ADR360BUJZ-R2 [ADI]

Low Power, Low Noise Voltage References with Sink/Source Capability; 低功耗,吸入/源出能力的低噪声电压基准
ADR360BUJZ-R2
型号: ADR360BUJZ-R2
厂家: ADI    ADI
描述:

Low Power, Low Noise Voltage References with Sink/Source Capability
低功耗,吸入/源出能力的低噪声电压基准

电源电路 参考电压源 光电二极管
文件: 总20页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Low Noise Voltage References  
with Sink/Source Capability  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
FEATURES  
PIN CONFIGURATION  
Compact TSOT packages  
Low temperature coefficient  
B grade: 9 ppm/°C  
1
2
3
5
NC  
TRIM  
ADR36x  
TOP VIEW  
GND  
(Not to Scale)  
A grade: 25 ppm/°C  
4
V
V
OUT  
IN  
Initial accuracy  
B grade: 3 mꢀ maximum  
A grade: 6 mꢀ maximum  
NC = NO CONNECT  
Figure 1. 5-Lead TSOT (UJ)  
Ultralow output noise: 6.8 μꢀ p-p (0.1 Hz to 10 Hz)  
Low dropout: 300 mꢀ  
Table 1. ADR36x Family of Devices  
Temperature  
Low supply current: 190 μA maximum  
No external capacitor required  
Output current: +5 mA/−1 mA  
Wide temperature range: −40°C to +125°C  
Qualified for automotive applications  
Model  
OUT (ꢀ)1 Coefficient (ppm/°C) Accuracy (mꢀ)  
ADR360B 2.048  
ADR360A 2.048  
ADR361B 2.5  
ADR361A 2.5  
ADR363B 3.0  
ADR363A 3.0  
ADR364B 4.096  
ADR364A 4.096  
ADR365B 5.0  
ADR365A 5.0  
ADR366B 3.3  
ADR366A 3.3  
9
25  
9
25  
9
25  
9
25  
9
25  
9
3
6
3
6
3
6
4
8
4
8
4
8
APPLICATIONS  
Battery-powered instruments  
Portable medical instruments  
Data acquisition systems  
Industrial process controls  
Automotive  
25  
1 Contact Analog Devices for other voltage options.  
GENERAL DESCRIPTION  
supply of 300 mV above the output. Their advanced design  
eliminates the need for external capacitors, which further  
reduces board space and system cost. The combination of low  
power operation, small size, and ease of use makes the ADR36x  
precision voltage references ideally suited for battery-operated  
applications.  
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band  
gap voltage references that offer low power and high precision  
in tiny footprints. Using patented temperature drift curvature  
correction techniques from Analog Devices, Inc., the ADR36x  
references achieve a low temperature drift of 9 ppm/°C in a  
TSOT package.  
See the Ordering Guide for automotive grades.  
The ADR36x family of micropower, low dropout voltage  
references provides a stable output voltage from a minimum  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved.  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR360 Electrical Characteristics............................................. 3  
ADR361 Electrical Characteristics............................................. 4  
ADR363 Electrical Characteristics............................................. 5  
ADR364 Electrical Characteristics............................................. 6  
ADR365 Electrical Characteristics............................................. 7  
ADR366 Electrical Characteristics............................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance.......................................................................9  
ESD Caution...................................................................................9  
Typical Performance Characteristics ........................................... 10  
Terminology.................................................................................... 15  
Theory of Operation ...................................................................... 16  
Device Power Dissipation Considerations.............................. 16  
Input Capacitor........................................................................... 16  
Output Capacitor........................................................................ 16  
Applications Information.............................................................. 17  
Basic Voltage Reference Connection....................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Automotive Products................................................................. 20  
REꢀISION HISTORY  
10/10—Rev. C to Rev. D  
2/07—Rev. A to Rev. B  
Changes to Features Section and General Description Section. 1  
Changed Supply Voltage Headroom to Dropout Voltage  
Throughout ....................................................................................... 3  
Changed 0.1 Hz to 10 Hz to f = 0.1 Hz to 10 Hz Throughout.... 3  
Change to Table 8 ............................................................................. 9  
Changes to Figure 13...................................................................... 11  
Changes to Figure 14...................................................................... 12  
Changes to Ordering Guide .......................................................... 20  
Added Automotive Products Section .......................................... 20  
Changes to Table 7.............................................................................8  
Changes to Figure 6........................................................................ 11  
Changes to Figure 13, Figure 14, Figure 17,  
and Figure 27 Captions.................................................................. 12  
Changes to Ordering Guide.......................................................... 19  
3/06—Rev. 0 to Rev. A  
Changes to Figure 15 Caption ...................................................... 13  
Changes to Figure 21 Caption ...................................................... 14  
Changes to Theory of Operation Section.................................... 16  
Changes to Figure 36...................................................................... 18  
7/07—Rev. B to Rev. C  
Changes to Ripple Rejection Ratio in Table 2............................... 3  
Changes to Ripple Rejection Ratio in Table 3............................... 4  
Changes to Ripple Rejection Ratio in Table 4............................... 5  
Changes to Ripple Rejection Ratio in Table 5............................... 6  
Changes to Ripple Rejection Ratio in Table 6............................... 7  
Changes to Ripple Rejection Ratio in Table 7............................... 8  
4/05—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
SPECIFICATIONS  
ADR360 ELECTRICAL CHARACTERISTICS  
VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VOUT  
A grade  
2.042 2.048 2.054  
B grade  
2.045 2.048 2.051  
V
INITIAL ACCURACY  
VOUTERR  
A grade  
A grade  
6
0.29  
mV  
%
B grade  
B grade  
3
0.15  
mV  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VIN − VOUT  
∆VOUT/∆VIN  
300  
VIN = 2.45 V to 15 V, −40°C < TA < +125°C  
0.105 mV/V  
0.37  
0.82  
∆VOUT/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V  
IIN  
eN p-p  
tR  
∆VOUT  
∆VOUT_HYS  
RRR  
ISC  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
f = 0.1 Hz to 10 Hz  
150  
6.8  
25  
190  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1000 hours  
50  
100  
−70  
25  
fIN = 60 Hz  
VIN = 5 V  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.  
Rev. D | Page 3 of 20  
 
