ADP3333 [ADI]

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator; 高精度超低智商300毫安,公司的anyCAP低压差稳压器
ADP3333
型号: ADP3333
厂家: ADI    ADI
描述:

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
高精度超低智商300毫安,公司的anyCAP低压差稳压器

稳压器
文件: 总8页 (文件大小:120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Accuracy Ultralow IQ, 300 mA,  
anyCAP® Low Dropout Regulator  
a
ADP3333  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
High Accuracy Over Line and Load: 0.8% @ 25C,  
1.8% Over Temperature  
Q1  
IN  
OUT  
Ultralow Dropout Voltage: 230 mV (Max) @ 300 mA  
Requires Only CO = 1.0 F for Stability  
anyCAP = Stable with Any Type of Capacitor  
(Including MLCC)  
Current and Thermal Limiting  
Low Noise  
THERMAL  
PROTECTION  
ADP3333  
R1  
R2  
CC  
g
DRIVER  
m
SD  
BANDGAP  
REF  
Low Shutdown Current: < 1 A  
2.6 V to 12 V Supply Range  
–40C to +85C Ambient Temperature Range  
Ultrasmall 8-Lead MSOP Package  
GND  
APPLICATIONS  
Cellular Phones  
PCMCIA Cards  
Personal Digital Assistants (PDAs)  
DSP/ASIC Supplies  
GENERAL D ESCRIP TIO N  
ADP3333 is a member of the ADP333x family of precision low  
dropout anyCAP voltage regulators. Pin-compatible with the  
MAX8860, the ADP3333 operates with a wider input voltage  
range of 2.6 V to 12 V and delivers a load current up to 300 mA.  
ADP3333 stands out from other conventional LDOs with a  
novel architecture and an enhanced process that enables it to  
offer performance advantages over its competition. Its patented  
design requires only a 1.0 µF output capacitor for stability. T his  
device is insensitive to output capacitor Equivalent Series Resis-  
tance (ESR), and is stable with any good quality capacitor,  
including ceramic (MLCC) types for space-restricted applica-  
tions. ADP3333 achieves exceptional accuracy of ±0.8% at  
room temperature and ±1.8% over temperature, line and load  
variations. T he dropout voltage of ADP3333 is only 140 mV  
(typical) at 300 mA. T his device also includes a safety current  
limit, thermal overload protection and a shutdown feature. In  
shutdown mode, the ground current is reduced to less than  
1 µA. T he ADP3333 has ultralow quiescent current, 70 µA (typ)  
in light load situations.  
ADP3333  
NC  
V
IN  
IN  
V
OUT  
OUT  
C
1F  
IN  
C
1F  
OUT  
GND  
SD  
OFF  
NC = NO CONNECT  
ON  
Figure 1. Typical Application Circuit  
anyCAP is a registered trademark of Analog Devices, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
1
(V = 6.0 V, C = COUT = 1.0 F, T = 40C to +125C, unless otherwise noted)  
ADP3333–SPECIFICATIONS  
IN  
IN  
J
P aram eter  
Sym bol  
Condition  
Min  
Typ  
Max  
Unit  
OUT PUT  
Voltage Accuracy2  
VOUT  
VIN = VOUT NOM 0.3 V to 12 V  
IL = 0.1 mA to 300 mA  
TJ = 25°C  
0.8  
0.8  
%
VIN = VOUT NOM 0.3 V to 12 V  
IL = 0.1 mA to 300 mA  
VIN = VOUT NOM 0.3 V to 12 V  
TJ = 25°C  
IL = 0.1 mA to 300 mA  
TJ = 25°C  
VOUT = 98% of VOUT NOM  
IL = 300 mA  
IL = 200 mA  
–1.8  
+1.8  
%
Line Regulation2  
Load Regulation  
Dropout Voltage  
0.04  
0.04  
mV/V  
mV/mA  
VDROP  
140  
105  
30  
230  
185  
mV  
mV  
mV  
IL = 0.1 mA  
Peak Load Current  
Output Noise  
ILDPK  
VNOISE  
VIN = VOUT NOM + 1 V  
f = 10 Hz–100 kHz, CL = 10 µF  
IL = 300 mA  
600  
45  
mA  
µV rms  
GROUND CURRENT  
In Regulation  
IGND  
IL = 300 mA  
2.0  
2.0  
1.5  
1.4  
200  
70  
5.5  
4.3  
3.3  
mA  
mA  
mA  
mA  
µA  
IL = 300 mA, TJ = 25°C  
IL = 300 mA, TJ = 85°C  
IL = 200 mA  
IL = 10 mA  
IL = 0.1 mA  
275  
100  
190  
µA  
µA  
In Dropout  
IGND  
VIN = VOUT NOM – 100 mV  
IL = 0.1 mA,  
70  
VIN = VOUT NOM – 100 mV  
