ADP5360 [ADI]

Advanced Battery Management PMIC with Ultra Low Power Buck and Buck Boost;
ADP5360
型号: ADP5360
厂家: ADI    ADI
描述:

Advanced Battery Management PMIC with Ultra Low Power Buck and Buck Boost

电池 集成电源管理电路
文件: 总60页 (文件大小:1871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advanced Battery Management PMIC with  
Ultra Low Power Buck and Buck Boost  
ADP5360  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Linear battery charger  
High accuracy and programmable charge terminal voltage  
and charge current up to 320 mA  
Compliant with JEITA charge temperature specification  
Li-Ion and Li-Poly battery monitor and protection  
Voltage-based fuel gauge with adaptive filter limitation  
Independent battery protection of overcharge and  
overdischarge  
The ADP5360 combines one high performance linear charger  
for a single lithium-ion (Li-Ion)/lithium-polymer (Li-Poly)  
battery with a programmable, ultralow quiescent current fuel  
gauge and battery protection circuit, one ultralow quiescent  
buck, one buck boost switching regulator, and a supervisory  
circuit that can monitor output voltage.  
The ADP5360 charger operates at up to 6.8 V to prevent USB  
bus spiking during disconnect or connect scenarios.  
Temperature sensor with external NTC  
Ultralow quiescent current buck converter  
Quick output discharge option  
Ultralow quiescent current buck boost converter  
Quick output discharge option  
The ADP5360 features an internal isolation field effect transistor  
(FET) between the linear charger output and the battery node.  
The full battery protection features are activated when the device is  
in the battery overcharge and overdischarge fault conditions.  
MR  
Supervisory with manual reset ( ) and watchdog timer  
The ADP5360 fuel gauge uses a voltage-based algorithm with  
an adaptive filter limitation solution. The fuel gauge reports  
real-time battery state of charge (SOC) for the rechargeable  
Li-Ion battery with ultralow quiescent current.  
Shipment mode extends battery life  
Full I2C programmability with dedicated interrupt pin  
APPLICATIONS  
Rechargeable Li-Ion/Li-Poly battery-powered devices  
Portable consumer devices  
Portable medical devices  
Wearable devices  
The ADP5360 buck regulator operates at 1.0 MHz switching  
frequency in forced pulse-width modulation (FPWM) mode.  
In hysteresis mode, the regulator achieves excellent efficiency at  
a low output power.  
The ADP5360 buck boost regulator only operates in hysteresis  
mode and outputs a voltage less than or greater than the battery  
voltage.  
The ADP5360 supervisory circuits monitor the regulator output  
voltage and provide a power-on reset signal to the system. A  
watchdog timer and an external pushbutton can reset the  
microprocessor.  
The I2C-compatible interface enables the programmability of all  
battery charging parameters, the protection threshold, the buck  
output voltage, and the status bit readback.  
The ADP5360 operates over the −40°C to +85°C junction  
temperature range and is available in a 32-ball, 2.56 mm ×  
2.56 mm wafer level chip scale package (WLCSP).  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksare the property oftheir respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
ADP5360  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Battery Fuel Gauge ..................................................................... 25  
Battery Protection ...................................................................... 28  
Buck Regulator Operation ........................................................ 28  
Buck Boost Regulator Operation ............................................. 30  
Supervisory ................................................................................. 31  
Shipment Mode .......................................................................... 32  
Fault Recovery ............................................................................ 32  
Thermal Management ............................................................... 32  
I2C Interface .................................................................................... 33  
I2C Addresses .............................................................................. 33  
SDA and SCL Pins ...................................................................... 33  
Interrupts..................................................................................... 33  
Control Register Map..................................................................... 35  
Fuel Gauge Register Bit Descriptions ...................................... 45  
Switching Regulator Register Bit Descriptions ...................... 48  
Supervisory Register Bit Descriptions..................................... 50  
Status and Fault Register Bit Descriptions.............................. 50  
Applications Information.............................................................. 54  
Typical Application Circuits ..................................................... 54  
External Components................................................................ 55  
PCB Layout Guidelines.................................................................. 57  
Factory-Programmable Options .............................................. 58  
Outline Dimensions....................................................................... 60  
Ordering Guide .......................................................................... 60  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Battery Charger Specifications ................................................... 4  
Battery Monitor Specifications ................................................... 6  
Buck Regulator Specifications .................................................... 6  
Buck Boost Regulator Specifications ......................................... 7  
I2C-Compatible Interface Timing Specifications ..................... 8  
Recommended Input and Output Capacitance and  
Inductance..................................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
Maximum Power Dissipation ..................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Typical Waveforms ..................................................................... 16  
Theory of Operation ...................................................................... 20  
Battery Charger........................................................................... 20  
Battery Isolation FET ................................................................. 22  
Battery Detection........................................................................ 22  
Battery Temperature................................................................... 23  
REVISION HISTORY  
11/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 60  
 
Data Sheet  
ADP5360  
FUNCTIONAL BLOCK DIAGRAM  
VDD  
V
6.8V  
BUS_OV  
VIN1  
VBUS  
3.9V  
V
BUS_OK  
I
LIM_PWM  
BUCK  
CONTROL  
LOGIC  
SW1  
I
LIM_HSY  
PGND1  
I
LIM  
VSYS  
EN1  
CHARGE CONTROL  
AND  
TRICKLE  
SOURCE  
STP  
BATTERY PROTECTION  
FB1  
I
BAT  
VID SET  
VID1  
0.6V REF  
AND  
SOFT START  
I
END  
ISOB  
DETECTION  
SINK  
STP  
EN2  
VIN2  
STP  
ENCHG  
OSCILLATOR  
SW2A  
ICS  
UNDER  
PGND2  
SW2B  
BUCK BOOST  
CONTROL  
LOGIC  
VOLTAGE  
ILIM  
OVER  
VOLTAGE  
BSNS  
VOUT2  
FUEL GAUGE  
ADC  
I
BAT  
ALGORITHM  
THR  
SCL  
VID SET  
0.6V REF  
AND  
SOFT START  
2
I C INTERFACE  
SDA  
INT  
AND  
LOGIC CONTROL  
AND  
DIGITAL CIRCUIT  
ENSD  
MR  
PGOOD1  
RESET  
PGOOD2  
AGNDx  
NOTES  
BAT  
1. I  
IS THE BATTERY SENSE CURRENT.  
Figure 1.  
Rev. 0 | Page 3 of 60  
 
ADP5360  
Data Sheet  
SPECIFICATIONS  
BATTERY CHARGER SPECIFICATIONS  
TJ = −40°C to +85°C, voltage of the VBUS pin (VVBUS) = 5.0 V, voltage of the ISOB pin (VISOB) = 3.8 V, C1 = 2.2 μF, C2 = 1 μF, C3 = C4 =  
10 μF (see Figure 60), and all registers are at default values, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max Unit  
GENERAL PARAMETERS  
Undervoltage Lockout (UVLO)  
VUVLO  
Rising threshold, voltage of the ISOB pin,  
2.1  
2.15  
V
V
VBUS = 0 V  
Falling threshold, voltage of the ISOB pin,  
VBUS = 0 V  
LIM = 100 mA  
1.8  
1.88  
95  
V
V
I
ILIM  
Input Current Limit  
Operation Current  
VBUS Consumption  
100  
2
mA  
IQ_BUS  
Charger, fuel gauge, buck, and buck boost  
enabled, no charge current  
1.5  
mA  
Battery Consumption  
IQ_PRO  
Enable battery protection only, VVBUS = 0 V  
Fuel gauge, active mode, VVBUS = 0 V  
Fuel gauge, sleep mode, VVBUS = 0 V  
Enable buck and buck boost, VVBUS = 0 V  
All disabled, VVBUS = 0 V  
0.25  
3.5  
0.2  
0.34  
150  
10  
1.8  
5
0.85  
1
450  
50  
310  
μA  
μA  
μA  
μA  
nA  
nA  
nA  
IQ_FG_ACT  
IQ_FG_SLEEP  
IQ_REG  
IQ_DISALL  
IQ_SHIP  
Shipment mode, TJ = 25°C  
Shipment mode, TJ = −40°C to +85°C  
CHARGING PARAMETERS  
Fast Charge Constant Current  
Mode  
ICHG  
ICHG = 100 mA  
ICHG = 10 mA to 320 mA, TJ = 0°C to 85°C  
94  
−15  
100  
106  
+15  
mA  
%
Accuracy1  
Charge Current  
Trickle1  
Weak  
ITRK_DEAD  
ICHG_WEAK  
VTRK_DEAD  
ΔVTRK_DEAD  
VWEAK  
ITRK_DEAD = 5 mA, TJ = 0°C to 85°C  
VTRK_DEAD = 2.5 V  
4
5
6
mA  
mA  
V
mV  
V
ITRK_DEAD + ICHG  
Trickle to Weak Charge Threshold1  
Hysteresis  
Weak to Fast Charge Threshold1  
Hysteresis  
Battery Termination Voltage  
Termination Voltage Accuracy1  
2.41 2.5  
100  
2.88 3.0  
100  
2.57  
3.08  
VWEAK = 3.0 V  
ΔVWEAK  
VTRM  
mV  
VTRM = 4.2 V on the BSNS pin, TJ = 25°C  
VTRM = 4.2 V, on the BSNS pin, TJ = 0°C to 85°C  
IEND = 5 mA, TJ = 0°C to 85°C  
4.18 4.200  
−1  
2
4.22  
+1  
8
V
%
mA  
mV  
Charge Complete Current1  
Recharge Voltage Differential1  
BATTERY ISOLATION FET  
IEND  
VRCH  
5
120  
ISOFET  
RDSON_ISO  
Resistance Between ISOB and VSYS  
VVBUS = 0 V, current of the ISOB pin (IISOB) =  
100 mA  
145  
220  
mΩ  
LOW DROPOUT (LDO) AND HIGH VOLTAGE  
BLOCKING FET  
Regulated System Voltage1  
High Voltage Blocking FET On Resistance  
Input Operating Voltage Range  
Good Threshold  
Rising  
VSYS_REG  
RDSON_HV  
VTRM = 4.2 V, VSYSTEM = VTRM + 200 mV  
IVBUS = 100 mA  
VVBUS  
4.4  
550  
V
mΩ  
V
820  
6.8  
4.1  
3.5  
6.4  
VVBUS_OK  
VVBUS_OK_RISE  
VVBUS_OK_FALL  
VVBUS_OV  
VVBUS_OV_RISE  
VVBUS_OV_FALL  
3.9  
3.6  
4.0  
7.0  
V
V
Falling  
Overvoltage Threshold  
Rising  
6.8  
6.6  
V
V
Falling  
Rev. 0 | Page 4 of 60  
 
 
Data Sheet  
ADP5360  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max Unit  
THERMAL PROTECTION  
Thermal Shutdown Temperature2  
TSD  
TJ RISING  
TJ FALLING  
110  
100  
°C  
°C  
THERMISTOR CONTROL  
Thermistor Current  
Negative Temperature Coefficient (NTC)  
Resistor (RNTC) = 10 kΩ  
INTC_10k  
57.5 60  
11.5 12  
62  
μA  
RNTC = 47 kΩ  
RNTC = 100 kΩ  
BATTERY DETECTION  
Sink Current  
Source Current  
Battery Threshold  
Low  
INTC_47k  
INTC_100k  
12.5  
6.35  
μA  
μA  
5.65  
6
ISINK  
ISOURCE  
4.1  
2
6
2.5  
7
3
mA  
mA  
VBATL  
VBATH  
1.92  
2
2.06  
3.48  
V
V
High  
3.27 3.4  
Timer  
tBATOK  
VNOBAT  
333  
2
ms  
V
Threshold After Charging Completed  
TIMERS  
Start Charging Delay Timer  
Trickle Charge Timer1  
tSTART  
tTRK  
300  
60  
ms  
min  
CHG_TMR_PERIOD = 60 minutes and  
600 minutes  
Fast Charge Timer1  
Charge Complete Timer  
Deglitch Timer  
tCHG  
tEND  
tDG  
CHG_TMR_PERIOD = 60 minutes and  
600 minutes  
600  
7.5  
31  
min  
min  
ms  
Voltage of the BSNS pin (VBSNS) = VTRM  
EN_TEND = 1 bit, register set  
,
Applies to VTRM, VRCH, IEND, VWEAK, VTRK_DEAD, and  
VVBUS_OK  
Safety Timer  
Reset Timeout Period  
tSAFE  
tRP  
tSH  
36  
40  
44  
min  
ms  
ms  
200  
200  
12.5  
MR  
for Shipment Mode  
Watchdog Timer1  
I2C (SCL AND SDA)  
Maximum Voltage on Digital Inputs  
Input Voltage  
tWD  
sec  
VDIN_MAX  
5.5  
0.4  
0.4  
V
Low Level  
High Level  
Low Level Output Voltage  
VIL  
VIH  
VOL  
Applies to SCL, SDA  
Applies to SCL, SDA  
Applies to SDA, SDA current sink (ISDA_SINK) =  
2 mA  
V
V
V
1.2  
INT, RESET, PGOOD1, AND PGOOD2  
Input and Output Leakage Current  
Input and Output Low Voltage  
ENCHG, EN1, EN2, STP, MR, ENSD  
Input Voltage Threshold  
High  
IIO_LEAK  
VIO_LOW  
Input and output voltage (VIO) = 5 V  
Input and output current (IIO) = 1 mA  
10  
90  
150  
200  
nA  
mV  
VIH  
1.2  
V
Low  
VIL  
0.4  
V
Input Leakage Current  
IEN_LEAKAGE  
150  
nA  
1 These values are programmable via I2C. Values are given with default register values.  
2 Specification is not production tested but is supported by characterization data at initial product release.  
Rev. 0 | Page 5 of 60  
ADP5360  
Data Sheet  
BATTERY MONITOR SPECIFICATIONS  
TJ = −40°C to +85°C, VISOB = 3.8 V, C1 = 2.2 μF, C2 = 1 μF, C3 = C4 = 10 μF, and all registers are at default values, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
BATTERY VOLTAGE SENSING  
Analog-to-Digital Converter (ADC) Reading  
Voltage  
Range  
0
4.8  
V
Resolution  
Accuracy  
Based on 12-bit ADC  
TJ = 25°C  
1.17  
mV  
mV  
%
−12.5  
−1  
+12.5  
+1  
Fuel Gauge UVLO Threshold  
Rising  
Falling  
VBSNS  
VUVLO_FG_RISE  
VUVLO_FG_FALL  
2.7  
2.58  
2.8  
V
V
2.48  
−1.5  
BATTERY OVERDISCHARGE MONITORING  
Undervoltage Threshold  
Rising  
VBPUV_FALL  
+1.5  
700  
%
%
ms  
Falling Hysteresis  
VBPUV_FALL_HYS HYS_UV_DISCH = 2%  
2
30  
Undervoltage Deglitch Timer  
Overdischarge Current  
Threshold  
Deglitch Timer  
Hiccup Off Time  
tBPUV_DIS  
DGT_UV_DISCH = 30 ms  
IBPOC_DIS  
tBPOC_DIS  
tDIS_HCP  
OC_DISCH = 600 mA  
DGT_OC_DISCH = 5 ms  
480  
600  
5
200  
mA  
ms  
ms  
BATTERY OVERCHARGE MONITORING  
Overvoltage Threshold  
Rising  
VVBUS = 5 V  
VBPOV_RISE  
−1.5  
130  
+1.5  
170  
%
%
sec  
mA  
ms  
ms  
Falling Hysteresis  
VBPOV_RISE_HYS HYS_OV_CHG = 2%  
2
Overvoltage Deglitch Timer  
Overcurrent Threshold  
Overcurrent Deglitch Timer  
Hiccup Off Time  
tBPOV_CHG  
IBPOC  
tBPOC_CHG  
tCHG_HCP  
DGT_OV_CHG = 0.5 sec  
OC_CHG = 150 mA  
DGT_OC_CHG = 10 ms  
0.5  
150  
10  
200  
BUCK REGULATOR SPECIFICATIONS  
TJ = −40°C to +85°C, voltage of the VIN1 pin (VVIN1) = voltage of the VSYS pin (VVSYS) = 3.8 V, buck output voltage (VOUT1) = 1.2 V, C5 =  
C6 = 10 ꢀF, L1 = 4.7 ꢀH (see Figure 60), and all registers are at default values, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
UVLO THRESHOLD  
Rising  
Falling  
VVIN1  
VUVLO1_RISE  
VUVLO1_FALL  
2.3  
2.15 2.2  
2.35  
V
V
OSCILLATOR CIRCUIT  
Switching Frequency in Pulse Width  
Modulation (PWM) Mode  
Feedback Threshold of Frequency Fold  
FB1 PIN  
Output Voltage Option Range  
PWM Mode  
Fixed Voltage Identification (VID) Code  
Voltage Accuracy  
fSW1  
0.85 1.0  
1.25  
1.15  
MHz  
V
VOSC_FOLD_RISE  
VOUT1 = 2.5 V  
VOUT1  
Factory trim or I2C, six bits  
0.6  
−2  
3.75  
+2  
V
VFB1_PWM_FIX  
%
Rev. 0 | Page 6 of 60  
 
 
Data Sheet  
ADP5360  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max  
Unit  
Hysteresis Mode  
Fixed VID Code Voltage Threshold Accuracy  
Hysteresis of Voltage Threshold  
Feedback Bias Current  
VFB1_HYS_FIX  
VFB1_HYS (HYS)  
IFB1  
−2  
1
+2  
%
%
nA  
VOUT1 = 0.6 V  
50  
SW1 PIN  
Power FET On Resistance  
High-Side  
Low-Side  
Current Limit in PWM Mode  
Peak Current in Hysteresis Mode  
Minimum On Time1  
RDS (ON) H  
RDS (ON) L  
ILIM_PWM  
ILIM_HYS  
Pin to pin measurement  
Pin to pin measurement  
PWM mode  
280  
260  
1000 1150  
200  
60  
380  
380  
mΩ  
mΩ  
mA  
mA  
ns  
850  
160  
Hysteresis mode, BUCK_ILIM = 200 mA  
240  
tMIN_ON  
SOFT START  
Default Soft Start Time  
OUTPUT DISCHARGE SWITCH ON RESISTANCE  
tSS1  
BUCK_SS[1:0] = 1 ms  
1
ms  
RDIS1  
255  
1 Guaranteed by design.  
BUCK BOOST REGULATOR SPECIFICATIONS  
TJ = −40°C to +85°C, voltage of the VIN2 pin (VVIN2) = VVSYS = 3.8 V, voltage of the VOUT2 pin (VVOUT2) = 5 V, C 7 = C8 = 10 μF, L2 =  
4.7 μH (see Figure 60), and all registers are at default values, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
UVLO THRESHOLD  
Rising  
Falling  
VVIN2  
VUVLO2_RISING  
VUVLO2_FALLING  
2.3  
2.16  
2.36  
V
V
2.11  
1.8  
−2  
OUTPUT VOLTAGE RANGE  
Output Voltage Accuracy  
Hysteresis of Voltage Threshold Accuracy  
SW2AAND SW2B PINS  
SWA2 Pin FET Resistance  
High-Side  
Factory trim or I2C, six bits  
5.5  
+2  
V
%
%
VVOUT2  
VVOUT2_HYS  
1
RDS(ON)1_2A-H  
RDS(ON)1_2A-L  
354  
250  
470  
360  
mΩ  
mΩ  
Low-Side  
SW2B Pin FET Resistance  
High-Side  
Low-Side  
Peak Current-Limit Threshold  
SOFT START TIME  
Soft Start Time  
RDS(ON)1_2B-H  
RDS(ON)1_2B-L  
ITH(ILIM1_2)  
290  
230  
200  
400  
330  
240  
mΩ  
mΩ  
mA  
BUCKBST_ILIM = 200 mA  
BUCKBST_SS[0:1] = 1 ms  
160  
1
tSS2  
1
ms  
ms  
Programmable Soft Start Range  
OUTPUT DISCHARGE SWITCH ON RESISTANCE  
512  
RDIS2  
255  
Rev. 0 | Page 7 of 60  
 
ADP5360  
Data Sheet  
I2C-COMPATIBLE INTERFACE TIMING SPECIFICATIONS  
TA = 25°C and VISOB = 3.8 V, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
I2C-COMPATIBLE INTERFACE  
Capacitive Load, Each Bus Line  
SCL Clock Frequency  
SCL High Time  
SCL Low Time  
CS  
fSCL  
400  
400  
pF  
kHz  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
tHIGH  
tLOW  
tSUDAT  
tHDDAT  
tSUSTA  
tHDSTA  
tBUF  
tSUSTO  
tR  
0.6  
1.3  
100  
0
Data Setup Time  
Data Hold Time1  
0.9  
Setup Time for Repeated Start  
Hold Time for Start and Repeated Start  
Bus Free Time Between a Stop Condition and a Start Condition  
Setup Time for Stop Condition  
Rise Time of SCL and SDA  
Fall Time of SCL and SDA  
Pulse Width of Suppressed Spike  
0.6  
0.6  
1.3  
0.6  
20  
20  
0
300  
300  
50  
tF  
tSP  
1 A master device must provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL. See Figure 2 for more information.  
Timing Diagram  
SDA  
tF  
tBUF  
tF  
tSP  
tR  
tLOW  
tR  
tSUDAT  
tHDSTA  
SCL  
tHIGH  
tSUSTA  
tSUSTO  
S
Sr  
P
S
tHDDAT  
S = START CONDITION  
Sr = REPEATED START CONDITION  
P = STOP CONDITION  
Figure 2. I2C Timing Diagram  
RECOMMENDED INPUT AND OUTPUT CAPACITANCE AND INDUCTANCE  
Table 6.  
Parameter  
CAPACITANCE  
VBUS Capacitance  
VDD Pin Capacitance  
Total Capacitance  
VSYS Pin  
Test Conditions/Comments  
Effective capacitance  
Min  
Typ  
Max  
Unit  
1.0  
0.47  
2.2  
1.0  
µF  
μF  
10  
4.7  
4.7  
2.2  
2.2  
1
10  
10  
10  
10  
10  
10  
µF  
µF  
µF  
µF  
µF  
µF  
ISOB Pin  
VIN1 Pin  
VIN2 Pin  
VOUT1 Node  
VOUT2 Pin  
1
INDUCTANCE  
Buck  
Buck Boost  
2.2  
2.2  
4.7  
4.7  
6.8  
6.8  
µH  
µH  
Rev. 0 | Page 8 of 60  
 
 
 
Data Sheet  
ADP5360  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
VBUS to PGND1  
PGND1, PGND2 to AGNDx  
All Other Pins to AGNDx  
Continuous Drain Current, Battery  
Supplementary Mode from ISOB to VSYS,  
TJ = 85°C  
Rating  
−0.5 V to +20 V  
−0.3 V to +0.3 V  
−0.3 V to +6 V  
1.1 A  
θ
JA is the natural convection, junction to ambient, thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Temperature Range  
Storage  
Operating Junction  
Soldering Conditions  
Table 8. Thermal Resistance  
Package Type  
CB-32-2  
−65°C to +150°C  
−40°C to +85°C  
JEDEC J-STD-020  
θJA  
50  
θJC  
0.35  
Unit  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the ADP5360 package  
is limited by the associated rise in TJ on the die. At approximately  
150°C, which is the glass transition temperature, the plastic  
changes properties. Even temporarily exceeding this temperature  
limit can change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the ADP5360.  
ESD CAUTION  
Rev. 0 | Page 9 of 60  
 
 
 
 
ADP5360  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
INT  
PGND2  
SW2B  
VOUT2  
SCL  
SDA  
A
B
C
D
E
F
SW2A  
VIN2  
AGND2  
STP  
ENSD  
EN2  
PGOOD1 THR  
BSNS  
ISOB  
VSYS  
PGOOD2  
ILIM  
FB1  
VID1  
EN1  
SW1  
RESET  
ENCHG  
MR  
ICS  
PGND1  
VIN1  
VDD  
VBUS  
AGND1  
Figure 3. Ball Configuration (Top View)  
Table 9. Ball Function Descriptions  
Ball No.  
Mnemonic Description  
A1  
A2  
A3  
A4  
PGND2  
SW2B  
VOUT2  
SCL  
Power Ground for the Buck Boost Regulator.  
Switching Node for the Buck Boost Regulator.  
Buck Boost Regulator Output Pin.  
I2C Serial Clock. This pin requires an external pull-up resistor.  
I2C Serial Data. This pin requires an external pull-up resistor.  
A5  
SDA  
A6  
INT  
Processor Interrupt (Active Low). This pin requires an external pull-up resistor. If this pin is not used, this pin can  
be left floating.  
B1  
B2  
B3  
SW2A  
AGND2  
ENSD  
Switching Node for the Buck Boost Regulator.  
Analog Ground.  
Shutdown Mode Select. When this pin is low, the shutdown mode disables. When this pin is high, the shutdown  
mode enables.  
B4  
B5  
EN2  
PGOOD1  
Enable Pin for Buck Boost Regulator.  
Power-Good Signal Output. This open-drain output is the power-good signal for the selected VBUSOK, BATOK,  
CHG_CMPLT, VOUT2OK, or VOUT1OK bits (see Table 65).  
B6  
C1  
C2  
C5  
THR  
VIN2  
STP  
PGOOD2  
Battery Pack Thermistor Connection.  
Input Power for the Buck Regulator.  
Stop Switching for the Selected Channel.  
Power-Good Signal Output. This open-drain output is the power-good signal for the selected VBUSOK, BATOK,  
CHG_CMPLT, VOUT2OK, or VOUT1OK bits (see Table 65).  
C6  
D1  
D2  
BSNS  
FB1  
VID1  
Battery Voltage Sense.  
Feedback Sensing Input for the Buck Regulator.  
Configure Buck Regulator Output Voltage. Connect a resistor from VID1 to AGND1 and AGND2 to program the buck  
regulator default output voltage. Float the pin to disable the pin select feature and use the register default set.  
D5  
D6  
ILIM  
Input Current-Limit Select. Connect a resistor to AGND1 and AGND2 to set the default input current-limit level.  
Float the pin to disable the pin select feature and use the register default set.  
Battery Supply-Side Input to Internal Isolation FET.  
ISOB  
Rev. 0 | Page 10 of 60  
 
Data Sheet  
ADP5360  
Ball No.  
E1  
E2  
Mnemonic Description  
SW1  
EN1  
RESET  
MR  
Switching Node for Buck Regulator.  
Hardware Enable for Buck Regulators.  
Reset Output.  
E3  
E4  
Manual Reset Input.  
E5  
ICS  
Set Charge Current. Connect one resistor to ground to set the default charge current. Float the pin to disable the  
pin select feature and use the register default set.  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
VSYS  
PGND1  
VIN1  
ENCHG  
AGND1  
VDD  
Linear Charger, Supply Side Input to the Internal Isolation FET.  
Power Ground for the Buck Regulator.  
Input Power for the Buck Regulator.  
Logic Input for the Enable Charger Function.  
Analog Ground.  
Internal Circuit Power Supply.  
Power Connection to USB VBUS.  
VBUS  
Rev. 0 | Page 11 of 60  
ADP5360  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VVBUS = 5.0 V, VISOB = 3.6 V, C1 = 2.2 μF, C2 = 1 µF, C3 = C4 = 10 µF, C5 = C6 = 10 μF, C7 = C8 = 10 μF, L1 = L2 = 4.7 μH, and  
all registers are at default values, unless otherwise noted.  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
V
V
= 4.4V  
= 5V  
VSYS  
VSYS  
V
V
= 4.4V  
= 5V  
VSYS  
VSYS  
0
100  
200  
300  
(mA)  
400  
500  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
I
VSYS  
Figure 4. VSYS Load Regulation, VVSYS = 4.4 V and 5 V, VVBUS = 5.5 V,  
IVSYS from 1 mA to 400 mA, No Charging  
Figure 7. VSYS Accuracy vs. Temperature, VVBUS = 5.5 V  
5.5  
5.0  
4.5  
4.0  
3.5  
0.40  
0.35  
0.30  
0.25  
0.20  
V
V
= 4.4V  
= 5V  
VSYS  
VSYS  
3.0  
4
5
6
7
2.5  
3.5  
4.5  
5.5  
V
(V)  
VBUS  
BATTERY VOLTAGE (V)  
Figure 8. ISOFET Resistor vs. Battery Voltage  
Figure 5. VSYS Line Regulation, VVSYS = 4.4 V and 5 V, No Charging  
350  
300  
250  
200  
150  
100  
50  
120  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
80  
60  
40  
20  
0
V
V
V
V
V
= 4.2V  
TRM  
TRM  
TRM  
TRM  
TRM  
= 4.3V  
= 4.4V  
= 4.5V  
= 4.6V  
I
V
ISOB  
VSYS  
0
4.0  
4.5  
5.0  
5.5  
(V)  
6.0  
6.5  
2.3  
2.8  
3.3  
3.8  
4.3  
V
(V)  
ISOB  
INPUT V  
VBUS  
Figure 9. Charge Current vs. Input VVBUS, ICHG = 300 mA  
Figure 6. Charge Profile, VTRM = 4.2 V, ICHG = 100 mA  
Rev. 0 | Page 12 of 60  
 
 
Data Sheet  
ADP5360  
105  
104  
103  
102  
101  
100  
99  
4.30  
4.25  
4.20  
4.15  
4.10  
98  
97  
96  
95  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 13. Charge Current vs. Temperature, ICHG = 100 mA  
Figure 10. VTRM vs. Temperature, VTRM = 4.2 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.8  
V
V
V
V
V
= 2.7V  
= 3V  
= 3.6V  
= 4.2V  
= 4.6V  
ISOB  
ISOB  
ISOB  
ISOB  
ISOB  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
V
V
= 1.8V  
= 3.3V  
= 5V  
VOUT2  
VOUT2  
VOUT2  
0.001  
0.01  
0.1  
1
10  
100  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Figure 11. ADC Voltage Sense Accurarcy vs. Temperature, VVBUS = 0 V  
Figure 14. Buck Boost Efficiency vs. Output Current, VVIN2 = 3.6 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
V
V
= 1.8V  
= 3.3V  
= 5V  
OUT1  
OUT1  
OUT1  
10  
V
V
= 1.2V  
= 3.3V  
OUT1  
OUT1  
0
0
0
50  
100 150 200 250 300 350 400 450 500  
OUTPUT CURRENT (mA)  
0.001  
0.01  
0.1  
1
10  
100  
OUTPUT CURRENT (mA)  
Figure 12. Buck Efficiency vs. Output Current, VVIN1 = 3.6 V, PWM Mode  
Figure 15. Buck Efficiency vs. Output Current, VVIN1 = 3.8 V,  
Hysteresis Mode  
Rev. 0 | Page 13 of 60  
ADP5360  
Data Sheet  
1.830  
1.825  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
V
V
= 1.8V HYS  
= 1.8V PWM  
OUT1  
OUT1  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 16. Buck Output vs. Temperature, VFB1_PWM_FIX and VFB1_HYS_FIX  
Accuracy  
Figure 19. Buck Boost Output vs. Temperature, VOUT2 Accuracy  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
600  
500  
OC_DISCH = 50mA  
OC_DISCH = 200mA  
OC_DISCH = 600mA  
400  
300  
200  
100  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 17. Battery Undervoltage Threshold vs. Temperature, BAT_UV = 2.5 V  
Figure 20. Battery Overdischarge Current Threshold vs. Temperature,  
VISOB = 3.8 V  
4.40  
4.39  
4.38  
4.37  
4.36  
4.35  
4.34  
4.33  
4.32  
4.31  
4.30  
450  
400  
350  
300  
OC_DISCH = 25mA  
250  
200  
150  
100  
50  
OC_DISCH = 150mA  
OC_DISCH = 300mA  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 18. Battery Overvoltage Threshold vs. Temperature, VBPOV_RISE = 4.3 V  
Figure 21. Battery Overcharge Current Threshold vs. Temperature,  
VISOB = 3.8 V  
Rev. 0 | Page 14 of 60  
Data Sheet  
ADP5360  
1.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
= 2.5V  
= 3.6V  
= 4.2V  
V
= 2.5V  
= 3.6V  
= 4.2V  
ISOB  
ISOB  
ISOB  
ISOB  
ISOB  
ISOB  
V
0.9  
V
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 22. ISOB Quiescent Current vs. Temperature, All Disabled  
Figure 24. ISOB Quiescent Current vs. Temperature, Fuel Gauge Sleep Mode  
Enabled, Battery Protection Enabled, Buck Enabled, Buck Boost Enabled  
1.75  
350  
V
V
V
= 2.5V  
= 3.6V  
= 4.2V  
V
V
V
= 4V  
ISOB  
ISOB  
ISOB  
VBUS  
VBUS  
VBUS  
= 5V  
= 6.5V  
300  
250  
200  
150  
100  
50  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 23. ISOB Quiescent Current vs. Temperature in Shipment Mode  
Figure 25. VBUS Quiescent Current vs. Temperature  
Rev. 0 | Page 15 of 60  
ADP5360  
Data Sheet  
TYPICAL WAVEFORMS  
V
VBUS  
V
ISOB  
V
VSYS  
1
3
2
4
V
V
VBUS  
ENCHG  
2
1
I
ISOB  
B
CH1 2.00V B  
CH2 2.00V  
M200ms  
A CH2  
2.04V  
B
CH1 5.00V B CH2 5.00V  
M100ms  
A CH2  
1.80V  
W
W
W
W
W
CH3 5.00V B CH4 100mA B  
W
Figure 26. Charge Startup, VVBUS = 5 V, VISOB = 3.8 V,  
IILIM = 200 mA, ICHG = 100 mA  
Figure 29. Battery Detection Waveform  
V
V
VBUS  
VBUS  
V
V
V
VSYS  
VSYS  
1
1
2
V
ISOB  
ISOB  
2
I
ISOB  
I
ISOB  
3
4
3
4
CH1 5.00V B  
CH3 2.00V B  
CH2 5.00V  
CH4 50.0mA  
M200ms  
A CH4  
116mA  
B
B
B
W
W
W
W
CH1 5.00V B CH2 5.00V  
M200ms  
A CH4  
116mA  
W
W
B
CH3 2.00V B CH4 50.0mA  
W
W
Figure 27. USB Connect and Start Charge, VVBUS = 5 V,  
VISOB = 3.8 V, ICHG = 100 mA  
Figure 30. USB Disconnect and End Charge, VVBUS = 5 V, VISOB = 3.8 V,  
ICHG = 100 mA  
V
V
V
VBUS  
VSYS  
1
VSYS  
V
ISOB  
ISOB  
1
2
3
4
I
I
VSYS  
4
B
B
CH1 2.00V B CH2 2.00V  
M10.0ms A CH4  
19.60000ms  
61.0mA  
CH1 5.00V  
M400µs  
A CH4  
172mA  
W
W
W
W
B
B
CH3 2.00V B CH4 50.0mA  
CH4 200mA  
T
1.196000ms  
W
T
W
Figure 28. VSYS Load Transient, IVSYS = 50 mA to 300 mA  
Figure 31. Adaptive Charge Current, VADPICHG[2:0] = 4.6 V,  
VVBUS = 5 V with 10 Ω Impedance, ICHG = 100 mA  
Rev. 0 | Page 16 of 60  
 
Data Sheet  
ADP5360  
V
BSNS  
V
BSNS  
V
V
VSYS  
VSYS  
1
2
1
V
I
OUT1  
2
3
4
I
ISOB  
ISOB  
4
B
B
CH1 2.00V B CH2 2.00V  
M400ms  
A CH2  
1.64V  
B
W
W
W
CH1 2.00V B CH2 2.00V  
M200ms A CH1  
920mV  
W
W
CH4 100mA  
CH3 1.00V B CH4 100mA B  
W
W
Figure 32. Battery Overvoltage Protection Waveform,  
VVBUS = 5 V, OV_CHG = 4.3 V, DGT_OV_CHG = 0.5 sec  
Figure 35. Battery Charge Overcurrent Waveform,  
VVBUS = 5 V, VISOB = 3.8 V, OC_CHG = 150 mA, DGT_OC_CHG = 10 ms  
V
OUT1  
V
BSNS  
1
3
V
SW1  
1
V
VSYS  
V
OUT1  
2
3
I
I
ISOB  
L1  
4
4
B
CH1 2.00V B CH2 2.00V  
M20.0ms  
11.08000ms  
A CH2  
1.28V  
B
CH1 50.0mV  
CH3 5.00V  
M200µs  
0.000000s  
A CH3  
2.00V  
W
W
W
W
CH4 100mA B  
CH3 1.00V B CH4 50.0mAB  
T
W
T
W
Figure 33. Battery Undervoltage Protection Waveform,  
VBUS = 0 V, UV_DISCH = 2.5 V, DGT_UV_DISCH = 30 ms  
Figure 36. Buck Steady Hysteresis Waveform, Hysteresis Mode,  
VIN2 = 3.8 V, VOUT1 = 1.2 V,  
Buck Output Current (IOUT1) = 1 mA  
V
V
V
BSNS  
V
OUT1  
V
V
VSYS  
1
3
V
SW1  
1
2
OUT1  
I
ISOB  
I
3
4
L1  
4
B
B
W
CH1 2.00V B CH2 2.00V  
M4.00ms  
A CH2  
1.28V  
CH1 20.0mV  
CH3 5.00V  
M2.00µs  
A CH3  
2.00V  
W
W
B
CH3 1.00V B CH4 100mA  
CH4 100mAB  
W
T
2.040000ms  
T
0.000000s  
W
W
Figure 37. Buck Steady PWM Waveform, PWM Mode,  
VVIN1 = 3.8 V, VOUT1 = 1.2 V, IOUT1 = 1 mA  
Figure 34. Battery Discharge Overcurrent Waveform,  
VVBUS = 0 V, VISOB = 3.8 V, OC_DISCH = 100 mA, DGT_OC_DISCH = 10 ms  
Rev. 0 | Page 17 of 60  
ADP5360  
Data Sheet  
V
OUT1  
1
V
OUT1  
1
2
V
PGOOD1  
I
OUT1  
V
SW1  
3
4
I
L1  
4
B
B
B
B
W
CH1 1.00V  
CH3 5.00V  
CH2 2.00V  
CH4 200mA  
M4.00ms  
A CH1  
600mV  
CH1 50.0mV  
M4.00ms A CH4  
11.96920ms  
62.0mA  
W
W
W
B
CH4 100mA  
T
9.960000ms  
T
W
Figure 38. Buck Output Soft Start, Set EN_BUCK High,  
PWM Mode, VVIN1 = 3.8 V, VOUT1 = 1.2 V, PGOOD1 Mask to Buck Output  
Figure 41. Buck Output Transient Waveform, VVIN1 = 3.8 V, VOUT1 = 1.2 V,  
I
OUT1 = 1 mA to 100 mA, Hysteresis Mode  
(VOUT1), IOUT1 = 1 mA, tSS1 = 8 ms  
V
VOUT2  
V
OUT1  
V
1
SW2A  
1
2
V
V
SW2B  
PGOOD1  
2
3
V
SW1  
3
4
V
STP  
V
PGOOD2  
4
B
CH1 1.00V  
CH3 5.00V  
CH2 5.00V  
CH4 5.00V  
M40.0ms  
A CH4  
2.50V  
W
CH1 5.00V B CH2 5.00V  
M4.00ms  
A CH1  
3.40V  
B
W
W
B
CH3 5.00V  
CH4 200mA  
T
11.08000ms  
W
Figure 39. Buck Stop Function Waveform, VVIN1 = 3.8 V, VOUT1 = 1.2 V,  
Hysteresis Mode, PGOOD1 Mask to VOUT1, STP_BUCK = 1 Bit  
Figure 42. Buck Boost Output Soft Start Waveform, VVIN2 = 3.8 V, VOUT2 = 5 V,  
BUCKBST_SS[0:1] = 8 ms, Buck Boost Output Current (IOUT2) = 1 mA,  
PGOOD2 Mask to VOUT2  
V
VOUT2  
V
OUT1  
1
2
1
V
V
SW2A  
SW2B  
I
OUT1  
3
4
4
I
L2  
B
CH1 50.0mV  
M100µs A CH4  
289.0000µs  
82.0mA  
W
B
W
CH1 100mV  
CH3 5.00V  
CH2 5.00V  
CH4 100mA B  
M200µs A CH2  
0.000000s  
2.70V  
B
CH4 100mA  
T
W
T
W
Figure 40. Buck Output Transient Waveform, VVIN1 = 3.8 V, VOUT1 = 1.2 V,  
IOUT1 = 1 mA to 100 mA, PWM Mode  
Figure 43. Buck Boost Steady Waveform, VVIN2 = 3.8 V,  
VOUT2 = 5 V, IOUT2 = 1 mA  
Rev. 0 | Page 18 of 60  
Data Sheet  
ADP5360  
V
OUT1  
V
VOUT2  
V
INT  
1
2
1
V
V
RESET  
PGOOD2  
2
3
V
SW2A  
3
4
V
MR  
V
STP  
4
CH1 1.00V B CH2 5.00V  
M100ms  
A
CH1  
600mV  
B
B
W
W
W
CH1 5.00V B CH2 2.00V B  
CH3 5.00V  
M4.00ms  
A CH4  
2.90V  
CH3 2.00V B CH4 5.00V  
W
W
W
W
CH4 5.00V B  
T
12.08000ms  
Figure 44. Buck Boost Stop Function Waveform, VVIN2 = 3.8 V,  
VVOUT2 = 5 V, PGOOD2 Mask to VOUT2, STP_BUCKBST = 1 Bit  
Figure 47. MR Press to Trigger Interrupt and RESET, EN_WD_INT = 1 Bit,  
RESET_TIME = 200 ms  
V
OUT1  
V
VOUT2  
V
VSYS  
1
1
V
RESET  
2
3
I
OUT2  
V
MR  
4
4
B
B
B
CH1 1.00V B  
CH3 2.00V B  
CH2 2.00V  
CH4 5.00V  
M4.00s  
A CH1  
600mV  
CH1 100mV  
M4.00ms  
CH4  
49.0mA  
W
W
W
W
B
CH4 50.0mA  
T
11.96920ms  
W
W
Figure 45. Buck Boost Output Transient Waveform,  
VVIN2 = 3.8 V, VVOUT2 = 3.3 V, IOUT2 = 1 mA to 50 mA  
Figure 48. Press MR for Greater than 12 sec to Enter Shipment Mode,  
EN_MR_SD = 1 Bit, ENSD Pin High  
V
OUT1  
V
OUT1  
1
1
2
3
V
V
VSYS  
PGOOD1  
2
3
V
RESET  
V
MR  
V
RESET  
4
B
B
B
B
B
B
B
W
CH1 1.00V  
CH3 2.00V  
CH2 2.00V  
CH4 5.00V  
M100ms  
A CH1  
600mV  
CH1 1.00V  
CH3 2.00V  
CH2 2.00V  
M40.0ms  
A CH1  
600mV  
W
W
W
W
W
W
Figure 46. RESET Output and VOUT1, VISOB = 3.8 V, VOUT1 = 1.2 V,  
RESET_TIME = 200 ms, PGOOD1 Mask to VOUT1  
Figure 49. Press MR to Exit Shipment Mode, ENSD Pin High  
Rev. 0 | Page 19 of 60  
ADP5360  
Data Sheet  
THEORY OF OPERATION  
BATTERY CHARGER  
Table 10. VBUS Input Current-Limit Default Set with ILIM Pin  
Charger Introduction  
RILIM Value (kΩ)  
ILIM Value (mA)  
The ADP5360 integrates a fully I2C-programmable charger for  
single-cell Li-Ion/Li-Poly batteries suitable for a wide range of  
portable applications.  
100  
68  
47  
36  
27  
20  
15  
10  
50  
100  
150  
200  
250  
300  
400  
500  
The linear charger architecture enables up to 500 mA of output  
current on the system power supply and up to 320 mA of charge  
current into the battery from a dedicated charger.  
The charger of the ADP5360 operates from an input voltage of  
up to 6.8 V but is tolerant of voltages up to 20 V to alleviate the  
concern of USB bus spiking during disconnection or connection  
scenarios.  
The current-limit defaults to 100 mA to allow compatibility  
with a USB host or hub that is not configured. This input  
current limit resets to a default value of 100 mA during every  
VBUS power-on cycle, thereby protecting the USB port.  
The ADP5360 features an internal FET between the linear  
charger output and the battery node to permit battery isolation  
and system power in a dead battery or no battery scenario,  
allowing instanteneous system function when connected to a  
USB power supply.  
When the input current-limit feature is used, it is possible for  
the available input current to be too low for the charger to meet  
the programmed charging current (ICHG), and the rate of charge  
reduces. In this case, the VBUS_ILIM bit flag sets.  
The charger of the ADP5360 enables charging via the mini  
VBUS pin (F6 pin) from a wall charger, car charger, or USB host  
port. Based on the type of USB source, which is detected by an  
external USB detection device, the ADP5360 can apply the proper  
current limit for optimal charging and USB compliance. The USB  
charger permits correct operation under all USB compliant  
sources including wall chargers, host chargers, hub chargers, and  
standard hosts and hubs.  
A processor controls the USB charger using the I2C to program  
the charging current and numerous other parameters, including  
the following:  
When VVBUS is between 3.9 V and 6.8 V, the VBUSOK bit is set.  
Trickle Charge Mode  
A deeply discharged Li-Ion cell can exhibit a low cell voltage,  
making it unsafe to charge the cell at high current rates. The  
ADP5360 charger uses its trickle charge mode to raise the cell  
voltage to a safe level for fast charging. A cell with a voltage lower  
than VTRK_DEAD charges with ITRK_DEAD. During trickle charge mode,  
the CHARGER_STATUS[2:0] bits of the CHARGER_STATUS1  
register are set.  
During trickle charging, the VSYS node is regulated to VSYS_REG  
by the linear regulator. The battery isolation FET is off, therefore  
the battery is isolated from the system power supply. Refer to  
Table 11 for the VSYS_REG output voltages.  
Trickle charge current level and voltage threshold  
Fast charge (constant current) current level  
Fast charge (constant voltage) termination voltage level  
Fast charge safety timer period  
Weak battery threshold detection  
End of charge current level for charge completion  
Recharge voltage threshold  
Table 11. VSYS_REG Output Voltages  
V
SYS_REG (V)  
VTRM Setting  
VSYSTEM = VTRM + 200 mV VSYSTEM = 5 V  
VTRM ≤ 4.26 V  
4.4  
4.5  
4.6  
4.7  
4.8  
5
5
5
5
5
VBUS input current limit  
4.26V < VTRM ≤ 4.36V  
4.36V < VTRM ≤ 4.46V  
4.46V < VTRM ≤ 4.56V  
4.56V < VTRM ≤ 4.66V  
Input Current Limit and USB Compatibility  
The VBUS input current limit is programmed via an internal  
I2C ILIM register (RILIM) from 50 mA to 500 mA, ensuring  
compatibility with different requirements. An external resistor  
from the ILIM pin to ground can also set the input current limit  
as the default. Floating the ILIM pin activates the register  
default value when powering up.  
When VVBUS is lower than the set value of VSYS_REG, VVSYS cannot  
be regulated, which impacts the charged current (see Figure 9).  
Rev. 0 | Page 20 of 60  
 
 
 
Data Sheet  
ADP5360  
The ADP5360 features a dynamic charge current that is  
Trickle Charge Mode Timer  
adaptive when VVBUS drops too much due to possible high  
internal impedance. The dynamic charge current monitors  
The duration of trickle charge mode is monitored to ensure that  
the battery revives from the deeply discharged state. If trickle  
charge mode runs for longer than tTRK without the cell voltage  
reaching VTRK_DEAD, a fault condition is assumed and charging  
stops. The battery isolation FET turns off, and VSYS is regulated  
to VSYS_REG by the linear regulator. The fault condition asserts on  
when the CHARGER_STATUS[2:0] bits are set to 0b110,  
allowing the user to initiate the fault recovery procedure  
specified in the Fault Recovery section.  
V
VBUS and reduces the charge current level when VVBUS falls  
lower than the threshold, which can be programed by the I2C  
interface. When the charge current adapts due to the VVBUS level,  
the ADPICHG status bit is set high. By default, this feature is  
disabled and can be enabled by the I2C setting.  
Fast Charge Mode (Constant Voltage)  
As the battery charges, the voltage rises and approaches VTRM  
.
The ADP5360 charger monitors VBSNS to determine when charging  
ends. However, the internal impedance of the battery pack  
combined with the PCB and other parasitic series resistances  
creates a voltage drop between the sense point at the BSNS pin  
and the cell terminal. To compensate for this voltage drop and  
ensure a fully charged cell, theADP5360 enters a constant voltage  
charge mode when VBSNS reaches the termination voltage. The  
ADP5360 reduces charge current gradually as the cell continues to  
charge, maintaining a voltage of VTRM on the BSNS pin. During  
constant voltage fast charge mode, the CHARGER_STATUS[2:0]  
bits are set to 0b011.  
Weak Charge Mode (Constant Current)  
When the battery voltage exceeds VTRK_DEAD but is less than  
V
WEAK, the charger switches to the weak charge mode, and VSYS  
is regulated to VSYS_REG by the battery isolation FET. Note that,  
SYSTEM = 5 V is not active on the output of VSYS_REG during  
V
charge mode.  
During weak charge mode, the battery is charged with  
programmed ICHG from VSYS through the isolation FET and  
ITRK_DEAD. Due to the VBUS input current limit, the real charge  
current (ICHG) from VSYS may be less than the programmed  
value. System load can share the current from VSYS. However,  
Fast Charge Mode Timer  
ITRK_DEAD always charges the battery during weak charge mode.  
The duration of fast charge mode is monitored to ensure that  
the battery is charging correctly. If the fast charge mode runs for  
longer than tCHG without VBSNS reaching VTRM, a fault condition  
is assumed, charging stops, the battery isolation FET turns off,  
and VSYS regulates to VSYS_REG by the linear regulator. A fault  
condition asserts on when the CHARGER_STATUS[2:0] bits  
are set to 0b110, allowing the user to initiate the fault recovery  
procedure specified in the Fault Recovery section.  
Fast Charge Mode (Constant Current)  
When the battery voltage exceeds VWEAK, the charger switches to  
fast charge mode, charging the battery with ICHG. Address 0x04,  
ICHG[4:0] programs ICHG via the I2C interface. During fast charge  
mode (constant current), the CHARGER_STATUS[2:0] bits are set  
to 0b010. The default ICHG value can be set by the external  
resistor from the ICS pin (RICS) to ground. Floating the ICS pin  
activates the register default value when powering up.  
If the fast charge mode runs for longer than tCHG and the BSNS  
pin reaches VTRM but the charge current has not yet fallen lower  
than IEND, charging stops by turning off the battery isolation  
FET. Note that the linear regulator still works, and VSYS regulates  
to VSYS_REG. No fault condition is asserted in this circumstance, and  
the ADP5360 attains charge complete status.  
Table 12. Charge Current Default Set Using the ICS Pin  
RICS Value (kΩ)  
ICHG Value (mA)  
100  
68  
47  
36  
27  
20  
15  
10  
10  
50  
80  
100  
150  
200  
250  
300  
Safety Timer  
If the watchdog timer (see the Watchdog Timer section for more  
information) expires while in charger mode, theADP5360 charger  
initiates tSAFE. Charging continues for a period of tSAFE, then stops  
by turning off the battery isolation FET and setting the  
CHARGER_STATUS[2:0] bits to 0b110.  
During constant current mode, other features can prevent ICHG  
from reaching the full programmed value. Input current  
limiting for USB compatibility can affect the ICHG value under  
certain operating conditions. The battery isolation FET regulates  
VVSYS to stay at VSYS_REG. Note that, VSYSTEM = 5 V is not active on  
the output of VSYS_REG during charge mode.  
Rev. 0 | Page 21 of 60  
 
ADP5360  
Data Sheet  
therefore allowing the system to be powered at all times. The  
battery isolation FET maintains VSYS_REG on the VSYS pin.  
Charge Complete  
The ADP5360 charger monitors the charging current while in  
constant voltage fast charge mode. When EN_TEND is low, the  
current falls lower than IEND for tDG, and the charger is stopped  
by turning the battery isolation FET off. The system voltage is  
maintained at VSYS_REG by the linear regulator and sets the  
CHG_CMPLT flag. When EN_TEND is set to high, the charging  
current falls lower than IEND for another tEND, stopping the  
charger and setting the CHG_CMPLT flag.  
When VBUS is lower than VVBUS_OK, the battery isolation FET is  
in full conducting status.  
The battery isolation FET supplements the battery to support  
high current functions on the system power supply when VBUS  
current is limited.  
When the voltage on VSYS drops lower than ISOB, the battery  
isolation FET enters full conducting mode.  
Recharge  
BATTERY DETECTION  
Battery Level Detection  
After the detection of charge is complete, and the battery isolation  
FET turns off, the ADP5360 charger still monitors the BSNS pin.  
If the BSNS pin voltage falls by VRCH, the charger reactivates.  
Under most circumstances, triggering the recharge threshold  
results in the charger starting in fast charge mode.  
The ADP5360 charger features a battery detection mechanism to  
detect an absent battery. When the charger starts charging, it  
actively sinks and sources current into ISOB and voltage vs.  
time is detected. The sink phase detects a charged battery, while  
source phase detects a discharged battery.  
Battery Charging Enable or Disable  
To enable the ADP5360 charging function, set the EN_CHG bit  
high or pull the ENCHG pin high. The hardware ENCHG pin is  
logically ORed with the EN_CHG bit, Address 0x07. If the  
charger is disabled, the linear regulator remains turned on and  
regulatesVVSYS to VSYS_REG. The battery isolation FET turns off,  
and the linear regulator provides the power for the system.  
The sink phase sinks current (ISINK) from the ISOB pin and the  
BSNS pin for typically 330 ms (see Figure 50). If the BSNS pin is  
lower than VBATL when the 330 ms timer expires, the charger starts  
the source phase. If the BSNS pin exceeds the VBATL voltage when  
the 330 ms timer expires, the charger begins a new charge cycle.  
The source phase sources current (ISOURCE) to the ISOB pin or  
the BSNS pin for typically 330 ms. If the BSNS pin exceeds  
BATTERY ISOLATION FET  
The ADP5360 charger features an integrated battery isolation  
FET for power path control and battery protection. The battery  
isolation FET isolates a deeply discharged Li-Ion cell from the  
system power supply in both trickle and fast charge modes,  
V
BATH before the 330 ms timer expires, it is assumed that no  
battery is present. If the BSNS pin does not exceed VBATH when  
the 330 ms timer expires, it is assumed that a battery is present,  
and the charger begins a new charge cycle.  
SINK PHASE  
SOURCE PHASE  
V
V
LOGIC  
BATL  
LOGIC  
BATH  
STATUS  
STATUS  
I
SOURCE  
tBATOK  
tBATOK  
OPEN  
OR  
SHORT  
OPEN  
OR  
SHORT  
ISOB  
ISOB  
I
SINK  
OPEN  
OPEN  
Figure 50. Battery Detection Sequence  
Rev. 0 | Page 22 of 60  
 
 
 
Data Sheet  
ADP5360  
EN_THR bit (Address 0x0A) high to enable the THR function. To  
save quiescent current the THR node voltage update rate slows  
to 30 seconds.  
BATTERY TEMPERATURE  
Battery Pack Thermistor Input  
The ADP5360 charger features battery pack temperature  
sensing that precludes charging when the battery pack  
temperature is outside of the specified range. The THR pin  
provides three programmable current sources: 60 μA, 12 μA,  
and 6 μA. Accordingly, the THR pin supports 10 kΩ, 47 kΩ, and  
100 kΩ NTC resistors at 25°C. The THR pin is connected  
directly to the battery pack thermistor terminal.  
If the battery pack thermistor is not connected directly to the  
THR pin, a 100 kΩ (tolerance 20%) dummy resistor must be  
connected between the THR pin and the AGND1 and AGND2  
pins. Leaving the THR pin open results in a false detection of a  
<0°C battery temperature, and charging disables.  
The ADP5360 charger monitors the voltage on the THR pin and  
suspends charging if the voltage is less than 0°C or higher than  
60°C. For temperatures greater than 0°C and lower than 60°C, the  
THR_STATUS[2:0] bits, Address 0x09, are set accordingly.  
When the THR function is enabled, the THR node voltage is  
sensed by the ADC and can be read in the 12-bit registers,  
THR_V_HIGH and THR_V_LOW. Calculate the external  
thermistor value (RNTC) by using the following equation:  
JEITA Li-Ion Battery Temperature Charging Specification  
R
NTC = (THR_V/60 µA)  
The charge of the ADP5360 is compliant with the JEITA Li-Ion  
battery charging temperature specifications as shown in Table 13.  
The JEITA function can be enabled via the I2C interface. When  
the ADP5360 detects a JEITA cool condition, the charging  
current reduces, as shown in Table 14.  
where:  
THR_V is the ADC readback from the THR_V_HIGH and  
THR_V_LOW registers.  
60 μA is selected by the THR pin source current.  
To achieve the battery temperature, the RNTC value must be  
known.  
When the ADP5360 identifies a hot or cold battery condition,  
the battery isolation FET turns off. The VSYS pin is linear regulated  
at VSYS_REG and provides power for the system.  
When VVBUS is higher than VVBUS_OK_RISE, the THR function is  
forced to enable for the charger control requirement. The update  
rate is 1 second. When VVBUS is lower than VVBUS_OK_RISE, set the  
Table 13. JEITA Li-Ion Battery Charging Specification Defaults  
Parameter  
JEITA Cold Temperature Limits  
JEITA Cool Temperature Limits  
Symbol  
IJEITA_COLD  
IJEITA_COOL  
Conditions  
No battery charging occurs.  
Battery charging occurs at approximately 50% or 10% of programmed  
level. See Table 14 for specific charging current reduction levels.  
Min Max Unit  
0
10  
°C  
°C  
0
JEITATypical Temperature Limits  
JEITA Warm Temperature Limits  
IJEITA_TYP  
Normal battery charging occurs at default and programmed levels.  
10  
45  
45  
60  
°C  
°C  
IJEITA_WARM Battery termination voltage (VTRM) is reduced by 100 mV from  
programmed value.  
JEITA Hot Temperature Limits  
IJEITA_HOT  
No battery charging occurs.  
60  
°C  
Table 14. JEITA Cool Temperature Limit—Reduced Charge Current Levels  
ICHG JEITA Value (mA)  
ILIM_JEITA_COOL = 1  
ICHG[4:0] Value (mA)  
00000 = 10  
00001 = 20  
00010 = 30  
00011 = 40  
00100 = 50  
00101 = 60  
00110 = 70  
ILIM_JEITA_COOL = 0  
10  
10  
10  
20  
20  
30  
30  
40  
40  
50  
50  
60  
60  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
00111 = 80  
01000 = 90  
01001 = 100  
01010 = 110  
01011 = 120  
01100 = 130  
Rev. 0 | Page 23 of 60  
 
 
 
ADP5360  
Data Sheet  
ICHG JEITA Value (mA)  
ILIM_JEITA_COOL = 1  
ICHG[4:0] Value (mA)  
01101 = 140  
01110 = 150  
01111 = 160  
10000 = 170  
10001 = 180  
10010 = 190  
10011 = 200  
10100 = 210  
10101 = 220  
10110 = 230  
10111 = 240  
11000 = 250  
11001 = 260  
11010 = 270  
11011 = 280  
11100 = 290  
11101 = 300  
11110 = 310  
11111 = 320  
ILIM_JEITA_COOL = 0  
70  
70  
80  
80  
90  
90  
100  
100  
110  
110  
120  
120  
130  
130  
140  
140  
150  
150  
160  
10  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
30  
30  
30  
30  
Rev. 0 | Page 24 of 60  
Data Sheet  
ADP5360  
Battery Charger Operational Flow Chart  
POWER-ON RESET  
N
Y
RUN  
BATTERY  
DETECTION  
tSTART  
EXPIRED  
N
Y
RESET ALL  
REGISTERS  
VBUSOK  
POWER  
DOWN  
Y
N
V
< V  
TRK  
BSNS  
TRICKLE  
CHARGE  
FAST CHARGE  
N
N
N
VBUSOK  
Y
VBUSOK  
Y
VBUS_ILIM = HIGH  
= I  
N
V
< V  
I
< I  
LIM  
BSNS  
Y
TRK  
VBUS  
Y
I
VBUS  
LIM  
WATCHDOG  
EXPIRED  
t
TSD110 = HIGH  
Y
Y
WD  
N
TEMP < T  
Y
EXPIRED  
TEMP = T  
START t  
SD  
SD  
SAFE  
I
= 100mA  
BUS  
N
WATCHDOG  
EXPIRED  
START tSAFE  
TIMER FAULT/  
BAD BATTERY  
t
/t  
SAFE TRK  
EXPIRED  
t
Y
WD  
EXPIRED  
I
= 100mA  
VBUS  
N
N
TIMER FAULT/  
BAD BATTERY  
(SEE THE FAST CHARGE  
MODE TIMER SECTION  
AND THE SAFETY  
TIMER SECTION)  
Y
t
/t  
SAFE CHG  
RUN  
BATTERY  
DETECTION  
Y
EXPIRED  
N
Y
N
N
V
=
CONSTANT CURRENT  
MODE CHARGING  
BSNS  
V
BSNS  
– V  
N
V
V
V
BSNS  
TRM  
V
TRM  
RCH  
NOBAT  
Y
CHARGE  
COMPLETE  
Y
N
CONSTANT VOLTAGE  
MODE CHARGING  
I
< I  
END  
OUT  
Figure 51. Charger Operational Flowchart  
limitation algorithm integrated in theADP5360. The ten open-  
circuit battery values and battery capacity are based on the  
battery characterization written to the V_SOC_x registers of the  
ADP5360 and used for the state of charge calculation. The sense  
current information, the battery capacity value, the continuous  
load current, and the large voltage drop all determine the state of  
the charge change rate. The fuel gauge operates as a coulomb  
counter with a high accuracy calculation when high continuous  
BATTERY FUEL GAUGE  
General Description  
The ADP5360 Li-Ion battery fuel gauge is optimized through a  
hybrid algorithm to indicate battery remaining capacity. The  
battery fuel gauge runs through a coulomb counter and is voltage-  
based between 0% to 100%. The battery fuel gauge uses a 12-bit  
ADC to measure the battery node voltage and the battery current.  
The state of the charge is calculated with an adaptive filter  
Rev. 0 | Page 25 of 60  
 
ADP5360  
Data Sheet  
load current is applied. When the battery voltage reaches terminal  
voltage and charging completes, the battery state of the charge  
register, BAT_SOC, indicates 100% for battery capacity.  
When BAT_SOCACM_H and BAT_SOCACM_L increase and  
reache 4096 points, and the battery has compiled nearly 41 full  
charges, then the BAT_SOCACM_H and BAT_SOCACM_L  
bits overflow and clear. The interrupt SOCACM_INT bit in  
Regiser 0x34 immediately asserts, and the system can adjust the  
BAT_CAP register manually or select automatic adjustment by  
setting the EN_BATCAP_AGE bit high. When selecting the  
battery aging automatic adjustment function, the battery  
capacity reduction proportion can be programmed by the  
BATCAP_AGE bits. When enabling this battery capacity aging  
automatic adjustment function, the BAT_CAP register cannot be  
rewritten to because this register is automatically adjusted by  
the ADP5360.  
When the state of charge data is lower than the SOC_LOW_TH[1:0]  
bits configuration, the interrupt asserts, and the SOCLOW_INT bit  
is set high for as long as the low state of the charge interrupt  
feature is allowed.  
Operation Mode  
The ADP5360 fuel gauge default is shutdown mode to provide  
extremely low standby current consumption from the battery.  
After enabling the fuel gauge function, the state of charge  
initializes and calculates the first data only according to the  
battery voltage. Two operation modes can be selected: active  
and sleep. The I2C controls fuel gauge operation mode selection.  
Battery Capacity Adjustment with Temperature  
The Li-Ion battery capacity depends on the ambient operation  
temperature. The ADP5360 automatically adjusts the battery  
capacity calculation value based on the temperature variation  
when setting the EN_BATCAP_TEMP bit high. The  
temperature information comes from the THR node voltage  
sense. Therefore, the battery THR function must be active, and  
the EN_THR bit must be set to high.  
During active mode, the battery state of charge updates every  
ten seconds, and the battery voltage and instant current (IINS  
are sampled every second. The new mapping state of charge  
compares to the last state of charge value and then updates  
)
using the adaptive state of charge limit. According to the sense  
current and input battery capacity, the ADP5360 calculates the  
state of charge limit for a state of charge update each cycle.  
The BATCAP_TEMP[1:0] bits can program the battery capacity  
calculation value adjustment proportion, and this value  
decreases as the temperature rises. This battery capacity  
adjustment is only effective when the THR node voltage  
senses the corresponding range of the TEMP_HIGH_45 to  
TEMP_LOW_0 bits (see Figure 52 and Table 17).  
105  
During sleep mode, the state of charge update cycle is one minute,  
and the voltage and the current are sampled every 7.5 seconds.  
During this mode, the 12-bit ADC uses intervals and shutdown  
mode to save as much quiescent current as possible. Table 15  
shows the fuel gauge quiescent current, ADC sample rate, and state  
of charge update rate. When the sense current is higher than the  
sleep current threshold setting (Address 0x27, SLP_CURR[1:0]  
bits), the ADP5360 fuel gauge exits sleep mode and enters active  
mode automatically.  
100  
95  
90  
85  
80  
75  
Battery Capacity Adjustment with Aging  
The ADP5360 features record total battery charged energy  
reporting when the device powers up, which allows estimation  
of battery aging.  
The 12 BAT_SOCACM_H and BAT_SOCACM_L bits  
accumulate increased state of charge during every charge cycle.  
For example, the state of charge increases from 20% to 80%  
during charging, and these bits add 60 points. 100 points indicates  
one full charge cycle.  
70  
0.2%/°C  
0.4%/°C  
65  
0.6%/°C  
0.8%/°C  
60  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
TEMPERATURE (°C)  
Figure 52. Battery Capacity Adjustment by Temperature in Fuel Gauge  
Table 15. Fuel Gauge Operating Mode  
Operation Mode  
Typical Quiescent Current (μA)  
ADC Sample Rate (sec)  
State of Charge Update Rate  
Sleep  
0.2  
7.5  
15  
30  
60  
1
1 min  
4 min  
8 min  
16 min  
10 sec  
Active  
3.5  
Rev. 0 | Page 26 of 60  
 
 
Data Sheet  
ADP5360  
Flowchart of State of Charge Calculation  
ENABLE FUEL GAUGE  
FIRST_START = TRUE  
READ V  
READ I  
BSNS  
BAT  
CALCULATE  
SOC-BASED  
ON VOC MAPPING  
YES  
NO  
SAMPLE  
TIMER OUT?  
CALCULATE  
FILTER LIMITS  
NO  
YES  
CHARGE  
YES  
YES  
FIRST_START  
NO  
FIRST_START  
NO  
FIRST_START = FALSE  
NO NO  
NEW_SoC <  
OLD_SoC  
NEW_SoC >  
OLD_SoC  
YES  
YES  
NEW_SoC =  
OLD_SoC –  
DISCHG_LIM  
NEW_SoC =  
OLD_SoC +  
CHG_LIM  
NEW_SoC =  
NEW_SoC  
UDPATE NEW_SoC TO  
BAT_SOC REGISTER  
NOTES  
1. SOC AND SoC MEAN STATE OF CHARGE.  
2. FIRST_START IS THE FLAG OF THE FUEL GAUGE FROM DISABLE TO ENABLE.  
3. NEW_SOC IS THE LATEST SOC, AND OLD_SOC IS THE SOC BEFORE THE LATEST SOC.  
4. DISCHG_LIM AND CHG_LIM ARE THE ADAPTIVE STATE OF CHANGE LIMITS FOR DISCHARGINGAND CHARGING.  
Figure 53. Fuel Gauge Algorithm Flowchart (VOC Mapping Indicates Open-Circuit Battery Voltage Corresponding to 10 V_SOC_x Regsiters)  
Rev. 0 | Page 27 of 60  
ADP5360  
Data Sheet  
BATTERY PROTECTION  
BUCK REGULATOR OPERATION  
Operation Mode  
The ADP5360 features a full battery protection feature for Li-Ion  
and Li-Poly batteries. By default, after VISOB rises higher than  
The ADP5360 has two operation modes, PWM and hysteresis  
that are controlled by the I2C interface.  
VUVLO and exits from shipment mode, battery protection is enabled.  
The ADP5360 supports the following fault protections:  
PWM Mode  
Undervoltage protection when the battery overdischarges  
Overdischarge current protection  
Overvoltage protection when the battery overcharges  
Overcharge current protection  
In PWM mode, the buck regulator operates at a fixed 1 MHz  
frequency that is set by an internal oscillator. At the start of each  
oscillator cycle, the high-side MOSFET switch turns on and sends a  
positive voltage across the inductor. The inductor current increases  
until the current sense signal exceeds the peak inductor current  
threshold, which turns off the high-side MOSFET switch. This  
threshold is set by the error amplifier output. During the high-side  
MOSFET off time, the inductor current decreases through the  
low-side MOSFET until the next oscillator clock pulse starts a  
new cycle.  
When VBSNS is lower than the battery undervoltage threshold after  
deglitch time, undervoltage protection triggers, the isolation FET  
turns off and isolates all system load to the ISOB pin, and the  
BAT_UV_STATUS bit is set high to indicate the battery status  
and fault register assertion. During undervoltage protection, the  
charger allows charge to the battery if the EN_CHGLB bit,  
Address 0x11, is set to high, and the charger exits undervoltage  
protection when the battery voltage becomes higher than the  
undervoltage threshold. The charger does not allow any charge for  
battery safety consideration if the EN_CHGLB bit is set low. Use  
the I2C interface to select the undervoltage threshold and  
response time.  
In PWM mode, the regulator can supply up to 500 mA of average  
output current. The regulator can provide lower voltage ripple  
in PWM mode, which is useful for noise sensitive applications.  
Hysteresis Mode  
In hysteresis mode, the buck regulator in the ADP5360 charges  
the output voltage to a higher value than the nominal output  
voltage with PWM pulses. The buck regulator charges the  
output voltage by regulating the constant peak inductor current  
that is programed by the I2C interface. When the output sense  
signal exceeds the hysteresis upper threshold, the regulator enters  
standby mode. In standby mode, the high-side and low-side  
MOSFETs and the control circuitry are disabled to allow a low  
quiescent current as well as a high efficiency performance.  
When the battery discharge current going through the isolation  
FET increases and rises higher than the overcurrent threshold  
after deglitch time, the overcurrent protection is triggered, and  
the isolation FET turns off and isolates all system load to the  
ISOB pin. This protection behavior can be selected to latch-up  
protection mode or hiccup mode by setting the OC_DIS_HICCUP  
bit, Address 0x11. In latch-up protection mode, the isolation  
FET turns off and shuts down the VSYS output after retrying  
three times. When the fault is removed, clearing the fault  
register or a VBUS power reset can recover normal operation.  
In hiccup protection mode, the isolation FET attempts to turn  
on after the typical 200 ms shutdown time until the system load  
fault is removed.  
During standby mode, the output capacitor supplies energy into  
the load, and the output voltage decreases until the voltage falls  
lower than the hysteresis comparator lower threshold. The buck  
regulator wakes up and generates the PWM pulses to charge the  
output again.  
When triggering battery overvoltage protection, the LDO FET  
turns off, charging stops, and the LDO FET stays in suspend  
status. Duirng this protection, the isolation FET is selectable and  
can be turned off or kept turned.  
Because the output voltage occasionally enters standby mode  
and then recovers, the output voltage ripple in hysteresis mode  
is larger than the ripple in PWM mode. The varying switching  
frequency creates more noise in the system. Therefore, it is  
recommended to use PWM mode during charging status.  
When triggering the battery overcharge current, the LDO FET  
turns off, charging stops, and the LDO FET stays in suspend status.  
The isolation FET also turns off and shuts down the VSYS output.  
If selecting the latch-up overcharge protection mode, the charger  
remains in suspend status, and the battery does not allow charging  
after three retries. If selecting hiccup protection mode, the  
charger always attempts to restart the charge until the charger  
fault is removed. Clearing the fault register or VBUS power reset  
can recover normal operation after the fault is removed.  
Use the following equation in hysteresis mode to calculate the  
regulator output current:  
I
LOAD1_HYS = IPEAK1_HYS/2  
where:  
I
I
LOAD1_HYS is the regulator output current.  
PEAK1_HYS is the inductor peak current.  
The maximum regulator output current is 100 mA when the  
limitation of the inductor peak current, BUCK_ILIM, is set to  
200 mA.  
All battery protection function selection must be done when the  
ADP5360 powers up. Do not change the battery protection  
function during battery fault.  
Rev. 0 | Page 28 of 60  
 
 
Data Sheet  
ADP5360  
Program Output Voltages  
PGOOD Indication  
Adjustable output voltage settings are available on the ADP5360  
by connecting a resistor through the VID1 pin to the AGND1  
and AGND2 pins. The VID detection circuitry works in the  
start-up period, and the voltage ID code is sampled and held  
into the internal register and does not change until the next  
power recycle.  
The VOUT1OK bit, Address 0x2F, indicates whether the buck  
regulator is working appropriately. A logic high indicates that the  
output voltage of the buck regulator is higher than 90% (typical  
rising threshold) of the nominal output. When the regulated  
output voltage falls lower than 87% (typical falling threshold) of  
the nominal output, the VOUT1OK bit goes low.  
Table 16 lists the output voltage options for the VID1 pin  
configurations. Additional output voltage options from 0.6 V to  
3.75 V with a 50 mV step are available on the ADP5360, and to  
program these options set the VOUT_BUCKBST[5:0] bits,  
Address 0x2C via the I2C interface. The ADP5360 also has a fixed  
output voltage that is programmed via the factory fuse. In this  
case, connect the VID1 pin to the VIN1 pin.  
The status indication of the VOUT1OK bit can be masked to  
the hardware pin output of the PGOOD1 pin or PGOOD2 pin  
by setting Register PGOODx_MASK with the I2C interface.  
Soft Start  
The ADP5360 buck regulator has an internal soft start function  
that ramps up the output voltage in a controlled manner during  
startup, thereby limiting the inrush current. This feature prevents  
possible input voltage drops when a battery or a high impedance  
power source is connected to the input of the device. The default  
typical soft start time is 1 ms for the regulator. Other soft start  
times (8 ms, 64 ms, and 512 ms) can be programmed for the  
ADP5360 by the I2C interface.  
Table 16. VOUT1 Default Set Using the VID1 Pin  
VID1 Resistor, RVID1 Value (kΩ)  
VOUT1 Value (V)  
100  
68  
47  
36  
27  
20  
15  
10  
3.3  
3.0  
2.8  
2.5  
1.8  
1.5  
1.2  
1.0  
100% Duty Cycle Operation  
When the input voltage approaches the output voltage, the  
ADP5360 stops switching and enters 100% duty cycle operation.  
The buck connects the output via the inductor and the internal  
high-side power switch to the input. When the input voltage is  
charged again, and the required duty cycle falls to 95% typical, and  
the buck immediately restarts switching and regulation without  
allowing overshoot on the output voltage.  
For the output voltage settings, the feedback resistor divider is  
built into the ADP5360, and the feedback pin (FB1) must be  
tied directly to the output. An ultra low power voltage reference  
and an integrated high impedance feedback divider network  
contribute to the low quiescent current. Floating the VID1 pin  
activates the register default value when powering up.  
Active Discharge  
The ADP5360 integrates an optional discharge switch from  
the switching node to ground. This switch turns on when the  
associated regulator is disabled to help discharge the output  
capacitor quickly. The typical value of the discharge switch is  
255 Ω for the regulator.  
Enable and Disable  
The ADP5360 includes a hardware enable pin (EN1). A logic  
high on the EN1 pin starts the buck regulator. Due to the low  
quiescent current design, it is typical for the regulator to start  
switching after a delay of a few milliseconds from when the  
EN1 pin is pulled high. Do not pull the EN1 pin high to the  
ISOB pin because that can cause unexpected leakage current. It  
is recommended to pull the EN1 pin high to the VSYS pin with  
a resistor.  
The active discharge feature can be enabled by setting the  
DISCHG_BUCK bit, Address 0x29, high for the buck regulator.  
Current-Limit Protection  
The buck regulator in the ADP5360 has protection circuitry  
that limits the direction and the amount of current to a certain  
level that flows through the high-side MOSFET and the low-side  
MOSFET in cycle by cycle mode. The positive current limit on  
the high-side MOSFET limits the amount of current that can  
flow from the input to the output. The negative current limit on  
the low-side MOSFET prevents the inductor current from  
reversing direction and flowing out of the load.  
The EN_BUCK bit, Address 0x29, can control the buck enable  
and disable, which is logically ANDed with the EN1 pin. For  
example, set the EN_BUCK bit high, and use the EN1 pin  
control buck to enable or to disable. Alternatively, pull the EN1  
pin high and set the EN_BUCK bit via the I2C interface.  
Rev. 0 | Page 29 of 60  
 
ADP5360  
Data Sheet  
Short-Circuit Protection  
BUCK BOOST REGULATOR OPERATION  
The buck regulator in the ADP5360 includes frequency  
foldback to prevent current runaway on a hard short in PWM  
mode. When the output voltage at the feedback pin (FB1) falls  
lower than 50% of VOUT1 typical, indicating the possibility of a  
hard short at the output, the switching frequency is reduced to  
half of the internal oscillator frequency. The reduction in the  
switching frequency allows more time for the inductor to  
discharge, preventing a runaway of output current.  
Operation Mode  
The buck boost regulator in the ADP5360 is synchronous with  
the current mode, switching regulators designed to maintain a  
fixed output voltage from an input supply (VIN2) that can be  
greater than, equal to, or less than VOUT2.  
The buck boost regulator works in hysteresis mode and  
regulates the output voltage to a slightly higher value than the  
target output voltage with switching pulses. When the output  
voltage increases until the output sense signal exceeds the  
hysteresis upper threshold, the regulator enters sleep mode. In  
sleep mode, the high-side and low-side MOSFET and a majority  
of the control circuitry are disabled to allow a low quiescent  
current as well as high efficiency performance. During sleep  
mode, the output capacitor supplies the energy into the load,  
the output voltage decreases until the voltage falls lower than  
the hysteresis comparator lower threshold, and the regulator  
wakes up and generates the switching pulses to charge the  
output again.  
Stop Switching  
The ADP5360 includes one STP pin that can be configured as a  
stop pin to allow the user to temporarily stop the buck regulator  
switching.  
When applying a logic high level to the STP pin, the corresponding  
regulator is forced to stop switching immediately. When  
applying a logic low level to the STP pin, the regulator resumes  
switching. Note that tens of ns delay time exists from when the  
STP signal goes high to when switching fully stops.  
The stop signal control is valid only when the regulator is  
enabled. Otherwise, the stop signal is ignored.  
Program Output Voltages  
The ADP5360 buck boost regulator provides output voltage  
options from 1.8 V to 2.9 V with a 100 mV step, and 2.95 V  
to 5.5 V with 50 mV step, which can be programmed by the  
VOUT_BUCKBST[5:0] bits, Address 0x2C, and set via the I2C  
interface (see Table 62). The buck boost regulator also provides  
a fixed output voltage programmed via the factory fuse.  
Using the stop signal for hysteresis mode can generate a power-  
good failure due to the slow transient response.  
Set the STP_BUCK bit, Register 0x29, low to disable the buck  
regulator stop switching feature.  
LIMIT BATTERY  
CURRENT  
BATTERY  
CURRENT  
For the output voltage settings, the feedback resistor divider is  
built in the ADP5360. An ultra low power voltage reference and  
an integrated high impedance (50 MΩ typical) feedback divider  
network contribute to the low quiescent current.  
DC-TO-DC  
SWITCHING  
NO SWITCHING  
Enable and Disable  
STP  
OUTPUT VOLTAGE  
The ADP5360 includes a hardware enable pin (EN2). A logic  
high in the EN2 pin starts the buck boost regulator. Because of the  
low quiescent current design, it is typical for the regulator to start  
switching after a delay of a few milliseconds from when the  
EN2 pin pulls high. To avoid unexpected leakage current, do  
not pull the EN pin high to the ISOB pin. However, do pull the  
EN2 pin high to the VSYS pin with the resistor.  
100mA  
LOAD  
PULSE  
LOAD CURRENT  
150µs  
Figure 54. STP Signal Diagram  
The I2C register bit, EN_BUCKBST, Address 0x2B, can also  
control the buck boost enable and disable, which are logically  
ORed with the EN2 pin. For example, set the EN_BUCKBST bit  
to low, then use the hardware EN2 pin to control the buck boost  
enable and disable, or pull the EN2 pin low, and then set the  
EN_BUCKBST bit using the I2C inteface.  
Rev. 0 | Page 30 of 60  
 
Data Sheet  
ADP5360  
The peak current limit is different than the average current  
PGOOD Indication  
limit on the battery input side. The average battery current is  
a factor in different elements including, but not limited to, the  
VIN2/VOUT2 relationship, the inductance, the switching  
frequency, and the peak current-limit threshold. The average  
battery current limit on each buck or buck boost regulator  
can be roughly calculated and predicted by these elements.  
However, the average current-limit accuracy is difficult to  
guarantee due to variations in inductance and switching  
frequency. Therefore, a careful calculation must be obtained  
if the input source is coming from a weak battery, which  
typically has high output impedance.  
The VOUT2OK bit, Address 0x2F, indicates whether the buck  
boost regulator is working properly. A logic high indicates that  
the output voltage of the buck boost regulator is higher than 90%  
(typical rising threshold) of the nominal output. When the  
regulated output voltage falls lower than 87% (typical falling  
threshold) of the nominal output, the VOUT2OK bit goes low.  
The VOUT2OK bit status indication can be masked to the  
PGOOD1 pin or PGOOD2 pin by setting the PGOODx_MASK  
register with the I2C interface.  
Soft Start  
The ADP5360 buck boost regulator has an internal soft start  
function that ramps up the output voltage in a controlled  
manner upon startup, thereby limiting the inrush current. This  
feature prevents possible input voltage drops when a battery or  
a high impedance power source is connected to the input of the  
device. The default typical soft start time is 1 ms for the regulator.  
Other soft start times (8 ms, 64 ms, and 512 ms) can be  
programmed for the ADP5360 by the I2C interface.  
Stop Switching  
The stop feature also can configure the buck boost regulator with  
the STP pin input, which allows the user to temporarily stop  
buck boost regulator switching.  
When applyin a logic high level to the STP pin, the  
corresponding regulator is forced to stop switching  
immediately. When applying a logic low level to the STP pin,  
the regulator resumes switching. Note that tens of ns delay time  
exists from when the STP signal goes high to when switching fully  
stops.  
Active Discharge  
The ADP5360 integrates an optional discharge switch from the  
output node to ground. This switch turns on when the associated  
regulator is disabled to help discharge the output capacitor  
quickly. The typical value of the discharge switch is 255 Ω for the  
regulator.  
The stop signal control is valid only when the regulator is  
enabled. Otherwise, the stop signal is ignored.  
Set the STP_BUCKBST bit, Address 0x2B, low to disable the  
buck boost regulator stop switching feature.  
The active discharge feature can be enabled by setting the  
DISCHG_BUCKBST bit, Address 0x2B, high for the buck boost  
regulator.  
SUPERVISORY  
Reset Output  
Current-Limit Protection  
The ADP5360 provides microprocessor supply voltage supervision  
by controlling the reset input of the microprocessor. When the  
monitored voltage falls lower than the associated threshold, the  
RESET pin asserts correspondingly. Asserting the RESET pin  
quickly ensures that the entire system is reset immediately  
before any part of the system voltage falls lower than the  
recommended operating voltage. The default monitor voltage  
is the buck output voltage (VOUT1) and can be selected as  
VOUT2 by the I2C interface. The RESET pin monitors both  
VOUT1 of the buck and VOUT2 of the buck boost when setting  
the VOUT1_RST bit and VOUT2_RST bit of Address 0x2D  
both high.  
The buck boost regulator in the ADP5360 includes peak current-  
limit protection circuitry to limit the amount of positive current  
flowing through the high-side MOSFET switch. The peak current  
limit on the power switch limits the amount of current that can  
flow from the input to the output. The programmable current-  
limit threshold feature allows for the use of small size inductors  
for low current applications.  
Use the BUCKBST_ILIM[2:0] bits, Address 0x2B, via the I2C  
interface to program the peak current-limit threshold on the  
buck boost regulator. Three bit-programmable options provide  
100 mA to 800 mA of peak current limit with a 100 mA step  
peak current threshold range. Use the following equation to  
find the regulator output current:  
I
LOAD2 = VIN2 × IPEAK2/2(VIN2 + VOUT2  
where:  
LOAD2 is the regulator output current.  
IN2 is the regulator input voltage.  
PEAK2 is the inductor peak current.  
OUT2 is the output voltage.  
)
I
V
I
V
Rev. 0 | Page 31 of 60  
 
ADP5360  
Data Sheet  
If the watchdog timer expires without being reset while in  
Manual Reset Input  
charger mode, theADP5360 charger assumes there is a software  
problem and triggers tSAFE. For more information, see the Safety  
Timer section.  
The ADP5360 features a manual reset input. When driving the  
MR  
INT  
pin  
pin low from high with the deglitch time (tDG), the  
asserts an interrupt when the EN_MR_INT bit, Address 0x33, is  
MR  
set to high. When the  
pin transitions from low to high, the  
pin output asserts and remains asserted for the duration  
of the reset timeout period (tRP) before deasserting. Connect an  
MR  
SHIPMENT MODE  
RESET  
The ADP5360 provides optional shipment mode as a default  
status after ISOB powers up. During shipment mode, most  
function blocks shut down, including the ISOFET and VSYS  
output voltages that realize an ultralow shutdown current. In  
addition, during shipment mode, the PGOOD1, PGOOD2, and  
external pull-up resistor from tthe  
a logic high output. To generate a reset, connect an external push-  
MR  
input to the VDD pin for  
button switch between the  
pin and ground. Noise immunity  
input, and fast transients going in a negative  
MR  
MR  
is provided on the  
direction are ignored. A 0.1 μF capacitor between the  
RESET  
pins have a high output by default.  
pin and  
Enable shipment mode at initial power up of the ADP5360 by  
pulling up the ENSD pin. To disable shipment mode, pull down  
the ENSD pin.  
ground provides additional noise immunity if required.  
VOUT1  
tDG  
tRP  
tRP  
In the case where the VBUS voltage goes higher than the UVLO  
MR  
or the  
mode. To re-enter shipment mode, set the EN_SHIPMODE bit,  
MR  
pin for tSH is pulled down, the ADP5360 exits shipment  
RESET  
MR  
Address 0x36, to high or pull down the  
Note that the EN_MR_SD bit, Address 0x2D must be set to  
MR  
pin for 12 seconds.  
MR EXTERNALLY  
DRIVEN LOW  
tDG  
INT  
enable the  
shipment function.  
Figure 55. Manual Reset Timing Diagram  
FAULT RECOVERY  
When the EN_MR_SD bit, Address 0x2D is set to enable  
MR  
Before performing fault recovery, ensure that the cause of the  
fault is rectified.  
shipment mode, pulling down the  
12 second time out,and then releasing the  
all function blocks, and the ADP5360 then enters shipment  
MR  
pin for more than a  
MR  
pin, shuts down  
To recover from a fault status, power off the VBUS pin or write  
a high to the corresponding bits of the Fault register.  
mode. To exit shipment mode, pull the  
pin low for tSH, and  
THERMAL MANAGEMENT  
the ADP5360 restarts with the default factory setting registers.  
Thermal Shutdown  
Watchdog Timer  
The ADP5360 features a shutdown threshold detector. If the die  
temperature exceeds TSD, all functions are disabled, and the  
TSD110 bit, Address 0x2E, is set. The ADP5360 charger can be  
re-enabled when the die temperature drops lower than the TSD  
falling limit, and the TSD110 bit is reset. To reset the TSD110  
bit, write to the I2C fault register, THERMISTOR_10C  
Threshold, Address 0x0D, or cycle the power.  
The ADP5360 features a watchdog timer that monitors  
microprocessor activity. A timer circuit is cleared with every  
write to the RESET_WD bit, Address 0x2D. If the timer counts  
RESET  
through the preset watchdog timeout period (tWD), a  
output asserts. The microprocessor must toggle the  
RESET_WD bit to avoid being reset.  
RESET  
When  
is asserted, the watchdog timer clears and does  
RESET  
not count again until the  
output deasserts. To disable  
the watchdog timer, set the EN_WD bit, Address 0x2D via the  
I2C interface. Note that the watchdog timer is ignored when  
RESET  
is not activated.  
Rev. 0 | Page 32 of 60  
 
 
 
 
Data Sheet  
ADP5360  
I2C INTERFACE  
The ADP5360 includes an I2C-compatible serial interface to  
control the battery charging, fuel gauge, buck, and buck boost,  
and to read back the system status.  
INTERRUPTS  
INT  
INT  
The ADP5360 provides an interrupt output (  
interrupt case. During normal operation, the  
high using an external pull-up resistor. When an interrupt case  
occurs, the ADP5360 pulls the  
pin) for an  
pin is pulled  
I2C ADDRESSES  
2
The I2C chip default address is 0x46. Different I2C addresses can  
be factory programmable. Having different I2C address options  
helps to avoid I2C address conflicts with other I2C slave chipsets  
in the system. For different I2C chip address requirements,  
contact the local Analog Devices sales or distribution  
representative.  
INT  
pin low to alert the I C host  
that an interrupt case has occurred.  
INT  
Many different interrupt sources can trigger the  
pin. By  
default, no interrupt sources are configured. To select one or more  
INT  
interrupt sources to trigger the  
pin, set the corresponding bits  
to 1 in the INTERRUPT_ENABLE1 and INTERRUPT_ENABLE2  
registers.  
SDA AND SCL PINS  
The ADP5360 has two dedicated I2C interface pins, SDA and SCL.  
SDA is an open-drain line for receiving and transmitting data. SCL  
is an input line for receiving the clock signal. Pull up these pins to  
connect external input and output supplies using external  
resistors.  
INT  
When the  
INTERRUPT_FLAG1 and INTERRUPT_FLAG2 registers are  
INT  
pin is triggered, the corresponding bits in the  
set to 1. The interrupt case that triggers the  
from the INTERRUPT_FLAG1 and INTERRUPT_FLAG2  
registers.  
pin is read  
Serial data is transferred on the rising edge of SCL. The read  
data is generated at the SDA pin in read mode.  
To clear an interrupt, write a 1 to the corresponding bit in the  
INTERRUPT_FLAG1 and INTERRUPT_FLAG2 registers.  
Otherwise, the ADP5360 power recycles. Reading the interrupt  
or writing a 0 to the bit does not clear the interrupt.  
The subaddress content selects which of the ADP5360 registers  
is written to first. The ADP5360 sends an acknowledgement to  
the master after the 8-bit data byte is written (see Figure 56 for an  
example of the I2C write sequence to a single register). The  
ADP5360 increments the subaddress automatically and starts  
receiving a data byte at the next register until the master sends  
an I2C stop as shown in Figure 56.  
0 = WRITE  
MASTER STOP  
ST  
0
0
1
0
1
0
0
0
0
0
0
SP  
ADP5360 RECEIVES  
DATA  
CHIP ADDRESS  
SUBADDRESS  
Figure 56. I2C Single Register Write Sequence  
0 = WRITE  
MASTER STOP  
ST  
0
0
1
0
1
0
0
0
0
0
0
0
0
SP  
CHIP ADDRESS  
SUBADDRESS  
REGISTER N  
ADP5360 RECEIVES  
DATA TO REGISTER N  
ADP5360 RECEIVES  
DATA TO REGISTER N + 1  
ADP5360 RECEIVES  
DATA TO LAST REGISTER  
Figure 57. I2C Multiple Register Write Sequence  
Rev. 0 | Page 33 of 60  
 
 
 
 
 
ADP5360  
Data Sheet  
1 = READ  
0 = WRITE  
ST  
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
0
ST  
0
0
1
0
1
0
0
1
0
1
SP  
CHIP ADDRESS  
SUBADDRESS  
CHIP ADDRESS  
ADP5360 SENDS DATA  
Figure 58. I2C Single Register Read Sequence  
1 = READ  
MASTER STOP  
0 = WRITE  
S
T
S
T
S
P
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
1
CHIP ADDRESS  
SUBADDRESS  
REGISTER N  
CHIP ADDRESS  
ADP5360 SENDS  
DATA OF REGISTER N  
ADP5360 SENDS  
DATA OF REGISTER  
N + 1  
ADP5360 SENDS  
DATA OF LAST  
REGISTER  
Figure 59. I2C Multiple Register Read Sequence  
Rev. 0 | Page 34 of 60  
Data Sheet  
ADP5360  
CONTROL REGISTER MAP  
Table 17. Register Map  
Address Register  
(Hex)  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x00  
Manufacture  
and Model ID  
[7:0]  
MANUF[3:0]  
MODEL[3:0]  
0x01  
0x02  
0x03  
Silicon  
Revision  
[7:0]  
[7:0]  
[7:0]  
Reserved  
REV[3:0]  
CHARGER_  
VBUS_ILIM  
VADPICHG[2:0]  
Reserved  
VSYSTEM  
ILIM[2:0]  
ITRK_DEAD[1:0]  
CHARGER_  
TERMINATION_  
SETTING  
VTRM[5:0]  
0x04  
0x05  
0x06  
0x07  
CHARGER_  
CURRENT_  
SETTING  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
IEND[2:0]  
ICHG[4:0]  
CHARGER_  
VOLTAGE_  
THRESHOLD  
DIS_RCH  
VRCH[1:0]  
VTRK_DEAD[1:0]  
VWEAK[2:0]  
CHARGER_  
TIMER_  
SETTING  
Reserved  
EN_TEND  
EN_LDO  
EN_CHG_  
TIMER  
CHG_TMR_PERIOD[1:0]  
CHARGER_  
FUNCTION_  
SETTING  
EN_JEITA  
VBUS_OV  
ILIM_  
JEITA_  
COOL  
Reserved  
OFF_ISOFET  
EN_EOC  
EN_  
ADPICHG  
EN_CHG  
0x08  
0x09  
0x0A  
CHARGER_  
STATUS1  
[7:0]  
[7:0]  
[7:0]  
ADPICHG  
VBUS_ILIM  
Reserved  
CHARGER_STATUS[2:0]  
BAT_CHG_STATUS[2:0]  
CHARGER_  
STATUS2  
THR_STATUS[2:0]  
BAT_OV_  
STATUS  
BAT_UV_  
STATUS  
BATTERY_  
ITHR[1:0]  
Reserved  
EN_THR  
THERMISTOR_  
CONTROL  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
THERMISTOR_ [7:0]  
60C Threshold  
TEMP_HIGH_60[7:0]  
TEMP_HIGH_45[7:0]  
TEMP_LOW_10[7:0]  
TEMP_LOW_0[7:0]  
THR_V_LOW[7:0]  
THERMISTOR_ [7:0]  
45C Threshold  
THERMISTOR_ [7:0]  
10C Threshold  
THERMISTOR_ [7:0]  
0C Threshold  
THR_VOLTAGE [7:0]  
Low  
THR_VOLTAGE [7:0]  
High  
Reserved  
Reserved  
THR_V_HIGH[11:8]  
Battery  
[7:0]  
ISOFET_  
OC_DIS_  
HICCUP  
OC_CHG_ EN_  
HICCUP CHGLB  
EN_  
BATPRO  
Protection  
Control  
OVCHG  
0x12  
0x13  
Battery  
[7:0]  
UV_DISCH[3:0]  
HYS_UV_DISCH[1:0]  
DGT_UV_DISCH[1:0]  
Protection  
Undervoltage  
Setting  
Battery  
[7:0]  
OC_DISCH[2:0]  
Reserved  
DGT_OC_DISCH[2:0] Reserved  
Protection  
Overcharge  
Setting  
Rev. 0 | Page 35 of 60  
 
 
ADP5360  
Data Sheet  
Address Register  
(Hex)  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x14  
Battery  
[7:0]  
OV_CHG[4:0]  
HYS_OV_CHG[1:0]  
DGT_OV_  
CHG  
Protection  
Overvoltage  
Setting  
0x15  
Battery  
[7:0]  
OC_CHG[2:0]  
DGT_OC_CHG[1:0]  
Reserved  
Protection  
Charge  
Overcharge  
Setting  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
V_SOC_0  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
V_SOC_0[7:0]  
V_SOC_5[7:0]  
V_SOC_11[7:0]  
V_SOC_19[7:0]  
V_SOC_28[7:0]  
V_SOC_41[7:0]  
V_SOC_55[7:0]  
V_SOC_69[7:0]  
V_SOC_84[7:0]  
V_SOC_100[7:0]  
BAT_CAP[7:0]  
BAT_SOC[6:0]  
V_SOC_5  
V_SOC_11  
V_SOC_19  
V_SOC_28  
V_SOC_41  
V_SOC_55  
V_SOC_69  
V_SOC_84  
V_SOC_100  
BAT_CAP  
BAT_SOC  
Reserved  
BAT_  
SOCACM_CTL  
BATCAP_AGE[1:0]  
Reserved  
EN_  
BATCAP_  
TEMP  
EN_  
BATCAP_  
AGE  
BATCAP_TEMP[1:0]  
0x23  
0x24  
BAT_  
SOCACM_H  
[7:0]  
[7:0]  
BAT_SOCACM[11:4]  
BAT_  
BAT_SOCACM[3:0]  
Reserved  
SOCACM_L  
0x25  
0x26  
VBAT_READ_H [7:0]  
VBAT_READ[12:5]  
VBAT_READ_L  
[7:0]  
VBAT_READ[4:0]  
Reserved  
FG_  
MODE  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
FUEL_  
[7:0]  
SOC_LOW_TH[1:0]  
SLP_CURR[1:0]  
SLP_TIME[1:0]  
EN_FG  
EN_BUCK  
EN_  
GAUGE_MODE  
SOC_RESET  
[7:0]  
SOC_  
RESET  
BUCK_SS[1:0]  
Reserved  
Buck Configure [7:0]  
BUCK_ILIM[1:0]  
BUCK_  
MODE  
STP_  
BUCK  
DISCHG_  
BUCK  
Buck Output  
Voltage Setting  
[7:0]  
[7:0]  
[7:0]  
BUCK_DLY[1:0]  
BUCKBST_SS[1:0]  
BUCKBST_DLY[1:0]  
VOUT_BUCK[5:0]  
Buck Boost  
Configure  
BUCKBST_ILIM[2:0]  
STP_  
DISCHG_  
BUCKBST BUCKBST  
BUCKBST  
VOUT_BUCKBST[5:0]  
Buck Boost  
Output Voltage  
Setting  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
Supervisory  
Setting  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
VOUT1_  
RST  
VOUT2_  
RST  
RESET_  
TIME  
WD_TIME[1:0]  
EN_WD  
EN_MR_  
SD  
RESET_WD  
Fault  
BAT_UV  
BAT_OC  
BAT_  
CHGOC  
BAT_CHGOV  
CHG_CMPLT  
Reserved  
VBUSOK  
WD_  
TIMEOUT  
Reserved TSD110  
VOUT2OK VOUT1OK  
VOUT2OK_ VOUT1OK_  
MASK1  
VOUT2OK_ VOUT1OK_  
MASK2 MASK2  
PGOOD_  
STATUS  
Reserved  
MR_PRESS  
BATOK  
PGOOD1_  
MASK  
PG1_REV  
PG2_REV  
Reserved  
Reserved  
CHGCMPLT_  
MASK1  
VBUSOK_  
MASK1  
BATOK_  
MASK1  
MASK1  
PGOOD2_  
MASK  
CHGCMPLT_  
MASK2  
VBUSOK_  
MASK2  
BATOK_  
MASK2  
Rev. 0 | Page 36 of 60  
Data Sheet  
ADP5360  
Address Register  
(Hex)  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x32  
INTERRUPT_  
ENABLE1  
[7:0]  
EN_  
SOCLOW_  
INT  
EN_  
SOCACM_  
INT  
EN_  
ADPICHG_  
INT  
EN_  
BATPRO_INT  
EN_THR_  
INT  
EN_BAT_ EN_CHG_ EN_  
INT  
INT  
VBUS_INT  
0x33  
INTERRUPT_  
ENABLE2  
[7:0]  
EN_MR_  
INT  
EN_WD_  
INT  
EN_  
BUCKPG_  
INT  
EN_  
BUCKBSTPG_  
INT  
Reserved  
0x34  
0x35  
0x36  
INTERRUPT_  
FLAG1  
[7:0]  
[7:0]  
[7:0]  
SOCLOW_  
INT  
SOCACM_  
INT  
ADPICHG_  
INT  
BATPRO_INT  
THR_INT  
BAT_INT  
CHG_INT  
VBUS_INT  
INTERRUPT_  
FLAG2  
MR_INT  
WD_INT  
BUCKPG_  
INT  
BUCKBSTPG_  
INT  
Reserved  
SHIPMODE  
Reserved  
EN_  
SHIPMODE  
Table 18. Manufacturer and Model ID, Address 0x00 Bit Descriptions  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
MANUF[3:0]  
MODEL[3:0]  
Access Default  
Description  
The 4-bit manufacturer identification bus.  
The 4-bit model identification bus.  
R
R
0001  
0000  
Table 19. Silicon Revision, Address 0x01 Bit Descriptions  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
Reserved  
REV[3:0]  
Access Default  
Description  
Reserved.  
R
R
Not applicable  
1000  
The 4-bit silicon revision identification bus.  
Table 20. CHARGER_VBUS_ILIM, Address 0x02 Bit Descriptions  
Bit(s) Bit Name Access Default Description  
VADPICHG[2:0] R/W 100 = 4.6 V  
[7:5]  
Adaptive Current Limit to VBUS Voltage Threshold Programming. The current to the  
VBUS voltage threshold can be limited to the following programmed values:  
010 = 4.4 V.  
011 = 4.5 V.  
100 = 4.6 V.  
101 = 4.7 V.  
110 = 4.8 V.  
111 = 4.9 V.  
Reserved  
VSYSTEM  
4
3
R
Not applicable  
Reserved.  
R/W  
0 = VTRM + 200 mV  
VSYS Voltage Programming.  
0 = VTRM + 200 mV.  
1 = 5 V.  
[2:0]  
ILIM[2:0]  
R/W  
001 = 100 mA  
VBUS Pin Input Current-Limit Programming Bus. The current into the VBUS pin  
can be limited to the following programmed values:  
000 = 50 mA.  
001 = 100 mA.  
010 = 150 mA.  
011 = 200 mA.  
100 = 250 mA.  
101 = 300 mA.  
110 = 400 mA.  
111 = 500 mA.  
Rev. 0 | Page 37 of 60  
ADP5360  
Data Sheet  
Table 21. CHARGER_TERMINATION_SETTING, Address 0x03 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:2] VTRM[5:0]  
R/W  
Factory set Termination Voltage Programming Bus. The values of the float voltage can be  
programmed by using the following values:  
000000 = 3.56 V.  
000001 = 3.58 V.  
000010 = 3.60 V.  
000011 = 3.62 V.  
000100 = 3.64 V.  
000101 = 3.66 V.  
000110 = 3.68 V.  
000111 = 3.70 V.  
001000 = 3.72 V.  
001001 = 3.74 V.  
001010 = 3.76 V.  
001011 = 3.78 V.  
001100 = 3.80 V.  
001101 = 3.82 V.  
001110 = 3.84 V.  
001111 = 3.86 V.  
010000 = 3.88 V.  
010001 = 3.90 V.  
010010 = 3.92 V.  
010011 = 3.94 V.  
010100 = 3.96 V.  
010101 = 3.98 V.  
010110 = 4.00 V.  
010111 = 4.02 V.  
011000 = 4.04 V.  
011001 = 4.06 V.  
011010 = 4.08 V.  
011011 = 4.10 V.  
011100 = 4.12 V.  
011101 = 4.14 V.  
011110 = 4.16 V.  
011111 = 4.18 V.  
100000 = 4.20 V.  
100001 = 4.22 V.  
100010 = 4.24 V.  
100011 = 4.26 V.  
100100 = 4.28 V.  
100101 = 4.30 V.  
100110 = 4.32 V.  
100111 = 4.34 V.  
101000 = 4.36 V.  
101001 = 4.38 V.  
101010 = 4.40 V.  
101011 = 4.42 V.  
101100 = 4.44 V.  
101101 = 4.46 V.  
101110 = 4.48 V.  
101111 = 4.50 V.  
Rev. 0 | Page 38 of 60  
Data Sheet  
ADP5360  
Bit(s) Bit Name  
Access Default  
Description  
110000 = 4.52 V.  
110001 = 4.54 V.  
110010 = 4.56 V.  
110011 = 4.58 V.  
110100 = 4.60 V.  
110101 = 4.62 V.  
110110 = 4.64 V.  
110111 to 111111 = 4.66 V.  
[1:0]  
ITRK_DEAD[1:0] R/W  
10 = 5 mA  
Trickle and Weak Charge Current Programming Bus. The values of the trickle and weak  
charge currents can be programmed by using the following values:  
00 = 1 mA.  
01 = 2.5 mA.  
10 = 5 mA.  
11 = 10 mA.  
Table 22. CHARGER_CURRENT_SETTING, Address 0x04 Bit Descriptions  
Bit(s) Bit Name Access Default  
Description  
[7:5]  
IEND[2:0]  
R/W  
001 = 5 mA  
Termination Current Programming Bus. The values of the termination current can be  
programmed by using the following values:  
001 = 5 mA.  
010 = 7.5 mA.  
011 = 12.5 mA.  
100 = 17.5 mA.  
101 = 22.5 mA.  
110 = 27.5 mA.  
111 = 32.5 mA.  
[4:0]  
ICHG[4:0]  
R/W  
01001 = 100 mA  
Fast Charge Current Programming Bus. The values of the constant current charge can  
be programmed by using the following values:  
00000 = 10 mA.  
00001 = 20 mA.  
00010 = 30 mA.  
00011 = 40 mA.  
00100 = 50 mA.  
00101 = 60 mA.  
00110 = 70 mA.  
00111 = 80 mA.  
01000 = 90 mA.  
01001 = 100 mA.  
01010 = 110 mA.  
01011 = 120 mA.  
01100 = 130 mA.  
01101 = 140 mA.  
01110 = 150 mA.  
01111 = 160 mA.  
10000 = 170 mA.  
10001 = 180 mA.  
10010 = 190 mA.  
10011 = 200 mA.  
10100 = 210 mA.  
10101 = 220 mA.  
10110 = 230 mA.  
Rev. 0 | Page 39 of 60  
ADP5360  
Data Sheet  
Bit(s) Bit Name Access Default  
Description  
10111 = 240 mA.  
11000 = 250 mA.  
11001 = 260 mA.  
11010 = 270 mA.  
11011 = 280 mA.  
11100 = 290 mA.  
11101 = 300 mA.  
11110 = 310 mA.  
11111 = 320 mA.  
Table 23. CHARGER_VOLTAGE_THRESHOLD, Address 0x05 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
7
DIS_RCH  
0 = Enable recharge Recharge Function Disable.  
0 = recharge enable.  
1 = recharge disable.  
[6:5]  
[4:3]  
VRCH[1:0]  
R/W  
01 = 120 mV  
01 = 2.5 V  
Recharge Voltage Programming Bus. The values of the recharge threshold  
can be programmed by using the following values:  
01 = 120 mV.  
10 = 180 mV.  
11 = 240 mV.  
VTRK_DEAD[1:0]  
R/W  
R/W  
Trickle to Fast Charge Dead Battery Voltage Programming Bus. The values of  
the trickle to fast charge threshold can be programmed by using the  
following values:  
00 = 2.0 V.  
01 = 2.5 V.  
10 = 2.6 V.  
11 = 2.9 V.  
[2:0]  
VWEAK[2:0]  
011 = 3.0 V  
Weak Battery Voltage Rising Threshold. The values of the battery voltage  
can be programmed by using the following values:  
000 = 2.7 V.  
001 = 2.8 V.  
010 = 2.9 V.  
011 = 3.0 V.  
100 = 3.1 V.  
101 = 3.2 V.  
110 = 3.3 V.  
111 = 3.4 V.  
Table 24. CHARGER_TIMER_SETTING, Address 0x06 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
Reserved  
Reserved.  
[7:4]  
3
R
Not applicable  
EN_TEND  
R/W  
0
When low, this bit disables the charge complete timer (tEND), and a 32 ms  
deglitch timer (tDG) remains on this function.  
2
EN_CHG_TIMER  
R/W  
1
When high, the trickle charge timer (tTRK) and the fast charge timer (tCHG) are  
enabled. When low, tTRK and tCHG are disabled.  
[1:0]  
CHG_TMR_PERIOD[1:0] R/W  
11  
tTRK and tCHG Period.  
00 = 15 minutes/150 minutes.  
01 = 30 minutes/300 minutes.  
10 = 45 minutes/450 minutes.  
11 = 60 minutes/600 minutes.  
Rev. 0 | Page 40 of 60  
Data Sheet  
ADP5360  
Table 25. CHARGER_FUNCTION_SETTING, Address 0x07 Bit Descriptions  
Bit(s) Bit Name  
Access  
Default  
Description  
7
EN_JEITA  
R/W  
0
When low, this bit disables the JEITA Li-Ion temperature battery charging  
specification.  
6
ILIM_JEITA_COOL  
R/W  
0
When in temperature cool mode, select the battery charging current.  
0 = approximately 50% of programmed charge current.  
1 = approximately 10% of programmed charge current.  
Reserved  
5
4
R/W  
R/W  
Not applicable Reserved.  
OFF_ISOFET  
0
When high, ISOFET is forced to turn off, and VSYS is shut down only when the  
battery is present.  
3
2
1
EN_LDO  
R/W  
R/W  
R/W  
1
1
0
When low, the charge LDO is disabled. When high, the charge LDO is enabled.  
When high, end of charge is allowed.  
EN_EOC  
EN_ADPICHG  
When high, the VBUS adaptive current-limit function is enabled during charging.  
When low, the VBUS adaptive current-limit function is disabled during charging.  
0
EN_CHG  
R/W  
Factory set  
When low, charging is disabled. When high and EN_LDO = high, charging is  
enabled.  
Table 26. CHARGER_STATUS1, Address 0x08 Bit Descriptions  
Bit(s) Bit Name Access Default Description  
Not applicable When high, this bit indicates that the VBUS voltage is over the threshold of  
VVBUS_OK  
7
VBUS_OV  
R
.
6
5
ADPICHG  
R
R
Not applicable When high, this bit indicates that the adaptive charge current is active.  
VBUS_ILIM  
Not applicable When high, this bit indicates that the current into the VBUS pin is limited by  
the high voltage blocking FET and that the charger is not running at the full  
programmed ICHG  
.
Reserved  
[4:3]  
[2:0]  
R
R
Not applicable Reserved.  
CHARGER_STATUS[2:0]  
Not applicable Charger Status Bus. The following values are indications for the charger status:  
000 = off.  
001 = trickle charge.  
010 = fast charge (constant current mode).  
011 = fast charge (constant voltage mode).  
100 = charge complete.  
101 = LDO mode.  
110 = trickle or fast charge timer expired.  
111 = battery detection.  
Table 27. CHARGER_STATUS2, Address 0x09 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:5]  
THR_STATUS[2:0]  
R
Not applicable  
THR Pin Status. The following values are indications for the THR pin NTC  
resistor value:  
000 = off.  
001 = battery cold.  
010 = battery cool.  
011 = battery warm.  
100 = battery hot.  
111 = thermistor okay.  
4
3
BAT_OV_STATUS  
BAT_UV_STATUS  
R
R
Not applicable  
Not applicable  
Battery Overvoltage Status.  
0 = no battery overvoltage protection.  
1 = battery overvoltage protection.  
Battery Undervoltage Status.  
0 = no battery undervoltage protection.  
1 = battery undervoltage protection.  
Rev. 0 | Page 41 of 60  
ADP5360  
Data Sheet  
Bit(s) Bit Name  
Access Default  
Not applicable  
Description  
[2:0]  
BAT_CHG_STATUS[2:0]  
R
Battery Status Bus. The following values are indications for battery status:  
000 = normal.  
001 = no battery.  
010 = VBSNS < VTRK_DEAD when in charge.  
011 = VTRK ≤ VBSNS < VWEAK when in charge.  
100 = VBSNS ≥ VWEAK when in charge.  
Table 28. BATTERY_THERMISTOR_CONTROL, Address 0x0A Bit Descriptions  
Bit(s) Bit Name Access Default  
Description  
[7:6]  
ITHR[1:0]  
R/W  
Factory set  
Select Battery Thermistor NTC Resistance. The following values are the program values for  
the battery thermistor NTC resistance:  
00 = 60 μA.  
01 = 12 μA.  
10, 11 = 6 μA.  
Reserved  
EN_THR  
[5:1]  
0
R
Not applicable Reserved.  
When high, the ITHR current source is enabled even when the voltage at the VBUS pin is  
lower than VVBUS_OK  
R/W  
0
.
Table 29. THERMISTOR_60C Threshold, Address 0x0B Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
TEMP_HIGH_60[7:0]  
R/W  
0x56  
Thermistor Voltage Threshold for 60°C.  
THERMISTOR_60C Voltage Threshold (V) = (TEMP_HIGH_60 × 0.002) (V)  
Table 30. THERMISTOR_45C Threshold, Address 0x0C Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
TEMP_HIGH_45[7:0]  
R/W  
0x8F  
Thermistor Voltage Threshold for 45°C  
THERMISTOR_45C Voltage Threshold (V) = (TEMP_HIGH_45 × 0.002) (V)  
Table 31. THERMISTOR_10C Threshold, Address 0x0D Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
TEMP_LOW_10[7:0]  
R/W  
0x71  
Thermistor Voltage Threshold for 10°C  
THERMISTOR_10C Voltage Threshold (V) = (TEMP_LOW_10 × 0.01) (V)  
Table 32. THERMISTOR_0C Threshold, Address 0x0E Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
TEMP_LOW_0[7:0]  
R/W  
0xB4  
Thermistor Voltage Threshold For 0°C  
THERMISTOR_0C Voltage Threshold (V) = (TEMP_LOW_0 × 0.01) (V)  
Table 33. THR_VOLTAGE Low, Address 0x0F Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
THR_V_LOW[7:0]  
R
Not applicable  
8-Bit Thermistor Node Voltage Low (mV)  
NTC = THR_V_x[11:0]/ITHR (kΩ)  
Table 34. THR_VOLTAGE High, Address 0x10 Bit Descriptions  
Bit(s)  
[7:4]  
[3:0]  
Bit Name  
Reserved  
Access  
R
R
Default  
Not applicable  
Not applicable  
Description  
Reserved  
THR_V_HIGH[11:8]  
4-Bit Thermistor Node Voltage High (mV)  
NTC = THR_V_x[11:0]/ITHR (kΩ)  
Rev. 0 | Page 42 of 60  
Data Sheet  
ADP5360  
Table 35. Battery Protection Control, Address 0x11 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
Reserved  
[7:5]  
4
R
Not applicable Reserved.  
ISOFET_OVCHG  
R/W  
0
0
When low, ISOFET turns on when the battery charging overvoltage protection is  
triggered. When high, the ISOFET turns off when the battery charging overvoltage  
protection is triggered.  
3
2
OC_DIS_HICCUP  
R/W  
Battery Discharge Overcurrent Protection Mode Selection.  
0 = latch up.  
1 = hiccup.  
OC_CHG_HICCUP R/W  
0
Battery Charge Overcurrent Protection Mode Selection.  
0 = latch up.  
1 = hiccup.  
1
0
EN_CHGLB  
EN_BATPRO  
R/W  
R/W  
1
When low, the battery charge is not allowed with the battery undervoltage  
protection triggered. When high, the battery charge is allowed with the battery  
undervoltage protection triggered.  
Factory set  
When low, the battery protection function is disabled. When high, the battery  
protection function is enabled.  
Table 36. Battery Protection Undervoltage Setting, Address 0x12 Bit Descriptions  
Bit(s) Bit Name Access Default Description  
[7:4]  
UV_DISCH[3:0]  
R/W  
Factory set Battery Undervoltage Protection Threshold. The values of the battery undervoltage  
protection threshold can be programmed by using the following values:  
0000 = 2.05 V.  
0001 = 2.10 V.  
0010 = 2.15 V.  
0011 = 2.20 V.  
0100 = 2.25 V.  
0101 = 2.30 V.  
0110 = 2.35 V.  
0111 = 2.40 V.  
1000 = 2.45 V.  
1001 = 2.50 V.  
1010 = 2.55 V.  
1011 = 2.60 V.  
1100 = 2.65 V.  
1101 = 2.70 V.  
1110 = 2.75 V.  
1111 = 2.80 V.  
[3:2]  
[1:0]  
HYS_UV_DISCH[1:0] R/W  
DGT_UV_DISCH[1:0] R/W  
00 = 2%  
Battery Undervoltage Protection for Overdischarge Hysteresis. The values of the  
battery undervoltage protection can be programmed byusing the following values:  
00 = 2% UV_DISCH voltage threshold.  
01 = 4% UV_DISCH voltage threshold.  
10 = 6% UV_DISCH voltage threshold.  
11 = 8% UV_DISCH voltage threshold.  
00 = 30 ms  
Battery Undervoltage Protection Deglitch Time. The values of the battery  
undervoltage protection deglitch time can be programmed by using the following  
values:  
00 = 30 ms.  
01 = 60 ms.  
10 = 120 ms.  
11 = 240 ms.  
Rev. 0 | Page 43 of 60  
ADP5360  
Data Sheet  
Table 37. Battery Protection Overcharge Setting, Address 0x13 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:5]  
OC_DISCH[2:0]  
R/W Factory set  
Battery Overcurrent Protection for Overdischarge Threshold. The values of the  
battery overcurrent protection can be programmed by using the following values:  
000 = 50 mA.  
001 = 100 mA.  
010 = 150 mA.  
011 = 200 mA.  
100 = 300 mA.  
101 = 400 mA.  
110 = 500 mA.  
111 = 600 mA.  
Reserved  
Reserved  
DGT_OC_DISCH[2:0] R/W  
4
R
Not applicable  
011 = 5 ms  
[3:1]  
Battery Discharge Overcurrent Protection Deglitch Time Setting. The values of  
the battery discharge overcurrent protection can be programmed by using the  
following values:  
001 = 0.5 ms.  
010 = 1 ms.  
011 = 5 ms.  
100 = 10 ms.  
101 = 20 ms.  
110 = 50 ms.  
111 = 100 ms.  
Reserved  
Reserved  
0
R
Not applicable  
Table 38. Battery Protection Overvoltage Setting, Address 0x14 Bit Descriptions  
Bit(s) Bit Name Access Default Description  
[7:3] OV_CHG[4:0] R/W  
Factory set Battery Overvoltage Protection Threshold. The values of the battery overvoltage  
protection threshold can be programmed by using the following values:  
00000 = 3.55 V.  
00001 = 3.60 V.  
00010 = 3.65 V.  
00011 = 3.70 V.  
00100 = 3.75 V.  
00101 = 3.80 V.  
00110 = 3.85 V.  
00111 = 3.90 V.  
01000 = 3.95 V.  
01001 = 4.00 V.  
01010 = 4.05 V.  
01011 = 4.10 V.  
01100 = 4.15 V.  
01101 = 4.20 V.  
01110 = 4.25 V.  
01111 = 4.30 V.  
10000 = 4.35 V.  
10001 = 4.40 V.  
10010 = 4.45 V.  
10011 = 4.50 V.  
Rev. 0 | Page 44 of 60  
Data Sheet  
ADP5360  
Bit(s) Bit Name  
Access Default  
Description  
10100 = 4.55 V.  
10101 = 4.60 V.  
10110 = 4.65 V.  
10111 = 4.70 V.  
11000 = 4.75 V.  
11001 to 11111 = 4.80 V.  
[2:1]  
HYS_OV_CHG[1:0] R/W  
00  
Battery Overvoltage Protection for Charge Hysteresis. The values of the battery  
overvoltage protection can be programmed by using the following values:  
00 = 2% of the voltage of the OV_CHG threshold.  
01 = 4% of the voltage of the OV_CHG threshold.  
10 = 6% of the voltage of the OV_CHG threshold.  
11 = 8% of the voltage of the OV_CHG threshold.  
0
DGT_OV_CHG  
R/W  
0 = 0.5 sec  
Battery Overvoltage Protection Deglitch Time. The values of the battery overvoltage  
protection deglitch time can be programmed by using the following values:  
0 = 0.5 sec.  
1 = 1 sec.  
Table 39. Battery Protection Charge Overcharge Setting, Address 0x15 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:5]  
OC_CHG[2:0]  
R/W  
Factory set  
Battery Overcurrent Protection for Overdischarge Threshold. The values of the  
battery overcurrent protection can be programmed by using the following values:  
000 = 25 mA.  
001 = 50 mA.  
010 = 100 mA.  
011 = 150 mA.  
100 = 200 mA.  
101 = 250 mA.  
110 = 300 mA.  
111 = 400 mA.  
[4:3]  
[2:0]  
DGT_OC_CHG[1:0] R/W  
01 = 10 ms  
Battery Charge Overcurrent Protection Deglitch Time Setting. The values of the battery  
charge overcurrent protection can be programmed byusing the following values:  
00 = 5 ms.  
01 = 10 ms.  
10 = 20 ms.  
11 = 40 ms.  
Reserved.  
Reserved  
R
Not applicable  
FUEL GAUGE REGISTER BIT DESCRIPTIONS  
Table 40. V_SOC_0, Address 0x16 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
V_SOC_0[7:0]  
R/W  
0x7D  
Battery Voltage When State of Charge = 0%. The default voltage is 3.5 V.  
Battery Voltage (V) = (2.5 + V_SOC_0 × 0.008) (V).  
Table 41. V_SOC_5, Address 0x17 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
V_SOC_5[7:0]  
R/W  
0x91  
Battery Voltage When State of Charge = 5%. The default voltage is 3.66 V.  
Battery voltage (V) = (2.5 + V_SOC_5 × 0.008) (V).  
Rev. 0 | Page 45 of 60  
 
ADP5360  
Data Sheet  
Table 42. V_SOC_11, Address 0x18 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
V_SOC_11[7:0]  
R/W  
0x94  
Battery Voltage When State of Charge = 11%. The default voltage is 3.684 V.  
Battery voltage (V) = (2.5 + V_SOC_11 × 0.008) (V).  
Table 43. V_SOC_19, Address 0x19 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
V_SOC_19[7:0]  
R/W  
0x99  
Battery Voltage When State of Charge = 19%. The default voltage is 3.724 V.  
Battery voltage (V) = (2.5 + V_SOC_19 × 0.008) (V).  
Table 44. V_SOC_28, Address 0x1A Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
V_SOC_28[7:0]  
R/W  
0x9E  
Battery Voltage When State of Charge = 28%. The default voltage is 3.764 V.  
Battery Voltage (V) = (2.5 + V_SOC_28 × 0.008) (V).  
Table 45. V_SOC_41, Address 0x1B Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
V_SOC_41[7:0]  
R/W  
0xA3  
Battery Voltage When State of Charge = 41%. The default voltage is 3.804 V.  
Battery Voltage (V) = (2.5 + V_SOC_41 × 0.008) (V).  
Table 46. V_SOC_55, Address 0x1C Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default Description  
[7:0]  
V_SOC_55[7:0]  
R/W  
0xAB  
Battery Voltage When State of Charge = 55%. The default voltage is 3.868 V.  
Battery Voltage (V) = (2.5 + V_SOC_55 × 0.008) (V).  
Table 47. V_SOC_69, Address 0x1D Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default Description  
[7:0]  
V_SOC_69[7:0]  
R/W  
0xB5  
Battery Voltage When State of Charge = 69%. The default voltage is 3.948 V.  
Battery Voltage (V) = (2.5 + V_SOC_69 × 0.008) (V).  
Table 48. V_SOC_84, Address 0x1E Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default Description  
[7:0]  
V_SOC_84[7:0]  
R/W  
0xC4  
Battery Voltage When State of Charge = 84%. The default voltage is 4.068 V.  
Battery Voltage (V) = (2.5 + V_SOC_84 × 0.008) (V).  
Table 49. V_SOC_100, Address 0x1F Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default Description  
[7:0]  
V_SOC_100[7:0]  
R/W  
0xD5  
Battery Voltage When State of Charge = 100%. The default voltage is 4.204 V.  
Battery Voltage (V) = (2.5 + V_SOC_100 × 0.008) (V).  
Table 50. BAT_CAP, Address 0x20 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
BAT_CAP[7:0]  
R/W  
0x32  
Battery Capacity Input  
Battery Capacity = (BAT_CAP × 2) mAh  
Table 51. BAT_SOC, Address 0x21 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
Reserved  
Reserved  
7
R
R
Not applicable  
Not applicable  
[6:0]  
BAT_SOC[6:0]  
Battery State of Charge Output  
State of Charge = BAT_SOC %, Only Valued Between 0% to 100%  
Rev. 0 | Page 46 of 60  
Data Sheet  
ADP5360  
Table 52. BAT_SOCACM_CTL, Address 0x22 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:6]  
BATCAP_AGE[1:0]  
R/W  
01 = 1.5%  
Battery Capacity Reduction Percentage When BAT_SOCACM Overflows.  
00 = 0.8 %.  
01 = 1.5 %.  
10 = 3.1 %.  
11 = 6.3 %.  
[5:4]  
BATCAP_TEMP[1:0] R/W  
00 = 0.2%/°C  
Battery Capacity Compensation with Temperature Coefficient. The values of the  
battery capacity compensation can be programmed by using the following values:  
00 = 0.2 %/°C.  
01 = 0.4 %/°C.  
10 = 0.6 %/°C.  
11 = 0.8 %/°C.  
Reserved  
[3:2]  
1
Not applicable Reserved.  
EN_BATCAP_TEMP R/W  
0
Battery Capacity Temperature Compensation Function Selection.  
0 = disable battery capacity temperature compensation.  
1 = enable battery capacity temperature compensation.  
Battery Capacity Aging Compensation Function Selection.  
0 = disable battery capacity aging automatic adjustment.  
1 = enable battery capacity aging automatic adjustment.  
0
EN_BATCAP_AGE  
R/W  
0
Table 53. BAT_SOCACM_H, Address 0x23 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
BAT_SOCACM[11:4]  
R
Not applicable  
Highest Eight Bits of an 8-Bit Accumulation of the Charge State  
Number of Times for Charging = BAT_SOCACM[11:0]/100  
Table 54. BAT_SOCACM_L, Address 0x24 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:4]  
BAT_SOCACM[3:0]  
R
Not applicable  
Not applicable  
Lowest Four Bits of a 4-Bit Accumulation of the Charge State  
Number of Times for Charging = BAT_SOCACM[11:0]/100  
Reserved  
Reserved  
[3:0]  
R
Table 55. VBAT_READ_H, Address 0x25 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:0]  
VBAT_READ[12:5]  
R
Not applicable  
Battery Voltage Reading of the Highest Eight Bits (mV)  
Table 56. VBAT_READ_L, Address 0x26 Bit Descriptions  
Bit(s)  
[7:3]  
[2:0]  
Bit Name  
VBAT_READ[4:0]  
Reserved  
Access  
R
R
Default  
Not applicable  
Not applicable  
Description  
Battery Voltage Reading of the Lowest Five Bits (mV)  
Reserved  
Table 57. FUEL_GAUGE_MODE, Address 0x27 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:6]  
SOC_LOW_TH[1:0]  
R/W  
01 = 11%  
Indication of Low State of Charge Threshold  
00 = 6%  
01 = 11%  
10 = 21%  
11 = 31%  
[5:4]  
SLP_CURR[1:0]  
R/W  
01 = 10 mA  
Fuel Gauge Sleep Mode Current Threshold  
00 = 5 mA  
01 = 10 mA  
10 = 20 mA  
11 = 40 mA  
Rev. 0 | Page 47 of 60  
ADP5360  
Data Sheet  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[3:2]  
SLP_TIME[1:0]  
R/W  
00 = 1 min  
Fuel Gauge Update Rate Of The Sleep Mode  
00 = 1 min  
01 = 4 min  
10 = 8 min  
11 = 16 min  
1
0
FG_MODE  
EN_FG  
R/W  
R/W  
0
0
Fuel Gauge Operation Mode Selection  
1 = operate in sleep mode  
0 = operate in active mode  
Fuel Gauge Function Selection  
0 = disable fuel gauge  
1 = enable fuel gauge  
Table 58. SOC_RESET, Address 0x28 Bit Descriptions  
Bit(s) Bit Name Access Default Description  
Write 1, then write 0 to refresh the BAT_SOC, VBAT_READ_H, and VBAT_READ_L registers.  
Not applicable Reserved.  
7
SOC_RESET  
Reserved  
W
R
0
[6:0]  
SWITCHING REGULATOR REGISTER BIT DESCRIPTIONS  
Table 59. Buck Configure, Address 0x29 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
[7:6]  
BUCK_SS[1:0]  
R/W  
Factory set  
Buck Regulator Output Soft Start Time. The values of the soft start  
time can be programmed by using the following values:  
00 = 1 ms.  
01 = 8 ms.  
10 = 64 ms.  
11 = 512 ms.  
[5:4]  
BUCK_ILIM[1:0]  
R/W  
11 = 400 mA  
Buck Regulator Peak Current Limit. The values of the peak current  
limit can be programmed by using the following values:  
00 = 100 mA.  
01 = 200 mA.  
10 = 300 mA.  
11 = 400 mA.  
3
2
1
0
BUCK_MODE  
STP_BUCK  
R/W  
R/W  
R/W  
R/W  
Factory set  
0 = disable  
Factory set  
Factory set  
Buck Operate Mode Selection.  
0 = hystersis mode.  
1 = FPWM mode.  
Enable Stop Feature to Buck Regulator.  
0 = disable pulse stop feature.  
1 = enable pulse stop feature.  
Configure Output Discharge Functionality for Buck.  
0 = disable output discharge function.  
1 = enable output discharge function.  
Buck Output Control.  
DISCHG_BUCK  
EN_BUCK  
0 = disable buck output.  
1 = enable buck output.  
Rev. 0 | Page 48 of 60  
 
Data Sheet  
ADP5360  
Table 60. Buck Output Voltage Setting, Address 0x2A Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:6]  
BUCK_DLY[1:0]  
R/W  
00 = 0 μs  
Buck Switch Delay Time in Hystersis. The values of the delay time can be programmed  
by using the following values:  
00 = 0 μs.  
01 = 5 μs.  
10 = 10 μs.  
11 = 20 μs.  
[5:0]  
VOUT_BUCK[5:0] R/W  
Factory set Buck Output Voltage Setting. The values of the voltage setting can be programmed by  
using the following values:  
000000 = 0.6 V.  
000001 = 0.65 V.  
111111 = 3.75 V.  
Table 61. Buck Boost Configure, Address 0x2B Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:6]  
BUCKBST_SS[1:0]  
R/W  
Factory set  
Buck Boost Regulator Output Soft Start Time. The values of the start time can be  
programmed byusing the following values:  
00 = 1 ms.  
01 = 8 ms.  
10 = 64 ms.  
11 = 512 ms.  
[5:3]  
BUCKBST_ILIM[2:0] R/W  
011 = 400 mA  
Buck Boost Regulator Peak Current Limit. The values of the peak current limit can  
be programmed by using the following values:  
000 = 100 mA.  
001 = 200 mA.  
010 = 300 mA.  
011 = 400 mA.  
100 = 500 mA.  
101 = 600 mA.  
110 = 700 mA.  
111 = 800 mA.  
2
1
0
STP_BUCKBST  
R/W  
0 = disable  
Factory set  
Factory set  
Enable Stop Feature to Buck Boost Regulator.  
0 = disable pulse stop feature.  
1 = enable pulse stop feature.  
Configure Output Discharge Functionality for Buck Boost.  
0 = disable output discharge function.  
1 = enable output discharge function.  
Buck Boost Output Control.  
0 = disable buck boost output.  
1 = enable buck boost output.  
DISCHG_BUCKBST R/W  
EN_BUCKBST  
R/W  
Table 62. Buck Boost Output Voltage Setting, Address 0x2C Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
[7:6] BUCKBST_DLY[1:0]  
R/W 00 = 0 μs  
Buck Boost Switch Delay Time in Hystersis. The values of the delay time can be  
programmed by using the following values:  
00 = 0 μs.  
01 = 5 μs.  
10 = 10 μs.  
11 = 20 μs.  
Rev. 0 | Page 49 of 60  
 
ADP5360  
Data Sheet  
Bit(s) Bit Name  
Access Default  
Description  
[5:0]  
VOUT_BUCKBST[5:0] R/W  
Factory set Buck Boost Output Voltage Setting. The values of the voltage setting can be  
programmed by using the following values:  
000000 = 1.8 V with 100 mV step.  
000001 = 1.9 V with 100 mV step.  
001011 = 2.9 V with 100 mV step.  
001100 = 2.95 V with 50 mV step.  
111111 = 5.5 V with 50 mV step.  
SUPERVISORY REGISTER BIT DESCRIPTIONS  
Table 63. Supervisory Setting, Address 0x2D Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
7
6
5
VOUT1_RST  
VOUT2_RST  
RESET_TIME  
R/W  
R/W  
R/W  
1
Buck Output Voltage Monitor to  
Selection.  
RESET  
0 = disable buck voltage monitor to  
1 = enable buck voltage monitor to  
.
RESET  
.
RESET  
0
Buck Boost Output Voltage Monitor to  
Selection.  
RESET  
0 = disable buck boost voltage monitor to  
1 = snable buck boost voltage monitor to  
.
RESET  
.
RESET  
0 = 200 ms  
Timeout Period Selection. The values of the period selection can be programmed  
RESET  
by using the following values:  
0 = 200 ms.  
1 = 1.6 sec.  
[4:3]  
WD_TIME[1:0] R/W  
00 = 12.5 sec Watchdog Timeout Period Selection. The values of the period selection can be  
programmed by using the following values:  
00 = 12.5 sec.  
01 = 25.6 sec.  
10 = 50 sec.  
11 = 100 sec.  
2
1
EN_WD  
R/W  
R/W  
0 = disable  
0 = disable  
When high, the watchdog timer function is enabled. When low, the watchdog timer  
function is disabled.  
EN_MR_SD  
When high, the device enters shipment mode after  
presses low for 12 sec. When  
MR  
low, disable  
to enter shipment mode.  
MR  
0
RESET_WD  
W
0
When high, the watchdog safety timer resets. The RESET_WD bit is reset automatically.  
STATUS AND FAULT REGISTER BIT DESCRIPTIONS  
Table 64. Fault, Address 0x2E Bit Descriptions1  
Bit(s) Bit Name  
Access Default  
Description  
7
6
5
4
3
2
1
0
BAT_UV1  
R/W  
R/W  
R/W  
R/W  
R
0
0
0
0
When high, this bit indicates that the battery is undervoltage when overdischarging.  
When high, this bit indicates that the battery is overcurrent during overdischarge.  
When high, this bit indicates that the battery is overcurrent during overcharge.  
When high, this bit indicates that the battery is overvoltage during overcharge.  
BAT_OC1  
BAT_CHGOC1  
BAT_CHGOV1  
Reserved  
WD_TIMEOUT1 R/W  
Reserved  
TSD1101  
Not applicable Reserved.  
0
0
0
When high, watchdog timeout occurred.  
Reserved.  
R/W  
R/W  
When high, the temperature shutdown fault occurs.  
1 To reset the fault bits in the fault register, cycle power on the VBUS pin or write high to the corresponding bits of the fault register.  
Rev. 0 | Page 50 of 60  
 
 
Data Sheet  
ADP5360  
Table 65. PGOOD_STATUS Register, Address 0x2F Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
Reserved  
[7:6]  
5
R
R
R
Not applicable Reserved.  
MR_PRESS  
CHG_CMPLT  
Not applicable When high, this bit indicates that the  
pin is pulled to low after tDG.  
MR  
4
Not applicable This bit shows battery charge complete.  
0 = the charger is not in charge complete status.  
1 = the charger is in charge complete status.  
3
2
VBUSOK  
BATOK  
R
R
Not applicable This bit shows the real-time status of the VBUS pin voltage.  
0 = the voltage of the VBUS pin is lower than VVBUS_OK or higher than VVBUS_OV  
1 = the voltage of the VBUS pin is higher than VVBUS_OK and lower than VVBUS_OV  
.
.
Not applicable This bit shows the real-time status of the battery voltage. This bit is only active when  
the fuel gauge function is enabled.  
0 = battery voltage is less than VWEAK  
.
1 = battery voltage is more than VWEAK  
.
1
0
VOUT2OK  
VOUT1OK  
R
R
Not applicable This bit shows real-time power good status for the buck boost regulator. This bit is only  
effective in buck boost standalone fixed output mode.  
0 = buck boost regulator power-good status is low.  
1 = buck boost regulator power-good status is high.  
Not applicable This bit shows real-time power-good status for the buck regulator. This bit is not  
effective if the buck is configured as load switch mode.  
0 = buck power-good status is low.  
1 = buck power-good status is high.  
Table 66. PGOOD1_MASK Register, Address 0x30 Bit Descriptions  
Bit(s) Bit Name  
Access  
Default  
Description  
7
PG1_REV  
R/W  
Factory set  
This bit configures the active low output of the PGOOD1 pin.  
0 = disable active low.  
1 = enable active low.  
Reserved  
[6:5]  
4
Not applicable Reserved.  
CHGCMPLT_MASK1 R/W  
0
This bit configures the external PGOOD1 pin.  
0 = does not send the output charger complete signal to the external PGOOD1 pin.  
1 = sends the output charger complete signal to the external PGOOD1 pin.  
This bit configures the external PGOOD1 pin.  
0 = does not send the output VBUS voltage status signal to the external PGOOD1 pin.  
1 = sends the output VBUS voltage status signal to the external PGOOD1 pin.  
This bit configures the external PGOOD1 pin.  
0 = does not send the output battery voltage okay signal to the external PGOOD1 pin.  
1 = sends the output battery voltage okay signal to the external PGOOD1 pin.  
This bit configures the external PGOOD1 pin for buck boost output.  
0 = does not send the output buck boost PGOOD signal to the external PGOOD1 pin.  
1 = sends the output buck boost PGOOD signal to the external PGOOD1 pin.  
3
2
1
0
VBUSOK_MASK1  
BATOK_MASK1  
R/W  
R/W  
R/W  
R/W  
Factory set  
0
VOUT2OK_MASK1  
VOUT1OK_MASK1  
0
Factory set  
This bit configures the external PGOOD1 pin. This bit is not effective if the buck  
is configured in load switch mode.  
0 = does not send the output buck PGOOD signal to the external PGOOD1 pin.  
1 = sends the output buck PGOOD signal to the external PGOOD1 pin.  
Rev. 0 | Page 51 of 60  
 
ADP5360  
Data Sheet  
Table 67. PGOOD2_MASK Register, Address 0x31 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
7
PG2_REV  
R/W  
0
This bit configures the active low output of the PGOOD2 pin output.  
0 = disable active low.  
1 = enable active low.  
Reserved  
[6:5]  
4
Not applicable  
0
Reserved.  
CHGCMPLT_MASK2 R/W  
This bit configures the external PGOOD2 pin.  
0 = does not send the output charger complete signal to the external PGOOD2 pin.  
1 = sends the output charger complete signal to the external PGOOD2 pin.  
This bit configures the external PGOOD2 pin.  
0 = does not send the output VBUS voltage status signal to the external  
PGOOD2 pin.  
3
2
VBUSOK_MASK2  
BATOK_MASK2  
R/W  
R/W  
0
0
1 = sends the output VBUS voltage status signal to the external PGOOD2 pin.  
This bit configures the external PGOOD2 pin.  
0 = does not send the output battery voltage okay signal to the external  
PGOOD2 pin.  
1 = sends the output battery voltage okay signal to the external PGOOD2 pin.  
This bit configures the external PGOOD2 pin for buck boost output.  
0 = does not send the output buck boost PGOOD signal to the external PGOOD2 pin.  
1 = sends the output buck boost PGOOD signal to the external PGOOD2 pin.  
1
0
VOUT2OK_MASK2  
VOUT1OK_MASK2  
R/W  
R/W  
0
0
This bit configures the external PGOOD2 pin. This bit is not effective if the buck  
is configured in load switch mode.  
0 = does not send the output buck PGOOD signal to the external PGOOD2 pin.  
1 = sends the output buck PGOOD signal to the external PGOOD2 pin.  
Table 68. INTERRUPT_ENABLE1 Register, Address 0x32 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
7
6
5
4
3
2
1
0
EN_SOCLOW_INT  
EN_SOCACM_INT  
EN_ADPICHG_INT  
EN_BATPRO_INT  
EN_THR_INT  
0
0
0
0
0
0
0
0
When high, the battery low state of the charge interrupt is allowed.  
When high, the state of e tcharge accumulation interrupt is allowed.  
When high, the VBUS adaptive charge current-limit interrupt is allowed.  
When high, the battery protection interrupt is allowed.  
When high, the THR temperature threshold interrupt is allowed.  
When high, the battery voltage threshold interrupt is allowed.  
When high, the charger mode change interrupt is allowed.  
When high, the VBUS pin voltage threshold interrupt is allowed.  
EN_BAT_INT  
EN_CHG_INT  
EN_VBUS_INT  
Table 69. INTERRUPT_ENABLE2 Register, Address 0x33 Bit Descriptions  
Bit(s)  
Bit Name  
Access  
Default  
Description  
7
EN_MR_INT  
R/W  
0
When high, the  
press interrupt is allowed.  
MR  
6
EN_WD_INT  
R/W  
0
When high, the watchdog alarm interrupt is allowed.  
When high, the VOUT1OK change interrupt is allowed.  
When high, the VOUT2OK change interrupt is allowed.  
Reserved.  
5
EN_BUCKPG_INT  
EN_BUCKBSTPG_INT  
Reserved  
R/W  
0
4
R/W  
0
[3:0]  
R/W  
Not applicable  
Rev. 0 | Page 52 of 60  
Data Sheet  
ADP5360  
Table 70. INTERRUPT_FLAG1 Register, Address 0x34 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
7
6
SOCLOW_INT1  
R
R
Not applicable  
When high, this bit indicates an interrupt caused by low battery voltage.  
SOCACM_INT1  
ADPICHG_INT  
BATPRO_INT1  
Not applicable  
Not applicable  
Not applicable  
When high, this bit indicates an interrupt caused by state of charge accumulation to  
4096 points and an overflow of points.  
5
4
R
R
When high, this bit indicates an interrupt caused by VBUS input current-limit  
adaptive regulation.  
When high, this bit indicates an interrupt caused by battery protection triggered with  
battery fault events.  
3
2
1
0
THR_INT1  
BAT_INT1  
CHG_INT1  
VBUS_INT1  
R
R
R
R
Not applicable  
Not applicable  
Not applicable  
Not applicable  
When high, this bit indicates an interrupt caused by THR temperature thresholds.  
When high, this bit indicates an interrupt caused by battery voltage thresholds.  
When high, this bit indicates an interrupt caused by a charger mode change.  
When high, this bit indicates an interrupt caused by VBUS voltage threshold.  
1 When reading the register, the interrupt bit resets automatically.  
Table 71. INTERRUPT_FLAG2 Register, Address 0x35 Bit Descriptions  
Bit(s)  
7
Bit Name  
Access  
Default  
Description  
MR_INT1  
R
R
R
R
R
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
When high, this bit indicates an interrupt caused by the  
press.  
MR  
6
WD_INT1  
When high, this bit indicates an interrupt caused by the watchdog alarm.  
When high, this bit indicates an interrupt caused by a VOUT1OK trigger.  
When high, this bit indicates an interrupt caused by a VOUT2OK trigger.  
Reserved.  
5
BUCKPG_INT1  
BUCKBSTPG_INT1  
Reserved  
4
[3:0]  
1 When reading the register, the interrupt bit resets automatically.  
Table 72. SHIPMODE Register, Address 0x36 Bit Descriptions  
Bit(s) Bit Name  
Access Default  
Description  
Reserved  
[7:1]  
0
R
Not applicable Reserved.  
EN_SHIPMODE R/W  
0
When high, the ADP5360 enters shipment mode. When low, shipment mode is disabled.  
Rev. 0 | Page 53 of 60  
ADP5360  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUITS  
VSYS  
USB  
5V  
VIN1  
SW1  
VBUS  
VDD  
ADP5360  
C5  
C1  
2.2µF  
L1  
4.7µH  
VOUT1  
VBUS PROTECTION  
LOW IQ  
BUCK  
10µF  
C2  
LDO FET  
1µF  
REGULATOR  
C6  
10µF  
AGNDx  
VSYS  
PGND1  
FB1  
VSYS  
320mA  
LINEAR CHARGER  
CONTROL  
AND  
C3  
10µF  
VID1  
VIN2  
VSYS  
C7  
ISOB  
BATTERY  
C4  
10µF  
10µF  
PROTECTION  
AND  
SW2A  
BSNS  
FUEL GAUGE  
PGND2  
LOW IQ  
BUCK BOOST  
REGULATOR  
L2  
4.7µH  
LI-ION  
BATTERY  
(100mAh)  
THR  
SW2B  
VOUT2  
C8  
ILIM  
ICS  
VOUT2  
EN2  
10µF  
EN1  
STP  
ENCHG  
SCL  
PGOOD1 MCU  
PGOOD2  
2
MCU  
SDA  
INT  
I C  
INTERFACE  
CONTROL  
LOGIC  
RESET  
MR  
VDD  
R9  
ENSD  
Figure 60. ADP5360 Application Diagram  
VSYS  
USB  
5V  
VIN1  
SW1  
VBUS  
ADP5360  
MEMS  
MCU  
C5  
L1  
VDD  
C1  
2.2µF  
VBUS PROTECTION  
LOW IQ  
BUCK  
10µF  
4.7µH  
VDD  
AGNDx  
VSYS  
LDO FET  
VOUT1  
C2  
1µF  
REGULATOR  
C6  
10µF  
PGND1  
FB1  
VSYS  
300mA  
LINEAR CHARGER  
CONTROL  
AND  
R3  
VID1  
VIN2  
VSYS  
C7  
C3  
10µF  
36kΩ  
BATTERY  
ISOB  
PROTECTION  
AND  
C4  
10µF  
10µF  
SW2A  
BSNS  
FUEL GAUGE  
PGND2  
LOW IQ  
BUCK BOOST  
REGULATOR  
L2  
4.7µH  
LI-ION  
THR  
BATTERY  
(100mAh)  
SW2B  
R1  
15kΩ  
ILIM  
ICS  
VOUT2  
C8  
VOUT2  
EN2  
OPTICAL  
AFE  
VSYS  
MCU  
R2  
68kΩ  
10µF  
EN1  
ENCHG  
SCL  
STP  
PGOOD1  
PGOOD2  
2
MCU  
SDA  
INT  
I C  
INTERFACE  
CONTROL  
LOGIC  
RESET  
MR  
VDD  
R9  
ENSD  
1MΩ  
Figure 61. Li-Ion Battery Charger Application in Healthcare Portable  
Rev. 0 | Page 54 of 60  
 
 
 
Data Sheet  
ADP5360  
Buck Input Capacitor Selection  
EXTERNAL COMPONENTS  
An input capacitor is required to reduce the input voltage ripple,  
input ripple current, and source impedance. Place the input  
capacitor as close as possible to the VIN1 pin. Use the following  
equation to determine the rms input current:  
VBUS Capacitor Selection  
According to the USB specification, USB peripherals have a  
detectable change in capacitance on VBUS when VBUS is  
attached. The peripheral device VBUS bypass capacitance must be  
at least 1 μF but not larger than 10 μF. The combined capacitance  
for the VBUS pin and the VDD pin must not exceed 10 μF at  
any temperature or dc bias condition. Suggested VBUS  
capacitors are shown in Table 73.  
VOUT  
V VOUT  
IN  
(
)
IRMS ILOAD(MAX )  
VIN  
For most applications, the VIN1 pin ties together with the VSYS  
pin. The VSYS capacitance is effective, therefore, a 1 µF capacitor  
is sufficient for the VIN1 pin. The input capacitor can be  
increased without any limit for better input voltage filtering.  
Suggested VIN1 capacitors are show in Table 75.  
Table 73. Suggested VBUS Capacitors  
Vendor Product Number  
Murata GRM155R61E225ME15D 2.2  
Yageo CC0402MRX5R8BB225 2.2  
Value (µF) Voltage (V) Size  
25  
25  
0402  
0402  
Buck Inductor Selection  
VDD Capacitor Selection  
The high switching frequency of the ADP5360 buck converter  
allows the selection of small chip inductors when the buck  
operates in FPWM mode.  
The internal supply voltage of the ADP5360 is equipped with a  
noise suppressing capacitor at VDD. Use typical VDD  
capacitance (1 μF). However, do not exceed 10 μF during  
operation. Do not connect any external voltage source, any  
resistive load, or any other current load to VDD. Suggested  
VDD capacitors are shown in Table 74.  
Use the following equation to calculate the peak-to-peak  
inductor current ripple (IRIPPLE1):  
IRIPPLE1 = VOUT1 × ((VIN1 VOUT1))/(VIN1 × fSW × L1)  
where:  
Table 74. Suggested VDD Capacitors  
V
V
OUT1 is the buck output voltage.  
IN1 is the buck input voltage at the VIN1 node.  
Vendor Product Number  
Value (µF) Voltage (V) Size  
Murata GRM155R60J105KE19D  
1
1
6.3  
6.3  
0402  
0402  
fSW is the buck switching frequency.  
Yageo  
CC0402KRX5R5BB105  
L1 is the buck output inductor value.  
VSYS Capacitor Selection  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current (IPEAK1). To calculate IPEAK1, use  
the following equation:  
To guarantee the performance of the charger in various operation  
modes, including trickle charge, constant current charge, and  
constant voltage charge, it is imperative that the effects of dc bias,  
temperature, and tolerances on the behavior of the capacitors be  
evaluated for each application. The total VSYS capacitance  
consists of all capacitors when VSYS is tied together with the  
input node of the buck and buck boost regulators.  
IPEAK1 = ILOAD1(MAX) + IRIPPLE1  
where ILOAD(MAX) is the output current load.  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal dc  
resistance (DCR). Larger inductors have smaller DCR values  
that can decrease inductor conduction losses. Inductor core  
losses are related to the magnetic permeability of the core material.  
Because the buck regulators are high switching frequency dc-to-  
dc converters, shielded ferrite core material is recommended for  
low core losses and low electromagnetic interference (EMI).  
The VSYS capacitance must be ≥10 μF. Suggested VSYS  
capacities are shown in Table 75.  
Table 75. Suggested VSYS, ISOB, VIN1, VIN2, VOUT1, and  
VOUT2 Capacitors  
Vendor Product Number  
Value (µF) Voltage (V) Size  
Murata  
Yageo  
GRM155R60J106ME44D 10  
CC0402MRX5R5BB106 10  
6.3  
6.3  
0402  
0402  
Suggested buck inductors are shown in Table 76.  
Buck Output Capacitor Selection  
ISOB Capacitor Selection  
Output capacitance is required to minimize the output voltage  
overshoot and undershoot and to minimize the output ripple  
significantly both in hysteresis mode and FPWM mode.  
Capacitors with low equivalent series resistance (ESR) values  
produce the lowest output ripple in FPWM mode.  
The ISOB effective capacitance must be ≥4.7 μF at any point during  
operation. Typically, a nominal capacitance of 10 μF is required to  
fulfill the condition at all points of operation. Suggestions for an  
ISOB capacitor are show in Table 75.  
Suggested buck output capacitors are shown in Table 75.  
Rev. 0 | Page 55 of 60  
 
 
 
 
ADP5360  
Data Sheet  
Buck Boost Input Capacitor Selection  
Buck Boost Inductor Selection  
An input capacitor is required to reduce the input voltage ripple,  
input ripple current, and source impedance. Place the input  
capacitor as close as possible to the VIN2 pin.  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal DCR.  
Larger inductors have smaller DCR values that can decrease  
inductor conduction losses. Inductor core losses are related to  
the magnetic permeability of the core material.  
For most applications, the VIN2 pin ties together with the VSYS  
pin. The VSYS capacitance is effective, therefore, a 1 μF capacitor  
is sufficient for the VIN2 pin. The input capacitor can be  
increased without any limit for better input voltage filtering.  
Suggested VIN2 capacitors are show in Table 75.  
Suggested buck boost inductors are shown in Table 76.  
Buck Boost Output Capacitor Selection  
Output capacitance is required to minimize the output voltage  
overshoot and undershoot and to minimize the output ripple  
significantly in hysteresis mode.  
Suggested buck boost output capacitors are shown in Table 75.  
Table 76. Recommended Inductors  
Vendor  
Wurth  
TDK  
Model  
74479776247A  
MLP2016H4R7  
Inductance (μH)  
4.7  
4.7  
Dimensions (mm)  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 0.85  
DCR (mΩ)  
140  
160  
Rated Current (IR) (A)  
1.2  
1.1  
Rev. 0 | Page 56 of 60  
 
Data Sheet  
ADP5360  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP5360 performance, causing EMI and  
electromagnetic compatibility (EMC) problems, ground bounce,  
and voltage losses, as well as affect regulation and stability. A  
good layout is implemented using the following guidelines:  
Use a dedicated trace to connect the BSNS pin to the  
battery pack output node for accurate sensing of the  
battery voltage.  
Use 0603 size or 0402 size resistors and capacitors to  
achieve the smallest possible footprint solution on boards  
where space is limited.  
Place the decoupling capacitor, inductor, input capacitor,  
and output capacitor as close as possible to the ADP5360.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise  
interference on sensitive circuit nodes.  
VOUT2  
C8  
10µF  
6.3V/X5R  
0402  
L2  
4.7µH  
0806  
TO MCU  
6
5
4
3
2
1
PGND2  
SW2B VOUT2  
SCL  
SDA  
INT  
A
TO  
BATTERY  
SW2A AGND ENSD  
EN2 PGOOD1 THR  
PGOOD2 BSNS  
C7  
10µF  
6.3V/X5R  
0402  
B
C
C4  
10µF  
VIN2  
FB1  
STP  
6.3V/X5R  
0402  
ISOB  
VSYS  
ADP5360  
VID1  
5mm  
ISOB  
VSYS  
ILIM  
ICS  
D
E
F
SW1  
EN1  
RESET  
ENCHG  
MR  
C3  
10µF  
6.3V/X5R  
0402  
L1  
4.7µH  
0806  
PGND1 VIN1  
VDD  
VBUS  
AGND  
C1  
2.2µF  
25V/X5R  
0402  
PGND  
C6  
10µF  
6.3V/X5R  
0402  
C5  
10µF  
6.3V/X5R  
0402  
C2  
1µF  
6.3V/X5R  
0402  
VBUS  
VOUT1  
PGND  
7mm  
TOP LAYER  
BOTTOM LAYER  
Figure 62. Recommend Layout  
Rev. 0 | Page 57 of 60  
 
ADP5360  
Data Sheet  
FACTORY-PROGRAMMABLE OPTIONS  
Table 77. Fuse-Programmable Trim Options for the Different Modes of the ADP5360  
Parameter  
I2C Address  
Value  
0x46  
Default Setting  
0x46  
0x56  
0x66  
0x76  
EN_CHG  
ITHR  
Enable charger  
Disable charger  
Disable charger  
60 μA  
60 μA  
12 μA  
6 μA  
VTRM  
3.96 V  
4.16 V  
4.06 V  
4.16 V  
4.26 V  
4.36 V  
4.36 V  
4.46 V  
4.46 V  
EN_BATPRO  
UV_DISCH  
Disable battery protection function  
Enable battery protection function  
Enable battery protection function  
2.5 V  
2.2 V  
2.5 V  
2.6 V  
2.8 V  
OC_DISCH  
OV_CHG  
OC_CHG  
100 mA  
200 mA  
400 mA  
600 mA  
600 mA  
4.30 V  
4.25 V  
4.30 V  
4.40 V  
4.50 V  
100 mA  
150 mA  
150 mA for the ADP5360ACBZ-1-R7 and 400 mA for  
the ADP5360ACBZ-2-R7  
200 mA  
400 mA  
EN_BUCK  
BUCK_SS  
Disable buck output  
Enable buck output  
Enable buck output  
1 ms  
1 ms  
8 ms  
64 ms  
512 ms  
BUCK_MODE  
Hystersis mode  
Hystersis mode  
FPWM mode  
DISCHG_BUCK  
Disable output discharge function  
Enable output discharge function  
Disable output discharge function  
Rev. 0 | Page 58 of 60  
 
Data Sheet  
ADP5360  
Parameter  
Value  
Default Setting  
VOUT_BUCK  
1.0 V  
1.2 V  
1.2 V for the ADP5360ACBZ-1-R7 and 1.8 V for the  
ADP5360ACBZ-2-R7  
1.5 V  
1.8 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
EN_BUCKBST  
BUCKBST_SS  
Disable buck boost output  
Enable buck boost output  
Disable buck boost output  
1 ms  
1 ms  
8 ms  
64 ms  
512 ms  
DISCHG_BUCKBST Disable output discharge function  
Enable output discharge function  
Disable output discharge function  
VOUT_BUCKBST  
2.5 V  
3.3 V  
3.3 V for the ADP5360ACBZ-2-R7 and 5.0 V for the  
ADP5360ACBZ-1-R7  
3.6 V  
4.0 V  
4.2 V  
4.6 V  
5.0 V  
5.5 V  
PG1_REV  
Disable PGOOD1 pin output active low  
Enable PGOOD1 pin output active low  
Disable PGOOD1 pin output active low  
VBUSOK_MASK1  
Do not output the VVBUS voltage status signal to the external  
PGOOD1 pin  
Do not output the VVBUS voltage status signal to the  
external PGOOD1 pin  
Output the VVBUS voltage status signal to the external PGOOD1 pin  
VOUT1OK_MASK1  
Do not output the buck PGOOD signal to the external  
PGOOD1 pin  
Do not output the buck PGOOD signal to the  
external PGOOD1 pin  
Output the buck PGOOD signal to the external PGOOD1 pin  
Rev. 0 | Page 59 of 60  
ADP5360  
Data Sheet  
OUTLINE DIMENSIONS  
2.600  
2.560  
2.520  
BOTTOM VIEW  
(BALL SIDE UP)  
6
5
4
3
2
1
A
B
C
D
E
F
BALL A1  
IDENTIFIER  
2.00  
REF  
0.40  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
0.330  
0.300  
0.270  
0.560  
0.500  
0.440  
SIDE VIEW  
COPLANARITY  
0.04  
0.300  
0.200  
0.170  
SEATING  
PLANE  
0.230  
0.200  
0.170  
Figure 63. 32-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
32-Ball Wafer Level Chip Scale Package [WLCSP]  
32-Ball Wafer Level Chip Scale Package [WLCSP]  
Package Option  
CB-32-2  
CB-32-2  
ADP5360ACBZ-1-R7  
ADP5360ACBZ-2-R7  
ADP5360CB-EVALZ  
Evaluation Board Assembled with ADP5360ACBZ-1-R7  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D20499-0-11/19(0)  
Rev. 0 | Page 60 of 60  
 
 

相关型号:

ADP5360ACBZ-1-R7

Advanced Battery Management PMIC with Ultra Low Power Buck and Buck Boost
ADI

ADP5360ACBZ-2-R7

Advanced Battery Management PMIC with Ultra Low Power Buck and Buck Boost
ADI

ADP5360CB-EVALZ

Advanced Battery Management PMIC with Ultra Low Power Buck and Buck Boost
ADI

ADP5501

Programmable Current Backlight Driver with Ambient Light Sensor Input
ADI

ADP5501ACPZ-RL

Programmable Current Backlight Driver with Ambient Light Sensor Input
ADI

ADP5501ACPZ-RL

SPECIALTY ANALOG CIRCUIT, QCC24, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-2, LFCSP-24
ROCHESTER

ADP5520

Backlight Driver with I/O Expander
ADI

ADP5520ACPZ-R7

Backlight Driver with I/O Expander
ADI

ADP5520ACPZ-RL

Backlight Driver with I/O Expander
ADI

ADP5520ACPZ-RL1

Backlight Driver with I/O Expander
ADI

ADP5585

Keypad Decoder and I/O Expansion GPIO functions GPIO functions
ADI

ADP5585ACBZ-00-R7

Keypad Decoder and I/O Expansion
ADI