. A logic high on the PGOOD pin indicates  
that the voltage on the FB pin (and, therefore, the output  
voltage) is within 10% of the desired value. In addition, there is a  
16-cycle waiting period after the FB pin is detected as being  
within the 10% range. A logic low on the PGOOD pin indicates  
that the voltage on the FB pin is not within 10% of the desired  
value. Similarly, there is a 16-cycle delay to deassert PGOOD.  
Rev. B | Page 13 of 23  
 
 
 
 
 
 
 
ADP2165/ADP2166  
Data Sheet  
APPLICATIONS INFORMATION  
ADIsimPOWER DESIGN TOOL  
VOLTAGE CONVERSION LIMITATIONS  
The ADP2165/ADP2166 are supported by the ADIsimPower  
design tool set. ADIsimPower is a collection of tools that produce  
complete power designs optimized to a specific design goal. The  
tools allow the user to generate a full schematic, bill of materials,  
and calculate performance in minutes. ADIsimPower can optimize  
designs for cost, area, efficiency, and parts count while taking  
into consideration the operating conditions and limitations of  
the IC and all real external components. The ADIsimPower tool  
can be found at www.analog.com/ADIsimPower, and the user  
can request an unpopulated board through the tool.  
The minimum output voltage for a given input voltage and  
switching frequency is constrained by the minimum on time.  
The minimum on time of the ADP2165/ADP2166 is typically  
100 ns. The minimum output voltage at a given input voltage  
and frequency can be calculated using the following equation:  
V
OUT_MIN = VPVIN × tON_MIN × fSW − (RDSON_HS RDSON_LS) ×  
OUT_MIN × tON_MIN × fSW − (RDSON_LS + RL) × IOUT_MIN  
where:  
OUT_MIN is the minimum output voltage.  
ON_MIN is the minimum on time.  
I
(1)  
V
t
INPUT CAPACITOR SELECTION  
IOUT_MIN is the minimum output current.  
f
R
R
SW is the switching frequency.  
DSON_HS is the high-side MOSFET on resistance.  
DSON_LS is the low-side MOSFET on resistance.  
The input capacitor reduces the input voltage ripple caused by  
the switch current on the PVIN pin. Place the input capacitor as  
close as possible to the PVIN pin. A ceramic capacitor in the 10 µF  
to 47 µF range is recommended. The loop that is composed of  
this input capacitor, the high-side NFET, and the low-side NFET  
must be kept as small as possible.  
RL is the series resistance of the output inductor.  
The maximum output voltage for a given input voltage and  
switching frequency is constrained by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
100 ns, and the maximum duty cycle of the ADP2165/ADP2166  
is typically 90%.  
The voltage rating of the input capacitor must be greater than the  
maximum input voltage. The rms current rating of the input  
capacitor must be larger than the value calculated by the  
following equation:  
The maximum output voltage, limited by the minimum off time  
at a given input voltage and frequency, can be calculated using  
the following equation:  
IC  
= IOUT × D ×(1D)  
IN_RMS  
OUTPUT VOLTAGE SETTING  
V
I
OUT_MAX = VPVIN × (1 − tOFF_MIN × fSW) − (RDSON_HS RDSON_LS) ×  
OUT_MAX × (1 − tOFF_MIN × fSW) − (RDSON_LS + RL) × IOUT_MAX (2)  
where:  
OUT_MAX is the maximum output voltage.  
OFF_MIN is the minimum off time.  
The output voltage of the ADP2165/ADP2166 is set by an  
external resistive divider. The resistor values are calculated  
using the following equation:  
V
t
I
RTOP  
RBOT  
VOUT = 0.6 ×  
1 +  
OUT_MAX is the maximum output current.  
The maximum output voltage, limited by the maximum duty  
cycle at a given input voltage, can be calculated using the  
following equation:  
To limit the output voltage accuracy degradation due to FB bias  
current (0.1 µA maximum) to less than 0.5% (maximum), ensure  
that RBOT < 30 kΩ.  
VOUT_MAX = DMAX × VPVIN  
(3)  
Table 5 lists the recommended resistor divider for various output  
voltages.  
where DMAX is the maximum duty cycle.  
As Equation 1 to Equation 3 show, reducing the switching  
frequency alleviates the minimum on time and minimum off  
time limitation.  
Table 5. Resistor Divider for Various Output Voltages  
VOUT (V)  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
1.0  
10  
15  
1.2  
10  
10  
1.5  
15  
10  
1.8  
20  
10  
2.5  
3.3  
47.5  
10  
15  
2.21  
Rev. B | Page 14 of 23  
 