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR361 ELECTRICAL CHARACTERISTICS  
VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VOUT  
A grade  
2.494 2.500 2.506  
B grade  
2.497 2.500 2.503  
V
INITIAL ACCURACY  
VOUTERR  
A grade  
A grade  
6
0.24  
mV  
%
B grade  
B grade  
3
0.12  
mV  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VIN − VOUT  
∆VOUT/∆VIN  
300  
VIN = 2.8 V to 15 V, −40°C < TA < +125°C  
0.125 mV/V  
0.45  
1
∆VOUT/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V  
IIN  
eN p-p  
tR  
∆VOUT  
∆VOUT_HYS  
RRR  
ISC  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
f = 0.1 Hz to 10 Hz  
150  
8.25  
25  
190  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1000 hours  
50  
100  
−70  
25  
fIN = 60 Hz  
VIN = 5 V  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.  
Rev. D | Page 4 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR363 ELECTRICAL CHARACTERISTICS  
VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VOUT  
A grade  
2.994 3.000 3.006  
B grade  
2.997 3.000 3.003  
V
INITIAL ACCURACY  
VOUTERR  
A grade  
6
mV  
A grade  
0.2  
%
B grade  
3
mV  
B grade  
0.1  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
mV/V  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VIN − VOUT  
∆VOUT/∆VIN  
300  
0.15  
0.54  
1.2  
VIN = 3.3 V to 15 V, −40°C < TA < +125°C  
∆VOUT/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V  
IIN  
eN p-p  
tR  
∆VOUT  
∆VOUT_HYS  
RRR  
ISC  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
f = 0.1 Hz to 10 Hz  
150  
8.7  
25  
190  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1000 hours  
50  
100  
−70  
25  
fIN = 60 Hz  
VIN = 5 V  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.  
Rev. D | Page 5 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR364 ELECTRICAL CHARACTERISTICS  
VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VOUT  
A grade  
4.088 4.096 4.104  
B grade  
4.092 4.096 4.100  
V
INITIAL ACCURACY  
VOUTERR  
A grade  
A grade  
8
0.2  
mV  
%
B grade  
B grade  
4
0.1  
mV  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VIN − VOUT  
∆VOUT/∆VIN  
300  
VIN = 4.4 V to 15 V, −40°C < TA < +125°C  
0.205 mV/V  
0.735 mV/mA  
1.75  
190  
∆VOUT/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V  
IIN  
eN p-p  
tR  
∆VOUT  
∆VOUT_HYS  
RRR  
ISC  
I
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
f = 0.1 Hz to 10 Hz  
150  
11  
25  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1000 hours  
50  
100  
−70  
25  
fIN = 60 Hz  
VIN = 5 V  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.  
Rev. D | Page 6 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR365 ELECTRICAL CHARACTERISTICS  
VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VOUT  
A grade  
4.992 5.000 5.008  
B grade  
4.996 5.000 5.004  
V
INITIAL ACCURACY  
VOUTERR  
A grade  
8
mV  
A grade  
0.16  
%
B grade  
4
mV  
B grade  
0.08  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
mV/V  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VIN − VOUT  
∆VOUT/∆VIN  
300  
0.25  
0.9  
2
VIN = 5.3 V to 15 V, −40°C < TA < +125°C  
∆VOUT/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V  
IIN  
eN p-p  
tR  
∆VOUT  
∆VOUT_HYS  
RRR  
ISC  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
f = 0.1 Hz to 10 Hz  
150  
12.8  
20  
