ADP3300ART-3.3 [ADI]

High Accuracy anyCAP® 50 mA Low Dropout Linear Regulator; 高精度anyCAP® 50毫安低压差线性稳压器
ADP3300ART-3.3
型号: ADP3300ART-3.3
厂家: ADI    ADI
描述:

High Accuracy anyCAP® 50 mA Low Dropout Linear Regulator
高精度anyCAP® 50毫安低压差线性稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总8页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
High Accuracy anyCAP  
a
50 mA Low Dropout Linear Regulator  
ADP3300  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High Accuracy Over Line and Load: ؎0.8% @ 25؇C,  
؎1.4% Over Temperature  
Ultralow Dropout Voltage: 80 mV Typical @ 50 mA  
Requires Only CO = 0.47 F for Stability  
anyCAP = Stable with All Types of Capacitors  
(Including MLCC)  
Current and Thermal Limiting  
Low Noise  
Dropout Detector  
ADP3300  
Q1  
OUT  
IN  
THERMAL  
PROTECTION  
R1  
R2  
CC  
ERR  
Q2  
g
m
DRIVER  
GND  
SD  
+
BANDGAP  
REF  
Low Shutdown Current: 1 A  
3.0 V to 12 V Supply Range  
–40؇C to +85؇C Ambient Temperature Range  
Several Fixed Voltage Options  
Ultrasmall SOT-23 6-Lead Package  
Excellent Line and Load Regulation  
APPLICATIONS  
Cellular Telephones  
Notebook, Palmtop Computers  
Battery Powered Systems  
PCMCIA Regulators  
Bar Code Scanners  
Camcorders, Cameras  
NR  
ADP3300-5  
V
IN  
OUT  
V
= +5V  
IN  
OUT  
+
+
GENERAL DESCRIPTION  
R1  
C1  
0.47F  
C2  
330k⍀  
The ADP3300 is a member of the ADP330x family of precision  
low dropout anyCAP voltage regulators. The ADP3300 stands  
out from conventional LDOs with a novel architecture and an  
enhanced process. Its patented design requires only a 0.47 µF  
output capacitor for stability. This device is stable with any  
capacitor, regardless of its ESR (Equivalent Series Resistance)  
value, including ceramic types (MLCC) for space restricted appli-  
cations. The ADP3300 achieves exceptional accuracy of 0.8%  
at room temperature and 1.4% overall accuracy over tempera-  
ture, line and load variations. The dropout voltage of the  
ADP3300 is only 80 mV (typical) at 50 mA.  
0.47F  
E
ERR  
OUT  
ON  
OFF  
GND  
SD  
Figure 1. Typical Application Circuit  
protection is activated. Other features include shutdown and  
optional noise reduction capabilities. The ADP330x anyCAP LDO  
family offers a wide range of output voltages and output current  
levels from 50 mA to 200 mA:  
The ADP3300 operates with a wide input voltage range from  
3.0 V to 12 V and delivers a load current in excess of 50 mA.  
It features an error flag that signals when the device is about to  
lose regulation or when the short circuit or thermal overload  
ADP3301 (100 mA)  
ADP3302 (100 mA, Dual Output)  
ADP3303 (200 mA)  
anyCAP is a registered trademark of Analog Devices Inc.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
(@ TA = –40؇C to +85؇C, VIN = 7 V, CIN = 0.47 F, COUT = 0.47 F, unless  
otherwise noted)  
ADP3300–SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
ACCURACY  
VOUT  
VIN = VOUT(NOM) 0.3 V to 12 V  
IL = 0.1 mA to 50 mA  
TA = 25°C  
–0.8  
–1.4  
+0.8  
+1.4  
%
V
IN = VOUT(NOM) 0.3 V to 12 V  
IL = 0.1 mA to 50 mA  
%
LINE REGULATION  
LOAD REGULATION  
GROUND CURRENT  
VO  
VIN = VOUT(NOM) 0.3 V to 12 V  
TA = 25°C  
VIN  
0.02  
0.06  
mV/V  
mV/mA  
VO  
IL  
IL = 0.1 mA to 50 mA  
TA = 25°C  
IGND  
IL = 50 mA  
IL = 0.1 mA  
0.55  
0.19  
1.7  
0.3  
mA  
mA  
GROUND CURRENT  
IN DROPOUT  
IGND  
VIN = 2.5 V  
IL = 0.1 mA  
0.6  
1.2  
mA  
DROPOUT VOLTAGE  
VDROP  
VOUT = 98% of VOUT(NOM)  
IL = 50 mA  
IL = 10 mA  