 
 
 
 
 
Data Sheet  
ADP2165/ADP2166  
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 6 lists some recommended inductors.  
INDUCTOR SELECTION  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor leads to a faster transient response; however, it  
degrades efficiency due to a larger inductor ripple current.  
Conversely, using a large inductor value leads to a smaller ripple  
current and better efficiency; however, it results in a slower  
transient response.  
Table 6. Recommended Inductors  
L
(µH)  
ISAT  
(A)  
IRMS DCR  
Vendor  
Part No.  
(A)  
21  
18  
(mΩ)  
1.10  
1.35  
Würth  
Elektronik  
744311022  
744314047  
744314076  
744311100  
0.22  
0.47  
0.76  
1.0  
32  
20  
15  
19  
14  
15.5 2.25  
15  
11  
4.6  
6.6  
As a guideline, the inductor ripple current, ΔIL, is typically set  
to one-third of the maximum load current. The inductor value  
is calculated using the following equation:  
744311150  
1.5  
7443340220  
2.2  
12.5 16.5 4.4  
7443340330  
3.3  
8.5  
30  
28  
24.3 17  
22.3 13  
16.4 11  
23.5 15  
14  
21  
20  
6.5  
2.9  
4.0  
4.75  
7.9  
9.8  
7.6  
(VPVIN VOUT )× D  
L =  
Coilcraft  
XAL7020-271ME  
XAL7020-331ME  
XAL7020-471ME  
XAL7020-681ME  
XAL7020-102ME  
XAL7030-152ME  
XAL7030-222ME  
0.27  
0.33  
0.47  
0.68  
1.0  
IL × fSW  
where:  
VPVIN is the input voltage.  
V
OUT is the output voltage.  
1.5  
2.2  
ΔIL is the inductor ripple current.  
SW is the switching frequency.  
D is the duty cycle, D = VOUT/VPVIN  
18  
12.9 13.7  
f
.
OUTPUT CAPACITOR SELECTION  
The ADP2165/ADP2166 use adaptive slope compensation in  
the current loop to prevent subharmonic oscillations when the  
duty cycle is larger than 50%. The internal slope compensation  
limits the minimum inductor value.  
The output capacitor selection affects the output ripple voltage  
load step transient and the loop stability of the regulator.  
For example, during a load step transient where the load is  
suddenly increased, the output capacitor supplies the load until  
the control loop can ramp up the inductor current. The delay  
caused by the control loop causes the output to undershoot. The  
output capacitance that is required to satisfy the voltage droop  
requirement can be calculated by using the following equation:  
For a duty cycle that is larger than 50%, the minimum inductor  
value is determined by using the following equation:  
VOUT ×(1D)  
L (Minimum) =  
4 × fSW  
The peak inductor current is calculated by using the following  
equation:  
KUV × ∆ISTEP 2 × L  
2 ×(VPVIN VOUT )× ∆VOUT _UV  
COUT_UV  
=
IL  
2
IPEAK = IOUT +  
where:  
UV is a factor, with a typical setting of KUV = 2.  
K
The saturation current of the inductor must be larger than the peak  
inductor current. For ferrite core inductors with a quick saturation  
characteristic, the saturation current rating of the inductor must  
be higher than the current limit threshold of the switch. This  
prevents the inductor from reaching saturation.  
ΔISTEP is the load step.  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
Another example occurs when a load is suddenly removed from  
the output, and the energy stored in the inductor rushes into  
the output capacitor, causing the output to overshoot.  
The rms current of the inductor is calculated from the following  
equation:  
The output capacitance that is required to meet the overshoot  
requirement can be calculated using the following equation:  
2
IL  
12  
KOV × ∆ISTEP2 × L  
2
IRMS  
=
IOUT  
+
COUT_OV  
=
2
2
(VOUT + ∆VOUT _OV ) VOUT  
where:  
OV is a factor, with a typical setting of KOV = 2.  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
K
Rev. B | Page 15 of 23  
 
 
 
ADP2165/ADP2166  
Data Sheet  
The ESR and the value of the capacitance determine the output  
ripple. Use the following equation to select a capacitor that can  
meet the output ripple requirements:  
The compensation components, RC and CC, contribute a zero,  
and the optional CCP and RC contribute an optional pole.  
The loop gain transfer equation is as follows:  
IL  
COUT_RIPPLE  
=
TV (S) =  
8× fSW × ∆VOUT _ RIPPLE  
RBOT  
gm  
×
×
VOUT _ RIPPLE  
RBOT + RTOP CC + CCP  
RESR  
where:  
=
IL  
1 + RC × CC × s  
RC × CC × CCP  
× GVD (s)  
s × (1 +  
× s)  
ΔVOUT_RIPPLE is the allowable output ripple voltage.  
CC + CCP  
R
ESR is the equivalent series resistance of the output capacitor  
The following design guideline shows how to select the RC, CC,  
and CCP compensation components for the ceramic output  
capacitor applications:  
in ohms (Ω).  
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both the load transient and the output  
ripple performance.  
,
1. Determine the cross frequency, fC. Generally, fC is between  
fSW/12 and fSW/6.  
The selected output capacitor voltage rating must be greater  
than the output voltage. The rms current rating of the output  
capacitor must be larger than the value calculated by  
IL  
2. Calculate RC by using the following equation:  
2× π×VOUT ×COUT × fC  
RC =  
0.6V × gm × AVI  
IC  
=
OUT_RMS  
12  
3. Place the compensation zero at the domain pole, fP; then  
determine CC by using the following equation:  
COMPENSATION DESIGN  
For peak current mode control, the power stage can be simplified  
as a voltage controlled current source supplying current to the  
output capacitor and load resistor. It is composed of one domain  
pole and a zero that is contributed by the output capacitor ESR.  
The control to output transfer function is based on the following:  
(R + RESR )×COUT  
CC =  
RC  
4. CCP is optional. It can be used to cancel the zero caused by  
the ESR of the output capacitor.  
s
1+  
R
ESR ×COUT  
V
OUT (s)  
2×π× fZ  
CCP  
=
G
VD (S) =  
= AVI × R ×  
s
RC  
VCOMP (s)  
1+  
2×π× fP  
The fixed output version IC must consider the feedforward  
capacitance of feedback resistor (RTOP) to calculate CCP.  
The total internal feedback resistance is 1 MΩ.  
1
fZ =  
fP =  
2 × π × RESR ×COUT  
First, place the compensation pole at the minimum value  
1
2 × π ×(R + RESR )×COUT  
between the domain pole, fP, and fFB × fFB  
.
Z
P
where:  
VI = 10 A/V.  
R is the load resistance.  
OUT is the output capacitance.  
ESR is the equivalent series resistance of the output capacitor.  
1
A
fFB  
=
=
P
1
1
2π×CF ×(  
+
)
RTOP  
RBOT  
C
R
1
fFB  
Z
2π×RTOP ×CF  
The ADP2165/ADP2166 use a transconductance amplifier for the  
error amplifier, which compensates for the system loop. Figure 30  
shows the simplified, peak current mode control, small signal circuit.  
Then, determine CCP by  
CC ×min  
(
fP , fFB × fFB  
)
P
Z
V
V
OUT  
OUT  
CCP  
=
RC ×CC CC ×min  
(
fP , fFB × fFB  
)
P
Z
R
TOP  
where CF = 8.14 pF.  
V
C
R
COMP  
C
OUT  
gm  
+
A
VI  
+
R
R
BOT  
R
C
CP  
ESR  
C
C
Figure 30. Simplified Peak Current Mode Control, Small Signal Circuit  
Rev. B | Page 16 of 23  
 
 
Data Sheet  
ADP2165/ADP2166  
DESIGN EXAMPLE  
ADP2166  
V
= 5V  
PVIN  
PVIN  
BST  
SW  
C
0.1µF  
BST  
L1  
0.47µH  
C
V
= 1.2V  
AVIN  
EN  
IN  
OUT  
47µF  
16V  
C
100µF  
6.3V  
C
OUT2  
100µF  
6.3V  
OUT1  
R
10kΩ  
TOP  
PGOOD  
SYNC  
RT  
FB  
COMP  
C
4.7pF  
R
TRK  
CP  
C
R
BOT  
36kΩ  
10kΩ  
680pF  
VREG  
SS  
C
C
C
C
1µF  
SS  
22nF  
VREG  
GND PGND  
Figure 31. Schematic for Design Example  
This section describes the procedures for selecting the external  
components based on the example specifications listed in Table 7.  
See Figure 31 for the schematic of this design example.  
This calculation results in L = 0.422 µH. Choose the standard  
inductor value of 0.47 µH.  
The peak-to-peak inductor ripple current can be calculated by  
using the following equation:  
Table 7. Step-Down DC-to-DC Regulator Requirements  
(VIN VOUT )× D  
Parameter  
Specification  
VPVIN = 5.0 V 10%  
VOUT = 1.2 V  
ΔIL =  
Input Voltage  
L × fSW  
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
This calculation results in ∆IL = 1.617 A.  
IOUT = 6 A  
Use the following equation to calculate the peak inductor  
current:  
∆VOUT_RIPPLE = 12 mV  
5%, 1 A to 5 A, 2 A/µs  
fSW = 1.2 MHz  
Switching Frequency  
IL  
2
I
PEAK = IOUT +  
OUTPUT VOLTAGE SETTING  
This calculation results in IPEAK = 6.809 A.  
Choose a 10 kΩ resistor as the top feedback resistor (RTOP  
)
and calculate the bottom feedback resistor (RBOT) by using the  
following equation:  
Use the following equation to calculate the rms current flowing  
through the inductor:  
2
0.6  
VOUT 0.6  
IL  
12  
2
RBOT = RTOP ×  
IRMS  
=
IOUT  
+
This calculation results in IRMS = 6.018 A.  
To set the output voltage to 1.2 V, the resistor values are as  
follows: RTOP = 10 kΩ and RBOT = 10 kΩ.  
Based on the calculated current value, select an inductor with  
a minimum rms current rating of 6.03 A and a minimum  
saturation current rating of 6.9 A.  
FREQUENCY SETTING  
To use the fixed 1.2 MHz switching frequency, connect the RT  
pin to the VREG pin.  
However, to protect the inductor from reaching its saturation  
point under the current-limit condition, use an inductor that is  
rated for at least a 9 A saturation current for reliable operation.  
INDUCTOR SELECTION  
The peak-to-peak inductor ripple current, ∆IL, is set to 30% of  
the maximum output current. Use the following equation to  
estimate the inductor value:  
Based on the requirements described previously, select a 0.47 µH  
inductor, such as the 744314047 from Würth, which has a 1.35 mΩ  
DCR and a 20 A saturation current.  
(VPVIN VOUT )× D  
L =  
IL × fSW  
where:  
V
V
PVIN = 5 V.  
OUT = 1.2 V.  
D = 0.24.  
∆IL = 1.8 A.  
fSW = 1.2 MHz.  
Rev. B | Page 17 of 23  
 
 
 
 
 
 
ADP2165/ADP2166  
Data Sheet  
OUTPUT CAPACITOR SELECTION  
COMPENSATION COMPONENTS  
The output capacitor is required to meet both the output voltage  
ripple and load transient response requirements.  
For better load transient and stability performance, set the cross  
frequency, fC, to fSW/10. In this case, fSW is running at 1200 kHz;  
therefore, the fC is set to 120 kHz.  
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance value of the output  
capacitor:  
The 100 µF and 47 µF ceramic output capacitors have a derated  
value of 62 µF and 32 µF.  
IL  
2× π ×1.2 V ×94 μF×120kHz  
COUT_RIPPLE  
=
RC =  
CC =  
= 28.35 kΩ  
8× fS × ∆VOUT _ RIPPLE  
0.6 V ×500 μs ×10A/V  
VOUT _ RIPPLE  
(0.2 Ω + 0.002 Ω)×94 μF  
RESR  
=
= 669.8 pF  
IL  
28.35 kΩ  
This calculation results in COUT_RIPPLE = 14 µF and RESR = 7.4 mΩ.  
0.002 Ω × 94 μF  
CCP  
=
= 6.63 pF  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
28.35 kΩ  
Choose standard components as follows: RC = 27 kΩ, CC = 680 pF,  
and CCP = 4.7 pF.  
KOV × ∆ISTEP2 × L  
(VOUT + ∆VOUT _OV ) VOUT  
COUT_OV  
=
=
SOFT START TIME PROGRAM  
2
2
The soft start feature allows the output voltage to ramp up in a  
controlled manner, eliminating output voltage overshoot during  
soft start and limiting the inrush current. Set the soft start time  
to 4 ms.  
KUV × ∆ISTEP 2 × L  
2 ×(VPVIN VOUT )× ∆VOUT _UV  
COUT_UV  
where:  
OV = KUV = 2, the coefficients for estimation purposes.  
tSS _ EXT × ISS _UP 4 ms ×3.5μA  
K
CSS  
=
=
= 23.3 nF  
ISTEP = 4 A, the load transient step.  
0.6  
0.6V  
VOUT_OV = 5% × VOUT, the overshoot voltage.  
VOUT_UV = 5% × VOUT, the undershoot voltage.  
Choose a standard component value as follows: CSS = 22 nF.  
INPUT CAPACITOR SELECTION  
This calculation results in COUT_OV = 100 µF and COUT_UV = 33 µF.  
A minimum 22 µF ceramic capacitor must be placed near the  
PVIN pin. In this application, it is recommended that one 47 µF,  
X5R, 16 V ceramic capacitor be used.  
According to the calculation, the output capacitance must be  
greater than 100 µF, and the ESR of the output capacitor must be  
smaller than 7.4 mΩ. It is recommended that one 100 µF, X5R,  
6.3 V ceramic capacitor and one 47 µF, X5R, 6.3 V ceramic  
capacitor be used, such as the GRM32ER60J107ME20 and  
GRM32ER60J476ME20 from Murata, with an ESR of 2 mΩ.  
Rev. B | Page 18 of 23  
 
