ADR02BKS-R2 [ADI]

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References; 超小型Precision10 V / 5 V / 2.5 V / 3.0 V电压参考
ADR02BKS-R2
型号: ADR02BKS-R2
厂家: ADI    ADI
描述:

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
超小型Precision10 V / 5 V / 2.5 V / 3.0 V电压参考

文件: 总20页 (文件大小:1153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultracompact Precision  
10 V/5 V/2.5 V/3.0 V Voltage References  
ADR01/ADR02/ADR03/ADR06  
FEATURES  
PIN CONFIGURATIONS  
Ultracompact SC70-5/TSOT-5  
Low temperature coefficient  
SOIC-8: 3 ppm/°C  
SC70-5/TSOT-5: 9 ppm/°C  
Initial accuracy 0ꢀ.1  
No external capacitor required  
Low noise .0 µV p-p (0ꢀ. Hz to .0 Hz)  
Wide operating range  
ADR0.: .2 V to 40 V  
ADR02: 7 V to 40 V  
ADR03: 4ꢀ5 V to 40 V  
ADR06: 5ꢀ0 V to 40 V  
ADR01/  
TEMP  
GND  
1
2
3
5
TRIM  
ADR02/  
ADR03/  
ADR06  
V
V
TOP VIEW  
(Not to Scale)  
4
IN  
OUT  
Figure 1. 5-Lead SC70/TSOT Surface-Mount Packages  
TP  
1
2
3
4
8
7
6
5
TP  
NIC  
V
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
IN  
TEMP  
GND  
OUT  
TOP VIEW  
(Not to Scale)  
TRIM  
High output current .0 mA  
Wide temperature range: –40°C to +.25°C  
NIC = NO INTERNAL CONNECT  
TP = TEST PIN (DO NOT CONNECT)  
Figure 2. 8-Lead SOIC Surface-Mount Package  
ADR0./ADR02/ADR03 pin compatible to industry-standard  
REF0./REF02/REF03.  
GENERAL DESCRIPTION  
The ADR01, ADR02, ADR03, and ADR06 are precision 10 V,  
5 V, 2.5 V, and 3.0 V band gap voltage references featuring high  
accuracy, high stability, and low power. The parts are housed in  
tiny SC70-5 and TSOT-5 packages, as well as the SOIC-8  
versions. The SOIC-8 versions of the ADR01, ADR02, and  
ADR03 are drop-in replacements1 to the industry-standard  
REF01, REF02, and REF03. The small footprint and wide  
operating range make the ADR0x references ideally suited for  
general-purpose and space-constraint applications.  
APPLICATIONS  
Precision data acquisition systems  
High resolution converters  
Industrial process control systems  
Precision instruments  
PCMCIA cards  
SELECTION GUIDE  
Part Number  
Output Voltage  
ADR01  
ADR02  
ADR03  
ADR06  
10.0 V  
5.0 V  
2.5 V  
3.0 V  
With an external buffer and a simple resistor network, the  
TEMP terminal can be used for temperature sensing and  
approximation. A TRIM terminal is provided on the devices  
for fine adjustment of the output voltage.  
The ADR01, ADR02, ADR03, and ADR06 are compact, low drift  
voltage references that provide an extremely stable output  
voltage from a wide supply voltage range. They are available in  
SC70-5, TSOT-5, and SOIC-8 packages with A and B grade  
selections. All parts are specified over the extended industrial  
(–40°C to +125°C) temperature range.  
1 ADR01, ADR02, and ADR03 are component-level compatible with REF01,  
REF02, and REF03, respectively. No guarantees for system-level compatibility  
are implied. SOIC-8 versions of ADR01/ADR02/ADR03 are pin-to-pin  
compatible with SOIC-8 versions of REF01/REF02/REF03, respectively, with  
the additional temperature monitoring function.  
Revꢀ F  
Information furnished by Analog Devices is believed to be accurate and reliableꢀ  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its useꢀ  
Specifications subject to change without noticeꢀ No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devicesꢀ Trademarks and  
registered trademarks are the property of their respective ownersꢀ  
One Technology Way, PꢀOꢀ Box 9.06, Norwood, MA 02062-9.06, UꢀSꢀAꢀ  
Tel: 78.ꢀ329ꢀ4700  
Fax: 78.ꢀ326ꢀ8703  
wwwꢀanalogꢀcom  
© 2004 Analog Devices, Incꢀ All rights reservedꢀ  
 
ADR01/ADR02/ADR03/ADR06  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Applying the ADR01/ADR02/ADR03/ADR06...................... 15  
Negative Reference..................................................................... 16  
Low Cost Current Source.......................................................... 16  
Precision Current Source with Adjustable Output ................ 16  
Programmable 4 to 20 mA Current Transmitter ................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guides............................................................................. 19  
ADR01 Ordering Guide ............................................................ 19  
ADR02 Ordering Guide ............................................................ 19  
ADR03 Ordering Guide ............................................................ 20  
ADR06 Ordering Guide ............................................................ 20  
ADR01 Electrical Characteristics............................................... 3  
ADR02 Electrical Characteristics............................................... 4  
ADR03 Electrical Characteristics............................................... 5  
ADR06 Electrical Characteristics............................................... 6  
Dice Electrical Characteristics.................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Parameter Definitions...................................................................... 9  
Notes............................................................................................... 9  
Typical Performance Characteristics ........................................... 10  
Applications..................................................................................... 15  
REVISION HISTORY  
7/04—Data Sheet Changed from Rev. E to Rev. F  
Changes to ADR02 Electrical Characteristics, Table 2................ 4  
Changes to Ordering Guide .......................................................... 19  
2/03—Data Sheet Changed from Rev. A to Rev. B  
Added ADR03.....................................................................Universal  
Added TSOT-5 (UJ) Package............................................Universal  
Updated Outline Dimensions....................................................... 18  
2/04—Data Sheet Changed from Rev. D to Rev. E  
12/02—Data Sheet Changed from Rev. 0 to Rev. A  
Added C grade ................................................................Universal  
Changes to Outline Dimensions............................................... 19  
Updated Ordering Guide........................................................... 20  
Changes to Features Section........................................................1  
Changes to General Description .................................................1  
Table I deleted................................................................................1  
Changes to ADR01 Specifications ..............................................2  
Changes to ADR02 Specifications ..............................................3  
Changes to Absolute Maximum Ratings Section .....................4  
Changes to Ordering Guide.........................................................4  
Updated Outline Dimensions .................................................. 12  
8/03—Data Sheet Changed from Rev. C to Rev D  
Added ADR06Universal  
Change to Figure 27 13  
6/03—Data Sheet Changed from Rev. B to Rev C  
Changes to Features Section 1  
Changes to General Description Section 1  
Changes to Figure 2  
1
Changes to Specifications Section 2  
Addition of Dice Electrical Characteristics and Layout6  
Changes to Absolute Maximum Ratings Section 7  
Updated SOIC (R-8) Outline Dimensions 19  
Changes to Ordering Guide 20  
Rev. F | Page 2 of 20  
ADR01/ADR02/ADR03/ADR06  
SPECIFICATIONS  
ADR0. ELECTRICAL CHARACTERISTICS  
VIN = 12 V to 40 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
Output Voltage  
Initial Accuracy  
VO  
A and C grades  
A and C grades  
9.990 10.000 10.010  
VOERR  
10  
mV  
0.1  
%
Output Voltage  
Initial Accuracy  
VO  
B grade  
B grade  
9.995 10.000 10.005  
V
VOERR  
5
mV  
0.05  
%
Temperature Coefficient  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
3
10  
25  
25  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
9
9
40  
10  
Supply Voltage Headroom  
Line Regulation  
VIN – VO  
∆VO/∆VIN  
∆VO/∆ILOAD  
IIN  
2
VIN = 12 V to 40 V, –40°C < TA < +125°C  
ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN = 15 V  
No load, –40°C < TA < +125°C  
0.1 Hz to 10 Hz  
7
30  
70  
1
ppm/V  
ppm/mA  
mA  
Load Regulation  
40  
Quiescent Current  
0.65  
20  
Voltage Noise  
eN p-p  
eN  
µV p-p  
nV/√Hz  
µs  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability1  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
1 kHz  
510  
4
tR  
∆VO  
1,000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
∆VO_HYS  
RRR  
70  
75  
30  
ISC  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. F | Page 3 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR02 ELECTRICAL CHARACTERISTICS  
VIN = 7 V to 40 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Initial Accuracy  
VO  
A and C grades  
A and C grades  
4.995  
5.000 5.005  
V
VOERR  
5
mV  
0.1  
%
Output Voltage  
Initial Accuracy  
VO  
VOERR  
B grade  
B grade  
4.997  
5.000 5.003  
V
mV  
3
0.06  
%
Temperature Coefficient  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
A grade. SC70-5, -55oC < TA < +125oC  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
1
10  
Supply Voltage Headroom  
Line Regulation  
VIN – VO  
2
∆VO/∆VIN  
VIN = 7 V to 40 V, –40°C < TA < +125°C  
7
7
30  
40  
70  
ppm/V  
ppm/V  
ppm/mA  
V
IN = 7 V to 40 V, –55°C < TA < +125°C  
ILOAD = 0 to 10 mA, –40°C < TA < +125°C,  
IN = 10 V  
LOAD = 0 to 10 mA, –55°C < TA < +125°C,  
Load Regulation  
∆VO/∆ILOAD  
40  
V
I
VIN = 10 V  
45  
80  
1
ppm/mA  
mA  
Quiescent Current  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10 Hz  
0.65  
10  
Voltage Noise  
eN p-p  
eN  
µV p-p  
nV/√Hz  
µs  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability1  
Output Voltage Hysteresis  
1 kHz  
230  
4
tR  
∆VO  
∆VO_HYS  
1,000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
80  
–55°C < TA < +125°C  
fIN = 10 kHz  
Ripple Rejection Ratio  
Short Circuit to GND  
RRR  
–75  
30  
ISC  
mA  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. F | Page 4 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR03 ELECTRICAL CHARACTERISTICS  
VIN = 4.5 V to 40 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
2.505  
5
Unit  
Output Voltage  
Initial Accuracy  
VO  
A and C grades  
A and C grades  
2.495  
2.500  
V
VOERR  
mV  
0.2  
%
Output Voltage  
Initial Accuracy  
VO  
B grades  
B grades  
2.4975 2.5000 2.5025  
V
VOERR  
2.5  
0.1  
mV  
%
Temperature Coefficient  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
A grade, SC70-5, –55°C < TA < +125°C  
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
3
10  
25  
25  
30  
3
9
9
40  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
10  
Supply Voltage Headroom  
Line Regulation  
VIN – VO  
2
∆VO/∆VIN  
VIN = 7.5 V to 40 V, –40°C < TA < +125°C  
7
7
30  
40  
70  
ppm/V  
ppm/V  
ppm/mA  
V
IN = 7.5 V to 40 V, –55°C < TA < +125°C  
Load Regulation  
∆VO/∆ILOAD  
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,  
VIN = 7.0 V  
25  
I
LOAD = 0 mA to 10 mA, –55°C < TA < +125°C,  
45  
80  
1
ppm/mA  
VIN = 7.0 V  
Quiescent Current  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10 Hz  
1 kHz  
0.65  
6
mA  
Voltage Noise  
eN p-p  
eN  
µV p-p  
nV/√Hz  
µs  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability1  
Output Voltage Hysteresis  
230  
4
tR  
∆VO  
∆VO_HYS  
1,000 hours  
50  
ppm  
ppm  
ppm  
dB  
70  
80  
–55°C < TA < +125°C  
fIN = 10 kHz  
Ripple Rejection Ratio  
Short Circuit to GND  
RRR  
–75  
30  
ISC  
mA  
Voltage Output at TEMP Pin  
Temperature Sensitivity  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. F | Page 5 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ADR06 ELECTRICAL CHARACTERISTICS  
VIN = 5.0 V to 40 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
3.006  
6
Unit  
Output Voltage  
Initial Accuracy  
VO  
A and C grades  
A and C grades  
2.994  
3.000  
V
VOERR  
mV  
0.2  
3.003  
3
%
Output Voltage  
Initial Accuracy  
VO  
B grade  
B grade  
2.997  
3.000  
V
VOERR  
mV  
0.1  
10  
25  
25  
3
%
Temperature Coefficient  
TCVO  
A grade, SOIC-8, –40°C < TA < +125°C  
A grade, TSOT-5, –40°C < TA < +125°C  
A grade, SC70-5, –40°C < TA < +125°C  
B grade, SOIC-8, –40°C < TA < +125°C  
B grade, TSOT-5, –40°C < TA < +125°C  
B grade, SC70-5, –40°C < TA < +125°C  
C grade, SOIC-8, –40°C < TA < +125°C  
3
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
V
1
9
9
40  
10  
Supply Voltage Headroom  
Line Regulation  
VIN – VO  
2
∆VO/∆VIN  
∆VO/∆ILOAD  
VIN = 15 V to 40 V, –40°C < TA < +125°C  
7
30  
70  
ppm/V  
ppm/mA  
Load Regulation  
ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN  
7.0 V  
=
40  
Quiescent Current  
IIN  
No load, –40°C < TA < +125°C  
0.1 Hz to 10 Hz  
0.65  
10  
1
mA  
Voltage Noise  
eN p-p  
eN  
µV p-p  
nV/√Hz  
µs  
Voltage Noise Density  
Turn-On Settling Time  
Long-Term Stability1  
Output Voltage Hysteresis  
Ripple Rejection Ratio  
Short Circuit to GND  
Voltage Output AT TEMP Pin  
Temperature Sensitivity  
1 kHz  
510  
4
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
1,000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
70  
–75  
30  
mA  
VTEMP  
TCVTEMP  
550  
1.96  
mV  
mV/°C  
1 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. F | Page 6 of 20  
 