190  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1000 hours  
50  
100  
−70  
25  
fIN = 60 Hz  
VIN = 5 V  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.  
Rev. D | Page 7 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR366 ELECTRICAL CHARACTERISTICS  
VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 7.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VOUT  
A grade  
3.292 3.300 3.308  
B grade  
3.296 3.300 3.304  
V
INITIAL ACCURACY  
VOUTERR  
A grade  
8
mV  
A grade  
0.25  
%
B grade  
4
mV  
B grade  
0.125  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
mV/V  
mV/mA  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
DROPOUT VOLTAGE  
LINE REGULATION  
LOAD REGULATION  
VIN − VOUT  
∆VOUT/∆VIN  
300  
0.165  
0.6  
VIN = 3.6 V to 15 V, −40°C < TA < +125°C  
∆VOUT/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V  
ILOAD = 0 mA to 8 mA, −40°C < TA < +125°C, VIN ≥ 4.75 V  
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V  
IIN  
eN p-p  
tR  
∆VOUT  
∆VOUT_HYS  
RRR  
ISC  
0.6  
1.35  
190  
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
f = 0.1 Hz to 10 Hz  
150  
9.3  
25  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1000 hours  
50  
100  
−70  
25  
fIN = 60 Hz  
VIN = 5 V  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.  
Rev. D | Page 8 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 8.  
Parameter  
Rating  
Supply Voltage  
Output Short-Circuit Duration to GND  
VIN < 15 V  
18 V  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Indefinite  
10 sec  
5-Lead TSOT (UJ)  
230  
146  
°C/W  
VIN > 15 V  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−65°C to +125°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. D | Page 9 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.052  
2.050  
2.048  
2.046  
2.044  
4.998  
4.997  
4.996  
4.995  
4.994  
4.993  
4.992  
4.991  
4.990  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. ADR360 Output Voltage vs. Temperature  
Figure 5. ADR365 Output Voltage vs. Temperature  
0.165  
0.155  
0.145  
0.135  
0.125  
0.115  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
+125°C  
+25°C  
–40°C  
2.8  
4.1  
5.4  
6.7  
8.0  
9.3 10.6 11.9 13.2 14.5  
(V)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
V
TEMPERATURE (°C)  
IN  
Figure 3. ADR361 Output Voltage vs. Temperature  
Figure 6. ADR361 Supply Current vs. Input Voltage  
0.17  
0.16  
0.15  
0.14  
3.003  
3.002  
3.001  
3.000  
2.999  
2.998  
2.997  
2.996  
+125°C  
+25°C  
–40°C  
5.3  
6.3  
7.3  
8.3  
9.3 10.3 11.3 12.3 13.3 14.3  
(V)  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
V
TEMPERATURE (°C)  
IN  
Figure 4. ADR363 Output Voltage vs. Temperature  
Figure 7. ADR365 Supply Current vs. Input Voltage  
Rev. D | Page 10 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
9
8
7
6
5
4
3
2
1
0
V
= 9V  
IN  
V
= 3.5V  
IN  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. ADR361 Load Regulation vs. Temperature  
Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
12  
10  
8
V
= 9V  
IN  
6
V
= 6V  
IN  
4
2
0
–40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. ADR365 Load Regulation vs. Temperature  
Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V  
25  
20  
15  
10  
5
1.6  
1.4  
+125°C  
1.2  
1.0  
0.8  
0.6  
–40°C  
+25°C  
0.4  
0.2  
0
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–2  
