ADP3000AR-3.3-REEL [ADI]

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator; 微功率升压/降压型固定3.3 V , 5 V , 12 V ,可调节高频开关稳压器
ADP3000AR-3.3-REEL
型号: ADP3000AR-3.3-REEL
厂家: ADI    ADI
描述:

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator
微功率升压/降压型固定3.3 V , 5 V , 12 V ,可调节高频开关稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V,  
Adjustable High Frequency Switching Regulator  
ADP3000  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
SET  
Operates at supply voltages from 2 V to 30 V  
Works in step-up or step-down mode  
Very few external components required  
High frequency operation up to 400 kHz  
Low battery detector on-chip  
A1  
A0  
V
IN  
I
GAIN BLOCK/  
ERROMP  
LIM  
SW1  
1.245V  
REFERENCE  
40z  
OSATOR  
User-adjustable current limit  
Fixed and adjustable output voltage  
8-lead PDIP, 8-lead SOIC, and 14-lead TSSOP packages  
Small inductors and capacitors  
DRIVER  
SW2  
OMPA
R2  
ADP3000  
APPLICATIONS  
GND  
SENSE  
Notebook, palmtop computers  
Cellular telephones  
Hard disk drives  
Portable instruments  
Pagers  
igure 1.  
IN5817  
6.8µH  
3.3V  
180mA  
V
2V TO 3.2V  
V  
120V  
1
2
I
V
LIM  
IN  
SW1  
GENERAL DESCRIPTION  
3
8
ADP3000-3.3V  
The ADP3000 is a versatile step-up/step-down switchin
regulator. It operates from an input supply voltage of 2
12 V in step-up mode, and from 2 V to 30 V in step-dow
C1  
100µF  
FB  
(SENSE)  
+
10V  
GND  
5
SW2  
4
Operating in pulse frequency mode (PFM), e device consumes  
only 500 µA, making it ideal for applicatiorequg l
quiescent current. It delivers an output current of 180 mt  
3.3 V from a 2 V input in step-up and an outpuurrent  
of 100 mA at 3 V from a 5 V in-wn mode.  
C1, C2 = AVX TPS D107 M010R0100  
L1 = SUMIDA CR43-6R8  
Figure 2. Typical Application  
V
IN  
5V TO 6V  
C1  
100µF  
10V  
R
120Ω  
LIM  
The ADP3000 operates at 400 kequency. This  
allows the use of smalal com(inductors and  
capacitors), makint for se-constrained designs.  
1
2
3
I
V
SW1  
LIM  
IN  
8
4
FB  
ADP3000  
The auxiliary gain used as a low battery detector,  
linear regulator, undout, or error amplifier.  
SW2  
V
OUT  
3V  
100mA  
L1  
10µH  
R2  
150kΩ  
1%  
GND  
5
C
100µF  
10V  
L
+
D1  
1N5818  
R1  
110kΩ  
1%  
C1, C2 = AVX TPS D107 M010R0100  
L1 = SUMIDA CR43-100  
Figure 3. Step-Down Mode Operation  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
ADP3000  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Programming the Gain Block................................................... 11  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ........................................................................ 9  
Applications Information .............................................................. 10  
Component Selection................................................................. 10  
Programming the Switching Current Limit............................ 10  
Power Transistor Protection Diode in Step-Down  
Configuration ............................................................................. 11  
Thermal Considerations............................................................ 11  
Typical Application Circuits ......................................................... 13  
Outline Dimensions...................................................................... 15  
Ordering Guide ...................................................................... 16  
REVISION HISTORY  
9/04—Data Sheet Changed from Rev. 0 to Rev. A  
Added RU-14 Package ................................................. Universal  
Changes to Table 4.....................................................................10  
Changes to Table 5.....................................................................10  
Updated Outline Dimensions..................................................15  
Changes to Ordering Guide .....................................................1
1/97—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
ADP3000  
SPECIFICATIONS  
0°C ≤ TA ≤ +70°C, VIN = 3 V, unless otherwise noted.1  
Table 1.  
ADP3000  
Typ  
Parameter  
Conditions  
Symbol  
Min  
Max  
Unit  
V
V
INPUT VOLTAGE  
Step-up mode  
Step-down mode  
VFB > 1.43 V; VSENSE > 1.1 × VOUT  
ADP30002  
ADP3000-3.33  
ADP3000-53  
VIN  
2.0  
12.6  
30.0  
SHUT-DOWN QUIESCENT CURRENT  
COMPARATOR TRIP POINT VOLTAGE  
OUTPUT SENSE VOLTAGE  
IQ  
500  
1.245  
3.3  
.00  
12.00  
8
µA  
V
1.20  
1.30  
3.465  
5.25  
12.60  
12.5  
50  
50  
120  
450  
VOUT  
3.5  
.75  
.40  
V
V
V
ADP3000-123  
ADP3000  
COMPARATOR HYSTERESIS  
OUTPUT HYSTERESIS  
mV  
mV  
mV  
mV  
kHz  
%
ADP3000-3.3  
ADP3000-5  
ADP3000-12  
32  
75  
OSCILLATOR FREQUENCY  
DUTY CYCLE  
fOSC  
0  
65  
400  
80  
VFB < VREF  
SWITCH-ON TIME  
ILIM tied to VIN, VFB= 0  
TA = +25°C  
tON  
VS
1.5  
2
2.55  
µs  
SWITCH SATURATION VOLTAGE  
Step-Up Mode  
VIN = 3.0 V, ISW = 65mA  
VIN = 5.0 V, ISW = 1 A  
VIN = 12 V, IS= 650 mA  
ADP300
VSET =
0.5  
0.75  
0.8  
1.1  
V
1.1  
1.5  
330  
400  
0.4  
0.15  
0.6  
V
V
Step-Down Mode  
FEEDBACK PIN BIAS CURRENT  
SET PIN BIAS CURRENT  
IFB  
160  
200  
0.15  
0.02  
0.2  
nA  
nA  
V
ISET  
VOL  
GAIN BLOCK OUTPUT LOW  
REFERENCE LINE REGULATION  
ISINK = 0 V  
V VIN
2 V VIN 5 V  
104  
%/V  
%/V  
GAIN BLOCK GAIN  
AV  
1000  
6000  
300  
400  
0.3  
1
V/V  
µA  
GAIN BLOCK CURRENT SINK  
CURRENT LIMIT  
VSET ≤ 1
ISINK  
ILIM  
0 rom ILIM to VIN  
mA  
%/°C  
µA  
CURRENT LIMIT TEMPERATUR
SWITCH-OFF LEAKAGE CURREN
Measured at SW1 pin  
VSW1= 12 V, TA = +25°C  
TA = +25°C  
10  
MAXIMUM EXCURSND  
mV  
ISW1 10 µA, switch off  
400  
350  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical methods.  
2This specification guarantees that both the high and low trip points of the comparator fall within the 1.20 V to 1.30 V range.  
3The output voltage waveform will exhibit a saw-tooth shape due to the comparator hysteresis. The output voltage on the fixed output versions will always be within  
the specified range.  
4100 kΩ resistor connected between a 5 V source and the AO pin.  
Rev. A | Page 3 of 16  
 
 
 
 
 
ADP3000  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Input Supply Voltage, Step-Up Mode  
Input Supply Voltage, Step-Down Mode  
SW1 Pin Voltage  
SW2 Pin Voltage  
Feedback Pin Voltage (ADP3000)  
Switch Current  
Maximum Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to  
Absolute Maximum Rating conditions for extended periods  
may affect device reliability.  
Rating  
15 V  
36 V  
50 V  
0.5 V to VIN  
5.5 V  
1.5 A  
500 mW  
0°C to +70°C  
65°C to +150°C  
300°C  
Lead Temperature (Soldering, 10 s)  
Thermal Impedance  
R-8  
RU-14  
N-8  
170°C/W  
150°C/W  
120°C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 eadily  
accumulate on the human body and test equipment and can discharge without deteonlthough  
this product features proprietary ESD protection circuitry, permanent damage may occn devic
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionalit
Rev. A | Page 4 of 16  
ADP3000  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
I
1
2
3
4
8
7
6
5
FB (SENSE)*  
SET  
LIM  
I
1
2
3
4
8
7
6
5
FB (SENSE)*  
SET  
LIM  
V
IN  
ADP3000  
ADP3000  
TOP VIEW  
(Not to Scale)  
V
IN  
SW1  
SW2  
AO  
TOP VIEW  
SW1  
SW2  
AO  
(Not to Scale)  
GND  
GND  
*FIXED VERSIONS  
*FIXED VERSIONS  
Figure 6. 8-Lead SOIC (R-8)  
Figure 4. 8-Lead Plastic DIP (N-8)  
1
2
3
4
5
6
7
NC  
14  
13  
12  
11  
NC  
FB  
NC  
ILIM  
VIN  
SET  
AO  
ADP3000  
TOP VIEW  
(Not to Scale)  
SW1  
NC  
10 NC  
9
8
NC  
SW2  
GND  
NC = NO CONNECT  
Figure 5. 14-lead TSSOP (RU-14)  
Table 3. Pin Function Descriptions  
Mnemonic  
Function  
ILIM  
For normal conditions, connect to VIN. Wheower cent is required, connect a resistor between ILIM and VIN.  
To limit the switch current to onne2Ω resistor.  
Input Voltage.  
VIN  
SW1  
Collector of Power Transin configuration, connect to VIN. For step-up configuration, connect  
to an inductor/diode.  
SW2  
Emitter of Power sistor. wn configuration, connect to inductor/diode. For step-up  
configurationonnect to groundo not allow pin to go more than a diode drop below ground.  
Ground.  
GND  
AO  
Auxiliary Gain Bk (GB) Ouut. Open collector can sink 300 µA. This pin can be left open if not used.  
SET  
Auxilain Amplifier Int. The amplifier’s positive input is connected to the SET pin, and its negative  
innected to e 1.245 V reference. This pin can be left open if not used.  
adjustable) version, this pin is connected to the comparator input. On the ADP3000-3.3,  
td the ADP3000-12, the pin goes directly to the internal resistor divider that sets the  
outp
FB/SENSE  
SET  
A0  
A1  
A0  
V
V
IN  
IN  
I
I
GAIN BLOCK/  
ERROR AMP  
GAIN BLOCK/  
ERROR AMP  
LIM  
LIM  
SW1  
SW1  
1.245V  
1.245V  
REFERENCE  
REFERENCE  
A1  
OSCILLATOR  
OSCILLATOR  
DRIVER  
DRIVER  
SW2  
SW2  
COMPARATOR  
COMPARATOR  
R1  
R2  
ADP3000  
ADP3000  
GND  
FB  
GND  
SENSE  
Figure 7. Functional Block Diagram for Adjustable Version  
Figure 8. Functional Block Diagram for Fixed Version  
Rev. A | Page 5 of 16  
 
ADP3000  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
406  
405  
404  
403  
402  
401  
400  
399  
398  
OSCILLATOR FREQUENCY  
@ T = 25°C  
A
2.0  
1.5  
V
= 5V @ T = 25°C  
A
IN  
1.0  
0.5  
0
V
= 3V @ T = 25°C  
A
IN  
V
= 2V @ T = 25°C  
A
IN  
0.1  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.5  
2
4
6
8
10  
12  
1
18  
24  
27  
30  
SWITCH CURRENT (A)  
NPUT VOLTAG
Figure 9. Switch-On Voltage vs. Switch Current in Step-Up Mode  
Figure 12. Oscillarequency vs. Input Voltage  
1.4  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0.2  
0.1  
0
= 5V  
T
= 0°C  
N  
A
V
= 5V @ T = 25°C  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
IN  
T
= 25°C  
A
V
= 12V @ T = 25°C  
A
IN  
T
= 85°C  
A
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
.8  
1
10  
100  
1k  
SWITCH CURRENT (A)  
R
()  
LIM  
Figure 10. Saturation Voltage vs. Switch Step-Dowde  
Figure 13. Maximum Switch Current vs. RLIM in Step-Down Mode (5 V)  
1400  
1200  
1.8  
V
= 12V  
T
= 25°C  
IN  
A
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 0°C  
A
ENT @ T = 25°C  
A
1000  
800  
600  
400  
200  
0
T
= 85°C  
A
1.5  
3.0  
6
9
12  
15  
18  
21  
24  
27  
30  
1
10  
100  
1k  
INPUT VOLTAGE (V)  
R
()  
LIM  
Figure 11. Quiescent Current vs. Input Voltage  
Figure 14. Maximum Switch Current vs. RLIM in Step-Down Mode (12 V)  
Rev. A | Page 6 of 16  
 
 
 
ADP3000  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3V  
IN  
T
= 0°C  
A
T
= 25°C  
A
T
= 85°C  
A
1
10  
100  
1k  
–40  
0
2
TEMRE (°C(T 
70  
85  
R
()  
LIM  
A
Figure 15. Maximum Switch Current vs. RLIM in Step-Up Mode (3 V)  
e 18. Duty Cycmperature  
440  
430  
420  
410  
400  
390  
380  
370  
360  
350  
340  
330  
0.56  
4  
0.50  
0.48  
.46  
0.44  
0.42  
V
= 3V @ I  
= 0.65A  
SW  
IN  
–40  
0
25  
TEMPERATURE (°C(T ))  
85  
–40  
0
25  
TEMPERATURE (°C(T ))  
70  
85  
A
A
Figure 16. Oscillator Frequency vs. Temperature  
Figure 19. Saturation Voltage vs. Temperature in Step-Up Mode  
2.30  
1.25  
1.20  
1.15  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
V
= 12V @ I  
= 0.65A  
SW  
IN  
1.10  
1.05  
1.00  
0.95  
0.90  
–40  
0
25  
TEMPERATURE (°C(T ))  
70  
85  
–40  
0
25  
TEMPERATURE (°C(T ))  
70  
85  
A
A
Figure 17. Switch-On Time vs. Temperature  
Figure 20. Switch-On Voltage vs. Temperature in Step-Down Mode  
Rev. A | Page 7 of 16  
 
ADP3000  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
0
–40  
0
–40  
0
25  
TEMPERATURE (°C(T ))  
70  
85  
0
TEPERA(T ))  
70  
85  
A
A
Figure 21. Feedback Bias Current vs. Temperature  
Figure 23in Bias Currenperature  
700  
600  
500  
400  
300  
200  
100  
0
V
= 20V  
IN  
–40  
0
25  
TEMPERATURE (°C(T ))  
70  
8
A
Figure 22. Quiescent Current vserature  
Rev. A | Page 8 of 16  
ADP3000  
An uncommitted gain block on the ADP3000 can be connected  
as a low battery detector. The inverting input of the gain block  
is internally connected to the 1.245 V reference. The  
noninverting input is available at the SET pin. A resistor divider,  
connected between VIN and GND with the junction connected  
to the SET pin, causes the AO output to go low when the low  
battery set point is exceeded. The AO output is an open  
collector NPN transistor that can sink in excess of 300 µA.  
THEORY OF OPERATION  
The ADP3000 is a versatile, high frequency, switch mode power  
supply (SMPS) controller. The regulated output voltage can be  
greater than the input voltage (in boost or step-up mode) or less  
than the input voltage (in buck or step-down mode). This  
device uses a gated oscillator technique to provide high  
performance with low quiescent current.  
Figure 7 is a functional block diagram of the ADP3000. The  
internal 1.245 V reference is connected to one input of the  
comparator, and the other input is externally connected (via the  
FB pin) to a resistor divider, which is connected to the regulated  
output. When the voltage at the FB pin falls below 1.245 V, the  
400 kHz oscillator turns on. The ADP3000 internal oscillator  
typically provides a 1.7 µs on time and a 0.8 µs off time. A driver  
amplifier provides base drive to the internal power switch, and  
the switching action raises the output voltage. When the voltage  
at the FB pin exceeds 1.245 V, the oscillator shuts off. While the  
oscillator is off, the ADP3000 quiescent current is only 500 µA.  
The comparator’s hysteresis ensures loop stability without  
requiring external components for frequency compensation.  
The ADP3000 provides external connections for both the  
collector and the emitter of its internal power switch,  
permitting both step-up and p-down modes of operation.  
For the step-up mode, the mitter (n SW2) is connected to  
GND, and the collector (PSWdrives the inductor. For step-  
down mode, the emter drivee indur, while the collector  
is connected to
The output voltage of tADP3000 is set with two external  
resistorsThree fixed voltmodels are also available:  
ADP000-3.3 .3 V), ADP3000-5 (5 V), and ADP3000-12  
(12 . Thxed voltage models include laser-trimmed,  
voltageing resiors on the chip. On the fixed voltage  
models of AP3000, simply connect the feedback pin  
(Pin 8) directto the output voltage.  
The maximum current in the internal power switch is set by  
connecting a resistor between VIN and the ILIM pin. When the  
maximum current is exceeded, the switch is turned off. The  
current limit circuitry has a time delay of about 0.3 µs. I
external resistor is not used, connect ILIM to VIN. This y
maximum feasible current limit. Further information o
included in the Applications Information secti
Rev. A | Page 9 of 16  
ADP3000  
Table 5. Recommended Capacitors  
APPLICATIONS INFORMATION  
Vendor  
Series  
Type  
Phone Number  
(843) 448-9411  
(619) 661-6835  
(603) 224-1961  
(800) 344-2112  
COMPONENT SELECTION  
AVX  
Sanyo  
Sprague  
TPS  
OS-CON  
595D  
Surface Mount  
Through Hole  
Surface Mount  
Through Hole  
Inductor Selection  
For most applications, the inductor used with the ADP3000  
falls in the range of 4.7 µH to 33 µH. Table 4 shows  
recommended inductors and their vendors.  
Panasonic HFQ  
Diode Selection  
When selecting an inductor for the ADP3000, it is very important  
