ADR363AUJZ-REEL7 [ADI]

Low Power, Low Noise Voltage References with Sink/Source Capability; 低功耗,吸入/源出能力的低噪声电压基准
ADR363AUJZ-REEL7
型号: ADR363AUJZ-REEL7
厂家: ADI    ADI
描述:

Low Power, Low Noise Voltage References with Sink/Source Capability
低功耗,吸入/源出能力的低噪声电压基准

文件: 总20页 (文件大小:674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Low Noise Voltage References  
with Sink/Source Capability  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
FEATURES  
PIN CONFIGURATION  
Compact TSOT-23-5 packages  
Low temperature coefficient  
B grade: 9 ppm/°C  
NC  
1
2
3
5
4
TRIM  
ADR36x  
TOP VIEW  
GND  
(Not to Scale)  
A grade: 25 ppm/°C  
V
V
OUT  
IN  
Initial accuracy  
B grade: 3 mꢀ maximum  
NC = NO CONNECT  
Figure 1. 5-Lead TSOT (UJ Suffix)  
A grade: 6 mꢀ maximum  
Ultralow output noise: 6.8 μꢀ p-p (0.1 Hz to 10 Hz)  
Low dropout: 300 mꢀ  
Low supply current: 190 μA maximum  
No external capacitor required  
Output current: +5 mA/−1 mA  
Wide temperature range: −40°C to +125°C  
Table 1.  
OUT  
(ꢀ)1  
Temperature  
Coefficient (ppm/°C) Accuracy (mꢀ)  
Model  
ADR360B 2.048  
ADR360A 2.048  
ADR361B 2.5  
ADR361A 2.5  
ADR363B 3.0  
ADR363A 3.0  
ADR364B 4.096  
ADR364A 4.096  
ADR365B 5.0  
ADR365A 5.0  
ADR366B 3.3  
ADR366A 3.3  
9
25  
9
25  
9
25  
9
25  
9
25  
9
3
6
3
6
3
6
4
8
4
8
4
8
APPLICATIONS  
Battery-powered instrumentations  
Portable medical instrumentations  
Data acquisition systems  
Industrial process controls  
Automotive  
25  
1 Contact Analog Devices, Inc. for other voltage options.  
GENERAL DESCRIPTION  
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band  
gap voltage references that feature low power, high precision in  
tiny footprints. Using Analog Devices’ patented temperature  
drift curvature correction techniques, the ADR36x references  
achieve a low temperature drift of 9 ppm/°C in the TSOT  
package.  
The ADR36x family of micropower, low dropout voltage  
references provides a stable output voltage from a minimum  
supply of 300 mV above the output. Their advanced design  
eliminates the need for external capacitors, which further  
reduces board space and system cost. The combination of low  
power operation, small size, and ease of use makes the ADR36x  
precision voltage references ideally suited for battery-operated  
applications.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
ADR360—Specifications ................................................................. 3  
ADR361—Specifications ................................................................. 4  
ADR363—Specifications ................................................................. 5  
ADR364—Specifications ................................................................. 6  
ADR365—Specifications ................................................................. 7  
ADR366—Specifications ................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance.......................................................................9  
ESD Caution...................................................................................9  
Terminology.................................................................................... 10  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 16  
Device Power Dissipation Considerations.............................. 16  
Input Capacitor........................................................................... 16  
Output Capacitor........................................................................ 16  
Applications..................................................................................... 17  
Basic Voltage Reference Connection....................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
REꢀISION HISTORY  
3/06—Rev. 0 to Rev. A  
Changes to Figure 15 Caption....................................................... 13  
Changes to Figure 21 Caption....................................................... 14  
Changes to Theory of Operation Section.....................................16  
Changes to Figure 36.......................................................................18  
4/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR360—SPECIFICATIONS  
Electrical Characteristics (VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.)  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A Grade  
2.042 2.048 2.054  
B Grade  
2.045 2.048 2.051  
V
INITIAL ACCURACY  
VOERR  
A Grade  
A Grade  
6
0.29  
mV  
%
B Grade  
B Grade  
3
0.15  
mV  
%
TEMPERATURE COEFFICIENT  
TCVO  
A Grade, −40°C < TA < +125°C  
B Grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
∆VO/∆VIN  
300  
VIN = 2.45 V to 15 V, −40°C < TA < +125°C  
0.105 mV/V  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V  
0.37  
0.82  
190  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
eN p-p  
tR  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
150  
6.8  
25  
50  
100  
70  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
∆VO  
∆VO_HYS  
RRR  
ISC  
1,000 hours  
fIN = 60 kHz  
VIN = 5 V  
25  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.  
Rev. A | Page 3 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR361—SPECIFICATIONS  
Electrical Characteristics (VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.)  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A Grade  
2.494 2.500 2.506  
B Grade  
2.497 2.500 2.503  
V
INITIAL ACCURACY  
VOERR  
A Grade  
A Grade  
6
0.24  
mV  
%
B Grade  
B Grade  
3
0.12  
mV  
%
TEMPERATURE COEFFICIENT  
TCVO  
A Grade, −40°C < TA < +125°C  
B Grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
∆VO/∆VIN  
300  
VIN = 2.8 V to 15 V, −40°C < TA < +125°C  
0.125 mV/V  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V  
0.45  
1
190  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
eN p-p  
tR  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
150  
8.25  
25  
50  
100  
70  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
∆VO  
∆VO_HYS  
RRR  
ISC  
1,000 hours  
fIN = 60 kHz  
VIN = 5 V  
25  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.  
Rev. A | Page 4 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR363—SPECIFICATIONS  
Electrical Characteristics (VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.)  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A Grade  
2.994 3.000 3.006  
B Grade  
2.997 3.000 3.003  
V
INITIAL ACCURACY  
VOERR  
A Grade  
6
mV  
A Grade  
0.2  
%
B Grade  
3
mV  
B Grade  
0.1  
%
TEMPERATURE COEFFICIENT  
TCVO  
A Grade, −40°C < TA < +125°C  
B Grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
mV/V  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
LOAD REGULATION  
VIN − VO  
∆VO/∆VIN  
300  
0.15  
0.54  
1.2  
VIN = 3.3 V to 15 V, −40°C < TA < +125°C  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V  
IIN  
eN p-p  
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
150  
8.7  
25  
50  
100  
70  
190  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1,000 hours  
fIN = 60 kHz  
VIN = 5 V  
25  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.  
Rev. A | Page 5 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR364—SPECIFICATIONS  
Electrical Characteristics (VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.)  
Table 5.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A Grade  
4.088 4.096 4.104  
B Grade  
4.092 4.096 4.100  
V
INITIAL ACCURACY  
VOERR  
A Grade  
A Grade  
8
0.2  
mV  
%
B Grade  
B Grade  
4
0.1  
mV  
%
TEMPERATURE COEFFICIENT  
TCVO  
A Grade, −40°C < TA < +125°C  
B Grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
LOAD REGULATION  
VIN − VO  
∆VO/∆VIN  
300  
VIN = 4.4 V to 15 V, −40°C < TA < +125°C  
0.205 mV/V  
0.735 mV/mA  
1.75  
190  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V  
IIN  
eN p-p  
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
I
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
150  
11  
25  
50  
100  
70  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1,000 hours  
fIN = 60 kHz  
VIN = 5 V  
25  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.  
Rev. A | Page 6 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR365—SPECIFICATIONS  
Electrical Characteristics (VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.)  
Table 6.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A Grade  
4.992 5.000 5.008  
B Grade  
4.996 5.000 5.004  
V
INITIAL ACCURACY  
VOERR  
A Grade  
8
mV  
A Grade  
0.16  
%
B Grade  
4
mV  
B Grade  
0.08  
%
TEMPERATURE COEFFICIENT  
TCVO  
A Grade, −40°C < TA < +125°C  
B Grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
mV/V  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
LOAD REGULATION  
VIN − VO  
∆VO/∆VIN  
300  
0.25  
0.9  
2
VIN = 5.3 V to 15 V, −40°C < TA < +125°C  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V  
IIN  
eN p-p  
tR  
∆VO  
∆VO_HYS  
RRR  
ISC  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
150  
12.8  
20  
50  
100  
70  
190  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
1,000 hours  
fIN = 60 kHz  
VIN = 5 V  
25  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.  
Rev. A | Page 7 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ADR366—SPECIFICATIONS  
Electrical Characteristics (VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.)  
Table 7.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
VO  
A Grade  
3.292 3.300 3.308  
B Grade  
3.296 3.300 3.304  
V
INITIAL ACCURACY  
VOERR  
A Grade  
A Grade  
8
0.25  
mV  
%
B Grade  
B Grade  
4
mV  
%
0.125  
TEMPERATURE COEFFICIENT  
TCVO  
A Grade, −40°C < TA < +125°C  
B Grade, −40°C < TA < +125°C  
25  
9
ppm/°C  
ppm/°C  
mV  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
∆VO/∆VIN  
300  
VIN = 3.6 V to 15 V, −40°C < TA < +125°C  
0.165 mV/V  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V  
LOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V  
0.6  
1.35  
190  
mV/mA  
mV/mA  
μA  
μV p-p  
μs  
ppm  
ppm  
dB  
I
QUIESCENT CURRENT  
VOLTAGE NOISE  
IIN  
eN p-p  
tR  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
150  
9.3  
25  
50  
100  
70  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
∆VO  
∆VO_HYS  
RRR  
ISC  
1,000 hours  
fIN = 60 kHz  
VIN = 5 V  
25  
mA  
V
IN = 15 V  
30  
mA  
1 The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods are significantly lower than in the first 1,000 hour period.  
Rev. A | Page 8 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 8.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
Parameter  
Rating  
Supply Voltage  
18 V  
Output Short-Circuit Duration to GND  
VIN < 15 V  
VIN > 15 V  
Indefinite  
10 sec  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−65°C to +125°C  
−40°C to +125°C  
−65°C to +125°C  
300°C  
device reliability.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 9. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
TSOT-23-5 (UJ-5)  
230  
146  
°C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 9 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
TERMINOLOGY  
Temperature Coefficient  
Long-Term Stability  
The change of output voltage with respect to operating  
temperature changes normalized by the output voltage at 25°C.  
This parameter is expressed in ppm/°C and can be determined  
by  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1,000 hours at 25°C.  
ΔVO =VO  
(
t0  
)
VO  
(
t1  
t0  
VO  
)
VO  
(
)
–VO  
t1  
( )  
ΔVO ppm  
[
]
=
×106  
VO  
(
T2  
)
VO  
(
T
)
×106  
1
TCVO[ppm/°C] =  
(
t0  
)
VO 25°C  
(
)
×
(
T2 T  
)
1
where:  
where:  
VO (25°C) = VO at 25°C.  
VO (T1) = VO at Temperature 1.  
VO (T2) = VO at Temperature 2.  
VO (t0) = VO at 25°C at Time 0.  
VO (t1) = VO at 25°C after 1,000 hours operation at 25°C.  
Thermal Hysteresis  
The change of output voltage after the device is cycled through  
temperature from +25°C to –40°C to +125°C and back to  
+25°C. This is a typical value from a sample of parts put  
through such a cycle.  
Line Regulation  
The change in output voltage due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating.  
Line regulation is expressed in either percent per volt, parts-  
per-million per volt, or microvolts per volt change in input  
voltage.  
V
O _ HYS =VO  
(
25°C  
)
VO _TC  
25°C VO _TC  
VO 25°C  
VO  
(
)
VO _ HYS ppm  
[
]
=
×106  
Load Regulation  
(
)
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per  
milliampere, parts-per-million per milliampere, or ohms of dc  
output resistance.  
where:  
VO (25°C) = VO at 25°C.  
O_TC = VO at 25°C after temperature cycle at +25°C to –40°C to  
+125°C and back to +25°C.  
V
Rev. A | Page 10 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.052  
2.050  
2.048  
2.046  
2.044  
4.998  
4.997  
4.996  
4.995  
4.994  
4.993  
4.992  
4.991  
4.990  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. ADR360 Output Voltage vs. Temperature  
Figure 5. ADR365 Output Voltage vs. Temperature  
0.165  
0.155  
0.145  
0.135  
0.125  
0.115  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
+125°C  
+25°C  
40°C  
2.8  
4.1  
5.3  
6.6  
7.8  
9.1 10.3 11.6 12.8 14.1  
(V)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
V
TEMPERATURE (°C)  
IN  
Figure 3. ADR361 Output Voltage vs. Temperature  
Figure 6. ADR361 Supply Current vs. Input Voltage  
3.003  
3.002  
3.001  
3.000  
2.999  
2.998  
2.997  
2.996  
0.17  
0.16  
0.15  
0.14  
+125°C  
+25°C  
–40°C  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
5.3  
6.3  
7.3  
8.3  
9.3 10.3 11.3 12.3 13.3 14.3  
(V)  
TEMPERATURE (°C)  
V
IN  
Figure 4. ADR363 Output Voltage vs. Temperature  
Figure 7. ADR365 Supply Current vs. Input Voltage  
Rev. A | Page 11 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
0.18  
0.16  
0.14  
0.12  
9
8
7
6
5
4
3
2
1
0
V
= 9V  
IN  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 3.5V  
IN  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. ADR361 Load Regulation vs. Temperature  
Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
12  
10  
8
V
= 9V  
IN  
6
V
= 6V  
IN  
4
2
0
–40  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. ADR365 Load Regulation vs. Temperature  
Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V  
1.6  
1.4  
25  
20  
15  
10  
5
+125°C  
1.2  
1.0  
0.8  
0.6  
–40°C  
+25°C  
0.4  
0.2  
0
0
–40  
–2  
0
2
4
6
8
10  
–20  
0
20  
40  
60  
80  
100  
120  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 13. ADR361 Minimum Input Voltage vs. Load Current  
Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V  
Rev. A | Page 12 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
XX  
+125°C  