0
2
4
6
8
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V  
Figure 13. ADR361 Dropout Voltage vs. Load Current  
Rev. D | Page 11 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
1.8  
1.6  
+125°C  
1.4  
1.2  
1.0  
0.8  
+25°C  
0.6  
0.4  
2µV/DIV  
TIME = 1s/DIV  
0.2  
–40°C  
0
–2  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 17. ADR363 0.1 Hz to 10 Hz Noise  
Figure 14. ADR365 Dropout Voltage vs. Load Current  
2µV/DIV  
50µV/DIV  
TIME = 1s/DIV  
TIME = 1s/DIV  
Figure 15. ADR361 0.1 Hz to 10 Hz Noise  
Figure 18. ADR363 10 Hz to 10 kHz Noise  
2µV/DIV  
50µV/DIV  
TIME = 1s/DIV  
TIME = 1s/DIV  
Figure 16. ADR361 10 Hz to 10 kHz Noise  
Figure 19. ADR365 0.1 Hz to 10 Hz Noise  
Rev. D | Page 12 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
500mV/DIV  
V
IN  
500mV/DIV  
4µs/DIV  
V
OUT  
100µV/DIV  
TIME = 1s/DIV  
Figure 20. ADR365 10 Hz to 10 kHz Noise  
Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
IN  
500mV/DIV  
V
500mV/DIV  
10µs/DIV  
OUT  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 21. Output Impedance vs. Frequency  
Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
500mV/DIV  
V
IN  
V
20mV/DIV  
OUT  
100  
1k  
10k  
100k  
1M  
100µs/DIV  
FREQUENCY (Hz)  
Figure 22. Ripple Rejection Ratio vs. Frequency  
Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor  
Rev. D | Page 13 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
5V/DIV  
LOAD ON  
LOAD OFF  
INPUT  
V
100mV/DIV  
OUT  
2.5V/DIV  
OUTPUT  
400ns/DIV  
2ms/DIV  
Figure 29. ADR361 Turn-Off Response Time at 5 V  
Figure 26. ADR361 Load Transient Response  
V
LOAD ON  
IN  
5V/DIV  
V
OUT  
V
OUT  
100mV/DIV  
2V/DIV  
100µs/DIV  
100µs/DIV  
Figure 27. ADR361 Load Transient Response  
with 0.1 μF Output Capacitor  
Figure 30. ADR361 Turn-On Response Time, 0.1 μF Output Capacitor  
V
IN  
5V/DIV  
INPUT  
5V/DIV  
V
OUT  
2V/DIV  
OUTPUT  
2.5V/DIV  
10µs/DIV  
2ms/DIV  
Figure 28. ADR361 Turn-On Response Time at 5 V  
Figure 31. ADR361 Turn-Off Response Time, 0.1 μF Output Capacitor  
Rev. D | Page 14 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
TERMINOLOGY  
Temperature Coefficient  
Long-Term Stability  
The change of output voltage with respect to operating temper-  
ature changes normalized by the output voltage at 25°C. This  
parameter is expressed in ppm/°C and can be determined by  
The typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1000 hours at 25°C.  
ΔVOUT =VOUT  
(
t0  
)
VOUT  
(
t1  
–VOUT  
VOUT t0  
)
VOUT  
(
T2  
)
VOUT  
( )  
T
1
TCVOUT[ppm/°C] =  
×106  
V
(
t0  
)
t1  
( )  
OUT  
ΔVOUT  
[ppm  
]
=
×106  
VOUT  
(
25°C  
)
×
(
T2 T  
)
1
(
)
where:  
VOUT (25°C) = VOUT at 25°C.  
VOUT (T1) = VOUT at Temperature 1.  
where:  
VOUT (t0) = VOUT at 25°C at Time 0.  
VOUT (t1) = VOUT at 25°C after 1000 hours operation at 25°C.  
VOUT (T2) = VOUT at Temperature 2.  
Thermal Hysteresis  
Line Regulation  
The change of output voltage after the device is cycled from  
+25°C to −40°C to +125°C and back to +25°C. This is a typical  
value from a sample of parts put through such a cycle.  
The change in output voltage due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating.  
Line regulation is expressed in either percent per volt, parts per  
million per volt, or microvolts per volt change in input voltage.  
