ADP5041CP-1-EVALZ [ADI]

Micro PMU with 1.2 A Buck, Two 300 mA LDOs, Supervisory, Watchdog, and Manual Reset;
ADP5041CP-1-EVALZ
型号: ADP5041CP-1-EVALZ
厂家: ADI    ADI
描述:

Micro PMU with 1.2 A Buck, Two 300 mA LDOs, Supervisory, Watchdog, and Manual Reset

文件: 总40页 (文件大小:4130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micro PMU with 1.2 A Buck, Two 300 mA LDOs,  
Supervisory, Watchdog, and Manual Reset  
Data Sheet  
ADP5041  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VOUT1  
Input voltage range: 2.3 V to 5.5 V  
One 1.2 A buck regulator  
Two 300 mA LDOs  
20-lead, 4 mm × 4 mm LFCSP package  
Overcurrent and thermal protection  
Soft start  
Undervoltage lockout  
Open-drain processor reset with externally adjustable  
threshold monitoring  
Guaranteed reset output valid to VAVIN = 1 V  
Manual reset input  
R
= 30  
FILT  
AVIN  
VIN1  
L1  
1µH  
SW  
V
AT  
OUT1  
1.2A  
FB1  
R1  
BUCK  
C6  
VBIAS  
10µF  
R2  
V
= 2.3V TO  
5.5V  
IN1  
PGND  
MODE  
C1  
4.7µF  
EN_BK  
ON  
ON  
ON  
FPWM  
R3  
EN1  
OFF  
PSM/PWM  
C5  
VOUT2  
FB2  
V
AT  
LDO1  
(DIGITAL)  
OUT2  
300mA  
VIN2  
V
= 1.7V  
IN2  
TO 5.5V  
C2  
1µF  
EN_LDO1  
2.2µF  
R4  
EN2  
MR  
OFF  
OFF  
nRSTO  
VBIAS  
µP  
WDI  
VTHR  
SUPERVISOR  
EN3  
R5  
R4  
Watchdog refresh input  
Buck key specifications  
Output voltage range: 0.8 V to 3.8 V  
Current mode topology for excellent transient response  
3 MHz operating frequency  
EN_LDO2  
VOUT3  
FB3  
VIN3  
V
AT  
OUT3  
300mA  
V
= 1.7V  
LDO2  
(ANALOG)  
IN3  
TO 5.5V  
C3  
1µF  
C6  
2.2µF  
R7  
R3  
AGND  
Figure 1.  
Peak efficiency up to 96%  
Uses tiny multilayer inductors and capacitors  
Mode pin selects forced PWM or auto PWM/PSM mode  
100% duty cycle low dropout mode  
LDOs key specifications  
Output voltage range: 0.8 V to 5.2 V  
Low input supply voltage from 1.7 V to 5.5 V  
Stable with 2.2 μF ceramic output capacitors  
High PSRR  
Low output noise  
Low dropout voltage  
−40°C to +125°C junction temperature range  
GENERAL DESCRIPTION  
The ADP5041 combines one high performance buck regulator  
and two low dropout (LDO) regulators in a small 20-lead  
LFCSP to meet demanding performance and board space  
requirements.  
range of the ADP5041 LDOs extend the battery life of portable  
devices. The ADP5041 LDOs maintain a power supply rejection  
greater than 60 dB for frequencies as high as 10 kHz while  
operating with a low headroom voltage.  
The high switching frequency of the buck regulator enables  
use of tiny multilayer external components and minimizes  
board space.  
Each regulator in the ADP5041 is activated by a high level on  
the respective enable pin. The output voltages of the regulators  
and the reset threshold are programmed through external resistor  
dividers to address a variety of applications. The ADP5041  
contains supervisory circuits that monitor power supply voltage  
levels and code execution integrity in microprocessor-based  
systems. They also provide power-on reset signals. An on-chip  
watchdog timer can reset the microprocessor if it fails to strobe  
within a preset timeout period.  
When the MODE pin is set to logic high, the buck regulator  
operates in forced PWM mode. When the MODE pin is set to  
logic low, the buck regulator operates in PWM mode when the  
load is around the nominal value. When the load current falls  
below a predefined threshold, the regulator operates in power  
save mode (PSM), improving the light load efficiency. The low  
quiescent current, low dropout voltage, and wide input voltage  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP5041  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Buck Section................................................................................ 27  
LDO Section ............................................................................... 28  
Supervisory Section ................................................................... 28  
Applications Information.............................................................. 31  
Buck External Component Selection....................................... 31  
LDO External Component Selection ...................................... 32  
Output Capacitor........................................................................ 32  
Supervisory Section ................................................................... 33  
Power Dissipation/Thermal Considerations ............................. 34  
Application Diagram ................................................................. 36  
PCB Layout Guidelines.................................................................. 37  
Suggested Layout........................................................................ 37  
Bill of Materials........................................................................... 38  
Factory Programmable Options................................................... 39  
Outline Dimensions....................................................................... 40  
Ordering Guide .......................................................................... 40  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
General Specifications ................................................................. 3  
Supervisory Specifications .......................................................... 3  
Buck Specifications....................................................................... 4  
LDO1, LDO2 Specifications ....................................................... 5  
Input and Output Capacitor, Recommended Specifications.. 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 26  
Power Management Unit........................................................... 26  
REVISION HISTORY  
5/2019—Rev. A to Rev. B  
Changes to Figure 109.................................................................... 32  
4/2018—Rev. 0 to Rev. A  
Updated Outline Dimensions....................................................... 40  
Changes to Ordering Guide .......................................................... 40  
12/2011—Revision 0: Initial Version  
Rev. B | Page 2 of 40  
 
Data Sheet  
ADP5041  
SPECIFICATIONS  
GENERAL SPECIFICATIONS  
AVIN, VIN1 = 2.3 V to 5.5 V; AVIN, VIN1 ≥ VIN2, VIN3; VIN2, VIN3 = 1.7 V to 5.5 V, TJ = −40°C to +125°C for minimum/maximum  
specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
AVIN UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Option 0  
UVLOAVIN  
UVLOAVINRISE  
2.275  
3.9  
V
V
Option 1  
Input Voltage Falling  
Option 0  
Option 1  
UVLOAVINFALL  
1.95  
3.1  
V
V
SHUTDOWN CURRENT  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
START-UP TIME1  
IGND-SD  
TSSD  
TSSD-HYS  
ENx = GND  
TJ rising  
0.1  
150  
20  
2
μA  
°C  
°C  
Buck  
LDO1, LDO2  
tSTART1  
tSTART2  
250  
85  
μs  
μs  
VOUT2, VOUT3 = 3.3 V  
ENx, WDI, MODE, MR INPUTS  
Input Logic High  
Input Logic Low  
Input Leakage Current  
OPEN-DRAIN OUTPUT  
nRSTO Output Voltage  
VIH  
VIL  
VI-LEAKAGE  
2.5 V ≤ AVIN ≤ 5.5 V  
2.5 V ≤ AVIN ≤ 5.5 V  
ENx = AVIN or GND  
1.2  
V
V
μA  
0.4  
1
0.05  
VOL1V  
AVIN ≥ 1.0 V, ISINK = 50 μA  
AVIN ≥ 1.2 V, ISINK = 100 μA  
AVIN ≥ 2.7 V, ISINK = 1.2 mA  
AVIN ≥ 4.5 V, ISINK = 3.2 mA  
AVIN = 5.5 V  
0.3  
0.3  
0.3  
0.4  
1
V
V
V
V
VOL1V2  
VOL2V7  
VOL4V5  
Open-Drain Reset Output Leakage  
Current  
μA  
1 Start-up time is defined as the time from the moment EN1 = EN2 = EN3 transfers from 0 V to VAVIN to the moment VOUT1, VOUT2, and VOUT3 are reaching 90% of  
their nominal levels. Start-up times are shorter for individual channels if another channel is already enabled. See the Typical Performance Characteristics section for  
more information.  
SUPERVISORY SPECIFICATIONS  
AVIN, VIN1 = 2.3 V to 5.5 V; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications,  
unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY  
Supply Current (Supervisory Circuit Only)  
45  
43  
55  
52  
μA  
μA  
V
AVIN = VIN1 = EN1 = EN2 = EN3 = 5.5 V  
AVIN = VIN1 = EN1 = EN2 = EN3 = 3.6 V  
THRESHOLD VOLTAGE  
RESET TIMEOUT PERIOD  
Option 0  
0.495  
0.500  
0.505  
24  
160  
30  
200  
80  
36  
240  
ms  
ms  
μs  
Option 1  
VCC TO RESET DELAY (tRD  
)
VIN falling at 1 mV/μs  
Rev. B | Page 3 of 40  
 
 
 
ADP5041  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
WATCHDOG INPUT  
Watchdog Timeout Period  
Option 0  
Option 1  
WDI Pulse Width  
81.6  
1.28  
80  
102  
1.6  
122.4  
1.92  
ms  
sec  
ns  
VIL = 0.4 V, VIH = 1.2 V  
WDI Input Threshold  
WDI Input Current (Source)  
WDI Input Current (Sink)  
MANUAL RESET INPUT  
MR Input Pulse Width  
0.4  
1.2  
20  
−15  
V
8
−30  
15  
−25  
μA  
μA  
VWDI = VCC, time average  
VWDI = 0 V, time average  
1
μs  
ns  
kΩ  
Ns  
MR Glitch Rejection  
MR Pull-Up Resistance  
MR to Reset Delay  
220  
52  
25  
90  
280  
VCC = 5 V  
BUCK SPECIFICATIONS  
AVIN, VIN1 = 2.3 V to 5.5 V; VOUT1 = 1.8 V; L = 1 μH; CIN = 10 μF; COUT = 10 μF; TJ = −40°C to +125°C for minimum/maximum  
specifications, and TA = 25°C for typical specifications, unless otherwise noted.1  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
5.5  
Unit  
INPUT CHARACTERISTICS  
Input Voltage Range  
OUTPUT CHARACTERISTICS  
Output Voltage Accuracy  
Line Regulation  
VIN1  
2.3  
V
VOUT1  
PWM mode, ILOAD = 0 mA to 1200 mA −3  
PWM mode  
ILOAD = 0 mA to 1200 mA, PWM mode  
+3  
%
(ΔVOUT1/VOUT1)/ΔVIN1  
(ΔVOUT1/VOUT1)/ΔIOUT1  
−0.05  
−0.1  
0.5  
%/V  
%/A  
V
Load Regulation  
VOLTAGE FEEDBACK  
VFB1  
0.485  
0.515  
PWM TO POWER SAVE MODE  
CURRENT THRESHOLD  
IPSM_L  
100  
mA  
INPUT CURRENT CHARACTERISTICS  
DC Operating Current  
MODE = ground  
ILOAD = 0 mA, device not switching,  
all other channels disabled  
INOLOAD  
ISHTD  
21  
35  
ꢀA  
ꢀA  
Shutdown Current  
SW CHARACTERISTICS  
SW On Resistance  
EN1 = 0 V, TA = TJ = −40°C to +125°C  
0.2  
1.0  
RPFET  
PFET, AVIN = VIN1 = 3.6 V  
180  
240  
mΩ  
PFET, AVIN = VIN1 = 5 V  
NFET, AVIN = VIN1 = 3.6 V  
NFET, AVIN = VIN1 = 5 V  
PFET switch peak current limit  
EN1 = 0 V  
140  
170  
150  
1950  
85  
190  
235  
210  
2300  
mΩ  
mΩ  
mΩ  
mA  
Ω
RNFET  
ILIMIT  
fOSC  
Current Limit  
1600  
2.5  
ACTIVE PULL-DOWN  
OSCILLATOR FREQUENCY  
3.0  
3.5  
MHz  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
Rev. B | Page 4 of 40  
 