to make sure the inductor is able to handle a current higher than  
the ADP3000s current limit, without becoming saturated.  
The ADP3000s high switching speed demands the use of  
Schottky diodes. Suitable choices inde the 1N5817, the  
1N5818, the 1N5819, the MBRS10LT3, and the MBR0520LT1.  
Fast recovery diodes are not rmmend because their high  
forward drop lowers efficincy. al-purpoand small-  
signal diodes should be voided as l.  
As a general rule, powdered iron cores saturate softly, whereas  
Ferrite cores saturate abruptly. Rod and open drum core  
geometry inductors saturate gradually. Inductors that saturate  
gradually are easier to use. Even though rod and drum core  
inductors are attractive in both price and physical size, they  
must be used with care because they have high magnetic  
radiation. When minimizing EMI is critical, toroid and closed  
drum core geometry inductors should be used.  
PROGRAMMINTHWITCHING CURRENT LIMIT  
The ADP300RLIM pin permthe cycle-by-cycle switch  
current limto be programmed with a single external resistor.  
This feae offemajor advantages that ultimately decrease  
the compocost anhe PCB’s real estate. First, the RLIM  
pin allows the DP30 to use low value, low saturation current  
and physically sminductors. Additionally, it allows for a  
ysically small surface-mount tantalum capacitor with a  
typl ESR 0.1 Ω. With this capacitor, it achieves an output  
ripple w as 40 mV to 80 mV, as well as a low input ripple.  
In addition, inductor dc resistance causes power loss. To  
minimize power loss, it is best to use an inductor with a dc  
resistance lower than 0.2 Ω.  
Table 4. Recommended Inductors  
Vendor  
Series  
Core Type  
Phone Number  
(561) 752-500
(561) 752-50
(847) 545-670
(845-6700  
Coiltronics OCTAPAC  
Coiltronics UNIPAC  
Sumida  
Sumida  
Toroid  
Open  
Open  
Semi-Closed  
Geometry  
e current limit is usually set to approximately 3 to 5 times the  
ll load current for boost applications, and about 1.5 to 3 times  
the full load current in buck applications.  
CR43, CR54  
CDRH6D28,  
CDRH73,  
The internal structure of the ILIM circuit is shown in Figure 24.  
Q1, the ADP3000s internal power switch, is paralleled by sense  
transistor Q2. The relative sizes of Q1 and Q2 are scaled so that  
IQ2 is 0.5% of IQ1. Current flows to Q2 through both the RLIM  
resistor and an internal 80 Ω resistor. The voltage on these two  
resistors biases the base-emitter junction of the oscillator-disable  
transistor, Q3. When the voltage across R1 and RLIM exceeds 0.6 V,  
Q3 turns on and terminates the output pulse. If only the 80 Ω  
internal resistor is used (when the ILIM pin is connected directly to  
VIN), the maximum switch current is 1.5 A. Figure 13, Figure 14,  
and Figure 15 give values for lower current limit levels.  
CDRH64  
Capacitor Selection  
For most applications, the capacitor DP3000  
falls in the range of 33 µF to 220 µF. Ta
recommended capacitorvendo
For input and output cw ESR type capacitors for  
best efficiency and lowmmended capacitors  
include the AVX TPS serieague 595D series, the  
Panasonic HFQ series, and the Sanyo OS-CON series.  
R
LIM  
(EXTERNAL)  
V
When selecting a capacitor, it is important to make sure the  
maximum capacitor ripple current rms rating is higher than the  
ADP3000s rms switching current.  
IN  
V
I
IN  
LIM  
R1  
80  
(INTERNAL)  
I
Q1  
Q3  
It is best to protect the input capacitor from high turn-on  
current charging surges by derating the capacitor voltage by 2:1.  
For very low input or output voltage ripple requirements, use  
capacitors with very low ESR, such as the Sanyo OS-CON  
series. Alternatively, two or more tantalum capacitors can be  
used in parallel.  
200  
SW1  
SW2  
ADP3000  
DRIVER  
Q1  
Q2  
400kHz  
OSCILLATOR  
POWER  
SWITCH  
Figure 24. ADP3000 Current Limit Operation  
Rev. A | Page 10 of 16  
 
 
 
 
ADP3000  
The delay through the current limiting circuit is approximately  
0.3 µs. If the switch-on time is reduced to less than 1.7 µs,  
accuracy of the current trip point is reduced as well. An attempt  
to program a switch-on time of 0.3 µs or less produces spurious  
responses in the switch-on time. However, the ADP3000 still  
provides a properly regulated output voltage.  
VLOBATT 1.245 V  
R1 =  
1.245 V  
VL 1.245 V  
RL + RHYS  
R2  
where:  
VL is the logic power supply voltage.  
RL is the pull-up resistor.  
HYS creates the hysteresis.  
PROGRAMMING THE GAIN BLOCK  
R
The ADP3000s gain block can be used as a low battery detector,  
an error amplifier, or a linear post regulator. It consists of an op  
amp with PNP inputs and an open-collector NPN output. The  
inverting input is internally connected to the 1.245 V reference,  
and the noninverting input is available at the SET pin. The NPN  
output transistor sinks in excess of 300 µA.  
POWER TRANSISTOR PROTECTION DIODE IN  
STEP-DOWN CONFIGURTION  
When operating the ADP30 in ste-down mode with the  
switch off, the output voltis iressed across the internal  
power switch’s emitt-base jion. Whn the output voltage  
is set to higher th6 V, a Schotdie must be placed in a  
series with SWto tect the swit. Figure 26 shows the  
proper way to place D2e protection diode. The selection of  
this diois identical to thtep-down commuting diode (refer  
to thDiode Section section).  
Figure 25 shows the gain block configured as a low battery  
monitor. Set Resistors R1 and R2 to high values to reduce  
quiescent current, but not so high that bias current in the SET  
input causes large errors. A value of 33 kΩ for R2 is a good  
compromise. The value for R1 is then calculated as follows:  
V
IN  
D1, D2 = 1N5818 SCHOTTKY DIODES  
VLOBATT 1.245 V  
R
R1 =  
1.245 V  
1
2
3
V
> 6V  
OUT  
I
V
SW1  
LIM  
IN  
R2  
8
4
FB  
where VLOBATT is the desired low battery trip point.  
ADP3000  
L1  
R2  
SW2  
Because the gain block output is an open-collector NP
pull-up resistor should be connected to the positive log
power supply.  
D2  
D1  
GND  
5
+
C1  
R1  
5
Figure 26. Step-Down Mode VOUT > 6.0 V  
R
47k  
L
ADP3000  
THERMAL CONSIDERATIONS  
R1  
1.245V  
REF  
V
BATT  
Power dissipation internal to the ADP3000 can be  
approximated with the following equations.  
SET  
ESSOR  
R2  
33kΩ  
Step-Up  
VIN ISW  
β
⎤⎡  
VIN 4IO  
R
HY
PD = I 2 R +  
D 1 −  
+
[
IQ  
]
[
VIN  
]
1.6MΩ  
⎥⎢  
SW  
VO ISW  
⎦⎣  
– 1.245V  
37.7µA  
= BATTERY TRIP POINT  
where:  
SW is ILIMIT when the current limit is programmed externally;  
otherwise, ISW is the maximum inductor current.  
V0 is the output voltage.  
B  
I
Figure 25. Setting the Low Battery Detector Trip Point  
I0 is the output current.  
VIN is the input voltage.  
R is 1 Ω (typical RCE(SAT)).  
D is 0.75 (typical duty ratio for a single switching cycle).  
IQ is 500 µA (typical shutdown quiescent current).  
β = 30 (typical forced beta).  
The circuit of Figure 25 may produce multiple pulses when  
approaching the trip point due to noise coupled into the SET  
input. To prevent multiple interrupts to the digital logic, add  
hysteresis to the circuit. Resistor RHYS, with a value of 1 MΩ to  
10 MΩ, provides the hysteresis. The addition of RHYS alters the  
trip point slightly, changing the new value for R1 to  
Rev. A | Page 11 of 16  
 
 
ADP3000  
Step-Down  
For example, consider a boost converter with the following  
specifications:  
2 I  
VO  
1
β
O
PD = ISW VCESAT 1 +  
+
[
IQ  
]
[VIN  
]
V
VCE(SAT) ISW  
VIN is 2 V.  
VO is 3.3 V.  
IO is 180 mA.  
IN  
where:  
SW is ILIMIT when the current limit is programmed externally;  
otherwise, ISW is the maximum inductor current.  
CE(SAT) is 1.2 V (typical value). Check this value by applying ISW  
I
ISW is 0.8 A (externally programmed).  
Using the step-up power dissipation equation:  
V
to Figure 10.  
VO is the output voltage.  
IO is the output current.  
(4) 0.18  
0.8  
(2)(0.8)  
30  
2
3.3  
PD = 0.82 ×1 +  
[0.75  
]
−  
+
[
500 E 6  
]
[
2
]
VIN is the input voltage.  
T is 185 mW (170°C/W) = 31C, ng the R-8 package.  
T is 185 mW (120°C/W= 22.2°sing thN-8 package.  
D is 0.75 (typical duty ratio for a single switching cycle).  
IQ is 500 µA (typical shutdown quiescent current).  
β is 30 (typical forced beta).  
At a 70°C ambient, e temperature ould be 101.45°C for  
the R-8 package and 92.2°C r the N-8 package. These junction  
temperatures re well below thaximum recommended  
junction tmperatue of 125°C.  
The temperature rise can be calculated using the following  
equation:  
T = PD × θJA  
Finally, the emperate can be decreased up to 20% by  
using a large al grnd plate as ground pickup for the  
ADP3000.  
where:  
T is temperature rise.  
PD is device power dissipation.  
θJA is thermal resistance (junction-to-ambient).  
Rev. A | Page 12 of 16  
ADP3000  
TYPICAL APPLICATION CIRCUITS  
L1  
6.8µH  
L1  
15µH  
IN5817  
IN5817  
V
3.3V  
180mA  
V
OUT  
12V  
50mA  
OUT  
V
V
IN  
2V TO 3.2V  
IN  
4.5V TO 5.5V  
+
+
C1  
100µF  
10V  
C1  
100µF  
10V  
120Ω  
124Ω  
1
2
1
2
I
V
I
V
LIM  
IN  
SW1  
LIM  
IN  
3
8
3
8
SW1  
ADP3000-3.3V  
ADP3000-12V  
C2  
100µF  
10V  
C2  
100µF  
+
+
SENSE  
SENSE  
16V  
GND  
5
SW2  
4
GND  
5
W2  
4
L1 = SUMIDA CR43-6R8  
L1 = SUMIDA CR54-150  
C1, C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 75%  
C1 = AVX TPS D107 M0100  
C2 = AVX TPS D107 M016
TYPICAL EFFICIEN= 75%  
Figure 27. 2 V to 3.3 V/180 mA Step-Up Converter  
Fige .5 V to 12 V/50 Step-Up Converter  
V
L1  
6.8µH  
5V TO
C1  
100µ
1
IN5817  
V
5V  
100mA  
120Ω  
OUT  
V
IN  
2V TO 3.2V  
+
1
2
3
C1  
100µF  
10V  
120Ω  
V
SW1  
M  
IN  
1
2
8
4
FB  
I
V
LIM  
IN  
SW1  
ADP3000-ADJ  
3
8
SW2  
V
OUT  
3V  
100mA  
L1  
10µH  
ADP3000-5V  
R2  
150kΩ  
GND  
5
C2  
100µF  
10V  
+
SENSE  
C2  
100µF  
10V  
+
D1  
1N5817  
R1  
110kΩ  
GND  
5
SW2  
4
L1 = SUMIDA CR43-100  
C1, C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 75%  
L1 = SUMIDA CR43-6R8  
C1, C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 80%  
Figure 28. 2 V to 5 V/100 mA Step-Uonve
Figure 31. 5 V to 3 V/100 mA Step-Down Converter  
V
IN  
10V TO 13V  
C1  
33µF  
20V  
+
N7  
V
5V  
150mA  
250Ω  
OUT  
V
IN  
2.7V TO 4.5V  
+
1
2
3
C1  
100µF  
10V  
120Ω  
I
V
SW1  
LIM  
IN  
2
8
4
SENSE  
V
IN  
W1  
ADP3000-5V  
3
8
SW2  
V
OUT  
5V  
250mA  
L1  
10µH  
V  
C2  
100µF  
10V  
GND  
5
+
SE  
C2  
+
L1: SUMIDA CR43-100  
D1  
1N5817  
100µF  
5
SW2  
4
C1 = AVX TPS D336 M020R0200  
C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 77%  
10V  
L1 = SUMIDA CR43-6R8  
C1, C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 80%  
Figure 29. 2.7 V to 5 V/150 mA Step-Up Converter  
Figure 32. 10 V to 5 V/250 mA Step-Down Converter  
Rev. A | Page 13 of 16  
ADP3000  
V
IN  
5V  
C1  
47µF  
16V  
+
240Ω  
1
2
3
I
V
SW1  
LIM  
IN  
8
4
SENSE  
ADP3000-5V  
SW2  
L1  
15µH  
GND  
5
C2  
100µF  
10V  
+
D1  
1N5817  
V
OUT  
–5V  
100mA  
L1 = SUMIDA CR54-150  
C1 = AVX TPS D476 M016R0150  
C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 60%  
Figure 33. 5 V to −5 V/100 mA Inverter  
2.5V TO 4.2V  
(SUMIDA – CDRH62)  
100kΩ  
120Ω  
330kΩ  
6.8µH  
2N2907  
1N7  
100µF  
10V  
AVX-TPS  
+
I
V
IN  
LIM  
3V  
100mA  
100kΩ  
10kΩ  
IN1  
IN2  
V
O1  
1µF  
6V (MLC)  
SET  
SW1  
FB  
100µF  
10V  
S  
33nF  
348kΩ  
%  
1MΩ  
ADP3000  
90kΩ  
1µF  
6V (MLC)  
ADP3302AR1  
A
0
3V  
SD  
V
O2  
100mA  
GND  
SW2  
GND  
90kΩ  
Figure 34. 1 Li-Ion to 3 /200 mA Converter with Shut-Down at VIN ≤ 2.5 V  
@ V 2.5V  
SHDN IQ = 500µA  
IN  
75  
70  
65  
I
= 50mA + 50mA  
O
I
= 100mA + 100mA  
O
VIN  
(V)  
2.6  
3.0  
3.4  
3.8  
4.2  
Figure 35. Typical Efficiency of the Circuit of Figure 34  
Rev. A | Page 14 of 16  
ADP3000  
OUTLINE DIMENSIONS  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
0.180  
(4.57)  
MAX  
MIN  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE R USE IN DESIGN  
Figure 36. 8-Lead Plastic Dual In-Line kagDIP]  
(N-8)  
Dimensions shown in inches and (milliers)  
5.00 (0.1968)  
4.80 (0.
8
1
)  
)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.05
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 0
0.10 (0)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
OPLANARI
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
ATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
LLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
RENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
ERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 37. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. A | Page 15 of 16  
ADP3000  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADP3000AN  
ADP3000AN-3.3  
ADP3000AN-5  
ADP3000AN-12  
ADP3000AR  
ADP3000AR-REEL  
ADP3000AR-3.3  
ADP3000AR-3.3-REEL  
ADP3000AR-5  
ADP3000AR-5-REEL  
ADP3000AR-12  
ADP3000AR-12-REEL  
ADP3000ARU  
Output Voltage  
Adjustable  
3.3 V  
5 V  
12 V  
Adjustable  
Adjustable  
3.3 V  
3.3 V  
5 V  
5 V  
12 V  
12 V  
Adjustab
table  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C
–40
–40
–40°
–40°C to
to +85°C  
–40°o +85°C  
–40to +85°C  
0°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Packaescription  
8-lead plastic DIP  
8ad plastic DIP  
8-lead plastic DIP  
8-lead plastic DIP  
8-lead SOIC  
8-lead SOIC  
8-lead SOIC  
8-lead SOIC  
8-lead SOIC  
8-lead SOIC  
8-lead SOIC  
8-lead SOIC  
14-lead TSSOP  
14-lead TSSOP  
Package Option  
N-8  
N-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RU-14  
RU-14  
ADP3000ARU-REEL  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00122–0–9/04(A)  
Rev. A | Page 16 of 16  

相关型号:

ADP3000AR-33

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V and Adjustable High Frequency Switching Regulator
ADI

ADP3000AR-5

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V and Adjustable High Frequency Switching Regulator
ADI

ADP3000AR-5-REEL

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator
ADI

ADP3000AR-REEL

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator
ADI

ADP3000ARU

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator
ADI

ADP3000ARU-REEL

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V, Adjustable High Frequency Switching Regulator
ADI

ADP3000ARZ

IC SWITCHING REGULATOR, 400 kHz SWITCHING FREQ-MAX, PDSO8, MS-012-AA, SOIC-8, Switching Regulator or Controller
ADI

ADP3000ARZ-12

IC SWITCHING REGULATOR, 400 kHz SWITCHING FREQ-MAX, PDSO8, MS-012-AA, SOIC-8, Switching Regulator or Controller
ADI

ADP3000ARZ-3.3

SWITCHING REGULATOR, 400 kHz SWITCHING FREQ-MAX, PDSO8, MS-012-AA, SOIC-8
ROCHESTER

ADP3000ARZ-5

IC SWITCHING REGULATOR, 400 kHz SWITCHING FREQ-MAX, PDSO8, MS-012-AA, SOIC-8, Switching Regulator or Controller
ADI

ADP3000ARZ-REEL

IC SWITCHING REGULATOR, 400 kHz SWITCHING FREQ-MAX, PDSO8, MS-012-AA, SOIC-8, Switching Regulator or Controller
ADI

ADP3020

High-Efficiency Notebook Computer Power Supply Controller
ADI