IL = 0.1 mA, TJ = 0°C to 125°C  
SD = 0 V, VIN = 12 V  
70  
160  
1
µA  
µA  
In Shutdown  
IGNDSD  
0.01  
SHUT DOWN  
T hreshold Voltage  
VTHSD  
ISD  
ON  
OFF  
2.0  
V
V
µA  
µA  
µA  
µA  
0.4  
7
4.5  
1
SD Input Current  
0 SD 12 V  
0 SD 5 V  
TJ = 25°C VIN = 12 V  
TJ = 125°C VIN = 12 V  
0.85  
0.8  
0.01  
0.01  
Output Current In Shutdown  
IOSD  
1
NOT ES  
1Application stable with no load.  
2VIN = 2.6 V for models with VOUT NOM 2.3 V.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADP3333  
P IN FUNCTIO N D ESCRIP TIO NS  
ABSO LUTE MAXIMUM RATINGS*  
Input Supply Voltage . . . . . . . . . . . . . . . . . . . –0.3 V to +16 V  
Shutdown Input Voltage . . . . . . . . . . . . . . . . –0.3 V to +16 V  
Power Dissipation . . . . . . . . . . . . . . . . . . . Internally Limited  
Operating Ambient T emperature Range . . . . –40°C to +85°C  
Operating Junction T emperature Range . . . –40°C to +125°C  
P in  
Mnem onic Function  
1
OUT  
IN  
Output of the Regulator. Bypass to ground  
with a 1.0 µF or larger capacitor.  
Input pin. Bypass to ground with a 1.0 µF  
or larger capacitor.  
2
(4-layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158°C/W  
(2-layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C/W  
JA  
JA  
3
GND  
Ground Pin  
No Connect  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
*T his is a stress rating only; operation beyond these limits can cause the device to  
be permanently damaged.  
4–6, 8 NC  
SD  
7
Active Low Shutdown Pin. Connect to  
ground to disable the regulator output.  
When shutdown is not used, his pin should  
be connected to the input pin  
O RD ERING GUID E  
P IN CO NFIGURATIO N  
O utput  
Voltage  
P ackage  
O ption  
Branding  
Inform ation  
Model  
OUT  
IN  
1
2
3
4
8
7
6
5
ADP3333ARM-1.5  
1.5 V  
1.8 V  
2.5 V  
2.77 V  
3 V  
RM-8  
(MSOP-8)  
RM-8  
(MSOP-8)  
RM-8  
(MSOP-8)  
RM-8  
(MSOP-8)  
RM-8  
(MSOP-8)  
RM-8  
(MSOP-8)  
RM-8  
(MSOP-8)  
RM-8  
LKA  
LKB  
LKC  
LKD  
LKE  
LKF  
LKG  
LKH  
NC  
SD  
NC  
NC  
ADP3333  
TOP VIEW  
ADP3333ARM-1.8  
ADP3333ARM-2.5  
ADP3333ARM-2.77  
ADP3333ARM-3  
ADP3333ARM-3.15  
ADP3333ARM-3.3  
ADP3333ARM-5  
GND  
(Not to Scale)  
NC*  
NC = NO CONNECT  
*CAN BE CONNECTED  
TO ANY OTHER PIN.  
3.15 V  
3.3 V  
5 V  
(MSOP-8)  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADP3333 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. T herefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
ADP3333Typical Performance Characteristics  
2.502  
2.500  
2.498  
2.496  
2.502  
140  
120  
100  
80  
V
= 2.5V  
V
= 6V  
I
= 100A  
OUT  
V
= 2.5V  
IN  
L
OUT  
0mA  
V
= 2.5V  
2.500  
OUT  
2.498  
2.496  
2.494  
2.492  
100mA  
I
= 0  
L
2.494  
2.492  
60  
200mA  
300mA  
40  
2.490  
2.488  
20  
0
2.490  
2.488  
3
4
5
6
7
8
9
10 11 12  
0
2
4
6
8
10  
12  
0
50  
100  
150  
200  
250  
300  
INPUT VOLTAGE – V  
INPUT VOLTAGE Volts  
OUTPUT LOAD mA  
TPC 1. Line Regulation Output  
Voltage vs. Supply Voltage  
TPC 3. Ground Current vs. Supply  
Voltage  
TPC 2. Output Voltage vs. Load  
Current  
1.0  
2.5  
2.0  
3.5  
0
V
= 6V  
0.9  
0.8  
V
= 6V  
IN  
IN  
3.0  
2.5  
2.0  
0.7  
200mA  
I
= 300mA  
L
0.6  
I
= 200mA  
L
0.5  
1.5  
1.0  
I
= 100mA  
L
0.4  
0.3  
0.2  
1.5  
1.0  
0.5  
0
300mA  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
I
= 0mA  
0
L
0
0
50  
100  
150  
200  
250  
300  
50 25  
25  
50  
75  
100 125  
50 25  
0
25  
50  
75  
100 125  
JUNCTION TEMPERATURE C  
OUTPUT LOAD mA  
JUNCTION TEMPERATURE C  
TPC 4. Ground Current vs.  
Load Current  
TPC 6. Ground Current vs.  
Junction Temperature  
