ADR01AKSZ-R2 [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10 V, PDSO5, MO-203-AA, SC-70, 5 PIN, Voltage Reference;
ADR01AKSZ-R2
型号: ADR01AKSZ-R2
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10 V, PDSO5, MO-203-AA, SC-70, 5 PIN, Voltage Reference

光电二极管 输出元件
文件: 总24页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultracompact, Precision  
10.0 V/5.0 V/2.5 V/3.0 V Voltage References  
ADR01/ADR02/ADR03/ADR06  
FEATURES  
PIN CONFIGURATIONS  
Ultracompact SC70 and TSOT packages  
Low temperature coefficient  
8-lead SOIC: 3 ppm/°C  
ADR01/  
TEMP  
GND  
1
2
3
5
TRIM  
ADR02/  
ADR03/  
ADR06  
V
V
TOP VIEW  
(Not to Scale)  
4
IN  
OUT  
5-lead SC70: 9 ppm/°C  
5-lead TSOT: 9 ppm/°C  
Initial accuracy 0.1ꢀ  
Figure 1. 5-Lead, SC70/TSOT Surface-Mount Packages  
No external capacitor required  
Low noise 10 μV p-p (0.1 Hz to 10.0 Hz)  
Wide operating range  
ADR01: 12.0 V to 36.0 V  
ADR02: 7.0 V to 36.0 V  
1
2
3
4
8
7
6
5
TP  
TP  
NIC  
V
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
IN  
TEMP  
GND  
OUT  
TOP VIEW  
(Not to Scale)  
TRIM  
ADR03: 4.5 V to 36.0 V  
ADR06: 5.0 V to 36.0 V  
NIC = NO INTERNAL CONNECT  
TP = TEST PIN (DO NOT CONNECT)  
High output current 10 mA  
Wide temperature range: –40°C to +125°C  
ADR01/ADR02/ADR03 pin compatible to industry-  
standard REF01/REF02/REF03  
Figure 2. 8-Lead, SOIC Surface-Mount Package  
APPLICATIONS  
Precision data acquisition systems  
High resolution converters  
Industrial process control systems  
Precision instruments  
PCMCIA cards  
The ADR01, ADR02, ADR03, and ADR06 are compact, low  
drift voltage references that provide an extremely stable output  
voltage from a wide supply voltage range. They are available in  
5-lead SC70 and TSOT packages, and 8-lead SOIC packages  
with A, B, and C grade selections. All parts are specified over  
the extended industrial (–40°C to +125°C) temperature range.  
GENERAL DESCRIPTION  
The ADR01, ADR02, ADR03, and ADR06 are precision 10.0 V,  
5.0 V, 2.5 V, and 3.0 V band gap voltage references featuring high  
accuracy, high stability, and low power consumption. The parts  
are housed in tiny, 5-lead SC70 and TSOT packages, as well as  
in 8-lead SOIC versions. The SOIC versions of the ADR01,  
ADR02, and ADR03 are drop-in replacements1 to the industry-  
standard REF01, REF02, and REF03. The small footprint and  
wide operating range make the ADR0x references ideally suited  
for general-purpose and space-constrained applications.  
Table 1. Selection Guide  
Part Number  
Output Voltage  
10.0 V  
ADR01  
ADR02  
5.0 V  
With an external buffer and a simple resistor network, the  
TEMP terminal can be used for temperature sensing and  
approximation. A TRIM terminal is provided on the devices for  
fine adjustment of the output voltage.  
ADR03  
ADR06  
2.5 V  
3.0 V  
1 ADRO1, ADR02, and ADR03 are component-level compatible with REF01, REF02, and REF03, respectively. No guarantees for system-level compatibility are implied.  
SOIC versions of ADR01/ADR02/ADR03 are pin-to-pin compatible with 8-lead SOIC versions of REF01/REF02/REF03, respectively, with the additional temperature  
monitoring function.  
Rev. L  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
Tel: 781.329.4700  
www.analog.com  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
 
