ADP320ACPZ331815R7 [ADI]

Triple, 200 mA, Low Noise, High PSRR Voltage Regulator; 三人间200毫安,低噪声,高PSRR电压调节器
ADP320ACPZ331815R7
型号: ADP320ACPZ331815R7
厂家: ADI    ADI
描述:

Triple, 200 mA, Low Noise, High PSRR Voltage Regulator
三人间200毫安,低噪声,高PSRR电压调节器

调节器
文件: 总20页 (文件大小:704K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Triple, 200 mA, Low Noise,  
High PSRR Voltage Regulator  
ADP320  
TYPICAL APPLICATION CIRCUITS  
FEATURES  
Bias voltage range (VBIAS): 2.5 V to 5.5 V  
LDO input voltage range (VIN1/VIN2, VIN3): 1.8 V to 5.5 V  
Three 200 mA low dropout voltage regulators  
16-lead, 3 mm × 3 mm LFCSP  
VBIAS  
ADP320  
VBIAS  
2.5V TO  
5.5V  
+
+
1µF  
1µF  
VIN1/VIN2  
1.8V TO  
5.5V  
Initial accuracy: 1ꢀ  
VOUT1  
LDO 1  
ON  
ON  
Stable with 1 μF ceramic output capacitors  
No noise bypass capacitor required  
3 independent logic controlled enables  
Over current and thermal protection  
Key specifications  
High PSRR  
76 dB PSRR up to 1 kHz  
70 dB PSRR 10 kHz  
60 dB PSRR at 100 kHz  
+
EN1  
EN LD1  
VBIAS  
OFF  
OFF  
1µF  
VOUT2  
LDO 2  
EN2  
+
EN LD2  
VBIAS  
1µF  
VIN3  
1.8V TO  
5.5V  
+
VOUT3  
LDO 3  
1µF  
EN3  
ON  
+
OFF  
EN LD3  
1µF  
40 dB PSRR at 1 MHz  
GND  
Low output noise  
Figure 1. Typical Application Circuit  
29 μV rms typical output noise at VOUT = 1.2 V  
55 μV rms typical output noise at VOUT = 2.8 V  
Excellent transient response  
Low dropout voltage: 110 mV @ 200 mA load  
85 μA typical ground current at no load, all LDOs enabled  
100 μs fast turn-on circuit  
Guaranteed 200 mA output current per regulator  
−40°C to +125°C junction temperature  
APPLICATIONS  
Mobile phones  
Digital cameras and audio devices  
Portable and battery-powered equipment  
Portable medical devices  
Post dc-to-dc regulation  
GENERAL DESCRIPTION  
The ADP320 200 mA triple output LDO combines high PSRR, low  
noise, low quiescent current, and low dropout voltage in a voltage  
regulator ideally suited for wireless applications with demanding  
performance and board space requirements.  
LDO offers much lower noise performance than competing LDOs  
without the need for a noise bypass capacitor.  
The ADP320 triple LDO is available in a miniature 16-lead  
3 mm × 3 mm LFCSP package and is stable with tiny 1 μF 30ꢀ  
ceramic output capacitors, resulting in the smallest possible board  
area for a wide variety of portable power needs.  
The low quiescent current, low dropout voltage, and wide input  
voltage range of the ADP320 triple LDO extend the battery life of  
portable devices. The ADP320 triple LDO maintains power supply  
rejection greater than 60 dB for frequencies as high as 100 kHz  
while operating with a low headroom voltage. The ADP320 triple  
The ADP320 triple LDO is available in output voltage combin-  
ations ranging from 0.8 V to 3.3 V and offers over current and  
thermal protection to prevent damage in adverse conditions.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADP320  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 14  
Applications Information.............................................................. 15  
Capacitor Selection .................................................................... 15  