 
 
 
Data Sheet  
ADP2165/ADP2166  
RECOMMENDED EXTERNAL COMPONENTS  
Table 8. Recommended External Components for Typical Applications with 6 A Output Current  
fSW (kHz)  
VPVIN (V)  
3.3  
3.3  
3.3  
3.3  
3.3  
5
5
5
5
5
VOUT (V)  
L (µH)  
COUT (µF)1  
680 + 330  
680 + 47  
680  
470 + 100  
470 + 47  
680 + 330  
680 + 470  
680  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ) CC (pF)  
CCP (pF)  
134  
111  
89  
85  
61  
668  
64  
89  
85  
267  
12  
279  
232  
11  
9
300  
1
1.5  
1.5  
2.2  
2.2  
1.5  
1.5  
2.2  
2.2  
10  
10  
15  
20  
47.5  
10  
10  
15  
20  
15  
10  
10  
10  
15  
15  
10  
10  
10  
15  
2.21  
15  
10  
10  
10  
15  
15  
10  
10  
10  
15  
2.21  
15  
10  
10  
10  
15  
15  
10  
10  
10  
15  
2.21  
52.9  
44.7  
53.4  
50.1  
65.7  
52.9  
72.3  
53.4  
44.3  
47.4  
32.1  
45.5  
54.6  
29.4  
28.0  
39.0  
66.9  
54.6  
62.2  
28.0  
39.0  
25.7  
31.2  
37.4  
35.4  
28.0  
39.0  
82.9  
37.4  
35.4  
28.0  
19.6  
51.4  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
1600  
1500  
1300  
1300  
1300  
1300  
1500  
1500  
1300  
1300  
1300  
680  
1.2  
1.5  
1.8  
2.5  
1
1.2  
1.5  
1.8  
2.5  
3.3  
1
1.2  
1.5  
1.8  
2.5  
1
1.2  
1.5  
1.8  
2.5  
3.3  
1
1.2  
1.5  
1.8  
2.5  
1
1.2  
1.5  
1.8  
2.5  
3.3  
2.2  
3.3  
2.2  
470  
330 + 47  
3 × 100  
330 + 47  
330 + 47  
2 × 100 + 47  
2 × 100  
2 × 100  
470 + 100  
330 + 47  
330  
47.5  
10  
5
600  
3.3  
3.3  
3.3  
3.3  
3.3  
5
5
5
5
5
0.6  
10  
10  
15  
20  
47.5  
10  
10  
15  
20  
0.82  
0.82  
0.82  
0.6  
0.82  
0.82  
1
1
1.5  
1
6
64  
232  
186  
9
6
5
2 × 100  
100 + 47  
100  
47.5  
10  
5
1200  
3.3  
3.3  
3.3  
3.3  
3.3  
5
5
5
5
5
0.33  
0.47  
0.47  
0.47  
0.33  
0.47  
0.47  
0.47  
0.6  
2 × 100  
2 × 100  
100 + 47  
100  
100  
330  
2 × 100  
100 + 47  
100  
100  
100  
10  
10  
15  
20  
47.5  
10  
10  
15  
20  
8
7
5
4
3
139  
7
5
4
680  
680  
680  
680  
680  
680  
680  
680  
0.6  
0.6  
47.5  
10  
680  
680  
3
2
5
1 680 µF: 2.5 V, KEMET T520D687M2R5ATE010; 470 µF: 2.5 V, KEMET T520D477M2R5ATE006; 330 µF: 2.5 V, KEMET T520D337M2R5ATE006; 220 µF: 2.5 V, KEMET  
T520D227M2R5ATE007; 330 µF: 4 V, KEMET T520D337M004ATE006; 100 µF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 µF: 6.3 V, X5R, Murata GRM32ER60J476ME20.  
VOUT is higher than 1.5 V, and COUT must use a 4 V tantalum capacitor.  
Rev. B | Page 19 of 23  
 
ADP2165/ADP2166  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good circuit board layout is essential for obtaining the best  
performance from the ADP2165/ADP2166. Poor printed  
circuit board (PCB) layout degrades the output regulation as  
well as the electromagnetic interface (EMI) and electromagnetic  
compatibility (EMC) performance. Figure 32 shows a PCB layout  
example. For optimum layout, use the following guidelines:  
Connect the exposed pad of the ADP2165/ADP2166 to  
a large copper plane to maximize its power dissipation  
capability for better thermal dissipation.  
Place the feedback resistor divider network as close as possible to  
the FB pin to prevent noise pickup. Try to minimize the length of  
the trace that connects the top of the feedback resistor divider  
to the output while keeping the trace away from the high current  
traces and the switching node to avoid noise pickup. To further  
reduce noise pickup, place an analog ground plane on either side of  
the FB trace and ensure that the trace is as short as possible to  
reduce parasitic capacitance pickup.  
Use separate analog ground and power ground planes.  
Connect the ground reference of sensitive analog circuitry,  
such as output voltage divider components, to analog  
ground. In addition, connect the ground reference of  
power components, such as input and output capacitors, to  
power ground. Connect both ground planes to the exposed  
pad of the ADP2165/ADP2166.  
Place the input capacitor, inductor, and output capacitor as  
close to the IC as possible and use short traces.  
Ensure that the high current loop traces are as short and as  
wide as possible. Make the high current path from the input  
capacitor through the inductor, the output capacitor, and the  
power ground plane back to the input capacitor as short as  
possible. To accomplish this, ensure that the input and output  
capacitors share a common power ground plane.  
ANALOG GROUND PLANE  
VIA  
BOTTOM LAYER  
TRACE  
C
COPPER PLANE  
VREG  
R
TOP  
POWER GROUND PLANE  
VREG  
EN  
PULL-UP  
SW  
GND  
GND  
PGOOD  
BST  
AVIN  
PVIN  
C
BST  
PGND  
PGND  
PGND  
POWER GROUND  
PLANE  
INPUT  
BYPASS  
CAPACITOR  
INPUT  
PVIN  
PVIN  
BULK  
CAPACITOR  
OUTPUT  
CAPACITOR  
PVIN  
SW  
INDUCTOR  
VOUT  
Figure 32. Recommended PCB Layout  
Rev. B | Page 20 of 23  
 
 
Data Sheet  
ADP2165/ADP2166  
REFERENCE DESIGNS  
See Figure 33 through Figure 36 for the detailed reference designs.  
ADP2165/  
ADP2166  
V
= 5V  
PVIN  
PVIN  
AVIN  
EN  
BST  
C
0.1µF  
BST  
L1  
0.82µH  
C
V
= 1.2V  
OUT  
IN  
47µF  
16V  
SW  
C
470µF  
6.3V  
OUT  
R
10k  
TOP  
PGOOD  
RT  
FB  
SYNC  
TRK  
COMP  
C
33pF  
R
33kΩ  
C
1.5nF  
CP  
C
R
10kΩ  
BOT  
VREG  
SS  
C
C
C
1µF  
SS  
22nF  
VREG  
GND PGND  
Figure 33. 1.2 V, 5 A/6 A, 620 kHz by Floating the RT Pin Step-Down Regulator Application  
ADP2165/  
ADP2166  
PVIN  
AVIN  
EN  
V
= 5V  
PVIN  
BST  
C
0.1µF  
BST  
L1  
0.6µH  
C
V
= 1.8V  
OUT  
IN  
47µF  
16V  
SW  
C
100µF  
6.3V  
OUT  
R
20k  
TOP  
PGOOD  
SYNC  
RT  
1.2MHz  
EXT CLOCK  
FB  
COMP  
C
3.3pF  
R
TRK  
CP  
C
R
BOT  
27kΩ  
10kΩ  
680pF  
VREG  
SS  
C
C
C
C
1µF  
SS  
22nF  
VREG  
GND PGND  
Figure 34. 1.8 V, 5 A/6 A Step-Down Regulator Application, Synchronized to 1.2 MHz, 180° Out of Phase with the External Clock  
ADP2165/  
ADP2166  
V
= 5V  
PVIN  
PVIN  
AVIN  
EN  
BST  
C
0.1µF  
BST  
L1  
0.82µH  
C
V
= 3.3V  
IN  
OUT  
47µF  
16V  
SW  
C
100µF  
6.3V  
OUT  
R
10k  
TOP  
PGOOD  
SYNC  
TRK  
R
10kΩ  
TRKT  
FB  
V
MASTER  
COMP  
R
TRKB  
C
1.8pF  
R
RT  
CP  
C
2.21kΩ  
R
BOT  
51kΩ  
2.21kΩ  
680pF  
VREG  
SS  
C
C
C
C
1µF  
SS  
22nF  
VREG  
GND PGND  
Figure 35. 3.3 V, 5 A/6 A, 1.2 MHz Step-Down Regulator Application, Tracking Mode  
Rev. B | Page 21 of 23  
 
 
ADP2165/ADP2166  
Data Sheet  
ADP2165/  
ADP2166  
V
= 5V  
PVIN  
PVIN  
BST  
C
0.1µF  
BST  
L1  
0.47µH  
C
47µF  
16V  
V
= 1.2V  
AVIN  
EN  
IN  
OUT  
SW  
C
C
OUT2  
OUT1  
100µF  
6.3V  
100µF  
6.3V  
PGOOD  
SYNC  
RT  
FB  
COMP  
R
T
C
R
TRK  
CP  
C
43.5kΩ  
4.7pF  
36kΩ  
VREG  
SS  
C
C
C
C
SS  
22nF  
VREG  
GND PGND  
680pF  
1µF  
Figure 36. Fixed Output 1.2 V, 5 A/6 A, 1.2 MHz Step-Down Regulator Application  
Rev. B | Page 22 of 23  
 
Data Sheet  
ADP2165/ADP2166  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8  
Figure 37. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-24-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Output Current (A)  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage  
Package Description  
Package Option  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
ADP2165ACPZ-R7  
5
5
5
5
5
5
5
ADJ  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
Evaluation Board  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
Evaluation Board  
ADP2165ACPZ-1.0-R7  
ADP2165ACPZ-1.2-R7  
ADP2165ACPZ-1.5-R7  
ADP2165ACPZ-1.8-R7  
ADP2165ACPZ-2.5-R7  
ADP2165ACPZ-3.3-R7  
ADP2165-EVALZ  
1.0 V  
1.2 V  
1.5V  
1.8 V  
2.5 V  
3.3 V  
ADP2166ACPZ-R7  
6
6
6
6
6
6
6
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
ADJ  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
ADP2166ACPZ-1.0-R7  
ADP2166ACPZ-1.2-R7  
ADP2166ACPZ-1.5-R7  
ADP2166ACPZ-1.8-R7  
ADP2166ACPZ-2.5-R7  
ADP2166ACPZ-3.3-R7  
ADP2166-EVALZ  
1.0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
1 Z = RoHS Compliant Part.  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10956-0-8/17(B)  
Rev. B | Page 23 of 23  
 
 

相关型号:

ADP2165ACPZ-R7

5.5 V, 5 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166

5.5 V, 5 A/6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166-EVALZ

5.5 V, 5 A/6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-1.0-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-1.2-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-1.5-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-1.8-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-2.5-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-3.3-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP2166ACPZ-R7

5.5 V, 6 A, High Efficiency, Step-Down DC-to-DC Regulators with Output Tracking
ADI

ADP220ACBZ-1118R7

Dual, 200 mA, Low Noise, High PSRR Voltage Regulator
ADI

ADP220ACBZ-1212R7

Dual, 200 mA, Low Noise, High PSRR Voltage Regulator
ADI