ADR01/ADR02/ADR03/ADR06  
DICE ELECTRICAL CHARACTERISTICS  
VIN = up to 40 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
ADR01NBC  
ADR02NBC  
VO  
VO  
25°C  
25°C  
9.995  
4.997  
10.004  
5.002  
10  
10.005  
5.003  
V
V
Temperature Coefficient  
Line Regulation  
ADR01NBC  
TCVO  
–40°C < TA < +125°C  
ppm/°C  
∆VO/∆VIN  
∆VO/∆VIN  
∆VO/∆ILOAD  
IIN  
VIN = 15 V to 40 V  
VIN = 7 V to 40 V  
ILOAD = 0 to 10 mA  
No load  
7
7
ppm/V  
ppm/V  
ppm/mA  
mA  
ADR02NBC  
Load Regulation  
Quiescent Current  
Voltage Noise  
40  
0.65  
25  
eN p-p  
0.1 Hz to 10 Hz  
µV p-p  
TEMP  
V
IN  
GND  
TRIM  
V
V
OUT  
(SENSE)  
OUT  
(FORCE)  
DIE SIZE: 0.83mm × 1.01mm  
Figure 3. Die Layout  
Rev. F | Page 7 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ABSOLUTE MAXIMUM RATINGS  
Ratings at 25°C, unless otherwise noted.  
Table 6.  
Table 7. Thermal Resistance  
Package Type  
.
Parameter  
Rating  
Unit  
θJA  
θJC  
Supply Voltage  
40 V  
Indefinite  
–65°C to +150°C  
–40°C to +125°C  
SC70-5 (KS-5)  
TSOT-5 (UJ-5)  
SOIC-8 (R-8)  
376  
230  
130  
189  
146  
43  
°C/W  
°C/W  
°C/W  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range: KS, UJ, and  
R Packages  
Lead Temperature Range (Soldering, 60 Sec) 300°C  
–65°C to +150°C  
1 θJA is specified for the worst-case conditions, that is, θJA is specified for  
devices soldered in circuit boards for surface-mount packages.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although these products feature  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 8 of 20  
 
ADR01/ADR02/ADR03/ADR06  
PARAMETER DEFINITIONS  
Temperature Coefficient  
Thermal Hysteresis  
The change of output voltage with respect to operating tem-  
perature changes normalized by the output voltage at 25°C. This  
parameter is expressed in ppm/°C and can be determined by the  
following equation:  
Defined as the change of output voltage after the device is  
cycled through temperature from +25°C to –40°C to +125°C  
and back to +25°C. This is a typical value from a sample of parts  
put through such a cycle.  
VO (T2 ) VO (T1)  
VO (25°C)×T2 T1  
VO _ HYS =VO (25°C) VO _TC  
TCVO[ ppm/°C] =  
×106  
VO (25°C) VO _TC  
VO _ HYS [ ppm] =  
×106  
where:  
VO(25°C) = VO at 25°C  
VO (25°C)  
VO(T1) = VO at Temperature 1  
VO(T2) = VO at Temperature 2  
where:  
VO(25°C) = VO at 25°C  
O_TC = VO at 25°C after temperature cycle at +25°C to –40°C to  
V
Line Regulation  
+125°C and back to +25°C  
The change in output voltage due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating.  
Line regulation is expressed in either percent per volt, parts-  
per-million per volt, or microvolts per volt change in input  
voltage.  
NOTES  
Input Capacitor  
Input capacitors are not required on the ADR01/ADR02/  
ADR03/ADR06. There is no limit for the value of the capacitor  
used on the input, but a 1 µF to 10 µF capacitor on the input  
improves transient response in applications where the supply  
suddenly changes. An additional 0.1 µF in parallel also helps to  
reduce noise from the supply.  
Load Regulation  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milliampere,  
parts-per-million per milliampere, or ohms of dc output  
resistance.  
Output Capacitor  
The ADR01/ADR02/ADR03/ADR06 do not require output  
capacitors for stability under any load condition. An output  
capacitor, typically 0.1 µF, filters out any low level noise voltage  
and does not affect the operation of the part. On the other hand,  
the load transient response can be improved with an additional  
1 µF to 10 µF output capacitor in parallel. A capacitor here acts  
as a source of stored energy for a sudden increase in load  
current. The only parameter that degrades by adding an output  
capacitor is the turn-on time, and it depends on the size of the  
capacitor chosen.  
Long-Term Stability  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1,000 hours at 25°C:  
VO =VO(t0) VO(t1)  
VO (t0 ) VO (t1)  
VO[ppm] =  
×106  
VO (t0 )  
where:  
VO(t0) = VO at 25°C at Time 0  
VO(t1) = VO at 25°C after 100 hours of operation at 25°C  
The majority of the shift is seen in the first 200 hours, and,  
as time goes by, the drift decreases significantly. So for the  
subsequent 1,000 hours’ time points, this drift is much smaller  
than the first.  
Rev. F | Page 9 of 20  
 
ADR01/ADR02/ADR03/ADR06  
TYPICAL PERFORMANCE CHARACTERISTICS  
10.010  
3.002  
3.001  
3.000  
10.005  
10.000  
9.995  
9.990  
9.985  
2.999  
2.998  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
Figure 7. ADR06 Typical Output Voltage vs. Temperature  
Figure 4. ADR01 Typical Output Voltage vs. Temperature  
5.008  
5.004  
5.000  
0.8  
0.7  
0.6  
+125oC  
+25oC  
–40oC  
4.996  
4.992  
0.5  
0.4  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
12  
16  
20  
24  
28  
32  
36  
40  
INPUT VOLTAGE (V)  
TEMPERATURE (oC)  
Figure 8. ADR01 Supply Current vs. Input Voltage  
Figure 5. ADR02 Typical Output Voltage vs. Temperature  
2.502  
2.501  
2.500  
0.8  
0.7  
0.6  
+125oC  
+25oC  
–40oC  
0.5  
0.4  
2.499  
2.498  
8
12  
16  
20  
24  
28  
32  
36  
40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (oC)  
INPUT VOLTAGE (V)  
Figure 6. ADR03 Typical Output Voltage vs. Temperature  
Figure 9. ADR02 Supply Current vs. Input Voltage  
Rev. F | Page 10 of 20  
 
ADR01/ADR02/ADR03/ADR06  
50  
40  
30  
20  
10  
0
0.85  
0.80  
I
= 0mA TO 5mA  
L
0.75  
0.70  
0.65  
V
= 40V  
IN  
+125oC  
0.60  
0.55  
0.50  
+25oC  
–40oC  
V
= 8V  
IN  
–10  
–20  
0.45  
0.40  
–40  
0
25  
TEMPERATURE (oC)  
85  
125  
5
10  
15  
20  
25  
30  
35  
40  
INPUT VOLTAGE (V)  
Figure 13. ADR02 Load Regulation vs. Temperature  
Figure 10. ADR03 Supply Current vs. Input Voltage  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
60  
50  
I
= 0mA TO 10mA  
L
V
= 7V  
IN  
+125oC  
40  
30  
20  
V
= 40V  
IN  
+25oC  
–40oC  
10  
0
5
10  
15  
20  
25  
30  
35  
40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (oC)  
INPUT VOLTAGE (V)  
Figure 11. ADR06 Supply Current vs. Input Voltage  
Figure 14. ADR03 Load Regulation vs. Temperature  
40  
30  
40  
30  
I
= 0mA TO 10mA  
I
= 0mA TO 10mA  
L
L
V
= 40V  
IN  
V
= 40V  
IN  
20  
10  
20  
10  
0
0
V
= 14V  
IN  
–10  
–20  
V
= 7V  
IN  
–10  
–20  
–30  
–30  
–40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40  
0
50  
TEMPERATURE (oC)  
25  
85  
125  
TEMPERATURE (oC)  
Figure 15. ADR06 Load Regulation vs. Temperature  
Figure 12. ADR01 Load Regulation vs. Temperature  
Rev. F | Page 11 of 20  
ADR01/ADR02/ADR03/ADR06  
2
10  
8
V
= 14V TO 40V  
IN  
V
= 6V TO 40V  
IN  
0
–2  
–4  
–6  
6
4
2
0
–8  
–2  
–10  
–4  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
Figure 16. ADR01 Line Regulation vs. Temperature  
Figure 19. ADR06 Line Regulation vs. Temperature  
8
4
5
4
3
2
V
= 8V TO 40V  
IN  
+125oC  
0
–40oC  
–4  
–8  
+25oC  
1
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
2
4
6
8
10  
TEMPERATURE (oC)  
LOAD CURRENT (mA)  
Figure 17. ADR02 Line Regulation vs. Temperature  
Figure 20. ADR01 Minimum Input-Output  
Voltage Differential vs. Load Current  
8
4
2
0
4
2
V
= 5V TO 40V  
IN  
+125oC  
0
–40oC  
–2  
+25oC  
–4  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
0
2
4
6
8
10  
TEMPERATURE (oC)  
LOAD CURRENT (mA)  
Figure 21. ADR02 Minimum Input-Output  
Voltage Differential vs. Load Current  
Figure 18. ADR03 Line Regulation vs. Temperature  
Rev. F | Page 12 of 20  
ADR01/ADR02/ADR03/ADR06  
6
5
4
3
2
1
0
+125oC  
+25oC  
–40oC  
0
2
4
6
8
10  
TIME (1s/DIV)  
LOAD CURRENT (mA)  
Figure 25. ADR02 Typical Noise Voltage 0.1 Hz to 10 Hz  
Figure 22. ADR03 Minimum Input-Output  
Voltage Differential vs. Load Current  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+25oC  
+125oC  
–40oC  
TIME (1ms/DIV)  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 26. ADR02 Typical Noise Voltage 10 Hz to 10 KHz  
Figure 23. ADR06 Minimum Input-Output  
Voltage Differential vs. Load Current  
0.70  
0.65  
0.60  
T
= 25oC  
A
10V  
8V  
V
5V/DIV  
OUT  
0.55  
0.50  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
0
2
4
6
8
10  
TIME (2.00ms/DIV)  
LOAD CURRENT (mA)  
Figure 24. ADR01 Quiescent Current vs. Load Current  
Figure 27. ADR02 Line Transient Response  
Rev. F | Page 13 of 20  
 
ADR01/ADR02/ADR03/ADR06  
C
= 0.01µF  
IN  
NO LOAD CAPACITOR  
NO LOAD CAPACITOR  
V
5V/DIV  
V
10V/DIV  
IN  
IN  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
OUT  
V
5V/DIV  
OUT  
LOAD = 5mA  
TIME (4µs/DIV)  
TIME (1.00ms/DIV)  
Figure 31. ADR02 Turn-On Response  
Figure 28. ADR02 Load Transient Response  
C
= 100nF  
LOAD  
V
5V/DIV  
IN  
C
= 0.01µF  
V
10V/DIV  
L
IN  
NO INPUT CAPACITOR  
LOAD OFF  
LOAD ON  
V
100mV/DIV  
OUT  
V
5V/DIV  
OUT  
LOAD = 5mA  
TIME (1.00ms/DIV)  
TIME (4µs/DIV)  
Figure 32. ADR02 Turn-Off Response  
Figure 29. ADR02 Load Transient Response  
V
10V/DIV  
V
10V/DIV  
IN  
IN  
C
= 0.01µF  
L
C
= 0.01µF  
IN  
NO LOAD CAPACITOR  
NO INPUT CAPACITOR  
V
5V/DIV  
OUT  
V
5V/DIV  
OUT  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 30. ADR02 Turn-Off Response  
Figure 33. ADR02 Turn-On Response  
Rev. F | Page 14 of 20  
ADR01/ADR02/ADR03/ADR06  
APPLICATIONS  
The ADR01/ADR02/ADR03/ADR06 are high precision, low  
drift 10 V, 5 V, 2.5 V, and 3.0 V voltage references available in an  
ultracompact footprint. The SOIC-8 version of the devices is a  
drop-in replacement of the REF01/REF02/ REF03 sockets with  
improved cost and performance.  
to the input and output pins of the device. An optional 1 µF to  
10 µF bypass capacitor can also be applied at the VIN node to  
maintain the input under transient disturbance.  
U1  
ADR01/  
ADR02/  
ADR03/  
ADR06  
These devices are standard band gap references. The band gap  
cell contains two NPN transistors (Q18 and Q19) that differ in  
emitter area by 2×. The difference in their VBE produces a  
proportional-to-absolute temperature current (PTAT) in R14,  
and, when combined with the VBE of Q19, produces a band gap  
voltage, VBG, that is almost constant in temperature.With an  
internal op amp and the feedback network of R5 and R6, VO is set  
precisely at 10 V, 5 V, 2.5 V, and 3.0 V for the ADR01, ADR02,  
ADR06, and ADR03, respectively. Precision laser trimming of  
the resistors and other proprietary circuit techniques are used to  
further enhance the initial accuracy, temperature curvature, and  
drift performance of the ADR01/ADR02/ADR03/ADR06.  
V
V
V
O
V
IN  
OUT  
IN  
C1  
0.1µF  
C2  
0.1µF  
TEMP TRIM  
GND  
Figure 35. Basic Configuration  
Output Adjustment  
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used  
to adjust the output voltage over a nominal voltage. This feature  
allows a system designer to trim system errors by setting the  
reference to a voltage other than 10 V/5 V/2.5 V/3.0 V. For finer  
adjustment, a series resistor of 470 kΩ can be added. With the  
configuration shown in Figure 36, the ADR01 can be adjusted  
from 9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V  
to 5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and  
the ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of  
the output does not significantly affect the temperature per-  
formance of the device, provided the temperature coefficients of  
the resistors are relatively low.  
V
IN  
R1  
R2  
R3  
R4  
Q23  
Q1  
Q2  
Q3  
Q7  
Q8  
Q9  
D1  
D2  
Q10  
Q4  
U1  
V
O
D3  
ADR01/  
ADR02/  
ADR03/  
ADR06  
C1  
Q13  
R5  
Q12  
R12  
R13  
I1  
V
V
IN  
V
OUT  
V
O
IN  
Q14Q15  
pot  
10k  
TEMP TRIM  
GND  
R1  
2X  
V
R20  
BG  
1X  
470kΩ  
TRIM  
Q18  
Q19  
R27  
R14  
R2  
1kΩ  
TEMP  
Q16  
Q17  
Q20  
R6  
R32  
R17 R11  
R24  
Figure 36. Optional Trim Adjustment  
R41  
R42  
GND  
Temperature Monitoring  
As described previously, the ADR01/ADR02/ADR03/ADR06  
provide a TEMP output (Pin 3) that varies linearly with tem-  
perature. This output can be used to monitor the temperature  
change in the system. The voltage at VTEMP is approximately  
550 mV at 25°C, and the temperature coefficient is approximately  
1.96 mV/°C (see Figure 37). A voltage change of 39.2 mV at the  
TEMP pin corresponds to a 20°C change in temperature.  
Figure 34. Simplified Schematic Diagram  
The PTAT voltage is made available at the TEMP pin of the  
ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C  
temperature coefficient, such that users can estimate the  
temperature change of the device by knowing the voltage  
change at the TEMP pin.  
APPLYING THE ADR0./ADR02/ADR03/ADR06  
The devices can be used without any external components to  
achieve the specified performance. Because of the internal op  
amp amplifying the band gap cell to 10 V/5 V/2.5 V/3.0 V,  
power supply decoupling helps the transient response of the  
ADR01/ADR02/ADR03/ADR06. As a result, a 0.1 µF ceramic  
type decoupling capacitor should be applied as close as possible  
Rev. F | Page 15 of 20  
 
 
ADR01/ADR02/ADR03/ADR06  
0.80  
LOW COST CURRENT SOURCE  
V
= 15V  
IN  
SAMPLE SIZE = 5  
Unlike most references, the ADR01/ADR02/ADR03/ADR06  
employ an NPN Darlington in which the quiescent current  
remains constant with respect to the load current, as shown in  
Figure 24. As a result, a current source can be configured as  
shown in Figure 40 where ISET = (VOUT – VL)/RSET. IL is simply  
the sum of ISET and IQ. Although simple, IQ varies typically from  
0.55 to 0.65 mA, limiting this circuit to general-purpose  
applications.  
0.75  
0.70  
0.65  
0.60  
V  
/T 1.96mV/oC  
TEMP  
0.55  
0.50  
0.45  
V
IN  
I
IN  
0.40  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (oC)  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
OUT  
Figure 37. Voltage at TEMP Pin vs. Temperature  
I
= 10V/R  
SET  
R
SET  
The TEMP function is provided as a convenience rather than a  
precise feature. Because the voltage at the TEMP node is  
acquired from the band gap core, current pulling from this pin  
has a significant effect on VOUT. Care must be taken to buffer the  
TEMP output with a suitable low bias current op amp, such as  
the AD8601, AD820, or OP1177, all of which would result in  
less than a 100 µV change in VOUT (see Figure 38). Without  
buffering, even tens of microamps drawn from the TEMP pin  
can cause VOUT to fall out of specification.  
SET  
GND  
V
L
I
0.6mA  
Q
R
L
I
= I + I  
SET Q  
L
Figure 40. Low Cost Current Source  
PRECISION CURRENT SOURCE WITH  
ADJUSTABLE OUTPUT  
U1  
ADR01/  
ADR02/  
ADR03/  
A precision current source, on the other hand, can be  
15V  
ADR06  
implemented with the circuit shown in Figure 41. By adding a  
mechanical or digital potentiometer, this circuit becomes an  
adjustable current source. If a digital potentiometer is used, the  
load current is simply the voltage across terminals B to W of the  
V
V
V
V
O
IN  
IN  
OUT  
TEMP TRIM  
GND  
V+  
OP1177  
V–  
V
TEMP  
1.9mV/oC  
U2  
digital potentiometer divided by RSET  
.
VREF ×D  
RSET  
Figure 38. Temperature Monitoring  
IL  
=
(1)  
NEGATIVE REFERENCE  
where D is the decimal equivalent of the digital potentiometer  
input code.  
Without using any matching resistors, a negative reference can  
be configured as shown in Figure 39. For the ADR01, the volt-  
age difference between VOUT and GND is 10 V. Because VOUT is  
at virtual ground, U2 closes the loop by forcing the GND pin to  
be the negative reference node. U2 should be a precision op  
amp with a low offset voltage characteristic.  
U1  
ADR01/  
ADR02/  
ADR03/  
0V TO (5V + V )  
ADR06  
L
V
V
OUT  
+12  
V
IN  
B
AD5201  
U1  
W
TEMP TRIM  
GND  
100k  
ADR01/  
ADR02/  
ADR03/  
ADR06  
A
+12V  
R
1kΩ  
SET  
U2  
V
V
OUT  
5V TO 15V  
IN  
V+  
OP1177  
V–  
TEMP TRIM  
GND  
+15V  
–5V TO V  
V
L
L
U2  
R
L
1kΩ  
I
V+  
OP1177  
V–  
L
–12V  
–V  
REF  
Figure 41. Programmable 0 to 5 mA Current Source  
–15V  
Figure 39. Negative Reference  
Rev. F | Page 16 of 20  
 
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
To optimize the resolution of this circuit, dual-supply op amps  
should be used because the ground potential of ADR02 can  
swing from –5 V at zero scale to VL at full scale of the potenti-  
ometer setting.  
latter is true, oscillation may occur. For this reason, a capacitor, C1,  
in the range of 1 pF to 10 pF should be connected between VP  
and the output terminal of U4, to filter any oscillation.  
Vt  
It  
R1′  
R1R2  
R1R2′  
ZO  
=
=
(3)  
PROGRAMMABLE 4 TO 20 mA CURRENT  
TRANSMITTER  
1  
In this circuit, an ADR01 provides the stable 10.000 V reference  
for the AD5544 quad 16-bit DAC. The resolution of the adjust-  
able current is 0.3 µA/step, and the total worst-case INL error is  
merely 4 LSB. Such error is equivalent to 1.2 µA or a 0.006%  
system error, which is well below most systems’ requirements.  
The result is shown in Figure 43 with measurement taken at 25°C  
and 70°C; total system error of 4 LSB at both 25°C and 70°C.  
Because of their precision, adequate current handling, and small  
footprint, the devices are suitable as the reference sources for  
many high performance converter circuits. One of these  
applications is the multichannel 16-bit 4 to 20 mA current  
transmitter in the industrial control market (see Figure 42). This  
circuit employs a Howland current pump at the output, which  
yields better efficiency, a lower component count, and a higher  
voltage compliance than the conventional design with op amps  
and MOSFETs. In this circuit, if the resistors are matched such  
that R1 = R1, R2 = R2, R3 = R3, the load current is  
5
R
= 500  
L
I
= 0mA TO 20mA  
L
4
3
(R2 + R3) R1  
R3′  
V
REF ×D  
IL =  
×
(2)  
2N  
where D is similarly the decimal equivalent of the DAC input  
code and N is the number of bits of the DAC.  
2
25oC  
70oC  
1
According to Equation 2, R3can be used to set the sensitivity.  
R3can be made as small as necessary to achieve the current  
needed within U4 output current driving capability. On the  
other hand, other resistors can be kept high to conserve power.  
0
–1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
0V TO –10V  
5V  
U2  
+15V  
R1  
R2  
U1  
V
RF  
V
V
DD  
IO  
Figure 43. Result of Programmable 4 to 20 mA Current Transmitter  
150k  
15kΩ  
15V  
10V  
AD5544  
IO  
V
U3  
REF  
IN  
OUT  
V
VP  
X
R3  
50Ω  
GND  
Precision Boosted Output Regulator  
TEMP TRIM  
GND  
C1  
–15V  
A precision voltage output with boosted current capability can  
be realized with the circuit shown in Figure 44. In this circuit,  
U2 forces VO to be equal to VREF by regulating the turn-on of  
N1, thereby making the load current furnished by VIN. In this  
configuration, a 50 mA load is achievable at VIN of 15 V. Moderate  
heat is generated on the MOSFET, and higher current can be  
achieved with a replacement of a larger device. In addition, for a  
heavy capacitive load with a fast edging input signal, a buffer  
should be added at the output to enhance the transient response.  
10pF  
U4  
DIGITAL INPUT  
CODE 20%–100% FULL SCALE  
V
AD8512  
O
R3'  
50Ω  
R2'  
15kΩ  
V
U1 = ADR01/ADR02/ADR03/ADR06, REF01  
U2 = AD5543/AD5544/AD5554  
U3, U4 = AD8512  
L
VN  
R1'  
150kΩ  
LOAD  
500Ω  
4–20mA  
N1  
Figure 42. Programmable 4 to 20 mA Transmitter  
V
V
O
IN  
In this circuit, the AD8512 is capable of delivering 20 mA of  
current, and the voltage compliance approaches 15 V.  
R
200  
C
L
1µF  
U1  
L
2N7002  
15V  
ADR01/  
ADR02/  
ADR03/  
ADR06  
V
The Howland current pump yields a potentially infinite output  
impedance, which is highly desirable, but resistance matching is  
critical in this application. The output impedance can be deter-  
mined using Equation 3. As can be seen by this equation, if the  
V
OUT  
V+  
OP1177  
IN  
TEMP TRIM  
GND  
V–  
U2  
resistors are perfectly matched, ZO is infinite. On the other hand,  
if they are not matched, ZO is either positive or negative. If the  
Figure 44. Precision Boosted Output Regulator  
Rev. F | Page 17 of 20  
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
OUTLINE DIMENSIONS  
2.00 BSC  
4
1.25 BSC  
2.10 BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
1.00  
0.90  
0.70  
0.22  
0.08  
0.46  
0.36  
0.26  
0.30  
0.15  
0.10 M  
AX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AA  
Figure 45. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
0.90  
0.87  
0.84  
1.00 MAX  
8°  
4°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
0.20  
0.08  
COMPLIANT TO JEDEC STANDARDS MO-193AB  
Figure 46. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 47. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 18 of 20  
 
ADR01/ADR02/ADR03/ADR06  
ORDERING GUIDES  
ADR0. ORDERING GUIDE  
Output  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
3
3
25  
25  
9
9
25  
25  
9
9
40  
40  
Number of  
Voltage Accuracy  
Package  
Description  
SOIC-8  
SOIC-8  
SOIC-8  
Package  
Option  
R-8  
R-8  
R-8  
Top  
Parts per  
Reel/Tray  
98  
1,000  
98  
1,000  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
98  
2,500  
360  
Temperature  
Range (°C)  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
Model  
ADR01AR  
ADR01AR-REEL7  
ADR01BR  
Mark.  
ADR01  
ADR01  
ADR01  
ADR01  
R8A  
VO (V)  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
(mV) (1)  
10  
10  
5
0.1  
0.1  
0.05  
0.05  
0.1  
ADR01BR-REEL7  
ADR01AUJ-REEL7  
ADR01AUJ-R2  
ADR01BUJ-REEL7  
ADR01BUJ-R2  
ADR01AKS-REEL7  
ADR01AKS-R2  
ADR01BKS-REEL7  
ADR01BKS-R2  
ADR01CRZ2  
5
SOIC-8  
R-8  
10  
10  
5
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
SC70  
SC70  
SC70  
SOIC-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
0.1  
R8A  
R8B  
R8B  
R8A  
R8A  
R8B  
R8B  
ADR01  
0.05  
0.05  
0.1  
5
10  
10  
5
0.1  
0.05  
0.05  
0.1  
0.1  
0.05  
5
10  
10  
5
ADR01CRZ-REEL2  
ARR01NBC  
SOIC-8  
Dice  
R-8  
ADR01  
10 (Typ)  
1 First line shows part number ADR01; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
ADR02 ORDERING GUIDE  
Output  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
10  
10  
10  
3
Number of  
Parts per  
Reel/Tray  
98  
1,000  
1,000  
98  
2,500  
98  
1,000  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
98  
Voltage Accuracy  
Package  
Description  
Package  
Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS-5  
KS-5  
KS-5  
R-8  
Top  
Temperature  
Range (°C)  
Model  
Mark.  
VO (V)  
(mV) (1)  
ADR02AR  
5
5
5
5
5
5
5
5
5
5
5
3
3
5
5
3
3
5
5
3
3
5
5
3
0.1  
0.1  
0.1  
0.1  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
SC70  
SC70  
SC70  
SOIC-8  
SOIC-8  
Dice  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
ADR02  
R9A  
R9A  
R9B  
R9B  
R9A  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
ADR02AR-REEL  
ADR02AR-REEL7  
ADR02ARZ2  
ADR02ARZ-REEL2  
ADR02BR  
0.1  
0.06  
0.06  
0.1  
ADR02BR-REEL7  
ADR02AUJ-REEL7  
ADR02AUJ-R2  
ADR02BUJ-REEL7  
ADR02BUJ-R2  
ADR02AKS-REEL7  
ADR02AKS-R2  
ADR02BKS-REEL7  
ADR02BKS-R2  
ADR02CRZ2  
5
5
5
5
5
5
5
5
3
25  
25  
9
0.1  
0.06  
0.06  
0.1  
9
25  
25  
9
0.1  
R9A  
R9B  
R9B  
ADR02  
0.06  
0.06  
0.1  
0.1  
0.06  
5
9
5.0  
5.0  
5
40  
40  
10 (Typ)  
ADR02CRZ-REEL2  
ARR02NBC  
R-8  
ADR02  
2500  
360  
1 First line shows part number ADR02; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
Rev. F | Page 19 of 20  
 
 
 
 
 
ADR01/ADR02/ADR03/ADR06  
ADR03 ORDERING GUIDE  
Output  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
3
Number of  
Parts per  
Reel/Tray  
98  
1,000  
98  
1,000  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
98  
Voltage Accuracy  
Package  
Description  
SOIC-8  
SOIC-8  
SOIC-8  
Package  
Option  
R-8  
R-8  
R-8  
Top  
Temperature  
Range (°C)  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
Model  
ADR03AR  
ADR03AR-REEL7  
ADR03BR  
Mark.  
ADR03  
ADR03  
ADR03  
ADR03  
RFA  
VO (V)  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
(mV) (1)  
5
5
2.5  
2.5  
5
0.2  
0.2  
0.1  
0.1  
0.2  
0.2  
0.1  
0.1  
0.2  
0.2  
0.1  
0.1  
0.1  
0.1  
0.1  
ADR03BR-REEL7  
ADR03AUJ-REEL7  
ADR03AUJ-R2  
ADR03BUJ-REEL7  
ADR03BUJ-R2  
ADR03AKS-REEL7  
ADR03AKS-R2  
ADR03BKS–REEL7  
ADR03BKS–R2  
ADR03BKSZ–REEL72  
ADR03CRZ2  
3
SOIC-8  
R-8  
25  
25  
9
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
SC70  
SC70  
SC70  
SC70  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS–5  
KS–5  
KS–5  
KS–5  
R-8  
5
RFA  
RFB  
RFB  
RFA  
RFA  
RFB  
RFB  
RFB  
2.5  
2.5  
5
9
25  
25  
9
9
9
40  
40  
5
2.5  
2.5  
2.5  
5
SOIC-8  
SOIC-8  
ADR02  
ADR02  
ADR03CRZ-REEL2  
5
R-8  
2500  
1 First line shows part number ADR03; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
ADR06 ORDERING GUIDE  
Output  
Initial  
Temperature  
Coefficient  
(ppm/°C)  
10  
10  
3
Number of  
Parts per  
Reel/Tray  
98  
1,000  
98  
1,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
98  
2500  
Voltage Accuracy  
Package  
Description  
SOIC-8  
SOIC-8  
SOIC-8  
Package  
Option  
R-8  
R-8  
R-8  
Top  
Temperature  
Range (°C)  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
Model  
ADR06AR  
ADR06AR-REEL7  
ADR06BR  
Mark.  
ADR06  
ADR06  
ADR06  
ADR06  
RWA  
VO (V)  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
(mV) (1)  
6
3
6
3
6
6
3
3
6
6
3
3
6
6
0.2  
0.2  
01  
ADR06BR-REEL7  
ADR06AUJ-R2  
ADR06AUJ-REEL7  
ADR06BUJ–R2  
ADR06BUJ-REEL7  
ADR06AKS-R2  
ADR06AKS-REEL7  
ADR06BKS-R2  
ADR06BKS–REEL7  
ADR06CRZ2  
0.1  
0.2  
0.2  
0.1  
0.1  
0.2  
0.2  
0.1  
0.1  
0.2  
0.2  
3
SOIC-8  
R-8  
25  
25  
9
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
TSOT-23-5  
SC70  
SC70  
SC70  
SC70  
SOIC-8  
SOIC-8  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
KS-5  
KS–5  
KS-5  
KS–5  
R-8  
RWA  
RWB  
RWB  
RWA  
RWA  
RWB  
RWB  
ADR06  
9
25  
25  
9
9
40  
ADR06CRZ-REEL2  
40  
R-8  
ADR06  
1 First line shows part number ADR06; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.  
2 Z = Pb-free part.  
©
2004 Analog Devices, Incꢀ All rights reservedꢀ Trademarks and  
registered trademarks are the property of their respective ownersꢀ  
C02747–0–7/04(F)  
Rev. F | Page 20 of 20  
 
 
 
 
 

相关型号:

ADR02BKS-REEL7

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR02BKSZ-REEL7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI

ADR02BR

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR02BR-REEL7

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR02BRZ

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI

ADR02BRZ-REEL7

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI

ADR02BUJ-R

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO5, MO-193AB, TSOT-23, 5 PIN, Voltage Reference
ADI

ADR02BUJ-R2

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR02BUJ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5V, PDSO5, MO-193-AB, TSOT-23, 5 PIN
ROCHESTER

ADR02BUJ-REEL7

Ultracompact Precision10 V/5 V/2.5 V/3.0 V Voltage References
ADI

ADR02BUJ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 5 V, PDSO5, MO-193-AB, TSOT-23, 5 PIN
ROCHESTER

ADR02BUJZ-R2

Ultracompact, Precision 10.0 V/5.0 V/2.5 V/3.0 V Voltage Reerences
ADI