VOUT _ HYS =VOUT  
(
25°C  
)
VOUT _TC  
25°C VOUT _TC  
VOUT  
Load Regulation  
VOUT  
(
)
VOUT _ HYS  
where:  
[ppm  
]
=
×106  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milliampere,  
parts per million per milliampere, or ohms of dc output resistance.  
25°C  
( )  
V
V
OUT (25°C) = VOUT at 25°C.  
OUT_TC = VOUT at 25°C after temperature cycle at +25°C to  
−40°C to +125°C and back to +25°C.  
Rev. D | Page 15 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
THEORY OF OPERATION  
DEꢀICE POWER DISSIPATION CONSIDERATIONS  
Band gap references are the high performance solution for low  
supply voltage and low power voltage reference applications,  
and the ADR36x family is no exception. The uniqueness of  
these products lies in their architecture. The ideal zero TC band  
gap voltage is referenced to the output, not to ground (see  
Figure 32). Therefore, if noise exists on the ground line, it is  
greatly attenuated on VOUT. The band gap cell consists of the  
PNP pair Q53 and Q52 running at unequal current densities.  
The difference in VBE results in a voltage with a positive TC,  
which is amplified by a ratio of  
The ADR36x family is capable of delivering load currents to  
5 mA with an input voltage ranging from 2.348 V (ADR360  
only) to 18 V. When this device is used in applications with  
large input voltages, care should be taken to avoid exceeding the  
specified maximum power dissipation or junction temperature  
because it may result in premature device failure. Use the  
following formula to calculate a devices maximum junction  
temperature or dissipation:  
TJ TA  
PD =  
R59  
θJA  
2×  
R54  
where:  
This PTAT voltage, combined with the VBE of Q53 and Q52,  
produces the stable band gap voltage.  
TJ and TA are the junction and ambient temperatures, respectively.  
PD is the device power dissipation.  
θJA is the device package thermal resistance.  
Reduction in the band gap curvature is performed by the ratio  
of Resistor R44 and Resistor R59, one of which is linearly  
temperature dependent. Precision laser trimming and other  
patented circuit techniques are used to further enhance the drift  
performance.  
INPUT CAPACITOR  
Input capacitors are not required on the ADR36x. There is no  
limit for the value of the capacitor used on the input, but a 1 μF  
to 10 μF capacitor on the input improves transient response in  
applications where the supply suddenly changes. An additional  
0.1 μF capacitor in parallel also helps reduce noise from the supply.  
Q2  
Q1  
VOUT (FORCE)  
OUTPUT CAPACITOR  
VOUT (SENSE)  
R49  
R59  
R44  
R100  
The ADR36x does not require output capacitors for stability under  
any load condition. An output capacitor, typically 0.1 μF, filters  
out low level noise voltage and does not affect the operation of  
the part. On the other hand, the load transient response can  
improve with an additional 1 μF to 10 μF output capacitor placed  
in parallel with the 0.1 μF capacitor. The additional capacitor  
acts as a source of stored energy for a sudden increase in load  
current, and the only parameter that degrades is the turn-on  
time. The amount of degradation depends on the size of the  
capacitor chosen.  
62k  
R58  
Q61 Q60  
R54  
R50  
30kΩ  
R53  
Q52  
TRIM  
Q53  
R101  
R48  
R60  
R61  
Figure 32. Simplified Schematic  
Rev. D | Page 16 of 20  
 
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
APPLICATIONS INFORMATION  
Two reference ICs are used and fed from an unregulated input,  
VIN. The outputs of the individual ICs are connected in series,  
BASIC ꢀOLTAGE REFERENCE CONNECTION  
The circuit in Figure 33 illustrates the basic configuration for  
the ADR36x family. Decoupling capacitors are not required for  
circuit stability. The ADR36x family is capable of driving  
capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic  
output capacitor is recommended to absorb and deliver the  
charge, as is required by a dynamic load.  
which provides two output voltages, VOUT1 and VOUT2. VOUT1 is  
the terminal voltage of U1, and VOUT2 is the sum of this voltage  
and the terminal voltage of U2. U1 and U2 are chosen for the  
two voltages that supply the required outputs (see Table 10). For  
example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and  
VOUT2 is 5.0 V.  
1
5
TRIM  
NC  
Table 10. Output  
U1/U2  
OUT1 (ꢀ)  
OUT2 (ꢀ)  
7.5  
5.0  
ADR36x  
ADR361/ADR365  
ADR361/ADR361  
ADR365/ADR361  
2.5  
2.5  
5
2
3
GND  
7.5  
INPUT  
0.1µF  
OUTPUT  
0.1µF  
V
4
OUT  
V
IN  
Negative Precision Reference Without Precision  
Resistors  
Figure 33. Basic Configuration for the ADR36x Family  
A negative reference is easily generated by adding an op amp,  
A1 (see Figure 35). VOUTF and VOUTS are at virtual ground and  
therefore the negative reference can be taken directly from the  
output of the op amp. The op amp must be dual-supply, low  
offset, and rail-to-rail if the negative supply voltage is close to  
the reference output.  
Stacking Reference ICs for Arbitrary Outputs  
Some applications require two reference voltage sources, which  
are a combined sum of standard outputs. Figure 34 shows how  
this stacked output reference can be implemented.  
1
2
3
TRIM  
5
NC  
1
5
NC  
TRIM  
ADR36x  
GND  
ADR36x  
V
V
OUT2  
IN  
2
3
GND  
V
4
V
OUT  
IN  
C2  
0.1µF  
+V  
DD  
4
V
V
OUT  
IN  
1
TRIM  
5
4
NC  
C1  
0.1µF  
ADR36x  
–V  
REF  
2
3
GND  
A1  
V
OUT1  
+
V
V
OUT  
IN  
–V  
DD  
Figure 34. Stacking Voltage References with the ADR36x  
Figure 35. Negative Reference  
Rev. D | Page 17 of 20  
 