0.08  
0.025  
0.004  
0.17  
0.07  
0.03  
V
V
V
IL = 1 mA  
SHUTDOWN THRESHOLD  
VTHSD  
ISDIN  
IQ  
ON  
OFF  
2.0  
0.75  
0.75  
V
V
0.3  
SHUTDOWN PIN  
INPUT CURRENT  
0 < VSD 5 V  
5 < VSD 12 V @ VIN = 12 V  
1
22  
µA  
µA  
GROUND CURRENT IN  
SHUTDOWN MODE  
VSD = 0, VIN = 12 V  
TA = 25°C  
0.005  
0.01  
1
3
µA  
µA  
V
SD = 0, VIN = 12 V  
TA = 85°C  
OUTPUT CURRENT IN  
SHUTDOWN MODE  
IOSD  
TA = 25°C @ VIN = 12 V  
TA = 85°C @ VIN = 12 V  
2
4
µA  
µA  
ERROR PIN OUTPUT  
LEAKAGE  
IEL  
VEO = 5 V  
13  
µA  
ERROR PIN OUTPUT  
“LOW” VOLTAGE  
VEOL  
ISINK = 400 µA  
0.12  
100  
0.3  
V
PEAK LOAD CURRENT  
ILDPK  
VNOISE  
VIN = VOUT(NOM) 1 V  
mA  
OUTPUT NOISE  
@ 5 V OUTPUT  
f = 10 Hz–100 kHz  
C
NR = 0  
100  
30  
µV rms  
µV rms  
CNR = 10 nF, CL = 10 µF  
NOTE  
Ambient temperature of +85°C corresponds to a typical junction temperature of 125°C under typical full load test conditions.  
Specifications subject to change without notice.  
–2–  
REV. B  
ADP3300  
ABSOLUTE MAXIMUM RATINGS*  
PIN FUNCTION DESCRIPTIONS  
Input Supply Voltage . . . . . . . . . . . . . . . . . . . . –0.3 V to +16 V  
Shutdown Input Voltage . . . . . . . . . . . . . . . . . –0.3 V to +16 V  
Error Flag Output Voltage . . . . . . . . . . . . . . . . –0.3 V to +16 V  
Noise Bypass Pin Voltage . . . . . . . . . . . . . . . . . –0.3 V to +5 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . . Internally Limited  
Operating Ambient Temperature Range . . . . –55°C to +125°C  
Operating Junction Temperature Range . . . . –55°C to +125°C  
θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165°C/W  
θJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92°C/W  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . . . 300°C  
Vapor Phase (60 sec ) . . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
Pin Mnemonic Function  
1
2
GND  
NR  
Ground Pin  
Noise Reduction Pin. Used for further  
reduction of the output noise (see text for  
details). No connection if not used.  
3
4
SD  
Active Low Shutdown Pin. Connect to  
ground to disable the regulator output.  
When shutdown is not used, this pin should  
be connected to the input pin.  
OUT  
Output of the Regulator, fixed 2.7, 3.0, 3.2,  
3.3 or 5 volts output voltage. Bypass to  
ground with a 0.47 µF or larger capacitor.  
*This is a stress rating only; operation beyond these limits can cause the device to  
be permanently damaged.  
5
6
IN  
Regulator Input  
PIN CONFIGURATION  
ERR  
Open Collector Output which goes low to  
indicate that the output is about to go out  
of regulation.  
6
5
4
GND  
NR  
1
2
3
ERR  
IN  
ADP3300  
TOPVIEW  
(Not to Scale)  
OUT  
SD  
ORDERING GUIDE  
Package Description  
Model  
ADP3300ART-2.7  
ADP3300ART-2.85 2.85 V  
ADP3300ART-3  
ADP3300ART-3.2  
ADP3300ART-3.3  
ADP3300ART-5  
Voltage Output  
Package Options  
Branding Information  
2.7 V  
Surface Mount  
Surface Mount  
Surface Mount  
Surface Mount  
Surface Mount  
Surface Mount  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
SOT-23-6  
LAB  
LFB  
LBB  
LCB  
LDB  
LEB  
3.0 V  
3.2 V  
3.3 V  
5.0 V  
Contact the factory for the availability of other output voltage options.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADP3300 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
ADP3300Typical Performance Characteristics  
3.202  
800  
640  
480  
3.202  
I
= 0mA  
L
V
= 3.2V  
= 7V  
3.201  
OUT  
3.201  
3.200  
V
= 3.2V  
OUT  
= 0mA  
V
IN  
I
L
3.200  
3.199  
3.198  
3.197  
I
= 10mA  
= 50mA  
L
3.199  
3.198  
3.197  
3.196  
V
= 3.2V  
OUT  
320  
160  
0
I
L
3.196  
3.195  
0
8
16 24 32 40 48 56 64 72 80  
0
1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.812.0  
3.3  
4
5
6
7
8
9
10 11 12 13 14  
OUTPUT LOAD mA  
INPUT VOLTAGE Volts  
INPUT VOLTAGE Volts  
TPC 2. Output Voltage vs. Load  
Current  
TPC 3. Quiescent Current vs.  
Supply Voltage  
TPC 1. Line Regulation Output  
Voltage vs. Supply Voltage  
700  
600  
500  
400  
300  
200  
100  
0
820  
0.2  
0.1  
0.0  
V
= 7V  
IN  
690  
560  
I
= 50mA  
L
I
= 0 50mA  
L
0.1  
0.2  
0.3  
0.4  
430  
I
V
= 0 TO 80mA  
L
I
= 0mA  
L
= 7V  
IN  
300  
170  
45 25 5 15 35 55 75 95 115 135  
TEMPERATURE ؇C  
0
20  
40  
60  
80  
45 25 5 15 35 55 75 95 115 135  
TEMPERATURE ؇C  
OUTPUT LOAD mA  
TPC 5. Output Voltage Varia-  
tion % vs. Temperature  
TPC 6. Quiescent Current vs.  
Temperature  
TPC 4. Quiescent Current vs.  
Load Current  
120  
5
8.0  
V
R
= 3.2V  
V
OUT  
= 64  
IN  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
L
96  
72  
48  
24  
0
4
3
2
1
0
V
OUT  
R
= 33⍀  
L
V
=V  
IN  
SD  
C
R
= 0.47F  
= 66⍀  
L
L
V
= 3.3V  
OUT  
0
20  
40  
60  
80  
0
1
2
3
4
3
2
1
0
0
20 40 60 80 100 120 140 160 180 200  
OUTPUT LOAD mA  
INPUT VOLTAGE Volts  
TIME s  
TPC 7. Dropout Voltage  
vs. Output Current  
TPC 8. Power-Up/Power-Down  
TPC 9. Power-Up Overshoot  
–4–  
REV. B  
ADP3300  
3.220  
3.210  
3.200  
3.190  
3.180  
3.220  
3.210  
3.200  
3.190  
3.180  
3.220  
3.205  
3.200  
V
= 3.2V  
V
= 3.2V  
OUT  
V
C
= 3.2V  
= 0.47F  
OUT  
OUT  
L
3.195  
3.190  
R
C
= 64  
= 0.47F  
R
C
= 3.2k⍀  
= 0.47F  
L
L
L
L
I
= 50mA  
OUT  
50  
1
7.5  
7.0  
7.5  
7.0  
V
IN  
1mA  
800  
180 200  
0
20 40 60 80 100 120 140 160  
0
20 40 60 80 100 120 140 160 180 200  
0
200  
400  
TIME s  
600  
1000  
TIME s  
TIME s  
TPC 10. Line Transient Response  
TPC 11. Line Transient Response  
TPC 12. Load Transient  
3.220  
4
3
2
1
V
= 3.0V  
OUT  
V
C
= 3.2V  
= 4.7F  
3.0  
0
OUT  
V
V
OUT  
OUT  
C
= 0.47F  
L
3.205  
3.200  
L
3.2V  
200  
150  
100  
50  
3.195  
3.190  
C
= 4.7F  
L
V
= 3.2V  
OUT  
R
= 64⍀  
L
I
OUT  
0
+3  
I
= 50mA  
OUT  
50  
1
V
SD  
V
= 7V  
IN  
3V  
1mA  
800  
0
0
0
1
2
3
4
5
0
200  
400  
600  
TIME s  
1000  
0
20  
40  
60  
80  
100  
TIME sec  
TIME s  
TPC 13. Load Transient  
TPC 14. Short Circuit Current  
TPC 15. Turn On  
4
3
2
1
0
0
10  
1
0.47F BYPASS  
= 5V, C = 0.47F,  
L
V
V
R
C
= 3.2V  
= 64⍀  
= 0.47F  
OUT  
V
= 3.3V  
b
3.2V  
OUT  
OUT  
a. 0.47F, R = 33k⍀  
PIN 5TO PIN 1  
L
10  
20  
I
= 1mA, C  
= 0  
L
NR  
L
L
b. 0.47F, R = 64⍀  
L
V
= 3.3V, C = 0.47F,  
OUT  
L
c. 4.7F, R = 33k⍀  
L
I
= 1mA, C  
= 0  
L
NR  
30 d. 4.7F, R = 64⍀  
L
40  
d
50  
a
60  
0.1  
c
V
= 2.7-5.0V, CL = 0.47F,  
70 b d  
80  
OUT  
=
I
1mA  
,
C
= 10nF  
NR  
3
0
L
V
SD  
V
= 2.7-5.0V, C = 0.47F,  
L
OUT  
90  
I
= 1mA, C = 10nF  
L
NR  
a c  
0.01  
100  
100  
10  
100  
1k  
10k 100k  
10M  
1M  
0
20  
40  
60  
80  
100  
1k  
10k  
100k  
FREQUENCY Hz  
TIME s  
FREQUENCY Hz  
TPC 16. Turn Off  
TPC 17. Power Supply Ripple  
Rejection  
TPC 18. Output Noise Density  
–5–  
REV. B  
ADP3300  
THEORY OF OPERATION  
noise rejection and very high regulator gain, which leads to excel-  
lent line and load regulation. An impressive 1.4% accuracy is  
guaranteed over line, load and temperature.  
The new anyCAP LDO ADP3300 uses a single control loop for  
regulation and reference functions. The output voltage is sensed  
