ADR3425ARJZ-R2 [ADI]

Micropower, High Accuracy Voltage References; 微功耗,高精度电压基准
ADR3425ARJZ-R2
型号: ADR3425ARJZ-R2
厂家: ADI    ADI
描述:

Micropower, High Accuracy Voltage References
微功耗,高精度电压基准

电源电路 参考电压源 光电二极管 PC
文件: 总20页 (文件大小:882K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, High Accuracy  
Voltage References  
ADR3425/ADR3450  
PIN CONFIGURATION  
FEATURES  
Initial accuracy: 0.1ꢀ (max)  
GND FORCE  
GND SENSE  
ENABLE  
1
2
3
6
5
4
V
V
V
FORCE  
OUT  
OUT  
IN  
ADR3425/  
ADR3450  
Maximum temperature coefficient: 8 ppm/°C  
Operating temperature range: −40°C to +125°C  
Output current: +10 mA source/−3 mA sink  
Low quiescent current: 100 μA (max)  
Low dropout voltage: 250 mV at 2 mA  
Output noise (0.1 Hz to 10 Hz): < 18 μV p-p at 2.5 V typ  
6-lead SOT-23 package  
SENSE  
TOP VIEW  
(Not to Scale)  
Figure 1. 6-Lead SOT-23  
APPLICATIONS  
Precision data acquisition systems  
High resolution data converters  
Industrial instrumentation  
Medical devices  
Automotive controls  
Battery-powered devices  
GENERAL DESCRIPTION  
The ADR3425/ADR3450 are low-cost, low-power, high  
precision CMOS voltage references, featuring 0ꢀ.1 initial  
accuracy, low operating current, and low output noise in a small  
SOT-23 packageꢀ  
Table 2. Voltage Reference Choices from Analog Devices  
VOUT  
Low Cost/  
Ultralow  
Low  
High Voltage,  
(V)  
Low Power  
Power  
Noise  
High Performance  
0.5/1.0  
2.048  
ADR130  
ADR430  
ADR440  
ADR431  
ADR441  
ADR360  
REF191  
For high accuracy, output voltage and temperature coefficient  
are trimmed digitally during final assembly using Analog  
Devices, Incꢀ, patented DigiTrim® technologyꢀ Stability and  
system reliability are further improved by the low output  
voltage hysteresis of the device and low long-term output  
voltage driftꢀ  
2.5  
3.0  
ADR3425  
AD1582  
ADR361  
AD1583  
ADR363  
ADR366  
AD1584  
ADR364  
ADR3450  
AD1585  
ADR365  
ADR291  
REF192  
ADR03  
AD780  
REF193  
ADR433  
ADR443  
ADR06  
AD780  
Furthermore, the low operating current of the device (.00 μA  
maximum) facilitates usage in low-power devices, while its low  
output noise helps maintain signal integrity in critical signal  
processing systemsꢀ  
3.3  
REF196  
ADR292  
REF198  
ADR293  
REF195  
4.096  
ADR434  
ADR444  
ADR435  
ADR445  
5.0  
ADR02  
AD780  
AD586  
ADR01  
AD587  
The ADR3425/ADR3450 are available in a wide range of output  
voltages, all of which are specified over the industrial  
temperature range of −40°C to +.25°Cꢀ  
10.0  
Table 1. Selection Guide  
Model  
Output Voltage (V)  
Input Voltage Range (V)  
2.7 to 5.5  
5.2 to 5.5  
ADR3425  
ADR3450  
2.500  
5.000  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
ADR3425/ADR3450  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 13  
Theory of Operation ...................................................................... 14  
Power Dissipation....................................................................... 14  
Applications..................................................................................... 15  
Basic Voltage Reference Connection....................................... 15  
Input and Output Capacitors.................................................... 15  
4-Wire Kelvin Connections ...................................................... 15  
VIN Slew Rate Considerations................................................... 15  
Shutdown/Enable Feature ......................................................... 15  
Sample Applications................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Pin Configuration.............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR3425 Electrical Characteristics .......................................... 3  
ADR3450 Electrical Characteristics .......................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
3/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADR3425/ADR3450  
SPECIFICATIONS  
ADR3425 ELECTRICAL CHARACTERISTICS  
VIN = 2.7 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
2.5025  
0.1  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
2.4975  
2.500  
VOERR  
%
2.5  
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
2.5  
8
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN  
VIN = 2.7 V to 5.5 V  
VIN = 2.7 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
50  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to +10 mA, −40°C ≤ TA ≤ +125°C,  
VIN = 3.0 V to 5.0 V  
IL = 0 mA to −3 mA, −40°C ≤ TA ≤ +125°C,  
30  
50  
ppm/mA  
ppm/mA  
Sinking  
V
IN = 3.0 V to 5.0 V  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 3.0 V to 5.5 V  
VIN = 3.0 V to 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE ≥ VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE ≤ 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, TA = −40°C ≤ TA ≤ +125°C  
IL = 2 mA, TA = −40°C ≤ TA ≤ +125°C  
200  
250  
ENABLE PIN  
Shutdown Voltage  
Enable Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, TA = −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
1
en p-p  
18  
42  
1.2  
μV p-p  
μV rms  
ꢀV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
f = 1 kHz  
OUTPUT VOLTAGE HYSTERESIS2  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
ΔVOUT_HYS  
RRR  
TA = +25°C to −40°C to +125°C to +25°C  
fIN = 60 Hz  
70  
ppm  
dB  
−60  
30  
ΔVOUT_LTD  
tR  
1000 hours at 50°C  
ppm  
μs  
TURN-ON SETTLING TIME  
800  
1 Refer to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. 0 | Page 3 of 20  
 
 
ADR3425/ADR3450  
ADR3450 ELECTRICAL CHARACTERISTICS  
VIN = 5.2 V to 5.5 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
VOUT  
Conditions  
Min  
Typ  
Max  
5.005  
0.1  
Unit  
V
OUTPUT VOLTAGE  
INITIAL ACCURACY  
4.995  
5.000  
VOERR  
%
5.0  
mV  
TEMPERATURE COEFFICIENT  
LINE REGULATION  
TCVOUT  
−40°C ≤ TA ≤ +125°C  
2.5  
8
ppm/°C  
ppm/V  
ppm/V  
ΔVO/ΔVIN  
VIN = 5.2 V to 5.5 V  
VIN = 5.2 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
50  
120  
LOAD REGULATION  
Sourcing  
ΔVO/ΔIL  
IL = 0 mA to +10 mA, −40°C ≤ TA ≤ +125°C,  
VIN = 5.5 V  
IL = 0 mA to −3 mA, −40°C ≤ TA ≤ +125°C,  
VIN = 5.5 V  
30  
50  
ppm/mA  
ppm/mA  
Sinking  
OUTPUT CURRENT CAPACITY  
Sourcing  
Sinking  
IL  
VIN = 5.5 V  
VIN = 5.5 V  
10  
−3  
mA  
mA  
QUIESCENT CURRENT  
Normal Operation  
IQ  
ENABLE ≥ VIN × 0.85  
ENABLE = VIN, −40°C ≤ TA ≤ +125°C  
ENABLE ≤ 0.7 V  
85  
100  
5
μA  
μA  
μA  
mV  
mV  
Shutdown  
DROPOUT VOLTAGE1  
VDO  
IL = 0 mA, TA = −40°C ≤ TA ≤ +125°C  
IL = 2 mA, TA = −40°C ≤ TA ≤ +125°C  
200  
250  
ENABLE PIN  
Shutdown Voltage  
Enable Voltage  
ENABLE Pin Leakage Current  
OUTPUT VOLTAGE NOISE  
VL  
VH  
IEN  
0
0.7  
VIN  
3
V
V
μA  
VIN × 0.85  
ENABLE = VIN, TA = −40°C ≤ TA ≤ +125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz to 10 kHz  
1
en p-p  
35  
60  
1.9  
μV p-p  
μV rms  
ꢀV/√Hz  
OUTPUT VOLTAGE NOISE  
DENSITY  
en  
f = 1 kHz  
OUTPUT VOLTAGE HYSTERESIS2  
RIPPLE REJECTION RATIO  
LONG-TERM STABILITY  
ΔVOUT_HYS  
RRR  
TA = +25°C to −40°C to +125°C to +25°C  
fIN = 60 Hz  
70  
ppm  
dB  
−58  
30  
ΔVOUT_LTD  
tR  
1000 hours at 50°C  
ppm  
ms  
TURN-ON SETTLING TIME  
1.2  
1 Refer to the minimum difference between VIN and VOUT such that VOUT maintains a minimum accuracy of 0.1%. See the Terminology section.  
2 See the Terminology section. The part is placed through the temperature cycle in the order of temperatures shown.  
Rev. 0 | Page 4 of 20  
 
 
 
ADR3425/ADR3450  
THERMAL RESISTANCE  
ABSOLUTE MAXIMUM RATINGS  
θJA is specified for the worst-case conditions; that is, a device  
soldered in a circuit board for surface-mount packages.  
TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Supply Voltage  
ENABLE to GND SENSE Voltage  
VIN Minimum Slew Rate  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature Range  
Table 6. Thermal Resistance  
Package Type  
Rating  
θJA  
θJC  
Unit  
6 V  
VIN  
0.1 V/ms  
−40°C to +125°C  
−65°C to +125°C  
−65°C to +150°C  
6-Lead SOT-23 (RJ-6)  
230  
92  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 20  
 