Data Sheet  
ADP5041  
LDO1, LDO2 SPECIFICATIONS  
VIN2, VIN3 = (VOUT2, VOUT3 + 0.5 V) or 1.7 V (whichever is greater) to 5.5 V; AVIN, VIN1 ≥ VIN2, VIN3; CIN = 1 μF, COUT = 2.2 μF;  
TJ= −40°C to +125°C for minimum/maximum specifications and TA = 25°C for typical specifications, unless otherwise noted.1  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
Bias Current per LDO2  
VIN2, VIN3  
TJ = −40°C to +125°C  
1.7  
5.5  
V
IOUT3 = IOUT4 = 0 μA  
IOUT2 = IOUT3 = 10 mA  
IOUT2 = IOUT3 = 300 mA  
10  
30  
μA  
μA  
μA  
IVIN2BIAS/IVIN3BIAS  
60  
100  
245  
165  
Total System Input Current  
Includes all current into AVIN, VIN1, VIN2, and  
VIN3  
IIN  
LDO1 or LDO2 Only  
LDO1 and LDO2 Only  
IOUT2 = IOUT3 = 0 μA, all other channels disabled  
IOUT2 = IOUT3 = 0 μA, buck disabled  
53  
74  
μA  
μA  
OUTPUT VOLTAGE ACCURACY  
VOUT2, VOUT3  
100 μA < IOUT2 < 300 mA, 100 μA < IOUT3 < 300 mA  
VIN2 = (VOUT2 + 0.5 V) to 5.5 V  
−3  
+3  
%
VIN3 = (VOUT3 + 0.5 V) to 5.5 V  
REFERENCE VOLTAGE  
REGULATION  
VFB2,VFB3  
0.485  
−0.03  
0.500  
0.002  
0.515  
+0.03  
V
Line Regulation  
(ΔVOUT2/VOUT2)/ΔVIN2  
(ΔVOUT3/VOUT3)/ΔVIN3  
VIN2 = (VOUT2 + 0.5 V) to 5.5 V  
VIN3 = (VOUT3 + 0.5 V) to 5.5 V  
%/ V  
IOUT2 = IOUT3 = 1 mA  
Load Regulation3  
(ΔVOUT2/VOUT2)/ΔIOUT2  
(ΔVOUT3/VOUT3)/ΔIOUT3  
IOUT2 = IOUT3 = 1 mA to 300 mA  
0.0075  
140  
%/mA  
DROPOUT VOLTAGE4  
VDROPOUT  
VOUT2 = VOUT3 = 5.0 V, IOUT2 = IOUT3 = 300 mA  
VOUT2 = VOUT3 = 3.3 V, IOUT2 = IOUT3 = 300 mA  
VOUT2 = VOUT3 = 2.5 V, IOUT2 = IOUT3 = 300 mA  
VOUT2 = VOUT3 = 1.8 V, IOUT2 = IOUT3 = 300 mA  
72  
mV  
mV  
mV  
mV  
Ω
86  
107  
180  
ACTIVE PULL-DOWN  
CURRENT-LIMIT THRESHOLD5  
OUTPUT NOISE  
RPDLDO  
EN2/EN3 = 0 V  
600  
470  
123  
110  
59  
ILIMIT  
TJ = −40°C to +125°C  
335  
mA  
OUTLDO2NOISE  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 3.3 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 2.8 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 1.5 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 3.3 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 2.8 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 1.5 V  
μV rms  
μV rms  
μV rms  
μV rms  
μV rms  
μV rms  
OUTLDO1NOISE  
140  
129  
66  
POWER SUPPLY REJECTION  
RATIO  
PSRR  
1 kHz, VIN2, VIN3 = 3.3 V, VOUT2, VOUT3 = 2.8 V,  
IOUT = 100 mA  
66  
dB  
dB  
dB  
100 kHz, VIN2,VIN3 = 3.3 V, VOUT2,VOUT3 = 2.8 V,  
IOUT = 100 mA  
57  
60  
1 MHz, VIN2, VIN3 = 3.3 V, VOUT2, VOUT3 = 2.8 V,  
IOUT = 100 mA  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
2 This is the input current into VIN2 and VIN3 that is not delivered to the output load.  
3 Based on an end-point calculation using 1 mA and 300 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only to output voltages  
above 1.7 V.  
5 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
Rev. B | Page 5 of 40  
 
ADP5041  
Data Sheet  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol  
CMIN1  
Test Conditions/Comments  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
Min  
4.7  
Typ  
Max  
40  
Unit  
μF  
INPUT CAPACITANCE (BUCK)1  
OUTPUT CAPACITANCE (BUCK)2  
INPUT AND OUTPUT CAPACITANCE3 (LDO1, LDO2)  
CAPACITOR ESR  
CMIN2  
7
40  
μF  
CMIN34  
RESR  
0.70  
0.001  
μF  
1
Ω
1 The minimum input capacitance should be greater than 4.7 μF over the full range of operating conditions. The full range of operating conditions in the application  
must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended, whereas  
Y5V and Z5U capacitors are not recommended for use with the buck.  
2 The minimum output capacitance should be greater than 7 μF over the full range of operating conditions. The full range of operating conditions in the application  
must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended, whereas  
Y5V and Z5U capacitors are not recommended for use with the buck.  
3 The minimum input and output capacitance should be greater than 0.70 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended,  
whereas Y5V and Z5U capacitors are not recommended for use with LDOs.  
Rev. B | Page 6 of 40  
 
Data Sheet  
ADP5041  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
THERMAL RESISTANCE  
Rating  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
AVIN to AGND  
VIN1 to AVIN  
PGND to AGDN  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to (AVIN + 0.3 V)  
Table 7. Thermal Resistance  
Package Type  
20-Lead, 0.5 mm pitch LFCSP  
VIN2, VIN3, VOUTx, ENx, MODE, MR, WDI,  
nRSTO, FBx, VTHR, SW to AGND  
SW to PGND  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
ESD Human Body Model  
ESD Charged Device Model  
ESD Machine Model  
θJA  
θJC  
Unit  
−0.3 V to (VIN1 + 0.3 V)  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
3000 V  
38  
4.2  
°C/W  
ESD CAUTION  
1500 V  
200 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 7 of 40  
 
 
 
 
ADP5041  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP5041  
TOP VIEW  
(Not to Scale)  
15 FB2  
FB3  
VOUT3  
VIN3  
1
2
3
4
5
14 VOUT2  
13 VIN2  
12 FB1  
EN3  
nRSTO  
11 VOUT1  
NOTES  
1. EXPOSED PAD MUST BE CONNECTED TO  
SYSTEM GROUND PLANE.  
Figure 2. Pin Configuration—View from Top of the Die  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
FB3  
LDO2 Feedback Input.  
LDO2 Output Voltage.  
LDO2 Input Supply (1.7 V to 5.5 V).  
Enable LDO2. EN3 = high: turn on LDO2; EN3 = low: turn off LDO2.  
Open-Drain Reset Output, Active Low.  
Housekeeping and Supervisory Input Supply (2.3 V to 5.5 V).  
Buck Input Supply (2.3 V to 5.5 V).  
VOUT3  
VIN3  
EN3  
nRSTO  
AVIN  
VIN1  
SW  
Buck Switching Node.  
9
PGND  
EN1  
VOUT1  
FB1  
VIN2  
VOUT2  
FB2  
Dedicated Power Ground for Buck Regulator.  
Enable Buck. EN1 = high: turn on buck; EN1 = low: turn off buck.  
Buck Output Sensing Node.  
Buck Feedback Input.  
LDO1 Input Supply (1.7 V to 5.5 V).  
10  
11  
12  
13  
14  
15  
16  
17  
LDO1 Output Voltage.  
LDO1 Feedback Input.  
EN2  
MODE  
Enable LDO1. EN2 = high: turn on LDO1; EN2 = low: turn off LDO1.  
Buck Mode. MODE = high; buck regulator operates in fixed PWM mode; MODE = low; buck regulator operates  
in power saving mode (PSM) at light load and in constant PWM at higher load.  
18  
19  
20  
0
VTHR  
WDI  
MR  
Reset Threshold Programming.  
Watchdog Refresh Input from Processor. If WDI is in high-Z, watchdog is disabled.  
Manual Reset Input, Active Low.  
EPAD  
Exposed Pad (Analog Ground). The exposed pad must be connected to the system ground plane.  
Rev. B | Page 8 of 40  
 
Data Sheet  
ADP5041  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN1 = VIN2 = VIN3 = AVIN = 5.0 V, TA = 25°C, unless otherwise noted.  
SW  
4
2
V
OUT1  
OUT2  
2
V
OUT1  
V
3
4
EN  
V
OUT3  
1
3
I
IN  
B
B
B
B
CH1 4.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
500M  
20.0M  
2.32V  
50µs/DIV  
2.0MS/s  
500ns/pt  
CH4 2.0V/DIV 1MΩ  
CH2 2.0V/DIV 1MΩ  
CH3 2.0V/DIV 1MΩ  
500M  
20.0M  
500M  
A CH2  
1.88V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
W
B
B
B
CH2  
CH3  
3.0V/DIV  
200mA/DIV 1MΩ  
W
W
W
CH4 5.0V/DIV  
1MΩ  
500M  
Figure 3. 3-Channel Start-Up Waveforms  
Figure 6. Buck Startup, VOUT1 = 3.3 V, IOUT2 = 20 mA  
V
SW  
OUT3  
4
2
4
2
V
OUT2  
V
OUT1  
V
OUT1  
1
3
EN  
1
3
I
I
IN  
IN  
B
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.08V  
200µs/DIV  
5.0MS/s  
200ns/pt  
CH1 8.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
500.0M  
20.0M  
1.12V  
50µs/DIV  
2.0MS/s  
500ns/pt  
W
W
B
B
B
B
B
B
CH2  
CH3  
CH2  
CH3  
2.0V/DIV  
300mA/DIV 1MΩ  
2.0V/DIV  
200mA/DIV 1MΩ  
W
W
W
W
W
W
CH4 2.0V/DIV  
1MΩ  
20.0M  
CH4 5.0V/DIV  
1MΩ  
500.0M  
Figure 4. Total Inrush Current, All Channels Started Simultaneously  
Figure 7. Buck Startup, VOUT1 = 1.8 V, IOUT = 20 mA  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
SW  
4
2
V
OUT1  
EN  
1
3
I
IN  
0.1  
0
B
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
CH1 8.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
500.0M  
20.0M  
640mV 50µs/DIV  
2.0MS/s  
W
B
B
B
CH2  
CH3  
2.0V/DIV  
200mA/DIV 1MΩ  
V
(V)  
W
W
W
IN  
500ns/pt  
CH4 5.0V/DIV  
1MΩ  
500.0M  
Figure 8. Buck Startup, VOUT1 = 1.2 V, IOUT = 20 mA  
Figure 5. System Quiescent Current (Sum of All the Input Currents) vs.  
Input Voltage, VOUT1 = 1.8 V, VOUT2 = VOUT3 = 3.3 V, (UVLO = 3.3 V)  
Rev. B | Page 9 of 40  
 
ADP5041  
Data Sheet  
3.90  
3.88  
3.86  
3.84  
3.82  
3.80  
3.78  
3.76  
3.74  
3.72  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3.70  
0.01  
0.1  
1
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 12. Buck Load Regulation Across Temperature, VOUT1 = 1.2 V,  
Auto Mode  
Figure 9. Buck Load Regulation Across Temperature, VOUT1 = 3.8 V,  
Auto Mode  
3.90  
3.39  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3.88  
3.86  
3.84  
3.37  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
3.82  
3.80  
3.78  
3.76  
3.74  
3.72  
3.70  
0.01  
0.1  
1
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 13. Buck Load Regulation Across Temperature, VOUT1 = 3.8 V,  
PWM Mode  
Figure 10. Buck Load Regulation Across Temperature, VOUT1 = 3.3 V,  
Auto Mode  
3.32  
1.820  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
1.815  
1.810  
3.31  
3.30  
3.29  
3.28  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
3.27  
3.26  
3.25  
0.01  
0.1  
1
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 14. Buck Load Regulation Across Temperature, VOUT1 = 3.3 V,  
PWM Mode  
Figure 11. Buck Load Regulation Across Temperature, VOUT1 = 1.8 V,  
Auto Mode  
Rev. B | Page 10 of 40  
Data Sheet  
ADP5041  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
V
= 4.5V  
IN  
V
= 5.5V  
IN  
1.780  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 15. Buck Load Regulation Across Temperature,  
Figure 18. Buck Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 3.8 V, PWM Mode  
V
OUT1 = 1.8 V, PWM Mode  
V
1.205  
1.200  
1.195  
1.190  
1.185  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
V
= 3.6V  
IN  
V
= 4.5V  
IN  
V
= 5.5V  
IN  
1.180  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 16. Buck Load Regulation Across Temperature,  
Figure 19. Buck Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 3.3 V, Auto Mode  
V
OUT1 = 1.2 V, PWM Mode  
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.6  
IN  
V
= 4.5  
V
= 4.5V  
IN  
IN  
V
= 5.5V  
IN  
V
= 5.5  
IN  
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 20. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.3 V, PWM Mode  
Figure 17. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.8 V, Auto Mode  
Rev. B | Page 11 of 40  
ADP5041  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 21. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 1.8 V, Auto Mode  
Figure 24. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 1.2 V, PWM Mode  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
20  
20  
10  
0
–40°C  
+25°C  
+85°C  
10  
0
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 22. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 1.8 V, PWM Mode  
Figure 25. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 3.3 V, Auto Mode  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
20  
10  
20  
–40°C  
+25°C  
+85°C  
10  
0
0
0.001  
0.0001  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 23. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 1.2 V, Auto Mode  
Figure 26. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 3.3 V, PWM Mode  
Rev. B | Page 12 of 40  
Data Sheet  
ADP5041  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 27. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 1.8 V, Auto Mode  
Figure 30. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 1.2 V, PWM Mode  
100  
90  
80  
70  
60  
50  
40  
30  
2.5  
V
= 3.3V  
OUT  
2.0  
1.5  
1.0  
0.5  
0
20  
–40°C  
+25°C  
+85°C  
10  
0
0.001  
0.01  
0.1  
1
3.4  
3.9  
4.4  
4.9  
5.4  
OUTPUT CURRENT (A)  
V
(V)  
IN  
Figure 28. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 1.8 V, PWM Mode  
Figure 31. Buck DC Current Capability vs. Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 1.8V  
OUT  
20  
–40°C  
+25°C  
+85°C  
10  
0
0.0001  
0.001  
0.01  
0.1  
1
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
OUTPUT CURRENT (A)  
V
(V)  
IN  
Figure 29. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 1.2 V, Auto Mode  
Figure 32. Buck DC Current Capability vs. Input Voltage  
Rev. B | Page 13 of 40  
ADP5041  
Data Sheet  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
OUT  
V
= 1.2V  
OUT  
4
2
I
SW  
SW  
3
0
2.4  
B
B
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 5µs/DIV  
W
W
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
500MS/s  
2.0ns/pt  
CH3  
CH4  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
V
(V)  
IN  
Figure 33. Buck DC Current Capability vs. Input Voltage  
Figure 36. Typical Waveforms, VOUT1 = 1.8 V, IOUT1 = 30 mA, Auto Mode  
2.94  
2.92  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
V
OUT  
4
2
I
SW  
SW  
–40°C  
+25°C  
+85°C  
3
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
B
B
CH2 200mA/DIV 1MΩ  
CH3  
CH4  
20.0M A CH3  
20.0M  
20.0M  
1.14V  
5µs/DIV  
500MS/s  
2.0ns/pt  
W
W
OUTPUT CURRENT (A)  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
Figure 34. Buck Switching Frequency vs. Output Current,  
Across Temperature, VOUT1 = 1.8 V, PWM Mode  
Figure 37. Typical Waveforms, VOUT1 = 1.2 V, IOUT1 = 30 mA, Auto Mode  
V
OUT  
4
2
4
2
V
OUT  
I
SW  
I
SW  
SW  
SW  
3
3
B
B
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 200ns/DIV  
500MS/s  
B
B
W
W
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 5µs/DIV  
500MS/s  
W
W
CH3  
CH4  
3.0V/DIV  
10.0mV/DIV  
1MΩ  
CH3  
CH4  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
2.0ns/pt  
2.0ns/pt  
Figure 35. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, Auto Mode  
Figure 38. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, PWM Mode  
Rev. B | Page 14 of 40  
Data Sheet  
ADP5041  
V
OUT  
4
V
V
IN  
I
SW  
OUT  
2
2
3
1
SW  
SW  
3
B
B
B
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 200ns/DIV  
500MS/s  
CH1 3.0V/DIV  
CH2 30.0mV/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
B
CH3  
CH4  
3.0V/DIV  
20.0mV/DIV  
1MΩ  
W
2.0ns/pt  
B
1.0V/DIV  
1MΩ  
CH3  
W
Figure 39. Typical Waveforms, VOUT1 = 1.8 V, IOUT1 = 30 mA, PWM Mode  
Figure 42. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.8 V, IOUT1 = 5 mA, Auto Mode  
V
I
OUT  
V
V
IN  
4
2
SW  
OUT  
2
SW  
3
1
SW  
3
B
B
CH2 200mA/DIV 1MΩ  
20.0M A CH3  
20.0M  
20.0M  
1.14V  
200ns/DIV  
500MS/s  
2.0ns/pt  
B
W
W
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
CH3  
CH4  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
B
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
B
1MΩ  
W
Figure 40. Typical Waveforms, VOUT1 = 1.2 V, IOUT1 = 30 mA, PWM Mode  
Figure 43. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.2 V, IOUT1 = 5 mA, Auto Mode  
V
V
IN  
IN  
V
OUT  
V
OUT  
2
2
SW  
3
1
3
1
SW  
B
B
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
B
CH2  
CH3  
B
50.0mV/DIV  
1.0V/DIV  
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
W
B
B
1MΩ  
1MΩ  
W
W
Figure 41. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 3.3 V, IOUT1 = 5 mA, Auto Mode  
Figure 44. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 3.3 V, PWM Mode  
Rev. B | Page 15 of 40  
ADP5041  
Data Sheet  
SW  
V
V
IN  
1
2
V
OUT  
OUT  
2
SW  
3
1
I
OUT  
3
B
B
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
W
W
B
B
20.0MS/s  
50.0ns/pt  
CH2  
CH3  
20.0mV/DIV  
1.0V/DIV  
W
W
W
B
B
1MΩ  
W
Figure 45. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.8 V, PWM Mode  
Figure 48. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 3.3 V, Auto Mode  
SW  
V
V
IN  
1
V
OUT  
OUT  
2
2
SW  
3
1
I
OUT  
3
B
B
B
1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2 100mV/DIV  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
B
W
W
W
CH1 3.0V/DIV  
20.0M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
B
B
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
W
50.0ns/pt  
300mA/DIV 1MΩ  
1MΩ  
Figure 46. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.2 V, PWM Mode  
Figure 49. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 1.8 V, Auto Mode  
SW  
SW  
1
1
V
OUT  
V
OUT  
2
2
I
I
OUT  
OUT  
3
3
B
B
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
4.0V/DIV  
100mV/DIV  
1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
CH1  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
W
W
B
B
W
W
W
W
B
B
50.0ns/pt  
50.0ns/pt  
300mA/DIV 1MΩ  
Figure 47. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 3.3 V, Auto Mode  
Figure 50. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 1.8 V, Auto Mode  
Rev. B | Page 16 of 40  
Data Sheet  
ADP5041  
SW  
SW  
1
1
2
V
OUT  
V
OUT  
2
I
I
OUT  
OUT  
3
3
B
B
B
1MΩ  
50.0mV/DIV  
100mA/DIV 1MΩ  
20.0M  
20.0M  
120M  
4.0V/DIV  
50.0mV/DIV  
1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
94.0mA 200µs/DIV  
500kS/s  
CH1  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
W
W
W
B
20.0MS/s  
50.0ns/pt  
W
W
B
B
2.0µs/pt  
300mA/DIV 1MΩ  
W
Figure 51. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 1.2 V, Auto Mode  
Figure 54. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 3.3 V, PWM Mode  
SW  
SW  
1
1
V
OUT  
V
OUT  
2
2
I
I
OUT  
OUT  
3
3
B
B
B
20.0M  
20.0M  
120M  
1MΩ  
50.0mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
A CH3  
92.0mA 200µs/DIV  
500kS/s  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
W
W
W
B
CH2  
CH3  
50.0mV/DIV  
200mA/DIV 1MΩ  
W
W
B
B
2.0µs/pt  
50.0ns/pt  
W
Figure 52. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 1.2 V, Auto Mode  
Figure 55. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 1.8 V, PWM Mode  
SW  
SW  
1
1
V
V
OUT  
OUT  
2
2
I
I
OUT  
OUT  
3
3
B
B
1MΩ  
50.0mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
4.0V/DIV  
100mV/DIV  
1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
CH1  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
W
W
B
B
W
W
W
W
B
B
50.0ns/pt  
50.0ns/pt  
300mA/DIV 1MΩ  
Figure 53. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
OUT1 = 3.3 V, PWM Mode  
Figure 56. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
OUT1 = 1.8 V, PWM Mode  
V
V
Rev. B | Page 17 of 40  
ADP5041  
Data Sheet  
1
SW  
I
IN  
V
OUT  
2
V
OUT  
I
OUT  
EN  
3
B
B
B
B
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.72V  
50.0µs/DIV  
200MS/s  
5.0ns/pt  
CH1 4.0V/DIV  
20.0M A CH3  
20.0M  
120.0M  
94.0mA 200µs/DIV  
500kS/s  
W
W
W
W
W
CH2  
CH3  
2.0V/DIV  
200mA/DIV  
CH2  
CH3  
50.0mV/DIV  
100mA/DIV 1MΩ  
B
2.0ns/pt  
W
Figure 57. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 1.2 V, PWM Mode  
Figure 60. LDO1, LDO2 Startup, VOUT = 3.3 V, IOUT = 5 mA  
I
IN  
1
3
2
SW  
V
OUT  
2
V
OUT  
EN  
I
OUT  
1
3
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
760mV 50.0µs/DIV  
200MS/s  
W
CH1 4.0V/DIV  
20.0M A CH3  
20.0M  
20.0M  
92.0mA 200µs/DIV  
500kS/s  
B
B
CH2  
CH3  
1.0V/DIV  
200mA/DIV  
W
W
CH2  
CH3  
50.0mV/DIV  
200mA/DIV 1MΩ  
5.0ns/pt  
B
2.0ns/pt  
W
Figure 61. LDO1, LDO2 Startup, VOUT = 1.8 V, IOUT = 5 mA  
Figure 58. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 1.2 V, PWM Mode  
I
IN  
3
I
IN  
3
2
V
V
OUT  
OUT  
2
1
EN  
EN  
1
B
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.72V  
50.0µs/DIV  
200MS/s  
5.0ns/pt  
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.72V  
50.0µs/DIV  
200MS/s  
5.0ns/pt  
W
W
B
B
B
B
CH2  
CH3  
CH2  
CH3  
2.0V/DIV  
200mA/DIV  
1.0V/DIV  
200mA/DIV  
W
W
W
W
Figure 59. LDO1, LDO2 Startup, VOUT = 4.7 V, IOUT = 5 mA  
Figure 62. LDO1, LDO2 Startup, VOUT = 1.2 V, IOUT = 5 mA  
Rev. B | Page 18 of 40  
Data Sheet  
ADP5041  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
3.6V  
4.5V  
5.5V  
2.8V  
4.758  
4.708  
4.658  
5.5V  
5.0V  
4.608  
0.001  
1.180  
0.01  
0.1  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 66. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 1.2 V  
Figure 63. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 4.7 V  
3.40  
3.38  
3.36  
3.34  
3.40  
–40°C  
+25°C  
+85°C  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.32  
5.5V  
3.30  
3.28  
3.26  
4.5V  
3.6V  
3.24  
3.22  
3.20  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 64. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 3.3 V  
Figure 67. LDO1, LDO2 Load Regulation Across Temperature, VIN = 3.6 V,  
OUT = 3.3 V  
V
1.800  
3.6V  
4.5V  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
–40°C  
+25°C  
+85°C  
5.5V  
2.8V  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.770  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 65. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 1.8 V  
Figure 68. LDO1, LDO2 Load Regulation Across Temperature, VIN = 3.6 V,  
OUT = 1.8 V  
V
Rev. B | Page 19 of 40  
ADP5041  
Data Sheet  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
–40°C  
+25°C  
+85°C  
100µA  
1mA  
10mA  
100mA  
200mA  
1.180  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.01  
0.1  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
Figure 72. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 1.8 V  
Figure 69. LDO1, LDO2 Load Regulation Across Temperature, VIN = 3.6 V,  
VOUT = 1.2 V  
1.201  
4.75  
100µA  
1mA  
10mA  
100mA  
200mA  
100µA  
1mA  
10mA  
100mA  
200mA  
1.200  
1.199  
1.198  
1.197  
1.196  
1.195  
1.194  
1.193  
1.192  
4.73  
4.71  
4.69  
4.67  
4.65  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 73. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 1.2 V  
Figure 70. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 4.7 V  
200  
180  
3.310  
100µA  
1mA  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
10mA  
100mA  
200mA  
160  
140  
120  
100  
80  
60  
40  
20  
0
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
Figure 71. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 3.3 V  
Figure 74. LDO1, LDO2 Ground Current vs. Output Current, VOUT = 3.3 V  
Rev. B | Page 20 of 40  
Data Sheet  
ADP5041  
200  
180  
160  
140  
120  
100  
80  
V
OUT  
2
0.000001A  
0.0001A  
0.001A  
0.01A  
60  
40  
I
OUT  
0.1A  
3
20  
0.15A  
0.3A  
0
3.8  
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
120M  
42.0mA 200µs/DIV  
W
4.3  
4.8  
5.3  
B
500kS/s  
2.0µs/pt  
50.0mA/DIV  
1MΩ  
W
INPUT VOLTAGE (V)  
Figure 78. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 3.3 V  
Figure 75. LDO1, LDO2 Ground Current vs. Input Voltage, Across Output  
Load (A), VOUT = 3.3 V  
V
OUT  
2
V
OUT  
2
I
OUT  
I
OUT  
3
3
B
B
B
CH2 50.0mV/DIV  
CH3  
20.0M A CH3  
120M  
89.6mA 200µs/DIV  
500kS/s  
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA  
200µs/DIV  
5.0MS/s  
200ns/pt  
W
W
W
B
80.0mA/DIV  
1MΩ  
80.0mA/DIV  
1MΩ  
W
2.0µs/pt  
Figure 79. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 3.3 V  
Figure 76. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 4.7 V  
V
OUT  
2
V
OUT  
2
I
OUT  
I
OUT  
3
3
B
B
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
120M  
89.6mA 200µs/DIV  
500kS/s  
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA  
200µs/DIV  
5.0MS/s  
200ns/pt  
W
W
W
B
80.0mA/DIV  
1MΩ  
80.0mA/DIV  
1MΩ  
W
2.0µs/pt  
Figure 77. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 4.7 V  
Figure 80. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 1.8 V  
Rev. B | Page 21 of 40  
ADP5041  
Data Sheet  
V
V
IN  
V
OUT  
2
OUT  
2
3
I
OUT  
3
B
B
B
CH2 50.0mV/DIV  
CH3  
20.0M A CH3  
120M  
89.6mA 200µs/DIV  
500kS/s  
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.84V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
B
80.0mA/DIV  
1MΩ  
1.0V/DIV  
1MΩ  
W
2.0µs/pt  
Figure 81. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 1.8 V  
Figure 84. LDO1, LDO2 Response to Line Transient, Input Voltage from  
4.5 V to 5.5 V, VOUT = 3.3 V  
V
OUT  
V
V
IN  
2
OUT  
2
3
I
OUT  
3
B
B
B
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA 200µs/DIV  
5.0MS/s  
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.86V  
500µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
W
80.0mA/DIV  
1MΩ  
1.0V/DIV  
1MΩ  
200ns/pt  
Figure 82. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 1.2 V  
Figure 85. LDO1, LDO2 Response to Line Transient, Input Voltage from  
4.5 V to 5.5 V, VOUT = 1.8 V  
V
OUT  
2
V
V
IN  
OUT  
2
3
I
OUT  
3
B
B
B
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA 200µs/DIV  
5.0MS/s  
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
W
80.0mA/DIV  
1MΩ  
1.0V/DIV  
1MΩ  
200ns/pt  
Figure 83. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 1.2 V  
Figure 86. LDO1, LDO2 Response to Line Transient, Input Voltage from  
4.5 V to 5.5 V, VOUT = 1.2 V  
Rev. B | Page 22 of 40  
Data Sheet  
ADP5041  
V
V
IN  
100  
OUT  
2
3
CH2; V  
CH2; V  
CH2; V  
CH2; V  
CH2; V  
= 3.3V; V = 5V  
IN  
= 3.3V; V = 3.6V  
IN  
= 2.8V; V = 3.1V  
IN  
= 1.5V; V = 5V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.5V; V = 1.8V  
IN  
10  
0.0001 0.001  
B
B
0.01  
0.1  
1
10  
100  
1k  
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.02V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
1.0V/DIV  
1MΩ  
LOAD (mA)  
Figure 87. LDO1, LDO2 Response to Line Transient, Input Voltage from  
3.3 V to 3.8 V, VOUT = 1.8 V  
Figure 90. LDO1 Output Noise vs. Load Current, Across Input and  
Output Voltage  
V
V
IN  
100  
OUT  
2
3
CH3; V  
CH3; V  
CH3; V  
CH3; V  
CH3; V  
= 3.3V; V = 5V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3.3V; V = 3.6V  
IN  
= 2.8V; V = 3.1V  
IN  
= 1.5V; V = 5V  
IN  
= 1.5V; V = 1.8V  
IN  
10  
B
B
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.84V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1k  
W
W
1.0V/DIV  
1MΩ  
LOAD (mA)  
Figure 88. LDO1, LDO2 Response to Line Transient, Input Voltage from  
3.3 V to 3.8 V, VOUT = 1.2 V  
Figure 91. LDO2 Output Noise vs. Load Current, Across Input and Output  
Voltage  
0.7  
100  
V
V
V
= 3.3V, V  
= 1.5V, V  
= 2.8V, V  
= 3.6V, I  
= 1.8V, I  
= 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
OUT2  
OUT2  
OUT2  
IN2  
IN2  
IN2  
LOAD  
LOAD  
LOAD  
0.6  
V
= 3.3V  
OUT  
10  
1.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.01  
3.6  
4.1  
4.6  
(V)  
5.1  
5.6  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
IN  
FREQUENCY (Hz)  
Figure 92. LDO1 Noise Spectrum Across Output Voltage,  
VIN = VOUT + 0.3 V  
Figure 89. LDO1, LDO2 Output Current Capability vs. Input Voltage  
Rev. B | Page 23 of 40  
ADP5041  
Data Sheet  
–10  
–20  
100  
V
V
V
= 3.3V, V  
= 1.5V, V  
= 2.8V, V  
= 3.6V, I  
= 1.8V, I  
= 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
1mA  
OUT3  
OUT3  
OUT3  
IN3  
IN3  
IN3  
LOAD  
LOAD  
LOAD  
10mA  
100mA  
200mA  
300mA  
–30  
–40  
10  
1
–50  
–60  
–70  
–80  
0.1  
0.01  
–90  
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 93. LDO2 Noise Spectrum Across Output Voltage,  
VIN = VOUT + 0.3 V  
Figure 96. LDO2 PSRR Across Output Load,  
IN3 = 3.1 V, VOUT3 = 2.8 V  
V
100  
–10  
–20  
1mA  
V
V
V
= 3.3V, V  
= 3.3V, V  
= 1.5V, V  
= 3.6V, I  
= 3.6V, I  
= 1.8V, I  
= 300mA  
= 300mA  
= 300mA  
OUT2  
OUT3  
OUT2  
IN2  
IN3  
IN2  
LOAD  
LOAD  
LOAD  
10mA  
100mA  
200mA  
–30  
–40  
10  
–50  
–60  
–70  
–80  
1.0  
0.1  
V
V
V
= 1.5V, V  
= 2.8V, V  
= 2.8V, V  
= 1.8V, I  
= 3.1V, I  
= 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
OUT3  
OUT2  
OUT3  
IN3  
IN2  
IN3  
LOAD  
LOAD  
LOAD  
–90  
0.01  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 94. LDO1 vs. LDO2 Noise Spectrum  
Figure 97. LDO2 PSRR Across Output Load,  
VIN3 = 5.0 V, VOUT3 = 3.3 V  
–10  
–20  
–10  
–20  
1mA  
10mA  
100mA  
200mA  
300mA  
1mA  
10mA  
100mA  
200mA  
300mA  
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 98. LDO2 PSRR Across Output Load,  
VIN3 = 3.6 V, VOUT3 = 3.3 V  
Figure 95. LDO2 PSRR Across Output Load,  
VIN3 = 3.3 V, VOUT3 = 2.8 V  
Rev. B | Page 24 of 40  
Data Sheet  
ADP5041  
–10  
–10  
–20  
1mA  
1mA  
10mA  
100mA  
200mA  
10mA  
100mA  
200mA  
300mA  
–20  
–30  
–40  
–30  
300mA  
–40  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 100. LDO1 PSRR Across Output Load,  
VIN2 = 1.8 V, VOUT2 = 1.5 V  
Figure 99. LDO1 PSRR Across Output Load,  
IN2 = 5.0 V, VOUT2 = 1.5 V  
V
Rev. B | Page 25 of 40  
ADP5041  
Data Sheet  
THEORY OF OPERATION  
VOUT1 FB1  
VTHR  
WDI  
MR  
85  
ENWD  
ENBK  
VDDA  
WATCHDOG  
DETECTOR  
AVIN  
VIN1  
GM ERROR  
AMP  
PWM  
COMP  
VDDA  
52kΩ  
SOFT START  
I
LIMIT  
DEBOUNCE  
PSM  
COMP  
PWM/  
PSM  
CONTROL  
BUCK1  
LOW  
CURRENT  
nRSTO  
SW  
RESET  
GENERATOR  
V
REF  
OSCILLATOR  
SYSTEM  
UNDERVOLTAGE  
LOCK OUT  
DRIVER  
AND  
ANTISHOOT  
THROUGH  
600Ω  
PGND  
ENLDO2  
THERMAL  
SHUTDOWN  
MODE  
MODE  
EN1  
ENABLE  
AND MODE  
CONTROL  
ENBK  
ENLDO1  
ENLDO2  
EN2  
EN3  
SEL  
LDO2  
CONTROL  
LDO1  
CONTROL  
VDDA  
VDDA  
OPMODE_FUSES  
ADP5041  
600Ω  
ENLDO1  
VIN2  
FB2 AGND VOUT2 VIN3  
FB3  
VOUT3  
Figure 101. Functional Block Diagram  
When a regulator is turned on, the output voltage ramp is  
controlled through a soft start circuit to avoid a large inrush  
current due to the discharged output capacitors.  
POWER MANAGEMENT UNIT  
The ADP5041 is a micro power management unit (micro PMU)  
combing one step-down (buck) dc-to-dc regulator, two LDO  
linear regulators, and a supervisory circuit, with watchdog, for  
processor control. The high switching frequency and tiny 20-pin  
LFCSP package allow for a small power management solution.  
The buck regulator can operate in forced PWM mode if the  
MODE pin is at a logic high level. In forced PWM mode, the  
switching frequency of the buck is always constant and does not  
change with the load current. If the MODE pin is at a logic low  
level, the switching regulator operates in auto PWM/PSM mode.  
In this mode, the regulator operates at fixed PWM frequency  
when the load current is above the power save current threshold.  
When the load current falls below the power saving current  
threshold, the regulator enters power saving mode, where the  
switching occurs in bursts. The burst repetition rate is a  
function of the current load and the output capacitor value.  
This operating mode reduces the switching and quiescent  
current losses.  
The regulators are activated by a logic level high applied to the  
respective EN pin. The EN1 pin controls the buck regulator, the  
EN2 pin controls LDO1, and the EN3 pin controls LDO2.  
Other features available on this device are the MODE pin to  
control the buck switching operation and a push-button reset  
input.  
The regulator output voltages and the reset threshold are set  
through external resistor dividers.  
Rev. B | Page 26 of 40  
 
 
Data Sheet  
ADP5041  
VOUT1  
SW  
Thermal Protection  
VIN1  
L1 – 1µH  
In the event that the junction temperature rises above 150°C,  
the thermal shutdown circuit turns off the buck and the LDOs.  
Extreme junction temperatures can be the result of high current  
operation, poor circuit board design, or high ambient temperature.  
A 20°C hysteresis is included in the thermal shutdown circuit so  
that when thermal shutdown occurs, the buck and the LDOs do  
not return to normal operation until the on-chip temperature  
drops below 130°C. When coming out of thermal shutdown, all  
regulators start with soft start control.  
VOUT1  
BUCK  
R1  
R2  
FB1  
C5  
10µF  
AGND  
Undervoltage Lockout  
Figure 102. Buck External Output Voltage Setting  
To protect against battery discharge, undervoltage lockout  
(UVLO) circuitry is integrated in the ADP5041. If the input  
voltage on AVIN drops below a typical 2.15 V UVLO threshold,  
all channels shut down. In the buck channel, both the power  
switch and the synchronous rectifier turn off. When the voltage  
on AVIN rises above the UVLO threshold, the part is enabled  
once more.  
Control Scheme  
The buck operates with a fixed frequency, current mode PWM  
control architecture at medium to high loads for high efficiency,  
but operation shifts to a power save mode (PSM) control  
scheme at light loads to lower the regulation power losses.  
When operating in fixed frequency PWM mode, the duty cycle  
of the integrated switches is adjusted and regulates the output  
voltage. When operating in PSM at light loads, the output  
voltage is controlled in a hysteretic manner, with higher output  
voltage ripple. During part of this time, the converter is able to  
stop switching and enters an idle mode, which improves  
conversion efficiency.  
Alternatively, the user can select device models with a UVLO  
set at a higher level, suitable for 5 V applications. For these  
models, the device reaches the turn-off threshold when the  
input supply drops to 3.65 V typical.  
Enable/Shutdown  
The ADP5041 has individual control pins for each regulator.  
A logic level high applied to the ENx pin activates a regulator,  
whereas a logic level low turns off a regulator.  
PWM Mode  
In PWM mode, the buck operates at a fixed frequency of 3 MHz,  
set by an internal oscillator. At the start of each oscillator cycle,  
the PFET switch is turned on, sending a positive voltage across  
the inductor. Current in the inductor increases until the current  
sense signal crosses the peak inductor current threshold that  
turns off the PFET switch and turns on the NFET synchronous  
rectifier. This sends a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle. The buck regulates the  
output voltage by adjusting the peak inductor current threshold.  
Active Pull-Down  
The ADP5041 can be ordered with the active pull-down option  
enabled. The pull-down resistors are connected between each  
regulator output and AGND. The pull-downs are enabled, when  
the regulators are turned off. The typical value of the pull-down  
resistor is 600 Ω for the LDOs and 85 Ω for the buck.  
BUCK SECTION  
The buck uses a fixed frequency and high speed current mode  
architecture. The buck operates with an input voltage of 2.3 V  
to 5.5 V.  
Power Save Mode (PSM)  
The buck smoothly transitions to PSM operation when the load  
current decreases below the PSM current threshold. When the  
buck enters power-save mode, an offset is introduced in the  
PWM regulation level, which makes the output voltage rise.  
When the output voltage reaches a level that is approximately  
1.5% above the PWM regulation level, PWM operation is  
turned off. At this point, both power switches are off, and the  
buck enters an idle mode. The output capacitor discharges until  
the output voltage falls to the PWM regulation voltage, at which  
point the device drives the inductor to make the output voltage  
rise again to the upper threshold. This process is repeated while  
the load current is below the PSM current threshold.  
The buck output voltage is set through external resistor  
dividers, shown in Figure 102. VOUT1 must be connected to  
the output capacitor. VFB1 is internally set to 0.5 V. The output  
voltage can be set from 0.8 V to 3.8 V.  
The ADP5041 has a dedicated MODE pin controlling the PSM  
and PWM operation. A high logic level applied to the MODE pin  
forces the buck to operate in PWM mode. A logic level low sets  
the buck to operate in auto PSM/PWM.  
Rev. B | Page 27 of 40  
 
 
ADP5041  
Data Sheet  
PSM Current Threshold  
Each LDO output voltage is set though external resistor  
dividers, as shown in Figure 103. VFB2 and VFB3 are internally set  
to 0.5 V. The output voltage can be set from 0.8 V to 5.2 V.  
The PSM current threshold is set to 100 mA. The buck employs  
a scheme that enables this current to remain accurately con-  
trolled, independent of input and output voltage levels. This  
scheme also ensures that there is very little hysteresis between  
the PSM current threshold for entry to, and exit from, the PSM  
mode. The PSM current threshold is optimized for excellent  
efficiency over all load currents.  
VOUT2, VOUT3  
VIN2, VIN3  
VOUT2,  
VOUT3  
LD01, LD02  
C7  
2.2µF  
R
R
A
FB2, FB3  
B
Short-Circuit Protection  
The buck includes frequency foldback to prevent current  
runaway on a hard short at the output. When the voltage at the  
feedback pin falls below half the internal reference voltage,  
indicating the possibility of a hard short at the output, the  
switching frequency is reduced to half the internal oscillator  
frequency. The reduction in the switching frequency allows  
more time for the inductor to discharge, preventing a runaway  
of output current.  
Figure 103. LDOs External Output Voltage Setting  
The LDOs also provide high power supply rejection ratio (PSRR),  
low output noise, and excellent line and load transient response  
with small ceramic 1 μF input and 2.2 μF output capacitors.  
LDO2 is optimized to supply analog circuits because it offers  
better noise performance compared to LDO1. LDO1 should be  
used in applications where noise performance is not critical.  
Soft Start  
The buck has an internal soft start function that ramps the  
output voltage in a controlled manner upon startup, thereby  
limiting the inrush current. This prevents possible input voltage  
drops when a battery or a high impedance power source is  
connected to the input of the converter.  
SUPERVISORY SECTION  
The ADP5041 provides microprocessor supply voltage super-  
vision by controlling the reset input of the microprocessor.  
Code execution errors are avoided during power-up, power-  
down, and brownout conditions by asserting a reset signal when  
the supply voltage is below a preset threshold and by allowing  
supply voltage stabilization with a fixed timeout reset pulse  
after the supply voltage rises above the threshold. In addition,  
problems with microprocessor code execution can be monitored  
and corrected with a watchdog timer.  
Current Limit  
The buck has protection circuitry to limit the amount of  
positive current flowing through the PFET switch and the  
amount of negative current flowing through the synchronous  
rectifier. The positive current limit on the power switch limits  
the amount of current that can flow from the input to the  
output. The negative current limit prevents the inductor  
current from reversing direction and flowing out of the load.  
Reset Output  
The ADP5041 has an active low, open-drain reset output. This  
output structure requires an external pull-up resistor to connect  
the reset output to a voltage rail that is no higher than 6 V. The  
resistor should comply with the logic low and logic high voltage  
level requirements of the microprocessor while supplying input  
current and leakage paths on the nRSTO pin. A 10 kΩ resistor is  
adequate in most situations.  
100% Duty Operation  
With a drop in input voltage, or with an increase in load  
current, the buck may reach a limit where, even with the PFET  
switch on 100% of the time, the output voltage drops below the  
desired output voltage. At this limit, the buck transitions to a  
mode where the PFET switch stays on 100% of the time. When  
the input conditions change again and the required duty cycle  
falls, the buck immediately restarts PWM regulation without  
allowing overshoot on the output voltage.  
The reset output is asserted when the monitored rail is below  
the reset threshold (VTH) or when WDI is not serviced within  
the watchdog timeout period (tWDI). Reset remains asserted for the  
duration of the reset active timeout period (tRP) after the monitored  
rail rises above the reset threshold or after the watchdog timer  
times out. Figure 104 illustrates the behavior of the reset output,  
nRSTO, and it assumes that VOUT2 is selected as the rail to be  
monitored and supplies the external pull-up connected to the  
nRSTO output.  
LDO SECTION  
The ADP5041 contains two LDOs with low quiescent current  
that provide output currents up to 300 mA. The low 10 ꢀA  
typical quiescent current at no load makes the LDO ideal for  
battery-operated portable equipment.  
The LDOs operate with an input voltage range of 1.7 V to  
5.5 V. The wide operating range makes these LDOs suitable for  
cascade configurations where the LDO supply voltage is provided  
from the buck regulator.  
Rev. B | Page 28 of 40  
 
 
 
Data Sheet  
ADP5041  
Manual Reset Input  
The ADP5041 features a manual reset input ( ) which, when  
MR  
VOUT2  
V
V
TH  
TH  
1V  
0V  
VOUT2  
nRSTO  
MR  
transitions from  
low to high, the reset remains asserted for the duration of the  
MR  
driven low, asserts the reset output. When  
VOUT2  
tRP  
tRD  
0V  
reset active timeout period before deasserting. The  
input  
has a 52 kΩ, internal pull-up connected to AVIN, so that the  
input is always high when unconnected. An external push-  
RSTO  
tRP  
tRD  
1V  
0V  
MR  
button switch can be connected between  
and ground so  
Figure 104. Reset Timing Diagram  
that the user can generate a reset. Debounce circuitry for this  
purpose is integrated on chip. Noise immunity is provided on the  
The ADP5041 has a reset threshold programming input pin,  
VTHR, to monitor a supply rail.  
MR  
input, and fast negative-going transients of up to 100 ns  
The reset threshold voltage at VTHR input is typically 0.5 V.  
To monitor a voltage greater than 0.5 V, connect a resistor  
divider network to the device as shown in Figure 105, where  
MR  
(typical) are ignored. A 0.1 μF capacitor between  
provides additional noise immunity.  
and ground  
Watchdog Input  
R1 R2  
R2  
VMONITORED 0.5V  
The ADP5041 features a watchdog timer that monitors  
microprocessor activity. The watchdog timer circuit is cleared  
with every low-to-high or high-to-low logic transition on the  
watchdog input pin (WDI), which detects pulses as short as 80 ns.  
If the timer counts through the preset watchdog timeout period  
(tWDI), an output reset is asserted. The microprocessor is required  
to toggle the WDI pin to avoid being reset. Failure of the  
microprocessor to toggle WDI within the timeout period,  
therefore, indicates a code execution error, and the reset pulse  
generated restarts the microprocessor in a known state.  
MONITORED VOLTAGE  
R1  
VTHR  
R2  
V
= 0.5V  
REF  
Figure 105. External Reset Threshold Programming  
As well as logic transitions on WDI, the watchdog timer is also  
cleared by a reset assertion due to an undervoltage condition on  
the monitored rail. When reset is asserted, the watchdog timer  
is cleared and does not begin counting again until reset deasserts.  
The watchdog timer can be disabled by leaving WDI floating or  
by three-stating the WDI driver.  
Do not allow the VTHR input to float or to be grounded.  
Connect it to a supply voltage greater than its specified  
threshold voltage. A small capacitor can be added on VTHR to  
improve the noise rejection and to prevent false reset  
generation.  
The ADP5041 can be factory programmed to two possible  
watchdog timer values as indicated in Table 18.  
The ADP5041 can be factory programmed to a 2.25 V or 3.6 V  
UVLO threshold. When monitoring the input supply voltage, if  
the selected reset threshold is below the UVLO level, the reset  
output, nRSTO, is asserted low as soon as the input voltage falls  
below the UVLO threshold. Below the UVLO threshold, the  
reset output is maintained low down to ~1 V input voltage. This  
is to ensure that the reset output is not released when there is  
sufficient voltage on the rail supplying a processor to restart the  
processor operations.  
V
V
TH  
SENSED  
1V  
0V  
tRP  
tWD  
tRP  
nRSTO  
WDI  
0V  
0V  
Figure 106. Watchdog Timing Diagram  
Rev. B | Page 29 of 40  
 
 
ADP5041  
Data Sheet  
NO POWER APPLIED TO AVIN.  
ALL REGULATORS AND  
SUPERVISORY TURNED OFF  
NO POWER  
AVIN > VUVLO  
AVIN < VUVLO  
TRANSITION  
STATE  
POR  
INTERNAL CIRCUIT BIASED  
REGULATORS AND  
SUPERVISORY NOT ACTIVATED  
END OF POR  
STANDBY  
AVIN < VUVLO  
ALL ENx = LOW  
ENx = HIGH  
AVIN < VUVLO  
ACTIVE  
ALL REGULATORS AND  
SUPERVISORS ACTIVATED  
END OF RESET  
PULSE (t  
)
RP  
WDOG1 TIMEOUT  
(tWD)  
VMON < VTH  
RESET  
NORMAL  
Figure 107. ADP5041 State Flow  
Rev. B | Page 30 of 40  
Data Sheet  
ADP5041  
APPLICATIONS INFORMATION  
Ceramic capacitors are manufactured with a variety of dielec-  
trics, each with a different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R  
dielectrics with a voltage rating of 6.3 V or 10 V are highly  
recommended for best performance. Y5V and Z5U dielectrics  
are not recommended for use with any dc-to-dc converter  
because of their poor temperature and dc bias characteristics.  
BUCK EXTERNAL COMPONENT SELECTION  
Trade-offs between performance parameters such as efficiency  
and transient response are made by varying the choice of  
external components in the applications circuit, as shown in  
Figure 1.  
Feedback Resistors  
Referring to Figure 102, the total combined resistance for R1  
and R2 is not to exceed 400 kꢁ.  
Inductor  
The worst-case capacitance accounting for capacitor variation  
over temperature, component tolerance, and voltage is calcu-  
lated using the following equation:  
The high switching frequency of the ADP5041 buck allows for  
the selection of small chip inductors. For best performance, use  
inductor values between 0.7 ꢀH and 3.0 ꢀH. Suggested inductors  
are shown in Table 9.  
C
EFF = COUT × (1 − TEMPCO) × (1 − TOL)  
where:  
The peak-to-peak inductor current ripple is calculated using  
the following equation:  
C
EFF is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
VOUT (VIN VOUT  
)
IRIPPLE  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
VIN fSW L  
where:  
SW is the switching frequency.  
L is the inductor value.  
f
C
OUT is 9.24 ꢀF at 1.8 V, as shown in Figure 108.  
Substituting these values in the equation yields  
EFF = 9.24 ꢀF × (1 − 0.15) × (1 − 0.1) = 7.07ꢀF  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current. The inductor peak current is  
calculated using the following equation:  
C
To guarantee the performance of the buck, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
12  
IRIPPLE  
2
IPEAK ILOAD(MAX)   
Table 9. Suggested 1.0 μH Inductors  
10  
8
Dimensions ISAT  
DCR  
(mΩ)  
Vendor  
Murata  
Murata  
Model  
(mm)  
(mA)  
LQM2MPN1R0NG0B  
LQM18FN1R0M00B  
CBC322ST1R0MR  
XFL4020-102ME  
XPL2010-102ML  
MDT2520-CN  
2.0 × 1.6 × 0.9  
3.2 × 2.5 × 1.5  
3.2 × 2.5 × 2.5  
4.0 × 4.0 × 2.1  
1.9 × 2.0 × 1.0  
2.5 × 2.0 × 1.2  
1400  
2300  
2000  
5400  
1800  
1350  
85  
54  
71  
11  
89  
85  
Tayo Yuden  
Coilcraft  
Coilcraft  
Toko  
6
4
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal dc  
resistance (DCR). Larger sized inductors have smaller DCR,  
which may decrease inductor conduction losses. Inductor core  
losses are related to the magnetic permeability of the core material.  
Because the buck is a high switching frequency dc-to-dc converter,  
shielded ferrite core material is recommended for its low core  
losses and low EMI.  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 108. Typical Capacitor Performance  
The peak-to-peak output voltage ripple for the selected output  
capacitor and inductor values is calculated using the following  
equation:  
Output Capacitor  
IRIPPLE  
VIN  
2 LCOUT  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing the  
capacitor value, it is also important to account for the loss of  
capacitance due to output voltage dc bias.  
VRIPPLE  
8fSW COUT  
2f  
SW   
Rev. B | Page 31 of 40  
 
 
 
 
ADP5041  
Data Sheet  
Capacitors with lower equivalent series resistance (ESR) are  
preferred to guarantee low output voltage ripple, as shown in  
the following equation:  
To minimize supply noise, place the input capacitor as close  
to the VIN pin of the buck as possible. As with the output  
capacitor, a low ESR capacitor is recommended.  
VRIPPLE  
IRIPPLE  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 3 μF and a  
maximum of 10 μF. A list of suggested capacitors is shown in  
Table 11.  
ESRCOUT  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 7 μF and a  
maximum of 40 μF.  
Table 11. Suggested 4.7 μF Capacitors  
Case Voltage  
Table 10. Suggested 10 μF Capacitors  
Vendor  
Type Model  
X5R GRM188R60J475ME19D  
Size  
Rating (V)  
Case  
Size  
Voltage  
Rating (V)  
Murata  
Taiyo Yuden X5R  
Panasonic X5R  
0603 6.3  
0603 6.3  
0402 6.3  
Vendor  
Type Model  
JMK107BJ475  
ECJ-0EB0J475M  
Murata  
Taiyo  
X5R  
X5R  
GRM188R60J106  
JMK107BJ106MA-T  
0603  
0603  
6.3  
6.3  
Yuden  
TDK  
Panasonic  
LDO EXTERNAL COMPONENT SELECTION  
Feedback Resistors  
X5R  
X5R  
C1608JB0J106K  
ECJ1VB0J106M  
0603  
0603  
6.3  
6.3  
The maximum value of RB is not to exceed 200 kꢁ (see  
Figure 103).  
The buck regulator requires 10 μF output capacitors to guaran-  
tee stability and response to rapid load variations and to transition  
in and out the PWM/PSM modes. In certain applications where  
the buck regulator powers a processor, the operating state is  
known because it is controlled by software. In this condition,  
the processor can drive the MODE pin according to the operating  
state; consequently, it is possible to reduce the output capacitor  
from 10 μF to 4.7 μF because the regulator does not expect a  
large load variation when working in PSM mode (see Figure 109).  
OUTPUT CAPACITOR  
The ADP5041 LDOs are designed for operation with small,  
space-saving ceramic capacitors, but they function with most  
commonly used capacitors as long as care is taken with the ESR  
value. The ESR of the output capacitor affects stability of the  
LDO control loop. A minimum of 0.70 μF capacitance with an  
ESR of 1 Ω or less is recommended to ensure stability of the  
LDO. Transient response to changes in load current is also  
affected by output capacitance. Using a larger value of output  
capacitance improves the transient response of the LDO to large  
changes in load current.  
ADP5041  
R
FLT  
30  
MICRO PMU  
L1  
AVIN  
PROCESSOR  
VCORE  
1µH  
SW  
VOUT1  
C5  
4.7µF  
VIN1  
V
IN  
2.3V TO 5.5V  
R1  
R2  
PGND  
C1  
10µF  
FB1  
When operating at output currents higher than 200 mA a  
minimum of 2.2 μF capacitance with an ESR of 1 Ω or less is  
recommended to ensure stability of the LDO.  
VIN2  
C2  
1µF  
VOUT2  
R3  
R4  
VIN3  
VDDIO  
RESET  
Table 12. Suggested 2.2 μF Capacitors  
C6  
2.2µF  
C3  
1µF  
FB2  
Case  
Size  
Voltage  
Rating (V)  
R7  
100kΩ  
Vendor  
Murata  
TDK  
Type  
X5R  
X5R  
X5R  
Model  
GRM188B31A225K  
C1608JB0J225KT  
ECJ1VB0J225K  
JMK107BJ225KK-T  
0402  
0402  
0402  
0402  
10.0  
6.3  
6.3  
nRSTO  
WDI  
Panasonic  
GPIO1  
MODE  
ENx  
Taiyo Yuden X5R  
6.3  
GPIO2  
3
GPIO[x:y]  
VOUT3  
VANALOG  
Input Bypass Capacitor  
C7  
2.2µF  
R5  
R6  
ANALOG  
SUBSYSTEM  
FB3  
Connecting 1 μF capacitors from VIN2 and VIN3 to ground  
reduces the circuit sensitivity to printed circuit board (PCB)  
layout, especially when long input traces or high source  
impedance is encountered. If greater than 1 μF of output  
capacitance is required, increase the input capacitor to match it.  
Figure 109. Processor System Power Management with PSM/PWM Control  
Input Capacitor  
A higher value input capacitor helps to reduce the input voltage  
ripple and improve transient response. Maximum input  
capacitor current is calculated using the following equation:  
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
VIN  
Rev. B | Page 32 of 40  
 
 
 
 
Data Sheet  
ADP5041  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 0.94 ꢀF at 1.8 V, as shown in Figure 110.  
Table 13. Suggested 1.0 μF Capacitors  
Voltage  
Vendor  
Murata  
TDK  
Panasonic  
Taiyo  
Type Model  
Case Size Rating (V)  
Substituting these values into the following equation yields:  
X5R  
X5R  
X5R  
X5R  
GRM155B30J105K  
C1005JB0J105KT  
ECJ0EB0J105K  
0402  
0402  
0402  
0402  
6.3  
6.3  
6.3  
10.0  
CEFF = 0.94 ꢀF × (1 − 0.15) × (1 − 0.1) = 0.72 ꢀF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
LMK105BJ105MV-F  
Yuden  
Input and Output Capacitor Properties  
To guarantee the performance of the ADP5041, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Use any good quality ceramic capacitor with the ADP5041 as  
long as it meets the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with a different behavior over temperature  
and applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary tempe-  
rature range and dc bias conditions. X5R or X7R dielectrics  
with a voltage rating of 6.3 V or 10 V are recommended for best  
performance. Y5V and Z5U dielectrics are not recommended  
for use with any LDO because of their poor temperature and dc  
bias characteristics.  
SUPERVISORY SECTION  
Threshold Setting Resistors  
Referring to Figure 105, the maximum value of R2 is not to  
exceed 200 kꢁ.  
Watchdog Input Current  
To minimize watchdog input current (and minimize overall  
power consumption), leave WDI low for the majority of the  
watchdog timeout period. When driven high, WDI can draw  
as much as 25 μA. Pulsing WDI low-to-high-to-low at a low  
duty cycle reduces the effect of the large input current. When  
WDI is unconnected, a window comparator disconnects the  
watchdog timer from the reset output circuitry so that reset is  
not asserted when the watchdog timer times out.  
Figure 110 depicts the capacitance vs. dc voltage bias characteristic  
of a 0402 1 μF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15% over the −40°C to +85°C tempera-  
ture range and is not a function of package or voltage rating.  
1.2  
Negative-Going Transients at the Monitored Rail  
To avoid unnecessary resets caused by fast power supply transients,  
the ADP5041 is equipped with glitch rejection circuitry. The typical  
performance characteristic in Figure 111 plots the monitored  
rail voltage, VTH, transient duration vs. the transient magnitude.  
The curve shows combinations of transient magnitude and  
duration for which a reset is not generated. In this example,  
with the 3.00 V threshold, a transient that goes 100 mV below  
the threshold and lasts 8 μs typically does not cause a reset, but  
if the transient is any larger in magnitude or duration, a reset is  
generated. In this example, the reset threshold programming  
resistor values were R2 = 200 kꢁ, R1 = 1 Mꢁ (see Figure 105).  
900  
1.0  
0.8  
0.6  
0.4  
0.2  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 110. Capacitance vs. Voltage Characteristic  
Use the following equation to determine the worst-case capa-  
citance, accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
C
BIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
0.1  
1
10  
100  
COMPARATOR OVERDRIVE (% OF V  
)
TH  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
Figure 111. Maximum VTH Transient Duration vs. Reset  
Threshold Overdrive  
Rev. B | Page 33 of 40  
 
 
 
ADP5041  
Data Sheet  
The efficiency for each regulator on the ADP5041 is given by  
Watchdog Software Considerations  
In implementing the watchdog strobe code of the micro-  
processor, quickly switching WDI low to high and then high to  
low (minimizing WDI high time) is desirable for current  
consumption reasons. However, a more effective way of using  
the watchdog function can be considered.  
P
OUT  
(1)  
  
100%  
P
IN  
where:  
η is efficiency.  
IN is the input power.  
P
P
A low-to-high-to-low WDI pulse within a given subroutine  
prevents the watchdog from timing out. However, if the sub-  
routine is held in an infinite loop, the watchdog cannot detect  
this because the subroutine continues to toggle WDI.  
OUT is the output power.  
Power loss is given by  
P
LOSS = PIN POUT  
(2a)  
(2b)  
A more effective coding scheme for detecting this error involves  
using a slightly longer watchdog timeout. In the program that  
calls the subroutine, WDI is set high. The subroutine sets WDI  
low when it is called. If the program executes without error, WDI  
is toggled high and low with every loop of the program. If the  
subroutine enters an infinite loop, WDI is kept low, the watchdog  
times out, and the microprocessor is reset (see Figure 112).  
or  
P
LOSS = POUT (1-η)/η  
The power dissipation of the supervisory function is small and  
negligible.  
Power dissipation can be calculated in several ways. The most  
intuitive and practical is to measure the power dissipated at  
the input and all the outputs. The measurements should be  
performed at the worst-case conditions (voltages, currents,  
and temperature). The difference between input and output  
power is dissipated in the device and the inductor. Use  
Equation 4 to derive the power lost in the inductor, and from  
this use Equation 3 to calculate the power dissipation in the  
ADP5041 buck regulator.  
START  
SET WDI  
HIGH  
RESET  
PROGRAM  
CODE  
A second method to estimate the power dissipation uses the  
efficiency curves provided for the buck regulator, wheras the  
power lost on a LDO is calculated using Equation 12. When the  
buck efficiency is known, use Equation 2b to derive the total  
power lost in the buck regulator and inductor. Use Equation 4  
to derive the power lost in the inductor, and then calculate the  
power dissipation in the buck converter using Equation 3. Add  
the power dissipated in the buck and in the LDOs to find the  
total dissipated power.  
INFINITE LOOP:  
WATCHDOG  
TIMES OUT  
SUBROUTINE  
SET WDI  
LOW  
RETURN  
Figure 112. Watchdog Flow Diagram  
POWER DISSIPATION/THERMAL CONSIDERATIONS  
Note that the buck efficiency curves are typical values and may  
not be provided for all possible combinations of VIN, VOUT, and  
The ADP5041 is a highly efficient micropower management  
unit (micro PMU), and in most cases the power dissipated in  
the device is not a concern. However, if the device operates at  
high ambient temperatures and with maximum loading  
conditions, the junction temperature can reach the maximum  
allowable operating limit (125°C).  
I
OUT. To account for these variations, it is necessary to include a  
safety margin when calculating the power dissipated in the buck.  
A third way to estimate the power dissipation is analytical and  
involves modeling the losses in the buck circuit provided by  
Equation 8 to Equation 11 and the losses in the LDOs provided  
by Equation 12.  
When the junction temperature exceeds 150°C, the ADP5041  
turns off all the regulators, allowing the device to cool down.  
Once the die temperature falls below 135°C, the ADP5041  
resumes normal operation.  
Buck Regulator Power Dissipation  
The power loss of the buck regulator is approximated by  
This section provides guidelines to calculate the power dissi-  
pated in the device and to make sure the ADP5041 operates  
below the maximum allowable junction temperature.  
P
LOSS = PDBUCK + PL  
where:  
DBUCK is the power dissipation on the ADP5041 buck regulator.  
(3)  
P
PL is the inductor power losses.  
The inductor losses are external to the device and they do not  
have any effect on the die temperature.  
Rev. B | Page 34 of 40  
 
 
Data Sheet  
ADP5041  
The inductor losses are estimated (without core losses) by  
where tRISE and tFALL are the rise time and the fall time of the  
switching node, SW. For the ADP5041, the rise and fall times of  
SW are in the order of 5 ns.  
PL IOUT1(RMS)2 DCRL  
(4)  
where:  
If the preceding equations and parameters are used for  
estimating the converter efficiency, it must be noted that the  
equations do not describe all of the converter losses, and the  
parameter values given are typical numbers. The converter  
performance also depends on the choice of passive components  
and board layout; therefore, a sufficient safety margin should be  
included in the estimate.  
DCRL is the inductor series resistance.  
I
OUT1(RMS) is the rms load current of the buck regulator.  
IOUT1(RMS) IOUT11+r/12  
(5)  
(6)  
where r is the normalized inductor ripple current.  
r VOUT1 × (1-D)/(IOUT1 × L × fSW  
where:  
L is inductance.  
SW is switching frequency.  
D is duty cycle.  
D = VOUT1/VIN1  
)
LDO Regulator Power Dissipation  
The power loss of a LDO regulator is given by:  
f
P
DLDO = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
(12)  
where:  
(7)  
I
LOAD is the load current of the LDO regulator.  
V
IN and VOUT are input and output voltages of the LDO,  
The ADP5041 buck regulator power dissipation, PDBUCK, includes  
the power switch conductive losses, the switch losses, and the  
transition losses of each channel. There are other sources of  
loss, but these are generally less significant at high output load  
currents, where the thermal limit of the application is. Equation 8  
shows the calculation made to estimate the power dissipation in  
the buck regulator.  
respectively.  
GND is the ground current of the LDO regulator.  
I
Power dissipation due to the ground current is small and it  
can be ignored.  
The total power dissipation in the ADP5041 simplifies to:  
PD = {[PDBUCK + PDLDO1 + PDLDO2]}  
(13)  
P
DBUCK = PCOND + PSW + PTRAN  
The power switch conductive losses are due to the output current,  
OUT1, flowing through the PMOSFET and the NMOSFET power  
(8)  
Junction Temperature  
In cases where the board temperature, TA, is known, the  
I
thermal resistance parameter, θJA, can be used to estimate the  
junction temperature rise. TJ is calculated from TA and PD using  
the formula  
switches that have internal resistance, RDSON-P and RDSON-N. The  
amount of conductive power loss is found by:  
2
P
COND = [RDSON-P × D + RDSON-N × (1 − D)] × IOUT1  
(9)  
TJ = TA + (PD × θJA)  
(14)  
For the ADP5041, at 125°C junction temperature and VIN1 =  
The typical θJA value for the 20-lead, 4 mm × 4 mm LFCSP is  
38°C/W (see Table 7). A very important factor to consider is  
that θJA is based on a 4-layer, 4 inch × 3 inch, 2.5 oz copper, as  
per JEDEC standard, and real applications may use different  
sizes and layers. To remove heat from the device, it is important  
to maximize the use of copper. Copper exposed to air dissipates  
heat better than copper used in the inner layers. The exposed  
pad (EP) should be connected to the ground plane with several  
vias as shown in Figure 114.  
3.6 V, RDSON-P is approximately 0.2 ꢁ, and RDSON-N is approximately  
0.16 ꢁ. At VIN1 = 2.3 V, these values change to 0.31 ꢁ and  
0.21 ꢁ respectively, and at VIN1 = 5.5 V, the values are 0.16 ꢁ  
and 0.14 ꢁ, respectively.  
Switching losses are associated with the current drawn by the  
driver to turn on and turn off the power devices at the switching  
frequency. The amount of switching power loss is given by:  
P
SW = (CGATE-P + CGATE-N) × VIN12 × fSW  
(10)  
where:  
If the case temperature can be measured, the junction temperature  
is calculated by  
C
C
GATE-P is the PMOSFET gate capacitance.  
GATE-N is the NMOSFET gate capacitance.  
TJ = TC + (PD × θJC)  
where:  
TC is the case temperature.  
JC is the junction-to-case thermal resistance provided in  
(15)  
For the ADP5041, the total of (CGATE-P + CGATE-N) is  
approximately 150 pF.  
The transition losses occur because the PMOSFET cannot be  
turned on or off instantaneously, and the SW node takes some  
time to slew from near ground to near VOUT1 (and from VOUT1 to  
ground). The amount of transition loss is calculated by:  
θ
Table 7.  
When designing an application for a particular ambient  
temperature range, calculate the expected ADP5041 power  
dissipation (PD) due to the losses of all channels by using  
Equation 8 to Equation 13. From this power calculation, the  
P
TRAN = VIN1 × IOUT1 × (tRISE + tFALL) × fSW  
(11)  
junction temperature, TJ, can be estimated using Equation 14.  
Rev. B | Page 35 of 40  
ADP5041  
Data Sheet  
The reliable operation of the buck regulator and the LDO  
regulator can be achieved only if the estimated die junction  
temperature of the ADP5041 (Equation 14) is less than 125°C.  
Reliability and mean time between failures (MTBF) is highly  
affected by increasing the junction temperature. Additional  
information about product reliability can be found in the  
Analog Devices, Inc., Reliability Handbook, which is available  
at http://www.analog.com/reliability_handbook.  
APPLICATION DIAGRAM  
R
30  
FILT  
VOUT1  
11  
AVIN  
L1  
6
1µH  
SW  
V
AT  
OUT1  
8
1.2A  
R1  
FB1  
BUCK  
12  
C4  
10µF  
R2  
VIN1  
V
V
= 2.3V  
TO 5.5V  
PGND  
IN1  
7
9
EN_BK  
C1  
4.7µF  
FPWM  
MODE  
ON  
17  
14  
PWM/PSM  
EN1  
10  
13  
OFF  
VOUT2  
V
AT  
OUT2  
VIN2  
= 1.7V  
TO 5.5V  
IN2  
300mA  
LDO1  
(DIGITAL)  
C5  
2.2µF  
C2  
1µF  
R3  
R4  
FB2  
15  
EN_LDO1  
ON  
EN2  
MR  
16  
20  
OFF  
SUPERVISOR  
V
DD  
R9  
nRSTO  
5
RESET  
PUSH-BUTTON  
RESET  
WDI  
19  
WDOG  
VTH  
ON  
VTHR  
R5  
EN3  
18  
4
OFF  
R6  
EN_LDO2  
VOUT3  
FB3  
V
AT  
OUT3  
2
1
300mA  
C6  
2.2µF  
R7  
R8  
VIN3  
V
= 1.7V  
TO 5.5V  
IN3  
LDO2  
(ANALOG)  
3
C3  
1µF  
EP  
AGND  
Figure 113. Application Diagram  
Rev. B | Page 36 of 40  
 
Data Sheet  
ADP5041  
PCB LAYOUT GUIDELINES  
SUGGESTED LAYOUT  
Poor layout can affect ADP5041 performance, causing electro-  
magnetic interference (EMI) and electromagnetic compatibility  
(EMC) problems, ground bounce, and voltage losses. Poor  
layout can also affect regulation and stability. A good layout is  
implemented using the following guidelines:  
See Figure 114 for an example layout.  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies, and large tracks act as antennas.  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise interference  
on sensitive circuit nodes.  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
mm  
PPL  
VOUT3  
GPL  
0.5  
C3 – 1µF  
10V/XR5  
0402  
C6 – 2.2µF  
6.3V/XR5  
0402  
GPL  
1.0  
1.5  
R
30  
FILT  
0402  
PPL  
PPL  
PPL  
AVIN  
MR  
2.0  
2.5  
3.0  
3.5  
VIN  
1
WDI  
GPL  
GPL  
C1 – 4.7µF  
10V/XR5 0603  
SW  
AGND  
VTHR  
L1 – 1µH  
0603  
GPL  
GPL  
PGND  
EN1  
MODE  
EN2  
ADP5041  
4.0  
4.5  
5.0  
5.5  
VIAS LEGEND:  
PPL = POWER PLANE (+4V)  
GPL = GROUND PLANE  
C4 – 10µF  
6.3V/XR5  
0603  
C2 – 1µF  
10V/XR5  
0402  
C5 – 2.2µF  
6.3V/XR5  
0402  
TOP LAYER  
2ND LAYER  
6.0  
VOUT1  
PPL  
VOUT2  
mm  
Figure 114. Suggested Board Layout  
Rev. B | Page 37 of 40  
 
 
 
ADP5041  
Data Sheet  
BILL OF MATERIALS  
Table 14.  
Reference  
Value  
Part Number  
Vendor  
Package  
0603  
0402  
0603  
0402  
2.0 × 1.6 × 0.9 (mm)  
2.5 × 2.0 × 1.2 (mm)  
1.9 × 2.0 × 1.0 (mm)  
20-Lead LFCSP  
C1  
C2, C3  
C4  
C5,C6  
L1  
4.7 μF, X5R, 6.3 V  
1 μF, X5R, 6.3 V  
10 μF, X5R, 6.3 V  
2.2 μF, X5R, 6.3 V  
1 μH, 85 mΩ, 1400 mA  
1 μH, 85 mΩ, 1350 mA  
1 μH, 89 mΩ, 1800 mA  
3-regulator micro PMU  
JMK107BJ475  
Taiyo-Yuden  
Taiyo-Yuden  
Taiyo-Yuden  
Taiyo-Yuden  
Murata  
Toko  
Coilcraft  
Analog Devices  
LMK105BJ105MV-F  
JMK107BJ106MA-T  
JMK105BJ225MV-F  
LQM2MPN1R0NG0B  
MDT2520-CN  
XPL2010-1102ML  
ADP5041  
IC1  
Rev. B | Page 38 of 40  
 
Data Sheet  
ADP5041  
FACTORY PROGRAMMABLE OPTIONS  
Table 15. Regulator Output Discharge Resistor Options  
Options  
Option 0  
Option 1  
Description  
All discharge resistors disabled  
All discharge resistors enabled  
Table 16. Undervoltage Lockout Options  
Options  
Option 0  
Option 1  
Min  
1.95  
3.10  
Typ  
2.15  
3.65  
Max  
2.275  
3.90  
Unit  
V
V
Table 17. Reset Timeout Options  
Options  
Option 0  
Option 1  
Min  
24  
160  
Typ  
30  
200  
Max  
36  
240  
Unit  
ms  
ms  
Table 18. Watchdog Timer Options  
Selection  
Option 0  
Option 1  
Min  
81.6  
1.28  
Typ  
102  
1.6  
Max  
122.4  
1.92  
Unit  
ms  
sec  
Rev. B | Page 39 of 40  
 
 
ADP5041  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
TIONS  
INDICATOR AR EA OP  
(SEE DETAIL A)  
16  
20  
0.50  
BSC  
1
15  
2.75  
2.60 SQ  
2.35  
EXPOSED  
PAD  
5
11  
10  
6
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-11.  
Figure 115. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-20-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Settings  
Temperature Range  
Package Description  
Package Option  
ADP5041ACPZ-1-R7  
WD tOUT = 1.6 sec  
Min reset tOUT = 160 ms  
VUVLO = 2.15 V  
TJ = −40°C to +125°C  
20-Lead LFCSP  
CP-20-8  
Discharge resistors enabled  
ADP5041CP-1-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2011–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09652-0-5/19(B)  
Rev. B | Page 40 of 40  
 
 

相关型号:

ADP5042

Micro PMU with 0.8 A Buck, Two 300 mA LDOs Supervisory, Watchdog and Manual Reset
ADI

ADP5042ACPZ-1-R7

Micro PMU with 0.8 A Buck, Two 300 mA LDOs, Supervisory, Watchdog and Manual Reset
ADI

ADP5042ACPZ-2-R7

Micro PMU with 0.8 A Buck, Two 300 mA LDOs, Supervisory, Watchdog and Manual Reset
ADI

ADP5043

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP5043ACPZ-1-R7

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP5043CP-1-EVALZ

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP50460008CBZR

POWER SUPPLY SUPPORT CKT
ADI

ADP5050

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5050-EVALZ

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5050ACPZ-R7

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5051

Integrated Power Solution with Quad Buck
ADI

ADP5051ACPZ-R7

Integrated Power Solution with Quad Buck Regulators, Supervisory, and I<sup>2</sup>C Interface
ADI