by a resistive voltage divider consisting of R1 and R2 which is  
varied to provide the available output voltage option. Feedback  
is taken from this network by way of a series diode (D1) and  
a second resistor divider (R3 and R4) to the input of an amplifier.  
Additional features of the circuit include current limit, thermal  
shutdown and noise reduction. Compared to the standard solu-  
tions that give warning after the output has lost regulation,  
the ADP3300 provides improved system performance by enabling  
the ERR pin to give warning before the device loses regulation.  
OUTPUT  
INPUT  
Q1  
As the chip’s temperature rises above 165°C, the circuit activates a  
soft thermal shutdown, indicated by a signal low on the ERR  
pin, to reduce the current to a safe level.  
COMPENSATION  
CAPACITOR  
R1  
ATTENUATION  
BANDGAP OUT  
(V  
/V  
)
D1  
R3  
To reduce the noise gain of the loop, the node of the main  
divider network (a) is made available at the noise reduction (NR)  
pin, which can be bypassed with a small capacitor (10 nF–100 nF).  
PTAT  
OS  
(a)  
NONINVERTING  
WIDEBAND  
DRIVER  
V
g
m
PTAT  
CURRENT  
R
LOAD  
R4  
R2  
C
LOAD  
APPLICATION INFORMATION  
Capacitor Selection: anyCAP  
ADP3300  
Output Capacitors: as with any micropower device, output  
transient response is a function of the output capacitance. The  
ADP3300 is stable with a wide range of capacitor values, types  
and ESR (anyCAP). A capacitor as low as 0.47 µF is all that is  
needed for stability. However, larger capacitors can be used if  
high output current surges are anticipated. The ADP3300 is  
stable with extremely low ESR capacitors (ESR 0), such as  
multilayer ceramic capacitors (MLCC) or OSCON.  
Figure 2. Functional Block Diagram  
A very high gain error amplifier is used to control this loop. The  
amplifier is constructed in such a way that at equilibrium it  
produces a large, temperature proportional input “offset voltage”  
that is repeatable and very well controlled. The temperature-  
proportional offset voltage is combined with the complimentary  
diode voltage to form a “virtual bandgap” voltage, implicit in  
the network, although it never appears explicitly in the circuit.  
Ultimately, this patented design makes it possible to control the  
loop with only one amplifier. This technique also improves the  
noise characteristics of the amplifier by providing more flexibility  
on the trade-off of noise sources that leads to a low noise design.  
Input Bypass Capacitor: an input bypass capacitor is not  
required; however, for applications where the input source is high  
impedance or far from the input pins, a bypass capacitor is recom-  
mended. Connecting a 0.47 µF capacitor from the input to  
ground reduces the circuit’s sensitivity to PC board layout. If a  
bigger output capacitor is used, the input capacitor should be 1 µF  
minimum.  
The R1, R2 divider is chosen in the same ratio as the bandgap  
voltage to the output voltage. Although the R1, R2 resistor  
divider is loaded by the diode D1 and a second divider consisting  
of R3 and R4, the values are chosen to produce a temperature  
stable output. This unique arrangement specifically corrects for  
the loading of the divider so that the error resulting from base  
current loading in conventional circuits is avoided.  
Noise Reduction  
A noise reduction capacitor (CNR) can be used to further reduce  
the noise by 6 dB–10 dB (Figure 3). Low leakage capacitors in  