 
 
 
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
General-Purpose Current Source  
Trim Terminal  
Often in low power applications, the need arises for a precision  
current source that can operate on low supply voltages. The  
ADR36x can be configured as a precision current source (see  
Figure 36). The circuit configuration illustrated is a floating  
current source with a grounded load. The output voltage of the  
reference is bootstrapped across RSET, which sets the output  
current of the load. With this configuration, circuit precision is  
maintained for load currents ranging from the references  
supply current, typically 150 μA, up to approximately 5 mA.  
The ADR36x trim terminal can be used to adjust the output  
voltage over a nominal voltage. This feature allows a system  
designer to trim system errors by setting the reference to a  
voltage other than the standard voltage option. Resistor R1 is  
used for fine adjustments and can be omitted if desired. The  
resistor values should be carefully chosen to ensure that the  
maximum current drive of the part is not exceeded.  
R2  
1k  
R1  
100kΩ  
POT  
10kΩ  
5
NC  
1
2
3
TRIM  
5
1
2
3
NC  
TRIM  
ADR36x  
ADR36x  
GND  
GND  
+V  
DD  
V
V
4
IN  
OUT  
V
+V  
OUT  
DD  
I
SET  
V
4
V
OUT  
R1  
IN  
R
SET  
P
1
Figure 37. ADR36x Trim Configuration  
I
SY  
I
+ I  
SY  
SET  
R
L
Figure 36. Precision Current Source  
Rev. D | Page 18 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
Rev. D | Page 19 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ORDERING GUIDE  
Initial  
Accuracy,  
Output  
ꢀoltage  
Temperature  
Coefficient  
(ppm/°C)  
Package  
Description  
Package  
Option  
Temperature  
Range  
Ordering  
Quantity  
Model1, 2  
(mꢀ) (%)  
Branding  
R0C  
R0C  
R0D  
R0D  
R0E  
R0E  
R0F  
(ꢀOUT  
)
ADR360AUJZ-REEL7  
ADR360AUJZ-R2  
ADR360BUJZ-REEL7  
ADR360BUJZ-R2  
ADR361AUJZ-REEL7  
ADR361AUJZ-R2  
ADR361BUJZ-REEL7  
ADR361BUJZ-R2  
ADR363AUJZ-REEL7  
ADR363AUJZ-R2  
ADR363BUJZ-REEL7  
ADR363BUJZ-R2  
ADR364AUJZ-REEL7  
ADR364AUJZ-R2  
ADR364BUJZ-REEL7  
ADR364BUJZ-R2  
ADR365AUJZ-REEL7  
ADR365AUJZ-R2  
ADR365BUJZ-REEL7  
ADR365BUJZ-R2  
ADR365WAUJZ-R7  
ADR365WAUJZ-RL  
ADR366AUJZ-REEL7  
ADR366AUJZ-R2  
ADR366BUJZ-REEL7  
ADR366BUJZ-R2  
2.048  
2.048  
2.048  
2.048  
2.5  
2.5  
2.5  
2.5  
6
6
3
3
6
6
3
3
6
6
3
3
8
8
4
4
8
8
4
4
8
8
8
8
4
4
8
0.29  
0.29  
0.15  
0.15  
0.24  
0.24  
0.12  
0.12  
0.2  
25  
25  
9
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
3,000  
250  
3,000  
250  
9
25  
25  
9
3,000  
250  
3,000  
250  
9
R0F  
3.0  
3.0  
3.0  
3.0  
25  
25  
9
3,000  
250  
3,000  
250  
R0G  
R0G  
R0H  
R0H  
R0J  
0.2  
0.1  
0.1  
9
4.096  
4.096  
4.096  
4.096  
5.0  
5.0  
5.0  
5.0  
5.0  
0.2  
0.2  
0.1  
0.1  
25  
25  
9
3,000  
250  
3,000  
250  
R0J  
R0K  
R0K  
R0L  
9
0.16  
0.16  
0.08  
0.08  
0.16  
0.16  
0.25  
0.25  
0.125  
0.125  
0.25  
25  
25  
9
3,000  
250  
3,000  
250  
3,000  
10,000  
3,000  
250  
3,000  
250  
R0L  
R0M  
R0M  
R0L  
9
25  
25  
25  
25  
9
5.0  
R0L  
3.3  
3.3  
3.3  
3.3  
R08  
R08  
R09  
R09  
R08  
9
25  
ADR366WAUJZ-REEL7 3.3  
3,000  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIꢀE PRODUCTS  
The ADR365W and ADR366W models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05467-0-10/10(D)  
Rev. D | Page 20 of 20  
 
 
 
 
 

相关型号:

ADR360BUJZ-REEL7

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR360BUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.048 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR360_10

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361A

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361AUJZ-R2

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361AUJZ-REEL7

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361AUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR361B

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361BUJZ-R2

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR361BUJZ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR361BUJZ-REEL7

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI