ADR121AUJZ [ADI]

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193AA, TSOT-23, 6 PIN, Voltage Reference;
ADR121AUJZ
型号: ADR121AUJZ
厂家: ADI    ADI
描述:

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193AA, TSOT-23, 6 PIN, Voltage Reference

光电二极管 输出元件
文件: 总8页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Micropower LDO  
a
Preliminary Technical Data  
Voltage References in TSOT-23  
ADR121/ADR125/ADR127  
FEATURES  
Initial Accuracy:  
A-Grade: +0.24%  
PIN CONFIGURATION  
B-Grade: +0.12%  
Max. Tempco.  
6-Lead TSOT-23  
(UJ Suffix)  
A-Grade: 25ppm/oC  
B-Grade: 9ppm/oC  
Low Dropout: 300mV  
High Output Current: +5mA/-2mA  
Low Operating Current: 85μA  
Input Range: 2.7V to 18V  
Temperature Range: -40oC to +125 oC  
Tiny TSOT-23-6 Package  
1
6
NC*  
GND 2  
VIN  
NC*  
5 NC*  
VOUT  
3
4
*Must be left floating  
APPLICATIONS  
Battery-Powered Instrumentation  
Portable Medical Equipment  
Data Acquisition Systems  
Automotive  
GENERAL DESCRIPTION  
The ADR12x is a low-dropout voltage reference,  
requiring only 300mV above the nominal output  
voltage on the input to provide a stable output  
voltage. This low dropout performance coupled  
with the low 85uA operating current makes the  
ADR12x ideal for battery-powered applications.  
Available in industrial temperature range of –40oC  
to +125oC, the ADR12x is housed in the tiny  
TSOT-23-6 package.  
The ADR12x is a family of micropower high  
precision, series mode bandgap reference with sink  
and source capability. It features high accuracy,  
and low-power consumption in a tiny package. The  
ADR12x design includes a patented temperature  
drift curvature correction techniques minimizes the  
non-linearities in the output voltage vs. temperature  
characteristics.  
ORDERING GUIDE  
Initial Max.  
Accuracy Tempco  
+3mV  
+1.5mV  
+6mV  
+3mV  
+12mV  
+6mV  
Model  
Vout  
1.25V  
1.25V  
2.5V  
2.5V  
5.0V  
5.0V  
Package  
ADR127AUJZ  
ADR127BUJZ  
ADR121AUJZ  
ADR121BUJZ  
ADR125AUJZ  
ADR125BUJZ  
25ppm/oC  
9ppm/oC  
25ppm/oC  
9ppm/oC  
25ppm/oC  
9ppm/oC  
TSOT-23-6 (lead-free)  
TSOT-23-6 (lead-free)  
TSOT-23-6 (lead-free)  
TSOT-23-6 (lead-free)  
TSOT-23-6 (lead-free)  
TSOT-23-6 (lead-free)  
REV. PrA  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties that  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
Last Edited: August 31, 2005  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
ADR127 ELECTRICAL CHARACTERISTICS (@ TA = 25oC, 2.7V to 18V, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITION  
Min  
Typ  
Max  
UNITS  
Output Voltage  
B-Grade  
VO  
@ 25oC  
1.2485  
1.2470  
1.25  
1.2515  
V
V
A-Grade  
1.25 1.2530  
Initial Accuracy Error  
B-Grade  
A-Grade  
Temperature Coefficient  
B-Grade  
@ 25oC  
VOERR  
TCVO  
-0.12  
-0.24  
+0.12  
+0.24  
%
%
-40oC < TA < +125oC  
3
15  
9
25  
ppm/ oC  
ppm/ oC  
A-Grade  
Load Regulation  
-40oC < TA < +125oC; VIN = 3.0V  
0.5  
0.5  
mV/mA  
mV/mA  
0mA < IOUT < 5mA  
40oC < TA < +125oC; VIN = 3.0V  
-2mA < IOUT < 0mA  
2.7V to 18V  
Line Regulation  
IOUT = 0mA  
90  
ppm/V  
dB  
Ripple Rejection  
Quiescent Current  
f= 60Hz  
60  
VOUT  
VIN  
IQ  
/
-40oC < TA < +125oC, No Load  
VIN = 18V  
125  
µA  
µA  
mA  
95  
85  
25  
VIN = 2.7V  
Short Circuit Current to  
Ground  
Noise Voltage  
VIN = 5.0V  
@ 25oC  
0.1Hz to 10Hz  
10  
µVp-p  
Turn-on Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
200  
TBD  
TBD  
To 0.1%, CL = 0.2 µF  
µs  
ppm/1000 hrs.  
ppm  
1,000 Hours @ 25oC  
Last Edited: August 31, 2005  
Rev. PrA | Page 2 of 8  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
ADR121 ELECTRICAL CHARACTERISTICS (@ TA = 25oC, VIN = 2.8V to 18V, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITION  
Min  
Typ  
Max  
UNITS  
Output Voltage  
B-Grade  
VO  
@ 25oC  
2.497  
2.494  
2.5  
2.5  
2.503  
2.506  
V
V
A-Grade  
Initial Accuracy Error  
B-Grade  
A-Grade  
Temperature Coefficient  
B-Grade  
VOERR  
TCVO  
VDO  
@ 25oC  
-0.12  
-0.24  
+0.12  
+0.24  
%
%
-40oC < TA < +125oC  
3
15  
9
25  
ppm/ oC  
ppm/ oC  
mV  
A-Grade  
Dropout (VIN – VOUT  
Load Regulation  
)
IOUT = 5mA  
300  
-40oC < TA < +125oC; VIN = 3.0V  
0mA < IOUT < 5mA  
0.5  
0.5  
mV/mA  
mV/mA  
-40oC < TA < +125oC; VIN = 3.0V  
-2mA < IOUT < 0mA  
2.8V < VIN < 18V  
Line Regulation  
IOUT = 0mA  
90  
ppm/V  
dB  
Ripple Rejection  
Quiescent Current  
f= 60Hz  
60  
VOUT  
VIN  
IQ  
/
-40oC < TA < +125oC, No Load  
VIN = 18V  
125  
µA  
µA  
mA  
95  
85  
25  
VIN = 3.0V  
Short Circuit Current to  
Ground  
Noise Voltage  
@ 25oC  
0.1Hz to 10Hz  
20  
µVp-p  
Turn-on Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
200  
TBD  
TBD  
To 0.1%, CL = 0.2 µF  
µs  
ppm/1000 hrs.  
ppm  
1,000 Hours @ 25oC  
Last Edited: August 31, 2005  
Rev. PrA | Page 3 of 8  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
ADR125 ELECTRICAL CHARACTERISTICS (@ TA = 25oC, VIN = 5.3V to 18V, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITION  
Min  
Typ  
Max  
UNITS  
Output Voltage  
B-Grade  
VO  
@ 25oC  
4.994  
4.988  
5.0  
5.0  
5.006  
5.012  
V
V
A-Grade  
Initial Accuracy Error  
B-Grade  
A-Grade  
Temperature Coefficient  
B-Grade  
VOERR  
TCVO  
VDO  
@ 25oC  
-0.12  
-0.24  
+0.12  
+0.24  
%
-40oC < TA < +125oC  
3
15  
9
25  
ppm/ oC  
ppm/ oC  
mV  
A-Grade  
Dropout (VIN – VOUT  
Load Regulation  
)
IOUT = 5mA  
300  
-40oC < TA < +125oC; VIN = 5.5V  
0mA < IOUT < 5mA  
0.5  
0.5  
mV/mA  
mV/mA  
-40oC < TA < +125oC; VIN = 5.5V  
-2mA < IOUT < 0mA  
5.3V < VIN < 18V  
Line Regulation  
IOUT = 0mA  
30  
ppm/V  
dB  
Ripple Rejection  
Quiescent Current  
f = 60Hz  
60  
VOUT  
VIN  
IQ  
/
-40oC < TA < +125oC, No Load  
VIN = 18V  
125  
µA  
µA  
mA  
95  
85  
25  
VIN = 5.3V  
Short Circuit Current to  
Ground  
Noise Voltage  
@ 25oC  
0.1Hz to 10Hz  
40  
µVp-p  
Turn-on Settling Time  
Long-Term Stability  
Output Voltage Hysteresis  
200  
TBD  
TBD  
To 0.1%, CL = 0.2 µF  
µs  
ppm/1000 hrs.  
ppm  
1,000 Hours @ 25oC  
ABSOLUTE MAXIMUM RATINGS1  
V
IN to GND............................................................................20V  
Internal Power Dissipation2  
SOT-23 (RT) ................................................................ 400mW  
Storage Temperature Range ............................. –65°C to +150°C  
Specified Temperature Range........................... –40°C to +120°C  
Lead Temperature, Soldering  
Vapor Phase (60 sec) ....................................................... +215°C  
Infrared (15 secs)............................................................. +220°C  
Last Edited: August 31, 2005  
Rev. PrA | Page 4 of 8  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
The change of output voltage after the device is  
cycled through temperature from +25oC C to -40oC  
to +125oC and back to +25oC. This is a typical value  
from a sample of parts put through such a cycle.  
TERMINILOGY  
Temperature Coefficient  
The change of output voltage with respect to  
operating temperature change normalized by the  
output voltage at 25oC. This parameter is expressed  
in ppm/oC and can be determined by  
VO _ HYS = VO (25o C) VO _ TC  
VO (25o C) VO _ TC  
Vo (T2 ) Vo (T1 )  
VO _ HYS [ ppm] =  
×106  
TCVO [ ppm /o C] =  
×106  
VO (25o C)  
Vo (25o C)× (T2 T1 )  
where:  
Vo (25oC) = Vo at 25oC.  
where;  
Vo (25oC) = Vo at 25oC.  
V
o_TC = Vo at 25oC after temperature cycle at +25oC  
to -40oC to +125oC and back to +25oC.  
Vo (T1) = Vo at Temperature 1.  
Vo (T2) = Vo at Temperature 2.  
NOTES  
Input Capacitor  
Line Regulation  
Input capacitors are not required on the ADR12x.  
There is no limit for the value fo the capacitor used  
on trhe input, but a 1µF to 10µF capacitor on the  
input improved transient response in the applications  
where there is a sudden supply change. An  
additional 0.1µF capacitor in parallel also helps  
reduce noise from the supply.  
The change in the output due to a specified change  
in input voltage. This parameter accounts for the  
effects of self-heating. Line regulation is expressed  
in either percent per volt, parts-per-million per volt,  
or microvolts per voltage changes in input voltage.  
Load Regulation  
The change in output voltage due to a specified  
change in load current. This parameter accounts for  
the effects of self-heating. Load regulation is  
expressed in either microvolts per milliampere,  
parts-per-million per milliampere, or ohms of dc  
output resistance.  
Output Capacitor  
The ADR12x requires a small 0.1µF for stability.  
Additional 0.1µF to 10µF capacitance in parallel can  
improve load transient response. This acts as a  
source of stored energy for a sudden increase in  
load current. The only parameter affected with the  
additional capacitance is turn-on time.  
Long-Term Stability  
Typical shift of output voltage at 25oC on a sample of  
parts subjected to a test of 1,000 hours at 25oC.  
Vo = Vo (to ) Vo (t1 )  
Vo (to ) Vo (t1 )  
Vo [ppm] =  
×106  
Vo (to )  
where:  
Vo(t0) = Vo at 25oC at Time 0.  
Vo(t1) = Vo at 25oC after 1,000 hours operating at  
25oC.  
Thermal Hysteresis  
TYPICAL PERFORMANCE CHARACTERISTICS  
Last Edited: August 31, 2005  
Rev. PrA | Page 5 of 8  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
TJ TA  
PD =  
THEORY OF OPERATION  
ΘJA  
The ADR12x band gap references are the high  
performance solution for low supply voltage and low  
power applications. This family of precision  
references uses the underlying temperature  
characteristics of a silicon transistor’s base emitter  
voltage in the forward-biased operating region.  
Under this condition, all such transisitors have a -  
2mV/oC temperature coeffient (TC) and a VBE that,  
when exptrapolated to absolute zero, 0oK (with  
collector current proportional to absolute  
In this equation, TJ and TA are respectively, the  
junction and the ambient temperatures, PD is the  
device power dissipation, and ΘJA is the device  
package thermal resistance.  
APPLICATIONS  
Basic Voltage Reference Connection  
temperature), approximates the silicon band gap  
voltage by summing a voltage that has equal and  
opposite temperature coefficient of 2mV/oC with the  
VBE of a forward-biased transistor, an almost zero  
TC reference can be developed. In the ADR12x  
simplified circuit diagram shown in Figure xx, such a  
compensating voltage, VR4, is derived by driving two  
transistors at different current densities and  
The circuit in Figure a illustrustates the basic  
confirguration for the ADR12x family voltage  
reference.  
amplying the resultant VR3 or VBE (VΒΕ, which has  
a positive TC). The sum of VBE and VR4 is then  
buffered and amplified to produce stable reference  
voltage outputs of 1.25V, 2.5V, and 5.0V.  
VIN  
VOUT  
Figure xx. Basic Configuration for the ADR12x  
Familiy  
R2  
R1  
RF  
Stacking Reference ICs for Arbitrary Outputs  
n
RB  
Some applications may require two reference  
votlage sources, which are a combined sum of the  
standard outputs. Figure xx shows how this stacked  
output reference can be implemented.  
R3  
R6  
R4  
Devices Power Dissipation Considerations  
The ADR12x family is capable of delivering load  
currents to 5mA with and input range from 3.0V to  
18V. When this device is used in applications with  
large input voltages, care should be take to avoid  
exceeding the specified maximum power dissipation  
or junction temperature because it could result in  
premature device failure. Use the following formula  
to calculate a device’s maximum junction  
temperature or dissipation:  
Figure xx. Stacking References with ADR12x  
Last Edited: August 31, 2005  
Rev. PrA | Page 6 of 8  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
operate on low supply voltages. The ADR12x can  
be  
Two reference ICs are used, and fed from an  
unregulated input, VIN. The outputs of the individual  
ICs are connected in series, which provides tow  
output voltages, VOUT1 and VOUT2. VOUT1 is the  
configured as a precision current source (see Figure  
xx). The circuit configuration illustrated is a floating  
current source with a grounded load. The  
reference’s output voltage is bootstrapped acrossed  
RSET, which sets the output current into the load.  
With this configuration, circuit precision is  
maintained  
terminal voltage of U1, while VOUT2 is the sum of this  
voltage and the terminal of U2. U1 and U2 are  
chosen for the two votlages that supply the required  
outputs (see Table xx). For example, if U1 and U2  
are ADR127, VOUT1 is 1.25V and VOUT2 is 2.5V.  
for load currents ranging form the reference’s supply  
Table xx Output  
current, typically 95µA, to approximately 5mA.  
U1/U2  
VOUT1  
1.25V  
1.25V  
2.5V  
VOUT2  
3.75V  
6.25V  
7.5V  
ADR127/ADR121  
ADR127/ADR125  
ADR121/ADR125  
A Negative Precision Reference Without  
Precision Resistors  
A negative reference I easily generated by adding  
an op amp, A1, and is configured in Figure xx. VOUT1  
is at virtual ground and, therefore, the negative  
reference can be taken directly form the output of  
the op amp. The op amp must be dual-supply, low  
offset, and rail-to-rail if the negative supply voltage is  
close to the reference output.  
Figure xx. Negative Reference  
General Purpose Current Source  
Many times in low power applications, the need  
arises for a precision current source that can  
Last Edited: August 31, 2005  
Rev. PrA | Page 7 of 8  
Preliminary Technical Data  
ADR121/ADR125/ADR127  
OUTLINE DIMENSIONS  
ORDERING GUIDE  
Temperature  
Coefficient  
(ppm/oC)  
Output  
Voltage  
(VO)  
Temperature  
Range (oC)  
Package  
Description  
Package  
Option  
Models*  
Initial Accuracy  
Branding  
ADR127AUJZ-REEL7  
ADR127BUJZ-REEL7  
ADR121AUJZ-REEL7  
ADR121BUJZ-REEL7  
ADR125AUJZ-REEL7  
ADR125BUJZ-REEL7  
*3,000 pieces per reel  
1.25V  
1.25V  
2.5V  
2.5V  
5.0V  
3mV  
1.5mV  
6mV  
3mV  
12mV  
6mV  
0.24%  
0.12%  
0.24%  
0.12%  
0.24%  
0.12%  
25  
9
25  
9
25  
9
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
UJ-6  
-40 to +125 R0S  
-40 to +125 R0T  
-40 to +125 R0N  
-40 to +125 R0P  
-40 to +125 R0Q  
-40 to +125 R0R  
5.0V  
Last Edited: August 31, 2005  
Rev. PrA | Page 8 of 8  

相关型号:

ADR121AUJZ-R2

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZ-R21

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZ-REEL7

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO6, ROHS COMPLIANT, MO-193AA, TSOT-6
ROCHESTER

ADR121AUJZ-REEL71

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121AUJZR2

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193-AA, TSOT-6, Voltage Reference
ADI

ADR121AUJZREEL7

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193-AA, TSOT-6, Voltage Reference
ADI

ADR121BUJZ

IC 1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO6, LEAD FREE, MO-193AA, TSOT-23, 6 PIN, Voltage Reference
ADI

ADR121BUJZ-R2

IC IC,VOLT REFERENCE,FIXED,2.5V,BIPOLAR,TSOP,6PIN,PLASTIC, Voltage Reference
ADI

ADR121BUJZ-REEL7

Precision, Micropower LDO Voltage References in TSOT
ADI

ADR121BUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO6, ROHS COMPLIANT, MO-193AA, TSOT-6
ROCHESTER

ADR121BUJZ-REEL71

Precision, Micropower LDO Voltage References in TSOT
ADI