the 10 nF–100 nF range provide the best performance. For load  
current less than 200 µA, a 4.7 µF output capacitor provides the  
lowest noise and the best overall performance. Since the noise  
reduction pin (NR) is internally connected to a high impedance  
node, any connection to this node should be carefully done to  
avoid noise pickup from external sources. The pad connected to  
this pin should be as small as possible. Long PC board traces  
are not recommended.  
The patented amplifier controls a new and unique noninverting  
driver that drives the pass transistor, Q1. The use of this special  
noninverting driver enables the frequency compensation to  
include the load capacitor in a pole splitting arrangement to  
achieve reduced sensitivity to the value, type and ESR of the  
load capacitance.  
NR  
Most LDOs place strict requirements on the range of ESR  
values for the output capacitor because they are difficult to  
stabilize due to the uncertainty of load capacitance and resis-  
tance. Moreover, the ESR value, required to keep conventional  
LDOs stable, changes depending on load and temperature.  
These ESR limitations make designing with LDOs more diffi-  
cult because of their unclear specifications and extreme variations  
over temperature.  
C
NR  
ADP3300-5  
10nF  
V
= 5V  
OUT  
V
OUT  
IN  
IN  
+
+
C2  
4.7F  
330k⍀  
C1  
1.0F  
ERR  
E
OUT  
ON  
OFF  
GND  
SD  
This is no longer true with the ADP3300 anyCAP LDO. It can  
be used with virtually any capacitor, with no constraint on the  
minimum ESR. The innovative design allows the circuit to be  
stable with just a small 0.47 µF capacitor on the output. Addi-  
tional advantages of the pole splitting scheme include superior line  
Figure 3. Noise Reduction Circuit  
–6–  
REV. B  
ADP3300  
Thermal Overload Protection  
Error Flag Dropout Detector  
The ADP3300 is protected against damage due to excessive  
power dissipation by its thermal overload protection circuit,  
which limits the die temperature to a maximum of 165°C.  
Under extreme conditions (i.e., high ambient temperature  
and high power dissipation), where die temperature starts to rise  
above 165°C, the output current is reduced until die tempera-  
ture has dropped to a safe level. Output current is restored  
when the die temperature is reduced.  
The ADP3300 will maintain its output voltage over a wide  
range of load, input voltage and temperature conditions. If the  
output is about to lose regulation, for example, by reducing the  
supply voltage below the combined regulated output and dropout  
voltages, the ERR pin will be activated. The ERR output is an  
open collector that will be driven low.  
Once set, the ERRor flag’s hysteresis will keep the output low  
until a small margin of operating range is restored either by  
raising the supply voltage or reducing the load.  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For normal  
operation, device power dissipation should be externally  
limited so that junction temperatures will not exceed 125°C.  
APPLICATION CIRCUITS  
Crossover Switch  
The circuit in Figure 4 shows that two ADP3300s can be used  
to form a mixed supply voltage system. The output switches  
between two different levels selected by an external digital input.  
Output voltages can be any combination of voltages from the  
Ordering Guide.  
Calculating Junction Temperature  
Device power dissipation is calculated as follows:  
PD = (VIN – VOUT) ILOAD + (VIN) IGND  
Where ILOAD and IGND are load current and ground current,  
VIN and VOUT are input and output voltages respectively.  
Assuming ILOAD = 50 mA, IGND = 0.5 mA, VIN = 8 V and  
IN  
V
= 5V/3.3V  
OUT  
ADP3300-5.0  
V
= 5.5V TO 12V  
OUT  
IN  
VOUT = 3.3 V, device power dissipation is:  
OUTPUT SELECT  
SD  
5.0V  
0V  
PD = (8 – 3.3) 0.05 + 8 × 0.5 mA = 0.239 W  
GND  
T = TJ – TA = PD × θJA = 0.239 × 165 = 39.4°C  
With a maximum junction temperature of 125°C, this yields a  
maximum ambient temperature of 85°C.  
IN  
OUT  
+
+
C2  
0.47F  
C1  
1.0F  
ADP3300-3.3  
Printed Circuit Board Layout Consideration  
SD  
Surface mount components rely on the conductive traces or  
pads to transfer heat away from the device. Appropriate PC  
board layout techniques should be used to remove heat from the  
immediate vicinity of the package.  
GND  
Figure 4. Crossover Switch  
Higher Output Current  
If higher current is needed, an appropriate pass transistor can be  
used, as in Figure 5, to increase the output current to 1 A.  
The following general guidelines will be helpful when designing  
a board layout:  
1. PC board traces with larger cross section areas will remove  
more heat. For optimum results, use PC boards with thicker  
copper and wider traces.  
MJE253*  
V
= 6VTO 8V  
V
= 5V @ 1A  
IN  
OUT  
+
R1  
50⍀  
C1  
47F  
2. Increase the surface area exposed to open air so heat can be  
removed by convection or forced air flow.  
IN  
OUT  
3. Do not use solder mask or silkscreen on the heat dissipating  
traces because it will increase the junction to ambient thermal  
resistance of the package.  
C2  
10F  
ADP3300-5  
SD  
ERR  
Shutdown Mode  
GND  
Applying a high signal to the shutdown pin or tying it to the  
input pin will turn the output ON. Pulling the shutdown pin  
down to 0.3 V or below, or tying it to ground, will turn the  
output OFF. In shutdown mode, quiescent current is reduced  
to less than 1 µA.  
*AAVID531002 HEAT SINK IS USED  
Figure 5. High Output Current Linear Regulator  
REV. B  
–7–  
ADP3300  
Constant Dropout Post Regulator  
The circuit in Figure 6 provides high precision with low drop-  
out for any regulated output voltage. It significantly reduces the  
ripple from a switching regulator while providing a constant  
dropout voltage, which limits the power dissipation of the LDO  
to 15 mW. The ADP3000 used in this circuit is a switching  
regulator in the step-up configuration.  
D1  
1N5817  
L1  
6.8H  
ADP3300-5  
V
= 2.5VTO 3.5V  
OUT  
5V @ 50mA  
IN  
IN  
C1  
100F  
10V  
R1  
C2  
100F  
10V  
SD  
C3  
2.2F  
GND  
120⍀  
R2  
30.1k⍀  
1%  
I
V
LIM  
IN  
SW1  
Q1  
2N3906  
Q2  
2N3906  
ADP3000-ADJ  
FB  
GND  
SW2  
R3  
R4  
274k⍀  
124k⍀  
1%  
Figure 6. Constant Dropout Post Regulator  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
6-Lead Surface Mount Package  
(SOT-23)  
0.122 (3.10)  
0.106 (2.70)  
6
1
5
2
4
3
0.071 (1.80)  
0.059 (1.50)  
0.118 (3.00)  
0.098 (2.50)  
PIN 1  
0.037  
(0.95) BSC  
0.075  
(1.90)  
BSC  
0.051 (1.30)  
0.035 (0.90)  
0.057 (1.45)  
0.035 (0.90)  
10؇  
0؇  
0.020 (0.50)  
0.010 (0.25)  
0.006 (0.15)  
0.000 (0.00)  
0.022 (0.55)  
0.014 (0.35)  
SEATING  
PLANE  
0.009 (0.23)  
0.003 (0.08)  
ADP3300Revision History  
Location  
Page  
Data Sheet changed from REV. A to REV. B.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Addition to the ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
–8–  
REV. B  

相关型号:

ADP3300ART-3.3-RL

暂无描述
ADI

ADP3300ART-3.3-RL7

3.3 V FIXED POSITIVE LDO REGULATOR, 0.17 V DROPOUT, PDSO6, ULTRA SMALL, SOT-23, 6 PIN
ROCHESTER

ADP3300ART-32

High Accuracy anyCAP 50 mA Low Dropout Linear Regulator
ADI

ADP3300ART-33

High Accuracy anyCAP 50 mA Low Dropout Linear Regulator
ADI

ADP3300ART-5

High Accuracy anyCAP 50 mA Low Dropout Linear Regulator
ADI

ADP3300ART-5-REEL

5.1V FIXED POSITIVE LDO REGULATOR, 0.17V DROPOUT, PDSO6, ULTRA SMALL, SOT-23, 6 PIN
ADI

ADP3300ART-5-REEL7

5 V FIXED POSITIVE LDO REGULATOR, 0.17 V DROPOUT, PDSO6, ULTRA SMALL, SOT-23, 6 PIN
ROCHESTER

ADP3300ARTZ-2.7RL7

2.7V FIXED POSITIVE LDO REGULATOR, 0.17V DROPOUT, PDSO6, ULTRA SMALL, SOT-23, 6 PIN
ADI

ADP3300ARTZ-3-RL7

3 V FIXED POSITIVE LDO REGULATOR, 0.17 V DROPOUT, PDSO6, ULTRA SMALL, SOT-23, 6 PIN
ROCHESTER

ADP3300ARTZ-3.2-R7

3.2V FIXED POSITIVE LDO REGULATOR, 0.17V DROPOUT, PDSO6, LEAD FREE, ULTRA SMALL, SOT-23, 6 PIN
ADI

ADP3300ARTZ-3.2-R7

3.2 V FIXED POSITIVE LDO REGULATOR, 0.17 V DROPOUT, PDSO6, LEAD FREE, ULTRA SMALL, SOT-23, 6 PIN
ROCHESTER

ADP3300ARTZ-3.2-RL

3.2V FIXED POSITIVE LDO REGULATOR, 0.17V DROPOUT, PDSO6, LEAD FREE, ULTRA SMALL, SOT-23, 6 PIN
ADI