ADR3425/ADR3450  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND FORCE  
GND SENSE  
ENABLE  
1
2
3
6
5
4
V
V
V
FORCE  
SENSE  
OUT  
OUT  
IN  
ADR3425/  
ADR3450  
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
GND FORCE  
GND SENSE  
ENABLE  
Description  
Ground Force Connection1.  
1
2
3
4
5
6
Ground Voltage Sense Connection. Connect directly to point of lowest potential in application1.  
Enable Connection. Enables or disables the device.  
Input Voltage Connection.  
Reference Voltage Output Sensing Connection. Connect directly to the voltage input of load devices1.  
Reference Voltage Output1.  
VIN  
VOUT SENSE  
VOUT FORCE  
1 See the Applications section for more information on force/sense connections.  
Rev. 0 | Page 6 of 20  
 
 
ADR3425/ADR3450  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
2.5010  
14  
12  
10  
8
V
= 5.5V  
IN  
ΔI = 0mA TO 10mA  
V
= 5.5V  
2.5008  
2.5006  
2.5004  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
IN  
L
C
= 0.1µF  
L
6
4
2
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (ºC)  
TEMPERATURE (°C)  
Figure 3. ADR3425 Output Voltage vs. Temperature  
Figure 6. ADR3425 Load Regulation vs. Temperature (Sourcing)  
40  
35  
30  
25  
20  
15  
10  
5
20  
V
= 5.5V  
IN  
ΔI = 0mA TO –3mA  
18  
16  
14  
12  
10  
8
L
C
= 0.1µF  
L
6
4
2
0
0
0
1
2
3
4
5
6
7
8
9
10 MORE  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE COEFFICIENT (ppm/°C)  
TEMPERATURE (°C)  
Figure 4. ADR3425 Temperature Coefficient Distribution  
Figure 7. ADR3425 Load Regulation vs. Temperature (Sinking)  
400  
150  
130  
110  
90  
–40°C  
+25°C  
+125°C  
ΔV = 2.7V TO 5.5V  
IN  
350  
300  
250  
200  
150  
100  
50  
I
= 0  
L
70  
50  
30  
10  
–10  
–30  
0
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 8. ADR3425 Dropout Voltage vs. Load Current  
Figure 5. ADR3425 Line Regulation vs. Temperature  
Rev. 0 | Page 7 of 20  
 
 
ADR3425/ADR3450  
5.0025  
6
5
4
3
2
1
0
V
= 5.5V  
IN  
ΔI = 0mA TO 10mA  
V
= 5.5V  
5.0020  
5.0015  
5.0010  
5.0005  
5.0000  
4.9995  
4.9990  
4.9985  
4.9980  
4.9975  
IN  
L
C
= 0.1µF  
L
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (ºC)  
TEMPERATURE (°C)  
Figure 9. ADR3450 Output Voltage vs. Temperature  
Figure 12. ADR3450 Load Regulation vs. Temperature (Sourcing)  
45  
40  
35  
30  
25  
20  
15  
10  
5
24  
V
= 5.5V  
IN  
ΔI = 0mA TO –3mA  
C
L
22  
20  
18  
16  
14  
12  
10  
= 0.1µF  
L
8
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
1
2
3
4
5
6
7
8
9
10 MORE  
TEMPERATURE (°C)  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 13. ADR3450 Load Regulation vs. Temperature (Sinking)  
Figure 10. ADR3450 Temperature Coefficient Distribution  
350  
10  
–40°C  
+25°C  
+125°C  
ΔV = 5.2V TO 5.5V  
IN  
8
6
I
= 0  
300  
L
250  
200  
150  
100  
50  
4
2
0
–2  
–4  
–6  
–8  
–10  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 11. ADR3450 Line Regulation vs. Temperature  
Figure 14. ADR3450 Dropout Voltage vs. Load Current  
Rev. 0 | Page 8 of 20  
 