TPC 5. Output Voltage Variation % vs.  
Junction Temperature  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
C
= 1F  
V
= 2.5V  
OUT  
OUT  
3
2
1
0
4
2
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SD = V  
R
IN  
= 8.3ꢃ  
L
C
= 10F  
OUT  
V
= 2.5V  
OUT  
SD = V  
R
IN  
= 8.3ꢃ  
L
0
50  
100  
150  
200  
250  
300  
200  
400  
TIME s  
600  
800  
1
2
3
4
OUTPUT LOAD mA  
TIME Sec  
TPC 7. Dropout Voltage vs.  
Output Current  
TPC 9. Power-Up Response  
TPC 8. Power-Up/Power-Down  
–4–  
REV. 0  
ADP3333  
V
= 4V  
= 2.5V  
= 1F  
V
= 2.5V  
V
= 2.5V  
IN  
OUT  
OUT  
2.52  
2.51  
2.50  
2.49  
2.7  
2.6  
2.5  
2.4  
2.52  
2.51  
2.50  
2.49  
V
C
R
C
= 8.3ꢃ  
= 1F  
R
C
= 8.3ꢃ  
= 10F  
OUT  
L
L
L
L
L
300  
10  
3.50  
3.00  
3.50  
3.00  
40  
80  
140  
180  
40  
80  
140  
180  
200  
400  
600  
800  
TIME s  
TIME s  
TIME s  
TPC 10. Line Transient Response  
TPC 11. Line Transient Response  
TPC 12. Load Transient Response  
V
= 4V  
IN  
1F  
3
2.7  
2.6  
2.5  
2.4  
V
C
= 2.5V  
OUT  
= 10F  
L
2.5  
0
2
1
0
10F  
10F  
3
1F  
V
= 6V  
IN  
V
= 6V  
= 2.5V  
= 8.3ꢃ  
2
1
0
IN  
300  
10  
V
R
OUT  
2
0
L
V
= 6V  
400  
IN  
200  
400  
600  
800  
200  
600  
800  
200  
400  
600  
800  
TIME s  
TIME s  
TIME s  
TPC 13. Load Transient Response  
TPC 14. Short Circuit Current  
TPC 15. Turn ON-Turn OFF  
Response  
100  
10  
120  
20  
V
= 2.5V  
OUT  
I = 1mA  
L
V
= 2.2V  
OUT  
C
= 10F  
= 500mA  
L
30  
40  
50  
60  
70  
80  
90  
I
100  
80  
L
C
= 10F  
L
C
= 1F  
= 500mA  
L
I
L
C
= 1F  
L
1
C
= 1F  
= 50A  
L
I
L
60  
300mA  
0.1  
0.01  
40  
0mA  
C
= 10F  
= 50A  
L
20  
0
I
L
0.001  
0
10  
20  
30  
F  
40  
50  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
C
FREQUENCY Hz  
L
FREQUENCY Hz  
TPC 16. Power Supply Ripple  
Rejection  
TPC 17. RMS Noise vs. CL  
(10 Hz–100 kHz)  
TPC 18. Output Noise Density  
–5–  
REV. 0  
ADP3333  
designing with LDOs more difficult because of their unclear  
specifications and extreme variations over temperature.  
TH EO RY O F O P ERATIO N  
T he new anyCAP LDO ADP3333 uses a single control loop for  
regulation and reference functions see (Figure 2). T he output  
voltage is sensed by a resistive voltage divider consisting of R1  
and R2 which is varied to provide the available output voltage  
option. Feedback is taken from this network by way of a series  
diode (D1) and a second resistor divider (R3 and R4) to the  
input of an amplifier.  
With the ADP3333 anyCAP LDO, this is no longer true. It can be  
used with virtually any good quality capacitor, with no constraint  
on the minimum ESR. This innovative design allows the circuit to  
be stable with just a small 1 µF capacitor on the output. Additional  
advantages of the pole splitting scheme include superior line noise  
rejection and very high regulator gain which leads to excellent line  
and load regulation. An impressive ±1.8% accuracy is guaranteed  
over line, load and temperature.  
OUTPUT  
R1  
INPUT  
Q1  
ATTENUATION  
/V  
Additional features of the circuit include current limit and ther-  
mal shutdown.  
(V  
)
BANDGAP OUT  
COMPENSATION  
CAPACITOR  
C
LOAD  
D1  
R3  
PTAT  
OS  
g
NONINVERTING  
WIDEBAND  
DRIVER  
(a)  
R2  
FB  
V
AP P LICATIO N INFO RMATIO N  
m
PTAT  
CURRENT  
R
LOAD  
Capacitor Selection  
Output Ca pa citor  
R4  
ADP3333  
T he stability and transient response of the LDO is a function of  
the output capacitor. T he ADP3333 is stable with a wide range  
of capacitor values, types and ESR (anyCAP). A capacitor as  
low as 1.0 µF is all that is needed for stability; larger capacitors  
can be used if high current surges on the output are anticipated.  
T he ADP3333 is stable with extremely low ESR capacitors  
(ESR » 0), such as Multilayer Ceramic Capacitors (MLCC) or  
OSCON. Note that the effective capacitance of some capacitor  
types fall below the minimum over temperature or with dc voltage.  
Ensure that the capacitor provides at least 1.0 µF of capacitance  
over temperature and dc bias.  
GND  
Figure 2. Functional Block Diagram  
A very high gain error amplifier is used to control this loop. T he  
amplifier is constructed in such a way that at equilibrium it pro-  
duces a large, temperature-proportional input “offset voltage” that  
is repeatable and very well controlled. T he temperature propor-  
tional offset voltage is combined with the complementary diode  
voltage to form a “virtual bandgap” voltage, implicit in the network,  
although it never appears explicitly in the circuit. Ultimately, this  
patented design makes it possible to control the loop with only one  
amplifier. This technique also improves the noise characteristics  
of the amplifier by providing more flexibility on the trade-off of  
noise sources that leads to a low noise design.  
Input Bypa ss Ca pa citor  
An input bypass capacitor is not strictly required but it is recom-  
mended in any application involving long input wires or high  
source impedance. Connecting a 1.0 µF capacitor from the input  
to ground reduces the circuit's sensitivity to PC board layout and  
input transients. If a larger output capacitor is necessary then a  
larger value input capacitor is also recommended.  
T he R1, R2 divider is chosen in the same ratio as the bandgap  
voltage to the output voltage. Although the R1, R2 resistor divider  
is loaded by the diode D1 and a second divider consisting of R3  
and R4, the values can be chosen to produce a temperature stable  
output. This unique arrangement specifically corrects for the load-  
ing of the divider so that the error resulting from base current  
loading in conventional circuits is avoided.  
O utput Cur r ent Lim it  
T he ADP3333 is short circuit protected by limiting the pass  
transistor’s base drive current. T he maximum output current is  
limited to about 1 A. See T PC 14.  
Ther m al O ver load P r otection  
T he patented amplifier controls a new and unique noninverting  
driver that drives the pass transistor, Q1. T he use of this special  
noninverting driver enables the frequency compensation to include  
the load capacitor in a pole splitting arrangement to achieve  
reduced sensitivity to the value, type and ESR of the load  
capacitance.  
The ADP3333 is protected against damage due to excessive power  
dissipation by its thermal overload protection circuit. T hermal  
protection limits the die temperature to a maximum of 165°C.  
Under extreme conditions (i.e., high ambient temperature and  
power dissipation) where the die temperature starts to rise above  
165°C, the output current will be reduced until the die tempera-  
ture has dropped to a safe level.  
Most LDOs place very strict requirements on the range of ESR  
values for the output capacitor because they are difficult to stabilize  
due to the uncertainty of load capacitance and resistance. Moreover,  
the ESR value, required to keep conventional LDOs stable, changes  
depending on load and temperature. These ESR limitations make  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For normal  
operation, the device's power dissipation should be externally  
limited so that the junction temperature will not exceed 125°C.  
–6–  
REV. 0  
ADP3333  
Calculating Junction Tem per atur e  
P r inted Cir cuit Boar d Layout Consider ations  
Device power dissipation is calculated as follows:  
Use the following general guidelines when designing printed  
circuit boards:  
1. Keep the output capacitor as close to the output and ground  
pins as possible.  
2. Keep the input capacitor as close to the input and ground  
pins as possible.  
3. PC board traces with larger cross sectional areas will remove  
more heat from the ADP3333. For optimum heat transfer,  
specify thick copper and use wide traces.  
PD = V VOUT  
I
+ V  
I
GND  
(
)
(
)
IN  
LOAD  
IN  
Where ILOAD and IGND are load current and ground current, VIN  
and VOUT are the input and output voltages respectively.  
Assuming the worst-case operating conditions are ILOAD  
300 mA, IGND = 2.6 mA, VIN = 4.0 V and VOUT = 3.0 V, the  
device power dissipation is:  
=
4. Connect the NC pins (Pins 5, 6, and 8) to ground for better  
thermal performance.  
5. T he thermal resistance can be decreased by approximately  
10% by adding a few square centimeters of copper area to  
the lands connected to the pins of the LDO.  
PD = 4.0 V 3.0 V 300 mA + 4.2 V 2.0 mA = 308 mW  
(
)
(
)
T he package used on the ADP3333 has a thermal resistance of  
158°C/W for 4-layer boards. T he junction temperature rise  
above ambient will be approximately equal to:  
6. Use additional copper layers or planes to reduce the thermal  
resistance. Again, connecting the other layers to the ground and  
NC pins of the ADP3333 is best, but not necessary. When  
connecting the ground pad to other layers use multiple vias.  
TJA = 0.308 W × 158°C /W = 48.7°C  
So, to limit the junction temperature to 125°C, the maximum  
allowable ambient temperature is:  
TA( MAX ) = 125°C 48.7°C = 76.3°C  
Shutdown Mode  
Applying a high signal to the shutdown pin, or connecting it to  
the input pin, will turn the output ON. Pulling the shutdown  
pin to 0.3 V or below, or connecting it to ground, will turn the  
output OFF. In shutdown mode, the quiescent current is reduced  
to less than 1 µA.  
REV. 0  
–7–  
ADP3333  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead Mini/m icro SO IC P ackage [Mini_SO ]  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33ꢁ  
27ꢁ  
0.018 (0.46)  
0.008 (0.20)  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
REV. 0  
–8–  

相关型号:

ADP3333-5-REEL7

IC VREG 5 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MSOP-8, Fixed Positive Single Output LDO Regulator
ADI

ADP3333ARM-1.5

IC VREG 1.5 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MINI, MSOP-8, Fixed Positive Single Output LDO Regulator
ADI

ADP3333ARM-1.5-RL

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
ADI

ADP3333ARM-1.5-RL7

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
ADI

ADP3333ARM-1.5-RL7

1.5 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MO-187A, MSOP-8
ROCHESTER

ADP3333ARM-1.8

IC VREG 1.8 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MINI, MSOP-8, Fixed Positive Single Output LDO Regulator
ADI

ADP3333ARM-1.8-RL

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
ADI

ADP3333ARM-1.8-RL

1.8 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MO-187A, MSOP-8
ROCHESTER

ADP3333ARM-1.8-RL7

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
ADI

ADP3333ARM-1.8-RL7

1.8 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MO-187A, MSOP-8
ROCHESTER

ADP3333ARM-15

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
ADI

ADP3333ARM-18

High Accuracy Ultralow IQ, 300 mA, anyCAP Low Dropout Regulator
ADI