Undervoltage Lockout ............................................................... 16  
Enable Feature ............................................................................ 16  
Current-Limit and Thermal Overload Protection................. 17  
Thermal Considerations............................................................ 17  
Printed Circuit Board Layout Considerations ....................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor, Recommended Specifications.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
6/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP320  
SPECIFICATIONS  
VIN1/VIN2 = VIN3 = (VOUT + 0.5 V) or 1.8 V (whichever is greater), VBIAS = 2.5 V, EN1, EN2, EN3 = VBIAS, IOUT1 = IOUT2 = IOUT3 = 10 mA,  
CIN = COUT1 = COUT2 = COUT3 = 1 μF, and TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VBIAS  
Conditions  
Min  
2.5  
Typ  
Max  
5.5  
Unit  
V
INPUT BIAS VOLTAGE RANGE  
INPUT LDO VOLTAGE RANGE  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
IOUT = 0 μA  
VIN1/VIN2/ VIN3  
IGND  
1.8  
5.5  
V
GROUND CURRENT WITH ALL  
REGULATORS ON  
85  
μA  
IOUT = 0 μA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 200 mA  
160  
220  
380  
140  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
120  
250  
66  
IOUT = 200 mA, TJ = −40°C to +125°C  
INPUT BIAS CURRENT  
IBIAS  
TJ = −40°C to +125°C  
SHUTDOWN CURRENT  
OUTPUT VOLTAGE ACCURACY  
IGND-SD  
VOUT  
EN1 = EN2 = EN3 = GND  
EN1 = EN2 = EN3 = GND, TJ = −40°C to +125°C  
0.1  
2.5  
+1  
+2  
−1  
−2  
100 μA < IOUT < 200 mA, VIN = (VOUT + 0.5 V) to 5.5 V,  
TJ = −40°C to +125°C  
%
LINE REGULATION  
LOAD REGULATION1  
DROPOUT VOLTAGE2  
∆VOUT/∆VIN  
∆VOUT/∆IOUT  
VDROPOUT  
VIN = (VOUT + 0.5 V) to 5.5 V  
VIN = (VOUT + 0.5 V) to 5.5 V, TJ = −40°C to +125°C  
IOUT = 1 mA to 200 mA  
IOUT = 1 mA to 200 mA, TJ = −40°C to +125°C  
VOUT = 3.3 V  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 200 mA  
IOUT = 200 mA, TJ = −40°C to +125°C  
VOUT = 3.3 V, all VOUT initially off, enable one  
VOUT = 0.8 V  
VOUT = 3.3 V, one VOUT initially on, enable second  
VOUT = 0.8 V  
0.01  
%/V  
%/V  
%/mA  
%/mA  
mV  
mV  
mV  
mV  
mV  
μs  
−0.03  
+0.03  
0.005  
0.001  
6
9
110  
170  
START-UP TIME3  
TSTART-UP  
240  
100  
160  
20  
μs  
μs  
μs  
CURRENT LIMIT THRESHOLD4  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
EN INPUT  
ILIMIT  
250  
1.2  
360  
600  
mA  
TSSD  
TSSD-HYS  
TJ rising  
155  
15  
°C  
°C  
EN Input Logic High  
VIH  
2.5 V ≤ VBIAS ≤ 5.5 V  
V
EN Input Logic Low  
EN Input Leakage Current  
VIL  
VI-LEAKAGE  
2.5 V ≤ VBIAS ≤ 5.5 V  
EN1 = EN2 = EN3 = VIN or GND  
EN1 = EN2 = EN3 = VIN or GND, TJ = −40°C to +125°C  
0.4  
1
V
μA  
μA  
0.1  
UNDERVOLTAGE LOCKOUT  
Input Bias Voltage (VBIAS) Rising  
Input Bias Voltage (VBIAS) Falling  
Hysteresis  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
OUTNOISE  
2.45  
V
V
mV  
2.0  
180  
63  
55  
50  
29  
OUTPUT NOISE  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.8 V  
10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 3.6 V, VOUT = 1.2 V  
μV rms  
μV rms  
μV rms  
μV rms  
Rev. 0 | Page 3 of 20  
 
ADP320  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY REJECTION RATIO  
PSRR  
VIN = 1.8 V, VOUT = 0.8 V, IOUT = 100 mA  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
70  
70  
70  
60  
40  
dB  
dB  
dB  
dB  
dB  
1 MHz  
VIN = 3.8 V, VOUT = 2.8 V, IOUT = 100 mA  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
68  
62  
68  
60  
40  
dB  
dB  
dB  
dB  
dB  
1 Based on an end-point calculation using 1 mA and 200 mA loads.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 1.8 V.  
3 Start-up time is defined as the time between the rising edge of ENx to VOUTx being at 90% of its nominal value.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
CMIN  
Conditions  
Min  
Typ  
Max  
Unit  
μF  
MINIMUM INPUT AND OUTPUT CAPACITANCE1  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.70  
0.001  
CAPACITOR ESR  
RESR  
1
Ω
1 The minimum input and output capacitance should be greater than 0.70 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended,  
Y5V and Z5U capacitors are not recommended for use with LDOs.  
Rev. 0 | Page 4 of 20  
 
 
 
 
ADP320  
ABSOLUTE MAXIMUM RATINGS  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a four-layer, 4-inch × 3-inch  
circuit board. Refer to JEDEC JESD 51-9 for detailed informa-  
tion on the board construction. For additional information, see  
the AN-617 Application Note, MicroCSP™ Wafer Level Chip  
Scale Package.  
Table 3.  
Parameter  
Rating  
VIN1/VIN2, VIN3, VBIAS to GND  
VOUT1, VOUT2 to GND  
VOUT3 to GND  
–0.3 V to +6.5 V  
–0.3 V to VIN1/VIN2  
–0.3 V to VIN3  
EN1, EN2, EN3 to GND  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
–0.3 V to +6.5 V  
–65°C to +150°C  
–40°C to +125°C  
JEDEC J-STD-020  
Stresses above those listed under absolute maximum ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ΨJB is the junction to board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. The JESD51-12, Guidelines  
for Reporting and Using Package Thermal Information, states  
that thermal characterization parameters are not the same as  
thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation  
from the package; factors that make ΨJB more useful in real-  
world applications. Maximum junction temperature (TJ) is  
calculated from the board temperature (TB) and power  
dissipation (PD) using the following formula  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination.  
The ADP320 triple LDO can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temper-  
ature does not guarantee that the junction temperature (TJ)  
is within the specified temperature limits. In applications  
with high power dissipation and poor thermal resistance the  
maximum ambient temperature may have to be derated. In  
applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits.  
TJ = TB + (PD × ΨJB)  
Refer to JEDEC JESD51-8 and JESD51-12 for more detailed  
information about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
The junction temperature (TJ) of the device is dependent on  
the ambient temperature (TA), the power dissipation of the  
device (PD), and the junction-to-ambient thermal resistance of  
the package (θJA). Maximum junction temperature (TJ) is  
calculated from the ambient temperature (TA) and power dissi-  
pation (PD) using the following formula:  
Table 4.  
Package Type  
θJA  
ΨJB  
Unit  
16-Lead 3 mm × 3 mm LFCSP  
49.5  
25.2  
°C/W  
ESD CAUTION  
TJ = TA + (PD × θJA)  
Rev. 0 | Page 5 of 20  
 
ADP320  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
EN1  
VBIAS  
1
2
3
4
12 GND  
11 GND  
10 VIN3  
ADP320  
VIN1/VIN2  
VIN1/VIN2  
9
VIN3  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. CONNECT EXPOSED PAD TO GROUND PLANE.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
EN1  
Enable Input for Regulator 1. Drive EN1 high to turn on Regulator 1; drive it low to turn off Regulator 1. For  
automatic startup, connect EN1 to VBIAS.  
2
3
VBIAS  
VIN1/VIN2  
Input Voltage Bias Supply. Bypass VBIAS to GND with a 1 μF or greater capacitor.  
Regulator Input Supply for Output Voltage 1 and Output Voltage 2. Bypass VIN1/VIN2 to GND with a 1 μF or  
greater capacitor.  
4
VIN1/VIN2  
Regulator Input Supply for Output Voltage 1 and Output Voltage 2. Bypass VIN1/VIN2 to GND with a 1 μF or  
greater capacitor.  
5
6
7
8
VOUT1  
VOUT2  
VOUT3  
NC  
Regulated Output Voltage 1. Connect a 1 μF or greater output capacitor between VOUT1 and GND.  
Regulated Output Voltage 2. Connect a 1 μF or greater output capacitor between VOUT2 and GND.  
Regulated Output Voltage 3. Connect a 1 μF or greater output capacitor between VOUT3 and GND.  
Not connected internally.  
9
VIN3  
VIN3  
GND  
GND  
NC  
Regulator Input Supply for Output Voltage 3. Bypass VIN3 to GND with a 1 μF or greater capacitor.  
Regulator Input Supply for Output Voltage 3. Bypass VIN3 to GND with a 1 μF or greater capacitor.  
Ground Pin.  
Ground Pin.  
Not connected internally.  
Not connected internally.  
10  
11  
12  
13  
14  
15  
NC  
EN3  
Enable Input for Regulator 3. Drive EN3 high to turn on Regulator 3; drive it low to turn off Regulator 3. For  
automatic startup, connect EN3 to VBIAS.  
16  
EP  
EN2  
EP  
Enable Input for Regulator 2. Drive EN1 high to turn on Regulator 2; drive it low to turn off Regulator 2. For  
automatic startup, connect EN2 to VBIAS.  
Exposed pad for enhanced thermal performance. Connect to copper ground plane.  
Rev. 0 | Page 6 of 20  
 
ADP320  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN1/VIN2 = VIN3 =VBIAS = 4 V, VOUT1 = 3.3 V, VOUT2 = 1.8 V, VOUT3 = 1.5 V, IOUT = 10 mA, CIN = COUT1 = COUT2 = COUT3 = 1 μF, TA = 25°C,  
unless otherwise noted.  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
–40  
–5  
25  
(°C)  
85  
125  
–40  
–5  
25  
(°C)  
85  
125  
T
T
J
J
Figure 6. Output Voltage vs. Junction Temperature  
Figure 3. Output Voltage vs. Junction Temperature  
1.820  
1.815  
1.810  
1.805  
1.800  
3.320  
3.315  
3.310  
3.305  
3.300  
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 4. Output Voltage vs. Load Current  
Figure 7. Output Voltage vs. Load Current  
3.320  
3.315  
3.310  
3.305  
3.300  
1.820  
1.815  
1.810  
1.805  
1.800  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
(V)  
4.8  
5.0  
5.2  
5.4  
2.1  
2.5  
2.9  
3.3  
3.7  
4.1  
4.5  
4.9  
5.3  
V
V
(V)  
IN  
IN  
Figure 5. Output Voltage vs. Input Voltage  
Figure 8. Output Voltage vs. Input Voltage  
Rev. 0 | Page 7 of 20  
 
ADP320  
1.520  
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
1.480  
140  
120  
100  
80  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
60  
40  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
20  
0
–40C  
–5C  
25C  
(°C)  
85C  
125C  
–40  
–5  
25  
(°C)  
85  
125  
T
T
J
J
Figure 9. Output Voltage vs. Junction Temperature  
Figure 12. Ground Current vs. Junction Temperature, Single Output Loaded  
1.510  
1.508  
1.506  
1.504  
1.502  
1.500  
120  
100  
80  
60  
40  
20  
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 10. Output Voltage vs. Load Current  
Figure 13. Ground Current vs. Load Current, Single Output Loaded  
1.510  
1.508  
1.506  
1.504  
1.502  
1.500  
120  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
100  
80  
60  
40  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
20  
0
1.8  
1.80 2.20 2.60 3.00 3.40 3.80 4.20 4.60 5.00 5.40  
2.2  
2.6  
3.0  
3.4  
3.8  
(V)  
4.2  
4.6  
5.0  
5.4  
V
(V)  
V
IN  
IN  
Figure 14. Ground Current vs. Input Voltage, Single Output Loaded  
Figure 11. Output Voltage vs. Input Voltage  
Rev. 0 | Page 8 of 20  
ADP320  
350  
300  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
0
–40  
–5  
25  
(°C)  
85  
125  
–40  
–5  
25  
(°C)  
85  
125  
T
T
J
J
Figure 18. Bias Current vs. Junction Temperature, Single Output Loaded  
Figure 15. Ground Current vs. Junction Temperature,  
All Outputs Loaded Equally  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
TOTAL LOAD CURRENT (mA)  
LOAD  
Figure 19. Bias Current vs. Load Current, Single Output Load  
Figure 16. Ground Current vs. Load Current, All Outputs Loaded Equally  
76  
300  
74  
250  
200  
150  
100  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
72  
70  
68  
66  
64  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
50  
0
2.5  
2.9  
3.3  
3.7  
4.1  
(V)  
4.5  
4.9  
5.3  
1.7  
2.1  
2.5  
2.9  
3.3  
3.7  
(V)  
4.1  
4.5  
4.9  
5.3  
V
V
IN  
IN  
Figure 17. Ground Current vs. Input Voltage, All Outputs Loaded Equally  
Figure 20. Bias Current vs. Input Voltage, Single Output Load  
Rev. 0 | Page 9 of 20  
ADP320  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
350  
300  
250  
200  
150  
100  
50  
3.6  
3.8  
4.2  
4.4  
4.8  
5.5  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
0
3.10  
0
–50  
3.15  
3.20  
3.25  
3.30  
(V)  
3.35  
3.40  
3.45  
3.50  
–25  
0
25  
50  
75  
100  
125  
V
TEMPERATURE (°C)  
IN  
Figure 21. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 24. Ground Current vs. Input Voltage (in Dropout), VOUT1 = 3.3 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
0
1
10  
100  
1000  
1
10  
100  
1000  
LOAD (mA)  
LOAD (mA)  
Figure 25. Dropout Voltage vs. Load Current and Output Voltage,  
VOUT2 = 1.8 V  
Figure 22. Dropout Voltage vs. Load Current and Output Voltage,  
VOUT1 = 3.3 V  
3.35  
1.85  
1.80  
1.75  
1.70  
1.65  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
1.60  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
1.55  
1.50  
1.45  
1.70  
3.10  
3.15  
3.20  
3.25  
3.30  
(V)  
3.35  
3.40  
3.45  
3.50  
1.80  
1.90  
V
2.00  
2.10  
V
(V)  
IN  
IN  
Figure 23. Output Voltage vs. Input Voltage (In Dropout),  
OUT1 = 3.3 V  
Figure 26. Output Voltage vs. Input Voltage (in Dropout),  
VOUT2 = 1.8 V  
V
Rev. 0 | Page 10 of 20  
ADP320  
160  
140  
120  
100  
80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
200mA  
100mA  
10mA  
1mA  
V
V
V
= 50mV  
= 2.5V  
= 1.5V  
= 1µF  
RIPPLE  
IN  
OUT  
C
OUT  
60  
LOAD = 1mA  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
40  
20  
0
1.70  
10  
100  
1k  
10k  
100k  
1M  
10M  
1.80  
1.90  
2.00  
2.10  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 27. Ground Current vs. Input Voltage in Dropout), VOUT2 = 1.8 V  
Figure 30. Power Supply Rejection Ratio vs. Frequency, 1.5 V  
0
0
V
V
V
= 50mV  
= 2.8V  
= 1.8V  
= 1µF  
200mA  
100mA  
10mA  
1mA  
1.8V/200mA  
1.8V/100mA  
1.8V/10mA  
1.2V/200mA  
1.2V/100mA  
1.2V/10mA  
V
= 50mV  
RIPPLE  
RIPPLE  
1V HEADROOM  
1.8V PSRR  
1.2 XTALK  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
OUT  
C
OUT  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. Power Supply Rejection Ratio vs. Frequency,  
Channel to Channel Crosstalk  
Figure 28. Power Supply Rejection Ratio vs. Frequency, 1.8 V  
0
10  
3.3V  
1.8V  
1.5V  
200mA  
100mA  
10mA  
1mA  
V
V
V
= 50mV  
= 4.3V  
= 3.3V  
= 1µF  
RIPPLE  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IN  
OUT  
C
OUT  
1
0.1  
0.01  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. Output Noise Spectral Density, VIN = 5 V, ILOAD = 10 mA  
Figure 29. Power Supply Rejection Ratio vs. Frequency, 3.3 V  
Rev. 0 | Page 11 of 20  
ADP320  
70  
3.3V  
1.8V  
1.5V  
I
LOAD2  
60  
50  
40  
30  
20  
10  
0
1
V
OUT2  
2
B
B
CH1 200mA  
50mV  
M40µs A CH1  
T 10.4%  
84mA  
CH2  
W
W
0.001  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 36. Load Transient Response,  
ILOAD2 = 1 mA to 200 mA, COUT2 = 1 μF,  
CH1 = ILOAD2, CH2 = VOUT2  
Figure 33. Output Noise vs. Load Current and Output Voltage, VIN = 5 V  
I
I
LOAD1  
LOAD3  
1
2
1
V
OUT1  
V
OUT3  
2
V
V
OUT2  
OUT3  
3
4
B
B
B
W
B
B
B
W
CH1 100mA  
CH3 10mV  
CH2 50mV  
CH4 10mV  
M40µs A CH1  
9.8%  
44mA  
CH1 200mA  
CH2 50mV  
M40µs A CH1  
T 10.2%  
124mA  
W
W
W
W
T
Figure 37. Load Transient Response,  
ILOAD3 = 1 mA to 200 mA, COUT3 = 1 μF,  
CH1 = ILOAD3, CH2 = VOUT3  
Figure 34. Load Transient Response,  
ILOAD1 = 1 mA to 200 mA, ILOAD2 = ILOAD3 = 1 mA,  
CH1 = ILOAD1, CH2 = VOUT1, CH3 = VOUT2 , CH4 = VOUT3  
I
V
LOAD1  
IN  
1
1
V
OUT1  
2
V
V
OUT2  
OUT3  
V
OUT1  
2
3
4
B
B
B
W
B
CH1 1V  
CH3 10mV  
CH2 10mV  
CH4 10mV  
M1µs  
A CH1  
4.62V  
50mV  
CH1 200mA  
CH2  
M40µs A CH1  
T 10.2%  
124mA  
W
W
W
B
B
W
W
T 15%  
Figure 38. Line Transient Response,  
VIN = 4 V to 5 V, ILOAD1 = ILOAD2 = ILOAD3 =100 mA,  
CH1 = VIN, CH2 = VOUT1, CH3 = VOUT2, CH4 = VOUT3  
Figure 35. Load Transient Response,  
ILOAD1 = 1 mA to 200 mA, COUT1 = 1 μF,  
CH1 = ILOAD1, CH2 = VOUT1  
Rev. 0 | Page 12 of 20  
ADP320  
V
V
EN  
IN  
V
OUT1  
1
2
1
V
OUT1  
OUT2  
V
V
OUT2  
OUT3  
V
V
3
4
OUT3  
2
B
B
B
B
B
B
W
CH2  
CH4 500mV  
CH1 1V  
10mV  
10mV  
10mV  
M2µs  
A CH1  
4.58V  
CH1 1V  
CH3 500mV  
500mV  
M100µs A CH1  
T 10.2%  
540mV  
CH2  
CH4  
W
W
W
W
W
B
B
CH3  
W
W
T 12%  
Figure 39. Line Transient Response,  
VIN = 4 V to 5 V, ILOAD1 = ILOAD2 = ILOAD3 =1 mA,  
CH1 = VIN, CH2 = VOUT1, CH3 = VOUT2, CH4 = VOUT3  
Figure 40. Turn On Response,  
ILOAD1 = ILOAD2 = ILOAD3 =100 mA,  
CH1 = VEN, CH2 = VOUT1, CH3 = VOUT2, CH4 = VOUT3  
Rev. 0 | Page 13 of 20  
ADP320  
THEORY OF OPERATION  
The ADP320 triple LDO is a low quiescent current, low dropout  
linear regulator that operates from 1.8 V to 5.5 V on VIN1/VIN2  
and VIN3 and provides up to 200 mA of current from each  
output. Drawing a low 250 ꢁA quiescent current (typical) at full  
load makes the ADP320 triple LDO ideal for battery-operated  
portable equipment. Shutdown current consumption is typically  
100 nA.  
Internally, the ADP320 triple LDO consist of a reference,  
three error amplifiers, three feedback voltage dividers, and  
three PMOS pass transistors. Output current is delivered  
via the PMOS pass device, which is controlled by the error  
amplifier. The error amplifier compares the reference voltage  
with the feedback voltage from the output and amplifies the  
difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to flow and increasing the output voltage. If the  
feedback voltage is higher than the reference voltage, the gate  
of the PMOS device is pulled higher, allowing less current to  
flow and decreasing the output voltage.  
Optimized for use with small 1 μF ceramic capacitors, the  
ADP320 triple LDO provides excellent transient performance.  
VOUT1  
VIN1/VIN2  
The ADP320 triple LDO is available in multiple output voltage  
options ranging from 0.8 V to 3.3 V. The ADP320 triple LDO  
uses the EN1, EN2, and EN3 enable pins to enable and disable  
the VOUT1/VOUT2/VOUT3 pins under normal operating  
conditions. When the enable pins are high, VOUT1/VOUT2/  
VOUT3 turn on; when enable pins are low, VOUT1/VOUT2/  
VOUT3 turn off. For automatic startup, the enable pins can be  
tied to VBIAS.  
OVERCURRENT  
INTERNAL BIAS  
VOLTAGES/CURRENTS,  
UVLO AND THERMAL  
PROTECT  
VBIAS  
0.5V  
REF  
SHUTDOWN  
VOUT1  
VOUT2  
EN1  
EN2  
SHUTDOWN  
VOUT2  
OVERCURRENT  
SHUTDOWN  
VOUT3  
0.5V  
REF  
EN3  
VIN3  
GND  
VOUT3  
OVERCURRENT  
0.5V  
REF  
Figure 41. Internal Block Diagram  
Rev. 0 | Page 14 of 20  
 
ADP320  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input Bypass Capacitor  
Connecting a 1 μF capacitor from VIN1/VIN2, VIN3, and  
VBIAS to GND reduces the circuit sensitivity to the PCB layout,  
especially when long input traces or high source impedance are  
encountered. If an output capacitance greater than 1 μF is  
required, the input capacitor should be increased to match it.  
The ADP320 triple LDO is designed for operation with small,  
space-saving ceramic capacitors, but the parts function with  
most commonly used capacitors as long as care is taken in  
regards to the effective series resistance (ESR) value. The ESR  
of the output capacitor affects stability of the LDO control loop.  
A minimum of 0.70 μF capacitance with an ESR of 1 Ω or less  
is recommended to ensure stability of the ADP320 triple LDO.  
Transient response to changes in load current is also affected by  
output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP320 triple LDO to  
large changes in the load current. Figure 42 show the transient  
response for an output capacitance value of 1 μF.  
Input and Output Capacitor Properties  
Any good quality ceramic capacitor may be used with the ADP320  
triple LDO, as long as the capacitor meets the minimum capacit-  
ance and maximum ESR requirements. Ceramic capacitors are  
manufactured with a variety of dielectrics, each with a different  
behavior over temperature and applied voltage. Capacitors must  
have an adequate dielectric to ensure the minimum capacitance  
over the necessary temperature range and dc bias conditions.  
X5R or X7R dielectrics with a voltage rating of 6.3 V or 10 V are  
recommended. Y5V and Z5U dielectrics are not recommended,  
due to their poor temperature and dc bias characteristics.  
I
LOAD1  
Figure 43 depicts the capacitance vs. voltage bias characteristic  
of an 0402 1 μF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15ꢀ over the −40°C to +85°C tempera-  
ture range and is not a function of the package or voltage rating.  
1
2
V
OUT1  
V
V
OUT2  
3
4
OUT3  
1.2  
1.0  
0.8  
0.6  
CH1 100mA BW CH2 50mV  
M40µs  
A CH1  
44mA  
B
W
B
B
T
9.8%  
CH3 10mV  
W CH4 10mV  
W
Figure 42. Output Transient Response,  
ILOAD1 = 1 mA to 200 mA, ILOAD2 = 1 mA, ILOAD3 = 1 mA,  
CH1 = ILOAD1, CH2 = VOUT1, CH3 = VOUT2 , CH4 = VOUT3  
0.4  
0.2  
0
0
2
4
6
8
10  
VOLTAGE (V)  
Figure 43. Capacitance vs. Voltage Bias Characteristic  
Rev. 0 | Page 15 of 20  
 
 
 
ADP320  
Use Equation 1 to determine the worst-case capacitance  
accounting for capacitor variation over temperature, compo-  
nent tolerance, and voltage.  
As shown in  
Figure 44, the ENx pin has built-in hysteresis.  
This prevents on/off oscillations that can occur due to noise  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
on the ENx pin as it passes through the threshold points.  
where:  
The active/inactive thresholds of the ENx pin are derived  
from the VBIAS voltage. Therefore, these thresholds vary with  
changing input voltage. Figure 45 shows typical ENx active/  
inactive thresholds when the input voltage varies from 2.5 V  
to 5.5 V.  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
In this example, TEMPCO over −40°C to +85°C is assumed  
to be 15ꢀ for an X5R dielectric. TOL is assumed to be 10ꢀ,  
and CBIAS is 0.94 ꢁF at 1.8 V from the graph in Figure 43.  
1.00  
0.95  
0.90  
0.85  
0.80  
Substituting these values into Equation 1 yields  
CEFF = 0.94 ꢁF × (1 − 0.15) × (1 − 0.1) = 0.719 ꢁF  
Therefore, the capacitor chosen in this example meets the mini-  
mum capacitance requirement of the LDO over temperature  
and tolerance at the chosen output voltage.  
V
RISE  
V
FALL  
EN  
EN  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
To guarantee the performance of the ADP320 triple LDO, it is  
imperative that the effects of dc bias, temperature, and toler-  
ances on the behavior of the capacitors are evaluated for each  
application.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
UNDERVOLTAGE LOCKOUT  
INPUT VOLTAGE (V)  
The ADP320 triple LDO has an internal undervoltage lockout  
circuit that disables all inputs and the output when the input  
voltage bias, VBIAS, is less than approximately 2.2 V. This  
ensures that the inputs of the ADP320 triple LDO and the  
output behave in a predictable manner during power-up.  
Figure 45. Typical ENx Pins Thresholds vs. Input Voltage  
The ADP320 triple LDO utilizes an internal soft start to limit  
the inrush current when the output is enabled. The start-up  
time for the 2.8 V option is approximately 220 μs from the time  
the ENx active threshold is crossed to when the output reaches  
90ꢀ of its final value. The start-up time is somewhat dependent  
on the output voltage setting and increases slightly as the output  
voltage increases.  
ENABLE FEATURE  
The ADP320 triple LDO uses the ENx pins to enable and  
disable the VOUTx pins under normal operating conditions.  
Figure 44 shows a rising voltage on EN crossing the active  
threshold, then VOUTx turns on. When a falling voltage on  
ENx crosses the inactive threshold, VOUTx turns off.  
V
EN  
V
OUT1  
1
1.4  
V
OUT2  
V
@ 4.5V  
IN  
OUT  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
OUT3  
2
B
B
B
CH2  
CH4 500mV  
CH1 1V  
CH3 500mV  
500mV  
M100µs A CH1  
10.2%  
540mV  
W
W
W
B
W
T
Figure 46. Typical Start-Up Time,  
ILOAD1 = ILOAD2 = ILOAD3 = 100 mA,  
CH1 = VEN, CH2 = VOUT1, CH3 = VOUT2, CH4 = VOUT3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
ENABLE VOLTAGE (V)  
Figure 44. Typical ENx Pin Operation  
Rev. 0 | Page 16 of 20  
 
 
ADP320  
To guarantee reliable operation, the junction temperature of  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
the ADP320 triple LDO must not exceed 125°C. To ensure that  
the junction temperature stays below this maximum value, the  
user needs to be aware of the parameters that contribute to junction  
temperature changes. These parameters include ambient tem-  
perature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The θJA  
number is dependent on the package assembly compounds used  
and the amount of copper to which the GND pins of the package  
are soldered on the PCB. Table 6 shows typical θJA values for the  
ADP320 triple LDO for various PCB copper sizes.  
The ADP320 triple LDO is protected against damage due to  
excessive power dissipation by current and thermal overload  
protection circuits. The ADP320 triple LDO is designed to  
current limit when the output load reaches 300 mA (typical).  
When the output load exceeds 300 mA, the output voltage is  
reduced to maintain a constant current limit.  
Thermal overload protection is built-in, which limits the  
junction temperature to a maximum of 155°C (typical). Under  
extreme conditions (that is, high ambient temperature and  
power dissipation) when the junction temperature starts to  
rise above 155°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
140°C, the output is turned on again and the output current  
is restored to its nominal value.  
Table 6. Typical θJA Values  
Copper Size (mm2)  
ADP320 Triple LDO (°C/W)  
JEDEC1  
49.5  
83.7  
68.5  
64.7  
100  
500  
1000  
Consider the case where a hard short from VOUTx to GND  
occurs. At first, the ADP320 triple LDO current limits, so that  
only 300 mA is conducted into the short. If self-heating of the  
junction is great enough to cause its temperature to rise above  
155°C, thermal shutdown activates turning off the output and  
reducing the output current to zero. As the junction tempera-  
ture cools and drops below 140°C, the output turns on and  
conducts 300 mA into the short, again causing the junction  
temperature to rise above 155°C. This thermal oscillation  
between 140°C and 154°C causes a current oscillation between  
0 mA and 300 mA that continues as long as the short remains  
at the output.  
1 Device soldered to JEDEC standard board.  
The junction temperature of the ADP320 triple LDO can be  
calculated from the following equation:  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = Σ[(VIN VOUT) × ILOAD] + Σ(VIN × IGND  
)
where:  
I
I
LOAD is the load current.  
GND is the ground current.  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so junction temperatures do not exceed 125°C.  
VIN and VOUT are input and output voltages, respectively.  
Power dissipation due to ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to  
THERMAL CONSIDERATIONS  
In most applications, the ADP320 triple LDO does not dissipate  
a lot of heat due to high efficiency. However, in applications  
with a high ambient temperature and high supply voltage to out-  
put voltage differential, the heat dissipated in the package is  
large enough that it can cause the junction temperature of the  
die to exceed the maximum junction temperature of 125°C.  
TJ = TA + {Σ[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature,  
input-to-output voltage differential, and continuous load  
current, there exists a minimum copper size requirement  
for the PCB to ensure the junction temperature does not rise  
above 125°C. Figure 47 to Figure 50 show junction temperature  
calculations for different ambient temperatures, total power  
dissipation, and areas of PCB copper.  
When the junction temperature exceeds 155°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 140°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
In cases where the board temperature is known, the thermal  
characterization parameter, ΨJB, may be used to estimate the  
junction temperature rise. TJ is calculated from TB and PD using  
the formula  
TJ = TB + (PD × ΨJB)  
(5)  
The typical ΨJB value for the 16-lead 3 mm × 3 mm LFCSP is  
25.2°C/W.  
Rev. 0 | Page 17 of 20  
 
 
ADP320  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
2
2
1000mm  
1000mm  
2
2
500mm  
500mm  
2
2
100mm  
100mm  
20  
20  
2
2
50mm  
50mm  
JEDEC  
JEDEC  
J
T
MAX  
T MAX  
J
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 47. Junction Temperature vs. Total Power Dissipation, TA = 25°C  
Figure 49. Junction Temperature vs. Total Power Dissipation, TA = 85°C  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
2
1000mm  
2
500mm  
2
T
T
T
T
= 25°C  
= 50°C  
= 85°C  
MAX  
100mm  
B
B
B
J
20  
0
20  
2
50mm  
JEDEC  
T
MAX  
J
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 48. Junction Temperature vs. Total Power Dissipation, TA = 50°C  
Figure 50. Junction Temperature vs. Total Power Dissipation and  
Board Temperature  
Rev. 0 | Page 18 of 20  
 
 
ADP320  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
Heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins of the  
ADP320 triple LDO. However, as can be seen from Table 6, a  
point of diminishing returns eventually is reached, beyond  
which an increase in the copper size does not yield significant  
heat dissipation benefits.  
Place the input capacitor as close as possible to the VINx and  
GND pins. Place the output capacitors as close as possible to  
the VOUTx and GND pins. Use 0402 or 0603 size capacitors  
and resistors to achieve the smallest possible footprint solution  
on boards where area is limited.  
Figure 51. Example of PCB Layout, Top Side  
Figure 52. Example of PCB Layout, Bottom Side  
Rev. 0 | Page 19 of 20  
 
ADP320  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.65  
1.50 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-229.  
Figure 53. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very, Very Thin Quad  
(CP-16-27)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Output Voltage (V)2  
Package Description  
Package Option  
Branding  
−40°C to +125°C  
16-Lead LFCSP_WQ  
ADP320ACPZ331815R7  
3.3, 1.8, 1.5  
CP-16-27  
LGP  
1 Z = RoHS Compliant Part.  
2 For additional voltage options, contact a local sales or distribution representative.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02839-0-6/10(0)  
Rev. 0 | Page 20 of 20  
 
 

相关型号:

ADP3210

7-Bit Programmable Multiphase Mobile CPU Synchronous
ONSEMI

ADP3210MNR2G

7-Bit Programmable Multiphase Mobile CPU Synchronous
ONSEMI

ADP3211

IMVP6.5, 7-Bit, Programmable, Single-Phase, Synchronous Buck Controller
ONSEMI

ADP32110091MNR2G

同步降压控制器,7 位,可编程,单相
ONSEMI

ADP3211AMNR2

SWITCHING CONTROLLER, 400kHz SWITCHING FREQ-MAX, QCC32, 5 X 5 MM, 1 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, QFN-32
ONSEMI

ADP3211AMNR2G

7-Bit, Programmable, Single-Phase, Synchronous Buck Controller
ONSEMI

ADP3211MNR2

IC SWITCHING CONTROLLER, 400 kHz SWITCHING FREQ-MAX, QCC32, 5 X 5 MM, 1 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, QFN-32, Switching Regulator or Controller
ONSEMI

ADP3211MNR2G

7-Bit, Programmable, Single-Phase, Synchronous Buck Controller
ONSEMI

ADP3211NMNR2G

7-Bit, Programmable, Single-Phase, Synchronous Buck Controller
ONSEMI

ADP3212

7-Bit Programmable, 3-Phase, Mobile CPU Synchronous Buck Controller
ONSEMI

ADP32120091MNR2G

同步降压控制器,7 位,可编程,双相,移动,CPU
ONSEMI

ADP3212A

7-Bit, Programmable, 3-Phase, Mobile CPU Synchronous Buck Controller
ONSEMI