ADR3425/ADR3450  
0
C
C
= 1.1µF  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
= 0.1µF  
IN  
1
10µV/DIV  
TIME = 1s/DIV  
CH1 RMS = 3.14µV  
–90  
CH1 pk-pk = 18µV  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 18. ADR3425 Ripple Rejection Ratio vs. Frequency  
Figure 15. ADR3425 Output Voltage Noise (0.1 Hz to 10 Hz)  
C
R
= C = 0.1µF  
L
IN  
L
=
1
V
= 2V/DIV  
IN  
1
100µV/DIV  
TIME = 200µs/DIV  
2
V
= 1V/DIV  
TIME = 1s/DIV  
OUT  
CH1 pk-pk = 300µV  
CH1 RMS = 42.0µV  
Figure 19. ADR3425 Start-Up Response  
Figure 16. ADR3425 Output Voltage Noise (10 Hz to 10 kHz)  
12  
ENABLE  
10  
8
V
V
C
= 1V/DIV  
ENABLE  
= 3.0v  
IN  
= C = 0.1µF  
IN  
L
L
R
=
1
6
4
V
= 1V/DIV  
OUT  
TIME = 200µs/DIV  
2
2
0
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 20. ADR3425 Restart Response from Shutdown  
Figure 17. ADR3425 Output Noise Spectral Density  
Rev. 0 | Page 9 of 20  
ADR3425/ADR3450  
0
C
C
= 1.1µF  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
= 0.1µF  
IN  
1
10µV/DIV  
–90  
CH1 pk-pk = 33.4µV  
CH1 RMS = 5.68µV  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 24. ADR3450 Ripple Rejection Ratio vs. Frequency  
Figure 21. ADR3450 Output Voltage Noise (0.1 Hz to 10 Hz)  
C
C
R
= 0µF  
= 0.1µF  
IN  
L
L
=
V
IN  
2V/DIV  
1
1
V
OUT  
2V/DIV  
TIME = 200µs/DIV  
100µV/DIV  
2
CH1 pk-pk = 446µV  
CH1 RMS = 60.3µV  
Figure 25. ADR3450 Start-Up Response  
Figure 22. ADR3450 Output Voltage Noise (10 Hz to 10 kHz)  
12  
10  
8
ENABLE  
V
V
C
R
= 2V/DIV  
ENABLE  
= 5.5V  
IN  
= C = 0.1µF  
IN  
L
L
1
=
6
V
= 2V/DIV  
OUT  
4
TIME = 200µs/DIV  
2
2
0
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 26. ADR3450 Restart Response from Shutdown  
Figure 23. ADR3450 Output Noise Spectral Density  
Rev. 0 | Page 10 of 20  
ADR3425/ADR3450  
ENABLE  
1V/DIV  
ENABLE  
2V/DIV  
C
= C = 0.1µF  
L
= 5V  
= 1k  
IN  
IN  
C
= C = 0.1µF  
L
= 3V  
= 1k  
IN  
V
R
V
R
IN  
L
L
1
1
V
= 1V/DIV  
V
= 2V/DIV  
OUT  
2
OUT  
2
TIME = 200µs/DIV  
TIME = 200µs/DIV  
Figure 27. ADR3425 Shutdown Response  
Figure 30. ADR3450 Shutdown Response  
V
= 100mV/DIV  
IN  
5.5V  
5.2V  
3.2V  
2.7V  
C
= C = 0.1µF  
L
IN  
1
500mV/DIV  
C
= C = 0.1µF  
L
IN  
2
V
= 10mV/DIV  
OUT  
2
V
= 5mV/DIV  
OUT  
TIME = 1ms/DIV  
TIME = 1ms/DIV  
1
Figure 28. ADR3425 Line Transient Response  
Figure 31. ADR3450 Line Transient Response  
I
L
+10mA  
–3mA  
SOURCING  
SOURCING  
SINKING  
I
+10mA  
–3mA  
L
SINKING  
SINKING  
SINKING  
C
C
R
=
=
0.1µF  
0.1µF  
= 500  
IN  
C
C
R
=
=
0.1µF  
0.1µF  
= 250Ω  
IN  
L
L
L
L
5.0V  
2.5V  
V
= 20mV/DIV  
V
= 20mV/DIV  
OUT  
OUT  
TIME = 1ms/DIV  
TIME = 1ms/DIV  
Figure 29. ADR3425 Load Transient Response  
Figure 32. ADR3450 Load Transient Response  
Rev. 0 | Page 11 of 20  
ADR3425/ADR3450  
7
6
5
4
3
2
1
0
100  
V
= 5.5 V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
RELATIVE SHIFT IN V  
OUT  
(%)  
Figure 33. Supply Current vs. Temperature  
Figure 36. Output Voltage Drift Distribution After Reflow (SHR Drift)  
2.0  
8
T
= +25°C +150°C –50°C +25°C  
A
–40°C  
+25°C  
+125°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
7
6
5
4
3
2
1
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
ENABLE VOLTAGE (% of V  
)
IN  
OUTPUT VOLTAGE HYSTERESIS (ppm)  
Figure 37. Thermally Induced Output Voltage Hysteresis Distribution  
Figure 34. Supply Current vs. Enable Pin Voltage  
80  
10  
C
C
= 0.1µF  
= 1.1µF  
L
L
60  
40  
1
20  
0
–20  
–40  
–60  
–80  
0.1  
0.01  
0
200  
400  
600  
800  
1000  
0.01  
0.1  
1
10  
100  
1k  
10k  
ELAPSED TIME (Hours)  
FREQUENCY (Hz)  
Figure 35. ADR3450 Output Impedance vs. Frequency  
Figure 38. ADR3450 Typical Long-Term Drift (Four Devices, 1000 Hours)  
Rev. 0 | Page 12 of 20  
 
ADR3425/ADR3450  
TERMINOLOGY  
Long-Term Stability (ΔVOUT_LTD  
)
Dropout Voltage (VDO  
)
Long-term stability refers to the shift in output voltage at 50°C  
after 1000 hours of operation in a 50°C environment. Ambient  
temperature is kept at 50°C to ensure that the temperature  
chamber does not switch randomly between heating and cooling,  
which can cause instability over the 1000 hour measurement.  
This is also expressed as either a shift in voltage or a difference  
in ppm from the nominal output.  
Dropout voltage, sometimes referred to as supply voltage  
headroom or supply-output voltage differential, is defined as  
the minimum voltage differential between the input and output  
such that the output voltage is maintained to within 0.1%  
accuracy.  
V
DO = (VIN − VOUT)min | IL = constant  
Because the dropout voltage depends upon the current passing  
through the device, it is always specified for a given load current.  
In series-mode devices, dropout voltage typically increases  
proportionally to load current; see Figure 8 and Figure 14.  
ΔVOUT _ LTD = VOUT (t1 ) VOUT (t0 ) [V]  
VOUT (t1 ) VOUT (t0 )  
ΔVOUT _ LTD  
=
×106 [ppm]  
VOUT (t0 )  
Temperature Coefficient (TCVOUT  
)
where:  
OUT(t0) is the VOUT at 50°C at time 0.  
The temperature coefficient relates the change in output voltage  
to the change in ambient temperature of the device, as normalized  
by the output voltage at 25°C. This parameter is expressed in  
ppm/°C and can be determined by the following equation:  
V
VOUT(t1) is the VOUT at 50°C after 1000 hours of operation at  
50°C.  
Line Regulation  
max{VOUT (T ,T2,T3)}min{V  
(T ,T2,T3)}  
1
1
OUT  
TCVOUT  
=
×106 [ppm/°C]  
Line regulation refers to the change in output voltage in response  
to a given change in input voltage and is expressed in either  
percent per volt, ppm per volt, or μV per volt change in input  
voltage. This parameter accounts for the effects of self-heating.  
VOUT (T2)×(T3 T )  
1
where:  
VOUT(T) is the output voltage at temperature T and  
Load Regulation  
T1 = −40°C.  
T2 = +25°C.  
T3 = +125°C.  
Load regulation refers to the change in output voltage in  
response to a given change in load current and is expressed in  
μV per mA, ppm per mA, or ohms of dc output resistance. This  
parameter accounts for the effects of self-heating.  
This three-point method ensures that TCVOUT accurately  
portrays the maximum difference between any of the three  
temperatures at which the output voltage of the part is  
measured.  
Solder Heat Resistance (SHR) Drift  
SHR drift refers to the permanent shift in output voltage  
induced by exposure to reflow soldering, expressed in units of  
ppm. This is caused by changes in the stress exhibited upon the  
die by the package materials when exposed to high  
temperatures. This effect is more pronounced in lead-free  
soldering processes due to higher reflow temperatures.  
The TCVOUT for the ADR3425/ADR3450 is guaranteed via  
statistical means. This is accomplished by recording output  
voltage data for a large number of units over temperature,  
computing TCVOUT for each individual device via the above  
equation, then defining the maximum TCVOUT limits as the mean  
TCVOUT for all devices extended by 6 standard deviations (6σ).  
Thermally Induced Output Voltage Hysteresis (ΔVOUT_HYS  
Thermally induced output voltage hysteresis represents the  
change in output voltage after the device is exposed to a  
)
specified temperature cycle. This is expressed as either a shift in  
voltage or a difference in ppm from the nominal output:  
ΔVOUT _ HYS =VOUT (25°C) VOUT _ TC [V]  
V
OUT (25°C) VOUT _ TC  
ΔVOUT _ HYS  
where:  
=
×106 [ppm]  
V
OUT (25°C)  
V
V
OUT(25°C) is the output voltage at 25°C.  
OUT_TC is the output voltage after temperature cycling.  
Rev. 0 | Page 13 of 20  
 
 
ADR3425/ADR3450  
THEORY OF OPERATION  
VDD  
LONG-TERM STABILITY  
One of the key parameters of the ADR3425/ADR3450  
references is long-term stability. Regardless of output voltage,  
internal testing during development showed a typical drift of  
approximately 30 ppm after 1,000 hours of continuous, non  
loaded operation in a +50°C environment.  
BANDGAP  
VOLTAGE  
REFERENCE  
V
BG  
ENABLE  
REF FORCE  
REF SENSE  
R
FB1  
GND FORCE  
It is important to understand that long-term stability is not  
guaranteed by design and that the output from the device may  
shift beyond the typical 30 ppm specification at any time,  
especially during the first 200 hours of operation. For systems  
that require highly stable output voltages over long periods of  
time, the designer should consider burning-in the devices prior  
to use to minimize the amount of output drift exhibited by the  
reference over time. See the AN-713 Application Note for more  
information regarding the effects of long-term drift and how it  
can be minimized.  
R
FB2  
GND SENSE  
Figure 39. Block Diagram  
The ADR3425/ADR3450 use a patented voltage reference  
architecture to achieve high accuracy, low temperature  
coefficient (TC), and low noise in a CMOS process. Like all  
bandgap references, the ADR3425/ADR3450 combine two  
voltages of opposite TCs to create an output voltage that is  
nearly independent of ambient temperature. However, unlike  
traditional bandgap voltage references, the temperature-  
independent voltage of the ADR3425/ADR3450 are arranged to  
be the base-emitter voltage, VBE, of a bipolar transistor at room  
temperature rather than the VBE extrapolated to 0 K (the VBE of  
bipolar transistor at 0 K is approximately VG0, the band gap  
voltage of silicon). A corresponding positive-TC voltage is then  
added to the VBE voltage to compensate for its negative TC.  
POWER DISSIPATION  
The ADR3425/ADR3450 voltage references are capable of  
sourcing up to 10 mA of load current at room temperature  
across the rated input voltage range. However, when used in  
applications subject to high ambient temperatures, the input  
voltage and load current should be carefully monitored to  
ensure that the device does not exceeded its maximum power  
dissipation rating. The maximum power dissipation of the  
device can be calculated via the following equation:  
The key benefit of this technique is that the trimming of the  
initial accuracy and TC can be performed without interfering  
with one another, thereby increasing overall accuracy across  
temperature. Curvature correction techniques further reduce  
the temperature variation.  
TJ TA  
PD =  
[W]  
θJA  
where:  
PD is the device power dissipation.  
TJ is the device junction temperature.  
TA is the ambient temperature.  
The bandgap voltage is then buffered and amplified to produce  
stable output voltages of 2.5 V and 5.0 V. The output buffer can  
source up to 10 mA and sink up to 3 mA of load current.  
θJA is the package (junction-to-air) thermal resistance.  
The ADR3425/ADR3450 leverage Analog Devices patented  
DigiTrim technology to achieve high initial accuracy and low  
TC, while precision layout techniques lead to very low long-term  
drift and thermal hysteresis.  
Because of this relationship, acceptable load current in high  
temperature conditions may be less than the maximum current-  
sourcing capability of the device. In no case should the part be  
operated outside of its maximum power rating because doing so  
can result in premature failure or permanent damage to the  
device.  
Rev. 0 | Page 14 of 20  
 
 
ADR3425/ADR3450  
APPLICATIONS  
back into the internal amplifier and used to automatically  
correct for the voltage drop across the current-carrying output  
and ground lines, resulting in a highly accurate output voltage  
across the load. To achieve the best performance, the sense  
connections should be connected directly to the point in the  
load where the output voltage should be the most accurate.  
See Figure 41 for an example application.  
BASIC VOLTAGE REFERENCE CONNECTION  
VREF  
OUT  
2.5V  
VIN  
2.7V TO  
5.5V  
4
3
6
V
V
FORCE  
SENSE  
IN  
OUT  
5
ENABLE  
V
OUT  
0.1µF  
1µF  
0.1µF  
ADR3425  
2
1
GND SENSE  
GND FORCE  
OUTPUT CAPACITOR(S) SHOULD  
BE MOUNTED AS CLOSE  
Figure 40. Basic Reference Connection  
TO VOUT PIN AS POSSIBLE.  
The circuit shown in Figure 40 illustrates the basic configuration  
for the ADR3425/ADR3450. Bypass capacitors should be  
connected according to the guidelines below.  
0.1µF  
4
3
6
5
VIN  
V
V
FORCE  
SENSE  
IN  
OUT  
ENABLE  
V
SENSE CONNECTIONS  
SHOULD CONNECT AS  
CLOSE TO LOAD  
OUT  
INPUT AND OUTPUT CAPACITORS  
LOAD  
ADR3425  
1µF  
0.1µF  
2
1
A 1 μF to 10 μF electrolytic or ceramic capacitor can be  
connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. An  
additional 0.1 μF ceramic capacitor should be connected in  
parallel to reduce high frequency supply noise.  
DEVICE AS POSSIBLE.  
GND SENSE  
GND FORCE  
Figure 41. Application Showing Kelvin Connection  
It is always advantageous to use Kelvin connections whenever  
possible. However, in applications where the IR drop is  
negligible or an extra set of traces cannot be routed to the load,  
the force and sense pins for both VOUT and GND can simply be  
tied together and the device can be used in the same fashion as  
a normal 3-terminal reference (as shown in Figure 40).  
A ceramic capacitor of at least a 0.1 μF must be connected to the  
output to improve stability and help filter out high frequency  
noise. An additional 1 μF to 10 μF electrolytic or ceramic  
capacitor can be added in parallel to improve transient  
performance in response to sudden changes in load current;  
however, the designer should keep in mind that doing so  
increases the turn-on time of the device.  
VIN SLEW RATE CONSIDERATIONS  
In applications with slow-rising input voltage signals, the  
reference exhibits overshoot or other transient anomalies that  
appear on the output. These phenomena also appear during  
shutdown as the internal circuitry loses power.  
Best performance and stability is attained with low-ESR (for  
example, less than 1 Ω), low-inductance ceramic chip-type  
output capacitors (X5R, X7R or similar). If using an electrolytic  
capacitor on the output, a 0.1 ꢀF ceramic capacitor should be  
placed in parallel to reduce overall ESR on the output.  
To avoid such conditions, ensure that the input voltage  
waveform has both a rising and falling slew rate of at least  
0.1 V/ms.  
4-WIRE KELVIN CONNECTIONS  
Current flowing through a PCB trace produces an IR voltage  
drop, and with longer traces, this drop can reach several  
millivolts or more, introducing a considerable error into the  
output voltage of the reference. A 1 inch long, 5 millimeter wide  
trace of 1 ounce copper has a resistance of approximately  
100 mΩ at room temperature; at a load current of 10 mA, this  
can introduce a full millivolt of error. In an ideal board layout,  
the reference should be mounted as close to the load as possible  
to minimize the length of the output traces, and, therefore, the  
error introduced by voltage drop. However, in applications  
where this is not possible or convenient, force and sense  
connections (sometimes referred to as Kelvin sensing  
connections) are provided as a means of minimizing the IR  
drop and improving accuracy.  
SHUTDOWN/ENABLE FEATURE  
The ADR3425/ADR3450 references can be switched to a low-  
power shutdown mode when a voltage of 0.7 V or lower is input  
to the ENABLE pin. Likewise, the reference becomes operational  
for ENABLE voltages of 0.85 × VIN or higher. During shutdown,  
the supply current drops to less than 5 μA, useful in applications  
that are sensitive to power consumption.  
If using the shutdown feature, ensure that the ENABLE pin  
voltage does not fall between 0.7 V and 0.85 × VIN because this  
causes a large increase in the supply current of the device and  
may keep the reference from starting up correctly (see Figure 34).  
If not using the shutdown feature, however, the ENABLE pin  
can simply be tied to the VIN pin, and the reference remains  
operational continuously.  
Kelvin connections work by providing a set of high impedance  
voltage-sensing lines to the output and ground nodes. Because  
very little current flows through these connections, the IR drop  
across their traces is negligible, and the output and ground  
voltages can be sensed very accurately. These voltages are fed  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
 
 
ADR3425/ADR3450  
SAMPLE APPLICATIONS  
Negative Reference  
4
3
6
5
VIN  
+5V  
V
V
FORCE  
SENSE  
IN  
OUT  
R1  
10k  
ENABLE  
V
OUT  
1µF  
0.1µF  
Figure 42 shows how to connect the ADR3425/ADR3450 and a  
standard CMOS op amp, such as the AD8663, to provide a  
negative reference voltage. This configuration provides two  
main advantages: first, it only requires two devices and,  
therefore, does not require excessive board space; second, and  
more importantly, it does not require any external resistors,  
meaning the performance of this circuit does not rely on  
choosing expensive parts with low temperature coefficients to  
ensure accuracy.  
0.1µF  
ADR3450  
R2  
10kΩ  
2
1
GND SENSE  
GND FORCE  
+15V  
–5V  
ADA4000-1  
R3  
5kΩ  
–15V  
+VDD  
Figure 43. Bipolar Output Reference  
1µF  
0.1µF  
4
3
6
5
AD8663  
V
V
FORCE  
SENSE  
IN  
OUT  
Boosted Output Current Reference  
–5V  
ENABLE  
V
OUT  
Figure 44 shows a configuration for obtaining higher current  
drive capability from the ADR3425/ADR3450 references  
without sacrificing accuracy. The op amp regulates the current  
flow through the MOSFET until VOUT equals the output voltage  
of the reference; current is then drawn directly from VIN instead  
of from the reference itself, allowing increased current drive  
capability.  
0.1µF  
ADR3450  
0.1µF  
–VDD  
2
1
GND SENSE  
GND FORCE  
Figure 42. ADR3450 Negative Reference  
In this configuration, the VOUT pins of the reference sit at virtual  
ground, and the negative reference voltage and load current are  
taken directly from the output of the operational amplifier. Note  
that in applications where the negative supply voltage is close to  
the reference output voltage, a dual-supply, low offset, rail-to-  
rail output amplifier must be used to ensure an accurate output  
voltage. The operational amplifier must also be able to source or  
sink an appropriate amount of current for the application.  
VIN  
+16V  
U6  
R1  
2N7002  
100Ω  
4
3
6
5
V
FORCE  
SENSE  
V
OUT  
IN  
AD8663  
VOUT  
ENABLE  
V
OUT  
0.1µF  
1µF 0.1µF  
ADR3450  
C
L
2
1
GND SENSE  
0.1µF  
R
L
Bipolar Output Reference  
200Ω  
GND FORCE  
Figure 43 shows a bipolar reference configuration. By connecting  
the output of the ADR3425/ADR3450 to the inverting terminal  
of an operational amplifier, it is possible to obtain both positive  
and negative reference voltages. R1 and R2 must be matched as  
closely as possible to ensure minimal difference between the  
negative and positive outputs. Resistors with low temperature  
coefficients must also be used if the circuit is used in environments  
with large temperature swings; otherwise, a voltage difference  
develops between the two outputs as the ambient temperature  
changes.  
Figure 44. Boosted Output Current Reference  
Because the current-sourcing capability of this circuit depends  
only on the ID rating of MOSFET, the output drive capability  
can be adjusted to the application simply by choosing an  
appropriate MOSFET. In all cases, the VOUT SENSE pin should  
be tied directly to the load device to maintain maximum output  
voltage accuracy.  
Rev. 0 | Page 16 of 20  
 
 
 
 
ADR3425/ADR3450  
OUTLINE DIMENSIONS  
3.00  
2.90  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 45. 6-Lead Small Outline Transistor Package (SOT-23)  
(RJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Temperature  
Range  
Package  
Description  
Ordering  
Package Option Quantity  
Model1  
Voltage (V)  
Branding  
R2X  
R2X  
R34  
R34  
ADR3425ARJZ-R2  
ADR3425ARJZ-R7  
ADR3450ARJZ-R2  
ADR3450ARJZ-R7  
2.500  
2.500  
5.000  
5.000  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
RJ-6  
RJ-6  
RJ-6  
RJ-6  
250  
3,000  
250  
3,000  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 17 of 20  
 
 
 
ADR3425/ADR3450  
NOTES  
Rev. 0 | Page 18 of 20  
ADR3425/ADR3450  
NOTES  
Rev. 0 | Page 19 of 20  
ADR3425/ADR3450  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08440-0-3/10(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADR3425ARJZ-R7

Micropower, High Accuracy Voltage References
ADI

ADR3430

Micropower, High Accuracy Voltage References
ADI

ADR3430ARJZ

Tape and Reel Packaging
ADI

ADR3430ARJZ-R2

Micropower, High Accuracy Voltage References
ADI

ADR3430ARJZ-R7

Micropower, High Accuracy Voltage References
ADI

ADR3433

Micropower, High Accuracy Voltage References
ADI

ADR3433ARJZ-R2

Micropower, High Accuracy Voltage References
ADI

ADR3433ARJZ-R7

Micropower, High Accuracy Voltage References
ADI

ADR3440

Micropower, High Accuracy Voltage References
ADI

ADR3440ARJZ

Tape and Reel Packaging
ADI

ADR3440ARJZ-R2

Micropower, High Accuracy Voltage References
ADI

ADR3440ARJZ-R7

Micropower, High Accuracy Voltage References
ADI