+25°C  
2μV/DIV  
TIME = 1s/DIV  
–40°C  
XX  
–2  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
Figure 17. ADR363 0.1 Hz to 10 kHz Noise  
Figure 14. ADR365 Minimum Input Voltage vs. Load Current  
XX  
XX  
2μV/DIV  
50μV/DIV  
TIME = 1s/DIV  
TIME = 1s/DIV  
XX  
XX  
XX  
Figure 18. ADR363 10 Hz to 10 kHz Noise  
Figure 15. ADR361 0.1 Hz to 10 Hz Noise  
XX  
2μV/DIV  
TIME = 1s/DIV  
50μV/DIV  
TIME = 1s/DIV  
XX  
XX  
Figure 19. ADR365 0.1 Hz to 10 Hz Noise  
Figure 16. ADR361 10 Hz to 10 kHz Noise  
Rev. A | Page 13 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
XX  
XX  
500mV/DIV  
V
IN  
500mV/DIV  
V
OUT  
100μV/DIV  
TIME = 1s/DIV  
4μs/DIV  
XX  
XX  
Figure 20. ADR365 10 Hz to 10 kHz Noise  
Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
XX  
V
IN  
500mV/DIV  
V
500mV/DIV  
OUT  
10μs/DIV  
0
100  
XX  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors  
Figure 21. Output Impedance vs. Frequency  
XX  
10  
500mV/DIV  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
IN  
20mV/DIV  
V
OUT  
100μs/DIV  
XX  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor  
Figure 22. Ripple Rejection Ratio  
Rev. A | Page 14 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
XX  
XX  
5V/DIV  
LOAD ON  
LOAD OFF  
INPUT  
V
100mV/DIV  
OUT  
2.5V/DIV  
OUTPUT  
400ns/DIV  
2ms/DIV  
XX  
XX  
XX  
XX  
Figure 26. ADR361 Load Transient Response  
Figure 29. ADR361 Turn-Off Response at 5 V  
LOAD ON  
V
IN  
5V/DIV  
V
OUT  
V
OUT  
100mV/DIV  
2V/DIV  
100μs/DIV  
100μs/DIV  
XX  
XX  
XX  
Figure 27. ADR361 Load Transient Response,  
0.1 μF Input, Output Capacitor  
Figure 30. ADR361 Turn-On Response, 0.1 μF Output Capacitor  
XX  
V
IN  
5V/DIV  
INPUT  
5V/DIV  
V
OUT  
2V/DIV  
OUTPUT  
2.5V/DIV  
10μs/DIV  
2ms/DIV  
XX  
XX  
Figure 31. ADR361 Turn-Off Response, 0.1 μF Output Capacitor  
Figure 28. ADR361 Turn-On Response Time at 5 V  
Rev. A | Page 15 of 20  
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
THEORY OF OPERATION  
Band gap references are the high performance solution for low  
supply voltage and low power voltage reference applications,  
and the ADR36x family is no exception. The uniqueness of  
these products lies in their architecture. The ideal zero TC band  
gap voltage is referenced to the output not to ground (see  
Figure 32). Therefore, if noise exists on the ground line, it is  
greatly attenuated on VOUT. The band gap cell consists of the  
PNP pair Q53 and Q52 running at unequal current densities.  
The difference in VBE results in a voltage with a positive TC,  
which is amplified by a ratio of  
DEꢀICE POWER DISSIPATION CONSIDERATIONS  
The ADR36x family is capable of delivering load currents to  
5 mA with an input voltage ranging from 2.348 V (ADR360  
only) to 18 V. When this device is used in applications with  
large input voltages, care should be taken to avoid exceeding the  
specified maximum power dissipation or junction temperature  
because it could result in premature device failure. Use the  
following formula to calculate a devices maximum junction  
temperature or dissipation:  
TJ TA  
PD =  
R59  
2×  
θJA  
R54  
In this equation, TJ and TA are, respectively, the junction and  
ambient temperatures, PD is the device power dissipation, and  
θJA is the device package thermal resistance.  
This PTAT voltage, combined with the VBEs of Q53 and Q52,  
produces the stable band gap voltage.  
Reduction in the band gap curvature is performed by the ratio  
of Resistor R44 and Resistor R59, one of which is linearly  
temperature dependent. Precision laser trimming and other  
patented circuit techniques are used to further enhance the drift  
performance.  
INPUT CAPACITOR  
Input capacitors are not required on the ADR36x. There is no  
limit for the value of the capacitor used on the input, but a 1 μF  
to 10 μF capacitor on the input improves transient response in  
applications where the supply suddenly changes. An additional  
0.1 μF capacitor in parallel also helps reduce noise from the supply.  
Q2  
Q1  
VOUT (FORCE)  
OUTPUT CAPACITOR  
VOUT (SENSE)  
R49  
The ADR36x does not require output capacitors for stability  
under any load condition. An output capacitor, typically 0.1 μF,  
filters out any low level noise voltage and does not affect the  
operation of the part. On the other hand, the load transient  
response can improve with an additional 1 μF to 10 μF output  
capacitor in parallel. A capacitor here acts as a source of stored  
energy for a sudden increase in load current. The only  
parameter that degrades by adding an output capacitor is the  
turn-on time. The degradation depends on the size of the  
capacitor chosen.  
R59  
R44  
R100  
62k  
R58  
Q61 Q60  
R54  
R50  
30kΩ  
R53  
Q52  
TRIM  
Q53  
R101  
R48  
R60  
R61  
Figure 32. Simplified Schematic  
Rev. A | Page 16 of 20  
 
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
APPLICATIONS  
Two reference ICs are used and fed from an unregulated input,  
VIN. The outputs of the individual ICs are connected in series,  
which provides two output voltages, VOUT1 and VOUT2. VOUT1 is  
the terminal voltage of U1, while VOUT2 is the sum of this voltage  
and the terminal voltage of U2. U1 and U2 are chosen for the  
two voltages that supply the required outputs (see Table 10). For  
example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and  
BASIC ꢀOLTAGE REFERENCE CONNECTION  
The circuit in Figure 33 illustrates the basic configuration for  
the ADR36x family. Decoupling capacitors are not required for  
circuit stability. The ADR36x family is capable of driving  
capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic  
output capacitor is recommended to absorb and deliver the  
charge as is required by a dynamic load.  
VOUT2 is 5.0 V.  
Table 10. Output  
U1/U2  
1
5
TRIM  
NC  
OUT1  
2.5  
2.5  
5
OUT2  
7.5  
5.0  
ADR361/ADR365  
ADR361/ADR361  
ADR365/ADR361  
ADR36x  
2
3
GND  
7.5  
INPUT  
OUTPUT  
V
4
OUT  
V
IN  
0.1μF  
0.1μF  
A Negative Precision Reference Without Precision  
Resistors  
Figure 33. Basic Configuration for the ADR36x Family  
A negative reference is easily generated by adding an op amp,  
A1 and is configured in Figure 35. VOUTF and VOUTS are at virtual  
ground and, therefore, the negative reference can be taken  
directly from the output of the op amp. The op amp must be  
dual-supply, low offset, and rail-to-rail if the negative supply  
voltage is close to the reference output.  
Stacking Reference ICs for Arbitrary Outputs  
Some applications can require two reference voltage sources,  
which are a combined sum of standard outputs. Figure 34 shows  
how this stacked output reference can be implemented.  
1
2
3
TRIM  
5
NC  
1
5
NC  
TRIM  
ADR36x  
GND  
ADR36x  
V
V
2
3
GND  
IN  
OUT2  
V
4
V
OUT  
IN  
+V  
DD  
C2  
0.1μF  
4
V
V
OUT  
IN  
1
TRIM  
5
4
NC  
C1  
0.1μF  
–V  
REF  
ADR36x  
2
3
GND  
+
V
OUT1  
V
V
OUT  
IN  
–V  
DD  
Figure 34. Stacking Voltage References with the ADR36x  
Figure 35. Negative Reference  
Rev. A | Page 17 of 20  
 
 
 
 
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
Trim Terminal  
General-Purpose Current Source  
The ADR36x trim terminal can be used to adjust the output  
voltage over a nominal voltage. This feature allows a system  
designer to trim system errors by setting the reference to a  
voltage other than the standard voltage option. Resistor R1 is  
used for fine adjustment and can be omitted if desired. The  
resistor values should be carefully chosen to ensure that the  
maximum current drive of the part is not exceeded.  
Many times in low power applications, the need arises for a  
precision current source that can operate on low supply  
voltages. The ADR36x can be configured as a precision current  
source (see Figure 36). The circuit configuration illustrated is a  
floating current source with a grounded load. The references  
output voltage is bootstrapped across RSET, which sets the output  
current into the load. With this configuration, circuit precision  
is maintained for load currents ranging from the reference’s  
supply current, typically 150 μA, to approximately 5 mA.  
R2  
1kΩ  
R1  
100kΩ  
POT  
10kΩ  
5
1
2
3
NC  
TRIM  
5
NC  
1
2
3
TRIM  
ADR36x  
ADR36x  
GND  
GND  
+V  
DD  
V
V
4
IN  
OUT  
V
+V  
OUT  
DD  
V
4
V
I
OUT  
IN  
SET  
R1  
R
SET  
P
1
Figure 37. ADR36x Trim Configuration  
I
SY  
I
+ I  
SY  
SET  
R
L
Figure 36. Precision Current Source  
Rev. A | Page 18 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
ꢀoltage  
(ꢀO)  
2.048  
2.048  
2.5  
2.5  
3.0  
3.0  
4.096  
4.096  
5.0  
5.0  
3.3  
Temperature  
Coefficient  
(ppm/°C)  
Initial Accuracy  
Package  
Description  
Package  
Option  
Temperature  
Range  
Models1  
(mꢀ)  
(%)  
0.29  
0.15  
0.24  
0.12  
0.2  
Branding  
R0C  
R0D  
R0E  
ADR360AUJZ-REEL72  
ADR360BUJZ-REEL72  
ADR361AUJZ-REEL72  
ADR361BUJZ-REEL72  
ADR363AUJZ-REEL72  
ADR363BUJZ-REEL72  
ADR364AUJZ-REEL72  
ADR364BUJZ-REEL72  
ADR365AUJZ-REEL72  
ADR365BUJZ-REEL72  
ADR366AUJZ-REEL72  
ADR366BUJZ-REEL72  
6
3
6
3
6
3
8
4
8
4
8
4
25  
9
25  
9
25  
9
25  
9
25  
9
25  
9
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
R0F  
R0G  
R0H  
R0J  
R0K  
R0L  
R0M  
R08  
R09  
0.1  
0.2  
0.1  
0.16  
0.08  
0.25  
0.125  
3.3  
1 3,000 pieces per reel.  
2 Z = Pb-free part.  
Rev. 0 | Page 19 of 20  
 
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05467-3/06(A)  
Rev. A | Page 20 of 20  
 

相关型号:

ADR363B

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR363BUJZ-R2

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR363BUJZ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR363BUJZ-REEL7

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR363BUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 3 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR364

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR364A

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR364AUJZ-R2

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR364AUJZ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR364AUJZ-REEL7

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI

ADR364AUJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.096 V, PDSO5, ROHS COMPLIANT, MO-193AB, TSOT-5
ROCHESTER

ADR364B

Low Power, Low Noise Voltage References with Sink/Source Capability
ADI