 
ADR01/ADR02/ADR03/ADR06  
TABLE OF CONTENTS  
ESD Caution...................................................................................7  
Terminology.......................................................................................8  
Typical Performance Characteristics ..............................................9  
Applications..................................................................................... 14  
Applying the ADR01/ADR02/ADR03/ADR06...................... 14  
Negative Reference..................................................................... 15  
Low Cost Current Source.......................................................... 15  
Precision Current Source with Adjustable Output................ 15  
Programmable 4 mA to 20 mA Current Transmitter............ 16  
Precision Boosted Output Regulator....................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guides......................................................................... 18  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR01 Electrical Characteristics............................................... 3  
ADR02 Electrical Characteristics............................................... 4  
ADR03 Electrical Characteristics............................................... 5  
ADR06 Electrical Characteristics............................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
REVISION HISTORY  
2/04—Rev. D to Rev. E  
12/08—Rev. K to Rev. L  
Added C grade ....................................................................Universal  
Changes to Outline Dimensions .................................................. 19  
Updated Ordering Guide .............................................................. 20  
Changes to Maximum Input Voltage...............................Universal  
Removed Die Version.........................................................Universal  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 4  
Changes to Table 4............................................................................ 5  
Changes to Table 5............................................................................ 6  
Deleted Table 6 and Figure 3........................................................... 7  
Changes to Terminology Section.................................................... 8  
Added Input and Output Capacitors Section ............................. 15  
8/03—Rev. C to Rev D  
Added ADR06.....................................................................Universal  
Change to Figure 27 ....................................................................... 13  
6/03—Rev. B to Rev C  
Changes to Features Section ............................................................1  
Changes to General Description Section .......................................1  
Changes to Figure 2...........................................................................1  
Changes to Specifications Section...................................................2  
Addition of Dice Electrical Characteristics and Layout...............6  
Changes to Absolute Maximum Ratings Section..........................7  
Updated SOIC (R-8) Outline Dimensions.................................. 19  
Changes to Ordering Guide.......................................................... 20  
2/08—Rev. J to Rev. K  
Changes to Terminology Section.................................................... 9  
Changes to Ordering Guide .......................................................... 19  
3/07—Rev. I to Rev. J  
Renamed Parameters and Definitions Section............................. 9  
Changes to Temperature Monitoring Section ............................ 15  
Changes to Ordering Guide .......................................................... 19  
2/03—Rev. A to Rev. B  
7/05—Rev. H to Rev. I  
Added ADR03.....................................................................Universal  
Added TSOT-5 (UJ) Package............................................Universal  
Updated Outline Dimensions....................................................... 18  
Changes to Table 5............................................................................ 7  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 19  
12/02—Rev. 0 to Rev. A  
12/04—Rev. G to Rev. H  
Changes to ADR06 Ordering Guide............................................ 20  
Changes to Features Section ............................................................1  
Changes to General Description .....................................................1  
Table I deleted ....................................................................................1  
Changes to ADR01 Specifications...................................................2  
Changes to ADR02 Specifications...................................................3  
Changes to Absolute Maximum Ratings Section..........................4  
Changes to Ordering Guide.............................................................4  
Updated Outline Dimensions....................................................... 12  
9/04—Rev. F to Rev. G  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Table 4............................................................................ 6  
Changes to Table 5............................................................................ 7  
Changes to Ordering Guide .......................................................... 19  
7/04—Rev. E to Rev. F  
Changes to ADR02 Electrical Characteristics, Table 2................ 4  
Changes to Ordering Guide .......................................................... 19  
Rev. L | Page 2 of 24  
 
ADR01/ADR02/ADR03/ADR06  
SPECIFICATIONS  
ADR01 ELECTRICAL CHARACTERISTICS  
VIN = 12.0 V to 36.0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
10.010  
10  
Unit  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
9.990 10.000  
V
VOERR  
mV  
0.1  
10.005  
5
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
9.995 10.000  
V
VOERR  
mV  
0.05  
10  
%
TEMPERATURE COEFFICIENT  
TCVO  
3
1
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
A grade, 8-lead SOIC, 40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
25  
25  
3
9
9
40  
10  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VDO  
2
∆VO/∆VIN  
∆VO/∆ILOAD  
VIN = 12.0 V to 36.0 V, –40°C < TA < +125°C  
7
30  
70  
ppm/V  
ppm/mA  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 15.0 V  
40  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
20  
1
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
75  
30  
SHORT CIRCUIT TO GND  
TEMPERATURE SENSOR  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. L | Page 3 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR02 ELECTRICAL CHARACTERISTICS  
VIN = 7.0 V to 36.0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
4.995 5.000 5.005  
V
VOERR  
5
mV  
0.1  
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
4.997 5.000 5.003  
V
VOERR  
3
mV  
0.06  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, 8-lead SOIC, –40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
A grade, 5-lead SC70, –55°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
10  
DROPOUT VOLTAGE  
LINE REGULATION  
VDO  
2
∆VO/∆VIN  
VIN = 7.0 V to 36.0 V, –40°C < TA < +125°C  
VIN = 7.0 V to 36.0 V, –55°C < TA < +125°C  
7
7
30  
40  
70  
ppm/V  
ppm/V  
ppm/mA  
LOAD REGULATION  
∆VO/∆ILOAD  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 10.0 V  
40  
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
45  
80  
1
ppm/mA  
V
IN = 10.0 V  
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
10  
mA  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
230  
4
tR  
∆VO  
∆VO_HYS  
1000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
80  
–55°C < TA < +125°C  
fIN = 10 kHz  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
TEMPERATURE SENSOR  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
RRR  
ISC  
–75  
30  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. L | Page 4 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR03 ELECTRICAL CHARACTERISTICS  
VIN = 4.5 V to 36.0 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
2.505  
5
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
2.495  
2.500  
VOERR  
mV  
0.2  
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grades  
B grades  
2.4975 2.5000 2.5025  
V
VOERR  
2.5  
0.1  
mV  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, 8-lead SOIC, –40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
A grade, 5-lead SC70, –55°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
1
10  
DROPOUT VOLTAGE  
LINE REGULATION  
VDO  
2
V
∆VO/∆VIN  
VIN = 4.5 V to 36.0 V, –40°C < TA < +125°C  
VIN = 4.5 V to 36.0 V, –55°C < TA < +125°C  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
7
7
30  
40  
70  
ppm/V  
ppm/V  
ppm/mA  
LOAD REGULATION  
∆ VO/∆ILOAD  
25  
V
IN = 7.0 V  
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
VIN = 7.0 V  
45  
80  
1
ppm/mA  
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
6
mA  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
230  
4
tR  
∆VO  
∆VO_HYS  
1000 hours  
50  
70  
80  
–75  
30  
ppm  
ppm  
ppm  
dB  
–55°C < TA < +125°C  
fIN = 10 kHz  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
TEMPERATURE SENSOR  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
RRR  
ISC  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. L | Page 5 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR06 ELECTRICAL CHARACTERISTICS  
VIN = 5.0 V to 36.0 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
3.006  
6
Unit  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
A and C grades  
A and C grades  
2.994  
3.000  
V
VOERR  
mV  
0.2  
3.003  
3
%
OUTPUT VOLTAGE  
INITIAL ACCURACY  
VO  
B grade  
B grade  
2.997  
3.000  
V
VOERR  
mV  
0.1  
10  
25  
25  
3
9
9
40  
%
TEMPERATURE COEFFICIENT  
TCVO  
A grade, 8-lead SOIC, –40°C < TA < +125°C  
A grade, 5-lead TSOT, –40°C < TA < +125°C  
A grade, 5-lead SC70, –40°C < TA < +125°C  
B grade, 8-lead SOIC, –40°C < TA < +125°C  
B grade, 5-lead TSOT, –40°C < TA < +125°C  
B grade, 5-lead SC70, –40°C < TA < +125°C  
C grade, 8-lead SOIC, –40°C < TA < +125°C  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
10  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VDO  
2
∆VO/∆VIN  
VIN = 5.0 V to 36.0 V, –40°C < TA < +125°C  
7
30  
70  
ppm/V  
ppm/mA  
∆VO/∆ILOAD ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 7.0 V  
40  
QUIESCENT CURRENT  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
0.65  
10  
1
mA  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
TEMPERATURE SENSOR  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
–75  
30  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. L | Page 6 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ABSOLUTE MAXIMUM RATINGS  
Ratings are at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 6.  
Parameter  
Rating  
Supply Voltage  
36.0 V  
Indefinite  
–65°C to +150°C  
–40°C to +125°C  
–65°C to +150°C  
300°C  
Table 7. Thermal Resistance  
Package Type  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
θJA  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
5-Lead SC70 (KS-5)  
5-Lead TSOT (UJ-5)  
8-Lead SOIC (R-8)  
376  
230  
130  
189  
146  
43  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. L | Page 7 of 24  
 
ADR01/ADR02/ADR03/ADR06  
TERMINOLOGY  
Dropout Voltage (VDO  
)
Long-Term Stability (ΔVOUT_LTD)  
Dropout voltage, sometimes referred to as supply voltage head-  
room or supply output voltage differential, is defined as the  
minimum voltage differential between the input and output  
necessary for the device to operate, such as  
Long-term stability refers to the shift in output voltage at 25°C  
after 1000 hours of operation in a 25°C environment. This may  
also be expressed as either a shift in voltage or a difference in  
parts per million from the nominal output as follows:  
V
DO = (VIN VOUT)min|IL = Constant  
ΔVOUT_LTD = |VOUT(t1) – VOUT(t0)| [V]  
VOUT (t1 )VOUT (t0 )  
Because the dropout voltage depends upon the current passing  
through the device, it is always specified for a given load  
current.  
ΔVOUT _ LTD  
=
×106 [ppm]  
VOUT (t0 )  
where,  
VOUT(t0) is the VOUT at 25°C at Time 0.  
OUT(t1) is the VOUT at 25°C after 1000 hours of operation at 25°C.  
Temperature Coefficient (TCVO)  
The temperature coefficient relates the change in output voltage  
to the change in ambient temperature of the device, as normalized  
by the output voltage at 25°C. This parameter is expressed in  
ppm/°C and can be determined by the following equation:  
V
Line Regulation  
Line regulation refers to the change in output voltage in  
response to a given change in input voltage, and is expressed in  
either percent per volt, parts per million per volt, or microvolt  
per volt change in input voltage. This parameter accounts for  
the effects of self-heating.  
VOUT (T2 ) V (T )  
TCVO =  
×106  
[
ppm/oC  
]
1
OUT  
V
OUT (25oC)×  
(
T2 T  
)
1
where:  
VOUT(25°C) is the output voltage at 25°C.  
OUT(T1) is the output voltage at Temperature 1.  
VOUT(T2) is the output voltage at Temperature 2.  
Output Voltage Hysteresis (ΔVOUT_HYS  
Load Regulation  
V
Load regulation refers to the change in output voltage in  
response to a given change in load current, and is expressed in  
either microvolts per milliampere, parts per million per  
milliampere, or ohms of dc output resistance. This parameter  
accounts for the effects of self-heating.  
)
Output voltage hysteresis represents the change in output  
voltage after the device is exposed to a specified temperature  
cycle. This may be expressed as either a shift in voltage or a  
difference in parts per million from the nominal output as  
follows:  
V
OUT_HYS = VOUT(25°C) – VOUT_TC [V]  
V
OUT (25oC) VOUT _TC  
VOUT _HYS  
=
×106 [ppm]  
V
OUT (25oC)  
where:  
VOUT(25°C) is the output voltage at 25°C.  
VOUT_TC is the output voltage after temperature cycling.  
Thermal hysteresis occurs as a result of forces exhibited upon  
the internal die by its packaging. The effect is more pronounced  
in parts with smaller packages.  
Rev. L | Page 8 of 24  
 
ADR01/ADR02/ADR03/ADR06  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.002  
3.001  
3.000  
10.010  
10.005  
10.000  
9.995  
9.990  
9.985  
2.999  
2.998  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. ADR01 Typical Output Voltage vs. Temperature  
Figure 6. ADR06 Typical Output Voltage vs. Temperature  
5.008  
0.8  
0.7  
0.6  
5.004  
5.000  
+125°C  
+25°C  
–40°C  
0.5  
0.4  
4.996  
4.992  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
12  
16  
20  
24  
28  
32  
36  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 4. ADR02 Typical Output Voltage vs. Temperature  
Figure 7. ADR01 Supply Current vs. Input Voltage  
2.502  
0.8  
0.7  
0.6  
+125°C  
2.501  
2.500  
+25°C  
–40°C  
0.5  
0.4  
2.499  
2.498  
8
12  
16  
20  
24  
28  
32  
36  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 5. ADR03 Typical Output Voltage vs. Temperature  
Figure 8. ADR02 Supply Current vs. Input Voltage  
Rev. L | Page 9 of 24  
 
ADR01/ADR02/ADR03/ADR06  
0.85  
50  
40  
30  
20  
10  
0
I
= 0mA TO 5mA  
L
0.80  
0.75  
0.70  
V
= 36V  
IN  
+125°C  
0.65  
+25°C  
0.60  
–40°C  
0.55  
V
= 8V  
IN  
0.50  
–10  
–20  
0.45  
0.40  
5
10  
15  
20  
25  
30  
35 36  
–40  
0
25  
TEMPERATURE (°C)  
85  
125  
INPUT VOLTAGE (V)  
Figure 9. ADR03 Supply Current vs. Input Voltage  
Figure 12. ADR02 Load Regulation vs. Temperature  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
60  
50  
I
= 0mA TO 10mA  
L
V
= 7V  
IN  
+125°C  
40  
30  
20  
V
= 36V  
IN  
+25°C  
–40°C  
10  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
5
10  
15  
20  
25  
30  
35 36  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 10. ADR06 Supply Current vs. Input Voltage  
Figure 13. ADR03 Load Regulation vs. Temperature  
40  
30  
40  
30  
I
= 0mA TO 10mA  
L
I
= 0mA TO 10mA  
L
V
= 36V  
IN  
V
= 36V  
IN  
20  
10  
20  
10  
0
V
= 14V  
IN  
0
–10  
–20  
V
= 7V  
IN  
–10  
–20  
–30  
–30  
–40  
–40  
0
50  
TEMPERATURE (°C)  
25  
85  
125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 11. ADR01 Load Regulation vs. Temperature  
Figure 14. ADR06 Load Regulation vs. Temperature  
Rev. L | Page 10 of 24  
ADR01/ADR02/ADR03/ADR06  
10  
8
2
0
V
= 14V TO 36V  
IN  
V
= 6V TO 36V  
IN  
6
–2  
–4  
–6  
4
2
0
–8  
–2  
–10  
–4  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. ADR06 Line Regulation vs. Temperature  
Figure 15. ADR01 Line Regulation vs. Temperature  
5
8
4
V
= 8V TO 36V  
IN  
4
3
2
+125°C  
0
–40°C  
–4  
1
0
+25°C  
–8  
0
2
4
6
8
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 19. ADR01 Minimum Input-Output  
Voltage Differential vs. Load Current  
Figure 16. ADR02 Line Regulation vs. Temperature  
8
4
2
0
4
2
V
= 5V TO 36V  
IN  
+125°C  
0
–40°C  
–2  
+25°C  
–4  
0
2
4
6
8
10  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 17. ADR03 Line Regulation vs. Temperature  
Figure 20. ADR02 Dropout Voltage vs. Load Current  
Rev. L | Page 11 of 24  
ADR01/ADR02/ADR03/ADR06  
6
5
4
+125°C  
3
+25°C  
2
–40°C  
1
0
TIME (1s/DIV)  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 24. ADR02 Typical Noise Voltage 0.1 Hz to 10.0 Hz  
Figure 21. ADR03 Dropout Voltage vs. Load Current  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+125°C  
+25°C  
–40°C  
TIME (1ms/DIV)  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 25. ADR02 Typical Noise Voltage 10 Hz to 10 kHz  
Figure 22. ADR06 Dropout Voltage vs. Load Current  
0.70  
0.65  
0.60  
10V  
8V  
T
= 25°C  
A
V
5V/DIV  
OUT  
0.55  
0.50  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
TIME (2ms/DIV)  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 26. ADR02 Line Transient Response  
Figure 23. ADR01 Quiescent Current vs. Load Current  
Rev. L | Page 12 of 24  
 
ADR01/ADR02/ADR03/ADR06  
C
= 0.01µF  
NO LOAD CAPACITOR  
IN  
NO LOAD CAPACITOR  
V
10V/DIV  
IN  
V
5V/DIV  
IN  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
V
5V/DIV  
OUT  
OUT  
LOAD = 5mA  
TIME (1ms/DIV)  
TIME (4µs/DIV)  
Figure 27. ADR02 Load Transient Response  
Figure 30. ADR02 Turn-On Response  
C
= 100nF  
LOAD  
V
10V/DIV  
IN  
V
5V/DIV  
IN  
C
= 0.01µF  
L
NO INPUT CAPACITOR  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
V
5V/DIV  
OUT  
OUT  
LOAD = 5mA  
TIME (1ms/DIV)  
TIME (4µs/DIV)  
Figure 28. ADR02 Load Transient Response  
Figure 31. ADR02 Turn-Off with No Input Capacitor  
C
= 0.01µF  
L
NO INPUT CAPACITOR  
V
10V/DIV  
V
10V/DIV  
IN  
IN  
C
= 0.01µF  
IN  
NO LOAD CAPACITOR  
V
5V/DIV  
V
5V/DIV  
OUT  
OUT  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 32. ADR02 Turn-Off with No Input Capacitor  
Figure 29. ADR02 Turn-Off Response  
Rev. L | Page 13 of 24  
ADR01/ADR02/ADR03/ADR06  
APPLICATIONS INFORMATION  
ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of the  
output does not significantly affect the temperature performance  
of the device, provided the temperature coefficients of the resis-  
tors are relatively low.  
OVERVIEW  
The ADR01/ADR02/ADR03/ADR06 are high precision, low  
drift 10.0 V, 5.0 V, 2.5 V, and 3.0 V voltage references available  
in an ultracompact footprint. The 8-lead SOIC versions of the  
devices are drop-in replacements of the REF01/REF02/REF03  
sockets with improved cost and performance.  
U1  
ADR01/  
ADR02/  
ADR03/  
ADR06  
These devices are standard band gap references (see Figure 34).  
The band gap cell contains two NPN transistors (Q18 and Q19)  
that differ in emitter area by 2×. The difference in their VBE  
produces a proportional-to-absolute temperature current (PTAT)  
in R14, and, when combined with the VBE of Q19, produces a  
band gap voltage, VBG, that is almost constant in temperature.  
With an internal op amp and the feedback network of R5 and  
R6, VO is set precisely at 10.0 V, 5.0 V, 2.5 V, and 3.0 V for the  
ADR01, ADR02, ADR06, and ADR03, respectively. Precision  
laser trimming of the resistors and other proprietary circuit  
techniques are used to further enhance the initial accuracy,  
temperature curvature, and drift performance of the ADR01/  
ADR02/ADR03/ADR06.  
V
V
V
O
V
IN  
OUT  
IN  
C1  
0.1µF  
C2  
0.1µF  
TEMP TRIM  
GND  
Figure 33. Basic Configuration  
V
IN  
R4  
R1  
Q1  
R2  
R3  
Q23  
Q2  
Q3  
Q7  
Q8  
Q9  
D1  
D2  
Q10  
V
Q4  
O
The PTAT voltage is made available at the TEMP pin of the  
ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C  
temperature coefficient, such that users can estimate the  
temperature change of the device by knowing the voltage  
change at the TEMP pin.  
D3  
C1  
Q13  
R5  
Q12  
R12  
R13  
I1  
R20  
TRIM  
Q14 Q15  
APPLYING THE ADR01/ADR02/ADR03/ADR06  
Input and Output Capacitors  
2×  
V
BG  
1×  
Q19  
Q18  
R27  
R14  
TEMP  
Q16  
Q17  
Although the ADR01/ADR02/ADR03/ADR06 are designed to  
function stably without any external components, connecting a  
0.1 μF ceramic capacitor to the output is highly recommended  
to improve stability and filter out low level voltage noise. An  
additional 1 μF to 10 μF electrolytic, tantalum, or ceramic  
capacitor can be added in parallel to improve transient per-  
formance in response to sudden changes in load current;  
however, the designer should keep in mind that doing so  
increases the turn-on time of the device.  
Q20  
R6  
R32  
R24  
R41  
R42  
R17 R11  
GND  
Figure 34. Simplified Schematic Diagram  
U1  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
V
IN  
V
OUT  
V
O
IN  
A 1 μF to 10 μF electrolytic, tantalum or ceramic capacitor can  
also be connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. An addi-  
tional 0.1 μF ceramic capacitor should be connected in parallel  
to reduce supply noise. Mount both input and output capacitors  
as close to the device pins as possible.  
POT  
10k  
TEMP TRIM  
GND  
R1  
470kΩ  
R2  
1kΩ  
Figure 35. Optional Trim Adjustment  
Output Adjustment  
Temperature Monitoring  
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used  
to adjust the output voltage over a nominal voltage. This feature  
allows a system designer to trim system errors by setting the  
reference to a voltage other than 10.0 V/5.0 V/2.5 V/3.0 V. For  
finer adjustment, add a series resistor of 470 kΩ. With the con-  
figuration shown in Figure 35, the ADR01 can be adjusted from  
9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V to  
5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and the  
As described at the end of the Overview section, the ADR01/  
ADR02/ADR03/ADR06 provide a TEMP output (Pin 1 in Figure 1  
and Pin 3 in Figure 2) that varies linearly with temperature. This  
output can be used to monitor the temperature change in the  
system. The voltage at VTEMP is approximately 550 mV at 25°C,  
and the temperature coefficient is approximately 1.96 mV/°C  
(see Figure 36). A voltage change of 39.2 mV at the TEMP pin  
corresponds to a 20°C change in temperature.  
Rev. L | Page 14 of 24  
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
U1  
0.80  
V
= 15V  
IN  
SAMPLE SIZE = 5  
ADR01/  
ADR02/  
ADR03/  
ADR06  
0.75  
0.70  
V
V
OUT  
+5V TO +15V  
IN  
0.65  
0.60  
TEMP TRIM  
GND  
+15V  
U2  
ΔV  
/ΔT 1.96mV/°C  
TEMP  
V+  
OP1177  
V–  
0.55  
0.50  
0.45  
–V  
REF  
–15V  
Figure 38. Negative Reference  
0.40  
–50  
–25  
0
25  
50  
75  
100  
125  
V
IN  
TEMPERATURE (°C)  
I
IN  
Figure 36. Voltage at TEMP Pin vs. Temperature  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
OUT  
The TEMP function is provided as a convenience rather than a  
precise feature. Because the voltage at the TEMP node is  
acquired from the band gap core, current pulling from this pin  
has a significant effect on VOUT. Care must be taken to buffer the  
TEMP output with a suitable low bias current op amp, such as  
the AD8601, AD820, or OP1177, all of which result in less than  
a 100 ꢀV change in ΔVOUT (see Figure 37). Without buffering,  
even tens of microamps drawn from the TEMP pin can cause  
VOUT to fall out of specification.  
R
I
I
= (V  
– V )/R  
OUT L  
SET  
SET  
SET  
GND  
V
L
I
0.6mA  
Q
= I  
SET  
+ I  
Q
R
L
L
Figure 39. Low Cost Current Source  
U1  
ADR01/  
ADR02/  
PRECISION CURRENT SOURCE WITH  
ADJUSTABLE OUTPUT  
ADR03/  
15V  
ADR06  
V
V
V
V
O
IN  
IN  
OUT  
Alternatively, a precision current source can be implemented  
with the circuit shown in Figure 40. By adding a mechanical or  
digital potentiometer, this circuit becomes an adjustable current  
source. If a digital potentiometer is used, the load current is  
simply the voltage across Terminal B to Terminal W of the  
TEMP TRIM  
GND  
V+  
OP1177  
V–  
V
TEMP  
1.9mV/°C  
U2  
digital potentiometer divided by RSET  
.
Figure 37. Temperature Monitoring  
VREF ×D  
(1)  
I L  
=
RSET  
NEGATIVE REFERENCE  
Without using any matching resistors, a negative reference can  
be configured, as shown in Figure 38. For the ADR01, the  
voltage difference between VOUT and GND is 10.0 V. Because  
VOUT is at virtual ground, U2 closes the loop by forcing the  
GND pin to be the negative reference node. U2 should be a  
precision op amp with a low offset voltage characteristic.  
where D is the decimal equivalent of the digital potentiometer  
input code.  
U1  
ADR01/  
ADR02/  
ADR03/  
0V TO (5V + V )  
ADR06  
L
V
V
OUT  
+12V  
IN  
B
LOW COST CURRENT SOURCE  
AD5201  
W
TEMP TRIM  
GND  
100k  
Unlike most references, the ADR01/ADR02/ADR03/ADR06  
employ an NPN Darlington in which the quiescent current  
remains constant with respect to the load current, as shown in  
Figure 23. As a result, a current source can be configured as  
shown in Figure 39 where ISET = (VOUT − VL)/RSET. IL is simply  
the sum of ISET and IQ. Although simple, IQ varies typically from  
0.55 mA to 0.65 mA, limiting this circuit to general-purpose  
applications.  
A
+12V  
R
1kΩ  
SET  
U2  
V+  
OP1177  
V–  
–5V TO V  
V
L
L
R
L
1kΩ  
I
L
–12V  
Figure 40. Programmable 0 mA to 5 mA Current Source  
Rev. L | Page 15 of 24  
 
 
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
To optimize the resolution of this circuit, dual-supply op amps  
should be used because the ground potential of ADR02 can  
swing from −5.0 V at zero scale to VL at full scale of the  
potentiometer setting.  
Capacitor C1 in the range of 1 pF to 10 pF between VP and the  
output terminal of U4 to filter any oscillation.  
Vt  
It  
R1′  
R1R2  
R1R2′  
ZO  
=
=
(3)  
1  
PROGRAMMABLE 4 mA TO 20 mA CURRENT  
TRANSMITTER  
In this circuit, an ADR01 provides the stable 10.000 V reference  
for the AD5544 quad 16-bit DAC. The resolution of the adjust-  
able current is 0.3 ꢀA/step; the total worst-case INL error is  
merely 4 LSBs. Such error is equivalent to 1.2 ꢀA or a 0.006%  
system error, which is well below most systems’ requirements.  
The result is shown in Figure 42 with measurement taken at 25°C  
and 70°C; total system error of 4 LSBs at both 25°C and 70°C.  
Because of their precision, adequate current handling, and small  
footprint, the devices are suitable as the reference sources for  
many high performance converter circuits. One of these  
applications is the multichannel 16-bit, 4 mA to 20 mA current  
transmitter in the industrial control market (see Figure 41).  
This circuit employs a Howland current pump at the output to  
yield better efficiency, a lower component count, and a higher  
voltage compliance than the conventional design with op amps  
and MOSFETs. In this circuit, if the resistors are matched such  
that R1 = R1, R2 = R2, R3 = R3, the load current is  
5
R
= 500Ω  
L
I
= 0mA TO 20mA  
L
4
3
(R2 + R3) R1  
R3′  
V
REF ×D  
IL =  
×
(2)  
2N  
2
where D is similarly the decimal equivalent of the DAC input  
code and N is the number of bits of the DAC.  
25°C  
70°C  
1
According to Equation 2, R3can be used to set the sensitivity.  
R3can be made as small as necessary to achieve the current  
needed within U4 output current driving capability. Alter-  
natively, other resistors can be kept high to conserve power.  
0
–1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
In this circuit, the AD8512 is capable of delivering 20 mA of  
current, and the voltage compliance approaches 15.0 V.  
Figure 42. Result of Programmable 4 mA to 20 mA Current Transmitter  
0V TO –10V  
PRECISION BOOSTED OUTPUT REGULATOR  
5V  
U2  
+15V  
R1  
150k  
R2  
15kΩ  
U1  
V
RF  
A precision voltage output with boosted current capability can  
be realized with the circuit shown in Figure 43. In this circuit,  
U2 forces VO to be equal to VREF by regulating the turn-on of  
N1, thereby making the load current furnished by VIN. In this  
configuration, a 50 mA load is achievable at VIN of 15.0 V.  
Moderate heat is generated on the MOSFET, and higher current  
can be achieved with a replacement of a larger device. In  
addition, for a heavy capacitive load with a fast edging input  
signal, a buffer should be added at the output to enhance the  
transient response.  
V
V
DD  
IO  
15V  
10V  
AD5544  
IO  
V
U3  
–15V  
REF  
IN  
OUT  
V
VP  
X
R3  
50Ω  
GND  
TEMP TRIM  
GND  
C1  
10pF  
U4  
DIGITAL INPUT  
CODE 20%–100% FULL SCALE  
V
AD8512  
O
R3'  
50Ω  
R2'  
15kΩ  
V
U1 = ADR01/ADR02/ADR03/ADR06, REF01  
U2 = AD5543/AD5544/AD5554  
U3, U4 = AD8512  
L
VN  
R1'  
150kΩ  
LOAD  
500Ω  
N1  
V
V
O
IN  
R
200  
C
L
1µF  
4mA TO 20mA  
U1  
L
2N7002  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
Figure 41. Programmable 4 mA to 20 mA Transmitter  
15V  
V+  
R
R
2
1
The Howland current pump yields a potentially infinite output  
impedance, that is highly desirable, but resistance matching is  
critical in this application. The output impedance can be deter-  
mined using Equation 3. As shown by this equation, if the  
resistors are perfectly matched, ZO is infinite. Alternatively, if  
they are not matched, ZO is either positive or negative. If the  
latter is true, oscillation can occur. For this reason, connect  
100Ω  
100Ω  
V
OUT  
IN  
OP1177  
V–  
TEMP TRIM  
GND  
U2  
C
1
1000pF  
Figure 43. Precision Boosted Output Regulator  
Rev. L | Page 16 of 24  
 
 
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
5
1
4
3
2
PIN 1  
1.00  
0.90  
0.70  
0.65 BSC  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 M  
AX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AA  
Figure 44. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 45. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. L | Page 17 of 24  
 
ADR01/ADR02/ADR03/ADR06  
ORDERING GUIDES  
ADR01 Ordering Guide  
Output  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Voltage  
Temperature  
Range  
Package  
Description  
Package Ordering  
Model  
VO (V)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
(mV)  
10  
10  
10  
10  
5
5
5
5
10  
10  
10  
5
5
5
10  
10  
10  
5
5
5
(ꢀ)  
Option  
Quantity  
Branding  
ADR01AR  
ADR01AR-REEL7  
ADR01ARZ1  
ADR01ARZ-REEL71  
ADR01BR  
ADR01BR-REEL7  
ADR01BRZ1  
ADR01BRZ-REEL71  
ADR01AUJ-REEL7  
ADR01AUJ-R2  
ADR01AUJZ-REEL71  
ADR01BUJ-REEL7  
ADR01BUJ-R2  
ADR01BUJZ-REEL71  
ADR01AKS-REEL7  
ADR01AKS-R2  
0.1  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.05  
0.05  
0.05  
0.1  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
R8A  
R8A  
R1E  
R8B  
R8B  
R1F  
R8A  
R8A  
R1E  
R8B  
R8B  
R1F  
ADR01AKSZ-REEL71 10  
ADR01BKS-REEL7  
ADR01BKS-R2  
ADR01BKSZ-REEL71  
ADR01CRZ1  
ADR01CRZ-REEL1  
10  
10  
10  
10  
10  
3,000  
98  
2,500  
10  
10  
40  
40  
0.1  
R-8  
1 Z = RoHS Compliant Part.  
Rev. L | Page 18 of 24  
 
 
 
ADR01/ADR02/ADR03/ADR06  
ADR02 Ordering Guide  
Output  
Voltage  
VO (V)  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Temperature  
Range  
Package  
Description  
Package  
Option  
Ordering  
Quantity  
Model  
(mV)  
5
(ꢀ)  
0.1  
Branding  
ADR02AR  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
10  
10  
10  
10  
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
98  
ADR02AR-REEL  
ADR02AR-REEL7  
ADR02ARZ1  
ADR02ARZ-REEL1  
ADR02ARZ-REEL71  
ADR02WARZ-REEL  
ADR02WARZ-REEL7  
ADR02BR  
5
0.1  
2,500  
1,000  
98  
2,500  
1,000  
2,500  
1,000  
98  
1,000  
98  
1,000  
3,000  
250  
5
0.1  
5
0.1  
5
0.1  
5
0.1  
5
0.1  
5
0.1  
3
3
3
3
0.06  
0.06  
0.06  
0.06  
0.1  
ADR02BR-REEL7  
ADR02BRZ1  
ADR02BRZ-REEL71  
ADR02AUJ-REEL7  
ADR02AUJ-R2  
ADR02AUJZ-REEL71  
ADR02BUJ-REEL7  
ADR02BUJ-R2  
ADR02BUJZ-R21  
ADR02BUJZ-REEL71  
ADR02AKS-REEL7  
ADR02AKS-R2  
ADR02AKSZ-REEL71  
ADR02BKS-REEL7  
ADR02BKS-R2  
5
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R9A  
R9A  
R1G  
R9B  
R9B  
R9B  
R1H  
R9A  
R9A  
R1G  
R9B  
R9B  
R1H  
5
0.1  
5
0.1  
3,000  
3,000  
250  
3
3
3
3
0.06  
0.06  
0.06  
0.06  
0.1  
250  
9
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
98  
2,500  
5
25  
25  
25  
9
9
9
5
0.1  
5
0.1  
3
3
3
5
0.06  
0.06  
0.06  
0.1  
ADR02BKSZ-REEL71  
ADR02CRZ1  
ADR02CRZ-REEL1  
40  
40  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
5
0.1  
1 Z = RoHS Compliant Part.  
Rev. L | Page 19 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR03 Ordering Guide  
Output  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Voltage  
Temperature  
Range  
Package  
Description  
Package Ordering  
Model  
VO (V)  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
(mV)  
(ꢀ)  
0.2  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.1  
Option  
Quantity  
Branding  
ADR03AR  
ADR03AR-REEL7  
ADR03ARZ1  
ADR03ARZ-REEL71  
ADR03BR  
ADR03BR-REEL7  
ADR03BRZ1  
ADR03BRZ-REEL71  
ADR03AUJ-REEL7  
ADR03AUJ-R2  
ADR03AUJZ-REEL71  
ADR03BUJ-REEL7  
ADR03BUJ-R2  
5
5
5
5
2.5  
2.5  
2.5  
2.5  
5
5
5
2.5  
2.5  
2.5  
5
5
5
2.5  
2.5  
2.5  
5
10  
10  
10  
10  
3
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
RFA  
RFA  
R1J  
RFB  
RFB  
R1K  
RFA  
RFA  
R1J  
ADR03BUJZ-REEL71  
ADR03AKS-REEL7  
ADR03AKS-R2  
ADR03AKSZ-REEL71  
ADR03BKS-REEL7  
ADR03BKS-R2  
ADR03BKSZ-REEL71  
ADR03CRZ1  
RFB  
RFB  
R1K  
3,000  
98  
2,500  
40  
40  
8-Lead SOIC_N R-8  
8-Lead SOIC_N R-8  
ADR03CRZ-REEL1  
5
1 Z = RoHS Compliant Part.  
Rev. L | Page 20 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
ADR06 Ordering Guide  
Output  
Voltage  
VO (V)  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Temperature  
Range  
Package  
Package Ordering  
Model  
(mV)  
6
(ꢀ)  
0.2  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0.2  
0.2  
Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
Option  
Quantity  
Branding  
ADR06AR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
10  
10  
10  
10  
3
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
R-8  
98  
ADR06AR-REEL7  
ADR06ARZ1  
ADR06ARZ-REEL71  
6
R-8  
1,000  
98  
6
R-8  
6
R-8  
1,000  
98  
ADR06BR  
3
R-8  
ADR06BR-REEL7  
ADR06BRZ1  
3
3
R-8  
1,000  
98  
3
3
R-8  
ADR03BRZ-REEL71  
ADR06AUJ-REEL7  
ADR06AUJ-R2  
ADR06AUJZ-REEL71  
ADR06BUJ-REEL7  
ADR06BUJ-R2  
ADR06BUJZ-REEL71  
ADR06AKS-REEL7  
ADR06AKS-R2  
ADR06AKSZ-REEL71  
ADR06BKS-REEL7  
ADR06BKS-R2  
ADR06BKSZ-REEL71  
ADR06CRZ1  
3
3
R-8  
1,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
3,000  
3,000  
250  
6
6
6
3
3
3
6
6
6
3
3
3
25  
25  
25  
9
9
9
25  
25  
25  
9
9
9
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
RWA  
RWA  
R1L  
RWB  
RWB  
R1M  
RWA  
RWA  
R1L  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
RWB  
RWB  
R1M  
3,000  
98  
6
40  
40  
8-Lead SOIC_N  
8-Lead SOIC_N  
ADR06CRZ-REEL1  
6
R-8  
2,500  
1 Z = RoHS Compliant Part.  
Rev. L | Page 21 of 24  
 
 
ADR01/ADR02/ADR03/ADR06  
NOTES  
Rev. L | Page 22 of 24  
ADR01/ADR02/ADR03/ADR06  
NOTES  
Rev. L | Page 23 of 24  
ADR01/ADR02/ADR03/ADR06  
NOTES  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02747-0-12/08(L)  
Rev. L | Page 24 of 24  

相关型号:

ADR01AKSZ-REEL7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI

ADR01AR

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR01AR

Three Terminal Voltage Reference,
ROCHESTER

ADR01AR-REEL7

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR01AR-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10V, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADR01ARZ

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI

ADR01ARZ-REEL7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI

ADR01AUJ-R

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10 V, PDSO5, MO-193AB, TSOT-23, 5 PIN, Voltage Reference
ADI

ADR01AUJ-R2

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR01AUJ-REEL7

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR01AUJ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10 V, PDSO5, MO-193-AB, TSOT-23, 5 PIN
ROCHESTER

ADR01AUJZ-REEL7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI