ADR392AUJZ-R2 [ADI]

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown; 精密,低漂移2.048 V / 2.5 V / 4.096 V / 5.0 V SOT- 23参考与关机
ADR392AUJZ-R2
型号: ADR392AUJZ-R2
厂家: ADI    ADI
描述:

Precision Low Drift 2.048 V/2.5 V/4.096 V/ 5.0 V SOT-23 Reference with Shutdown
精密,低漂移2.048 V / 2.5 V / 4.096 V / 5.0 V SOT- 23参考与关机

文件: 总20页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, Low Noise Precision Voltage  
References with Shutdown  
ADR390/ADR391/ADR392/ADR395  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Compact TSOT-23-5 packages  
Low temperature coefficient  
B grade: 9 ppm/°C  
A grade: 25 ppm/°C  
Initial accuracy  
B grade: 4 mꢀ maximum  
A grade: 6 mꢀ maximum  
Ultralow output noise: 5 µꢀ p-p (0.1 Hz to 10 Hz)  
Low dropout: 300 mꢀ  
1
2
3
5
4
GND  
SHDN  
ADR390/  
ADR391/  
ADR392/  
V
IN  
ADR395  
V
OUT (SENSE)  
(Not to Scale)  
V
OUT (FORCE)  
Figure 1. 5-Lead TSOT (UJ Suffix)  
Low supply current  
3 µA maximum in shutdown  
120 µA maximum in operation  
No external capacitor required  
Output current: 5 mA  
Wide temperature range  
−40°C to + 125°C  
Table 1.  
Temperature  
OUT (ꢀ) Coefficient (ppm/°C) Accuracy (mꢀ)  
Model  
ADR390B  
ADR390A  
ADR391B  
ADR391A  
ADR392B  
ADR392A  
ADR395B  
ADR395A  
2.048  
2.048  
2.5  
9
25  
9
25  
9
25  
9
±4  
±±  
±4  
±±  
±5  
±±  
±5  
±±  
2.5  
4.09±  
4.09±  
5.0  
APPLICATIONS  
Battery-powered instrumentation  
Portable medical instrumentation  
Data acquisition systems  
Industrial process controls  
Automotive  
5.0  
25  
GENERAL DESCRIPTION  
The ADR390, ADR391, ADR392, and ADR395 are precision  
2.048 V, 2.5 V, 4.096 V, and 5 V band gap voltage references,  
respectively, featuring low power and high precision in a tiny  
footprint. Using ADI’s patented temperature drift curvature  
correction techniques, the ADR39x references achieve a low  
9 ppm/°C of temperature drift in the TSOT package.  
The ADR39x family of micropower, low dropout voltage  
references provides a stable output voltage from a minimum  
supply of 300 mV above the output. Their advanced design  
eliminates the need for external capacitors, which further  
reduces board space and system cost. The combination of  
low power operation, small size, and ease of use makes the  
ADR39x precision voltage references ideally suited for battery-  
operated applications.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADR390/ADR391/ADR392/ADR395  
TABLE OF CONTENTS  
ADR390 Specifications .................................................................... 3  
Terminology.......................................................................................8  
Typical Performance Characteristics ..............................................9  
Theory of Operation ...................................................................... 16  
Applications..................................................................................... 17  
Basic Voltage Reference Connection....................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
ADR391 Specifications .................................................................... 4  
ADR392 Specifications .................................................................... 5  
ADR395 Specifications .................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
REꢀISION HISTORY  
Changes to Figure 15, Figure 16, Figure 19, and Figure 20...... 11  
Changes to Figure 23 and Figure 24............................................ 12  
Changes to Figure 27..................................................................... 13  
Changes to Ordering Guide......................................................... 19  
Updated Outline Dimensions...................................................... 19  
5/05—Rev. E to Rev. F  
Changes to Table 5........................................................................... 7  
Changes to Figure 2......................................................................... 9  
4/04—Rev. D to Rev. E  
Changes to ADR390—Specifications............................................ 3  
Changes to ADR391—Specifications............................................ 4  
Changes to ADR392—Specifications............................................ 5  
Changes to ADR395—Specifications............................................ 6  
10/02—Rev. B to Rev. C  
Add parts ADR392 and ADR395....................................Universal  
Changes to Features ........................................................................ 1  
Changes to General Description ................................................... 1  
Additions to Table I......................................................................... 1  
Changes to Specifications............................................................... 2  
Changes to Ordering Guide........................................................... 4  
Changes to Absolute Maximum Ratings...................................... 4  
New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 ............................ 6  
New Figures 4 and 5...................................................................... 13  
Deleted A Negative Precision Reference  
4/04—Rev. C to Rev. D  
Updated Format................................................................ Universal  
Changes to Title ............................................................................... 1  
Changes to Features......................................................................... 1  
Changes to Applications ................................................................. 1  
Changes to General Description ................................................... 1  
Changes to Table 1........................................................................... 1  
Changes to ADR390—Specifications............................................ 3  
Changes to ADR391—Specifications............................................ 4  
Changes to ADR392—Specifications............................................ 5  
Changes to ADR395—Specifications............................................ 6  
Changes to Absolute Maximum Ratings...................................... 7  
Changes to Thermal Resistance..................................................... 7  
Moved ESD Caution........................................................................ 7  
Changes to Figure 3, Figure 4, Figure 7, and Figure 8 ................ 9  
Changes to Figure 11, Figure 12, Figure 13, and Figure 14......10  
without Precision Resistors Section............................................ 13  
Edits to General-Purpose Current Source Section................... 13  
Updated Outline Dimensions...................................................... 15  
5/02—Rev. A to Rev. B  
Edits to Layout ...................................................................Universal  
Changes to Figure 6....................................................................... 13  
Revision 0: Initial Version  
Rev. F | Page 2 of 20  
ADR390/ADR391/ADR392/ADR395  
ADR390 SPECIFICATIONS  
Electrical characteristics, VIN = 2.5 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
A grade  
2.042 2.048 2.054  
VO  
B grade  
2.044 2.048 2.052  
V
INITIAL ACCURACY  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
A grade  
A grade  
B grade  
B grade  
±
0.29  
4
0.19  
mV  
%
mV  
%
TEMPERATURE COEFFICIENT  
A grade: −40°C < TA < +125°C  
B grade: −40°C < TA < +125°C  
25  
ppm/°C  
ppm/°C  
mV  
9
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
∆VO/∆VIN  
VIN = 2.5 V to 15 V, −40°C < TA < +125°C  
10  
25  
ppm/V  
ppm/mA  
ppm/mA  
µA  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V  
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V  
±0  
140  
120  
140  
QUIESCENT CURRENT  
IIN  
No load  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
µA  
VOLTAGE NOISE  
en p-p  
tR  
5
µV p-p  
µs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
80  
25  
30  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
ppm  
ppm  
dB  
fIN = ±0 kHz  
VIN = 5 V  
mA  
VIN = 15 V  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
µA  
nA  
V
VINH  
2.4  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. F | Page 3 of 20  
ADR390/ADR391/ADR392/ADR395  
ADR391 SPECIFICATIONS  
Electrical characteristics, VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
VO  
VO  
Conditions  
A grade  
B grade  
Min  
Typ Max  
Unit  
V
V
OUTPUT VOLTAGE  
2.494 2.5  
2.49± 2.5  
2.50±  
2.504  
±
INITIAL ACCURACY  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
A grade  
mV  
%
mV  
%
A grade  
B grade  
B grade  
0.24  
4
0.1±  
25  
TEMPERATURE COEFFICIENT  
A grade, −40°C < TA < +125°C  
ppm/°C  
B grade, −40°C < TA < +125°C  
9
ppm/°C  
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
10  
mV  
∆VO/∆VIN  
VIN = 2.8 V to 15 V, −40°C < TA < +125°C  
25  
ppm/V  
ppm/mA  
ppm/mA  
µA  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V  
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V  
±0  
140  
120  
140  
QUIESCENT CURRENT  
IIN  
No load  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
µA  
VOLTAGE NOISE  
enp-p  
tR  
5
µV p-p  
µs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
80  
25  
30  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
ppm  
ppm  
dB  
fIN = ±0 kHz  
VIN = 5 V  
mA  
VIN = 15 V  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
µA  
nA  
V
VINH  
2.4  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. F | Page 4 of 20  
ADR390/ADR391/ADR392/ADR395  
ADR392 SPECIFICATIONS  
Electrical characteristics, VIN = 4.3 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
A grade  
4.090 4.09± 4.102  
VO  
B grade  
4.091 4.09± 4.101  
V
INITIAL ACCURACY  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
A grade  
±
mV  
A grade  
B grade  
B grade  
0.15  
5
0.12  
%
mV  
%
TEMPERATURE COEFFICIENT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
ppm/°C  
ppm/°C  
mV  
9
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
∆VO/∆VIN  
VIN = 4.3 V to 15 V, −40°C < TA < +125°C  
10  
25  
ppm/V  
ppm/mA  
µA  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V  
140  
120  
140  
QUIESCENT CURRENT  
IIN  
No load  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
µA  
VOLTAGE NOISE  
enp-p  
tR  
7
µV p-p  
µs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
80  
25  
30  
∆VO  
∆VO_HYS  
RRR  
ISC  
1000 hours  
ppm  
ppm  
dB  
fIN = ±0 kHz  
VIN = 5 V  
mA  
VIN = 15 V  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
µA  
nA  
V
VINH  
2.4  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. F | Page 5 of 20  
ADR390/ADR391/ADR392/ADR395  
ADR395 SPECIFICATIONS  
Electrical characteristics, VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
VO  
Conditions  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
A grade  
4.994 5.000 5.00±  
VO  
B grade  
4.995 5.000 5.005  
V
INITIAL ACCURACY  
VOERR  
VOERR  
VOERR  
VOERR  
TCVO  
A grade  
±
mV  
B grade  
B grade  
B grade  
0.12  
5
0.10  
%
mV  
%
TEMPERATURE COEFFICIENT  
A grade, −40°C < TA < +125°C  
B grade, −40°C < TA < +125°C  
25  
ppm/°C  
ppm/°C  
mV  
9
SUPPLY VOLTAGE HEADROOM  
LINE REGULATION  
VIN − VO  
300  
∆VO/∆VIN  
VIN = 4.3 V to 15 V, −40°C < TA < +125°C  
10  
25  
ppm/V  
ppm/mA  
µA  
LOAD REGULATION  
∆VO/∆ILOAD ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = ± V  
140  
120  
140  
QUIESCENT CURRENT  
IIN  
No load  
−40°C < TA < +125°C  
0.1 Hz to 10 Hz  
µA  
VOLTAGE NOISE  
en p-p  
tR  
8
µV p-p  
µs  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
20  
50  
100  
80  
25  
30  
∆VO  
∆VO_HYS  
RRR  
ISC  
1, 000 hours  
ppm  
ppm  
dB  
fIN = ±0 kHz  
VIN = 5 V  
mA  
VIN = 15 V  
mA  
SHUTDOWN PIN  
Shutdown Supply Current  
Shutdown Logic Input Current  
Shutdown Logic Low  
Shutdown Logic High  
ISHDN  
ILOGIC  
VINL  
3
500  
0.8  
µA  
nA  
V
VINH  
2.4  
V
1 The long-term stability specification is noncumulative. The drift of subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.  
Rev. F | Page ± of 20  
ADR390/ADR391/ADR392/ADR395  
ABSOLUTE MAXIMUM RATINGS  
At 25°C, unless otherwise noted.  
Table 6.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for a device soldered in a circuit board for surface-  
mount packages.  
Parameter  
Rating  
Supply Voltage  
18 V  
Output Short-Circuit Duration to GND  
See derating  
curves  
–±5°C to +125°C  
–40°C to +125°C  
–±5°C to +125°C  
300°C  
Table 7. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range  
(Soldering, ±0 sec)  
TSOT-23-5 (UJ-5)  
230  
14±  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 7 of 20  
ADR390/ADR391/ADR392/ADR395  
TERMINOLOGY  
Temperature Coefficient  
VO  
(
25°C  
)
VO_TC  
VO_HYS  
[
ppm  
]
=
×106  
The change of output voltage with respect to operating temp-  
erature changes normalized by the output voltage at 25°C. This  
parameter is expressed in ppm/°C and can be determined by the  
following equation:  
VO 25°C  
(
)
where:  
VO (25°C) = VO at 25°C  
VO  
(
T2  
)
)
VO  
(
T1  
)
TCVO  
[
ppm/°C  
]
=
×106  
V
O_TC = VO at 25°C after a temperature cycle from + 25°C  
VO 25°C  
(
×
(
T2 T1  
)
to –40°C to +125°C and back to +25°C  
where:  
VO (25°C) = VO at 25°C  
NOTES  
Input Capacitor  
Input capacitors are not required on the ADR39x. There is no  
limit for the value of the capacitor used on the input, but a  
1 µF to 10 µF capacitor on the input improves transient  
response in applications where the supply suddenly changes.  
An additional 0.1 µF in parallel also helps reduce noise  
from the supply.  
VO (T1) = VO at Temperature 1  
VO (T2) = VO at Temperature 2  
Line Regulation  
The change in output voltage due to a specified change in input  
voltage. This parameter accounts for the effects of self-heating.  
Line regulation is expressed in either percent per volt, parts-  
per-million per volt, or microvolts per volt change in input  
voltage.  
Output Capacitor  
The ADR39x does not require output capacitors for stability  
under any load condition. An output capacitor, typically 0.1 µF,  
filters out any low level noise voltage and does not affect the  
operation of the part. On the other hand, the load transient  
response can improve with the addition of a 1 µF to 10 µF  
output capacitor in parallel. A capacitor here acts as a source of  
stored energy for a sudden increase in load current. The only  
parameter that degrades by adding an output capacitor is the  
turn-on time, and it depends on the size of the capacitor  
chosen.  
Load Regulation  
The change in output voltage due to a specified change in load  
current. This parameter accounts for the effects of self-heating.  
Load regulation is expressed in either microvolts per milli-  
ampere, parts-per-million per milliampere, or ohms of dc  
output resistance.  
Long-Term Stability  
150  
100  
50  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to a test of 1,000 hours at 25°C.  
VO = VO(t0) – VO(t1)  
VO  
(
t0  
VO  
)
VO  
t0  
t1  
( )  
VO  
[
ppm  
]
=
×106  
(
)
0
where:  
VO (T0) = VO at 25°C at Time 0  
–50  
–100  
–150  
VO (T1) = VO at 25°C after 1,000 hours operation at 25°C  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (Hours)  
Thermal Hysteresis  
The change of output voltage after the device is cycled through  
temperatures from +25°C to –40°C to +125°C and back to  
+25°C. This is a typical value from a sample of parts put  
through such a cycle.  
Figure 2. ADR391 Typical Long-Term Drift over 1,000 Hours  
V
O_HYS = VO(25°C) – VO_TC  
Rev. F | Page 8 of 20  
ADR390/ADR391/ADR392/ADR395  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.006  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
2.060  
2.056  
SAMPLE 3  
SAMPLE 2  
2.052  
SAMPLE 2  
SAMPLE 3  
2.048  
SAMPLE 1  
SAMPLE 1  
2.044  
2.040  
–40  
–5  
30  
65  
C)  
100  
125  
–40  
–5  
30  
65  
100  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
C)  
Figure 3. ADR390 Output Voltage vs. Temperature  
Figure 6. ADR395 Output Voltage vs. Temperature  
140  
120  
100  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
SAMPLE 2  
+125  
+85  
+25  
°C  
SAMPLE 1  
°
C
°
C
SAMPLE 3  
–40°C  
80  
60  
40  
–40  
–5  
30  
65  
C)  
100  
125  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
TEMPERATURE (  
°
INPUT VOLTAGE (V)  
Figure 4. ADR391 Output Voltage vs. Temperature  
Figure 7. ADR390 Supply Current vs. Input Voltage  
4.100  
4.098  
4.096  
4.094  
4.092  
4.090  
4.088  
140  
120  
100  
SAMPLE 3  
SAMPLE 2  
+85°C  
+25°C  
SAMPLE 1  
–40°C  
80  
60  
40  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
–40  
0
40  
80  
125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. ADR392 Output Voltage vs. Temperature  
Figure 8. ADR391 Supply Current vs. Input Voltage  
Rev. F | Page 9 of 20  
ADR390/ADR391/ADR392/ADR395  
140  
180  
160  
140  
120  
100  
80  
I = 0mA TO 5mA  
L
+125°C  
120  
V
= 5.0V  
IN  
100  
+25°C  
V
= 3.0V  
IN  
–40°C  
80  
60  
40  
–40  
–10  
20  
50  
80  
110 125  
5
7
9
11  
13  
15  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 9. ADR392 Supply Current vs. Input Voltage  
Figure 12. ADR391 Load Regulation vs. Temperature  
90  
140  
I = 0mA TO 5mA  
L
+125°C  
80  
70  
60  
50  
40  
120  
100  
80  
V
= 7.5V  
V
IN  
+25°C  
–40°C  
= 5V  
IN  
60  
40  
–40  
–5  
30  
65  
100  
125  
5.5  
7.0  
8.5  
10.0  
11.5  
13.0  
14.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 13. ADR392 Load Regulation vs. Temperature  
Figure 10. ADR395 Supply Current vs. Input Voltage  
80  
120  
100  
80  
60  
40  
20  
0
I = 0mA TO 5mA  
L
I = 0mA TO 5mA  
L
70  
60  
50  
40  
30  
V
= 7.5V  
IN  
V
= 5V  
IN  
V
= 5.0V  
IN  
V
= 3.0V  
IN  
–40  
–10  
20  
50  
80  
110  
125  
–40  
–5  
30  
65  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (  
°
C)  
Figure 11. ADR390 Load Regulation vs. Temperature  
Figure 14. ADR395 Load Regulation vs. Temperature  
Rev. F | Page 10 of 20  
ADR390/ADR391/ADR392/ADR395  
25  
20  
15  
10  
14  
12  
10  
8
V
= 5.3V TO 15V  
IN  
6
4
5
0
2
0
–40  
40  
10  
20  
TEMPERATURE (  
80  
110  
125  
50  
–5  
30  
65  
100  
125  
°
C)  
TEMPERATURE  
(°C)  
Figure 15. ADR390 Line Regulation vs. Temperature  
Figure 18. ADR395 Line Regulation vs. Temperature  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
25  
20  
15  
10  
+125°  
C
–40°  
C
+25°  
C
+85°  
C
5
0
0
1
2
3
4
5
40  
10  
20  
TEMPERATURE (  
80  
110 125  
50  
LOAD CURRENT (mA)  
°
C)  
Figure 19. ADR390 Minimum Input Voltage vs. Load Current  
Figure 16. ADR391 Line Regulation vs. Temperature  
14  
3.6  
12  
10  
+125  
°
C
3.4  
3.2  
3.0  
2.8  
2.6  
+85  
°
C
8
6
4
2
0
+25°C  
V
= 4.4V TO 15V  
IN  
–40°C  
0
1
2
3
4
5
–40  
–5  
30  
65  
100  
125  
LOAD CURRENT (mA)  
TEMPERATURE  
(°C)  
Figure 20. ADR391 Minimum Input Voltage vs. Load Current  
Figure 17. ADR392 Line Regulation vs. Temperature  
Rev. F | Page 11 of 20  
ADR390/ADR391/ADR392/ADR395  
4.8  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
TEMPERATURE: +25  
°
C
+125°C  
+25°C  
+125°C  
4.6  
4.4  
4.2  
4.0  
3.8  
+25  
–40  
°C  
°
C
–0.56  
–0.41  
–0.26  
–0.11  
0.04  
0.19  
0.34  
0
1
2
3
4
5
V
DEVIATION (mV)  
OUT  
LOAD CURRENT (mA)  
Figure 21. ADR392 Minimum Input Voltage vs. Load Current  
Figure 24. ADR391 VOUT Hysteresis Distribution  
6.0  
5.8  
1k  
V
= 5V  
IN  
+125°C  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
+25  
–40  
°C  
ADR391  
ADR390  
°
C
100  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
0
1
2
3
4
5
LOAD CURRENT (mA)  
Figure 25. Voltage Noise Density vs. Frequency  
Figure 22. ADR395 Minimum Input Voltage vs. Load Current  
0
0
0
0
0
0
0
0
0
60  
–40°C  
TEMPERATURE: +25°C  
+125°C  
+25°C  
50  
40  
30  
20  
10  
0
–0.24 –0.18 –0.12 –0.06  
0
0.06 0.12 0.18 0.24 0.30  
V
DEVIATION (mV)  
TIME (1 Sec/DIV)  
OUT  
Figure 23. ADR390 VOUT Hysteresis Distribution  
Figure 26. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz  
Rev. F | Page 12 of 20  
ADR390/ADR391/ADR392/ADR395  
C
= 0nF  
L
V
OUT  
V
ON  
LOAD OFF  
LOAD  
TIME (10µs/DIV)  
TIME (200µs/DIV)  
Figure 27. ADR391 Voltage Noise 10 Hz to 10 kHz  
Figure 30. ADR391 Load Transient Response  
C
= 0µF  
C = 1nF  
L
BYPASS  
V
OUT  
LINE  
INTERRUPTION  
0.5V/DIV  
LOAD OFF  
V
ON  
LOAD  
V
OUT  
1V/DIV  
TIME (10µs/DIV)  
TIME (200µs/DIV)  
Figure 28. ADR391 Line Transient Response  
Figure 31. ADR391 Load Transient Response  
C
= 100nF  
C
= 0.1µF  
L
BYPASS  
V
OUT  
0.5V/DIV  
LINE  
INTERRUPTION  
LOAD OFF  
V
ON  
LOAD  
V
OUT  
1V/DIV  
TIME (10µs/DIV)  
TIME (200µs/DIV)  
Figure 32. ADR391 Load Transient Response  
Figure 29. ADR391 Line Transient Response  
Rev. F | Page 13 of 20  
ADR390/ADR391/ADR392/ADR395  
V
= 15V  
R
= 500Ω  
IN  
L
5V/DIV  
2V/DIV  
5V/DIV  
V
OUT  
V
IN  
2V/DIV  
V
OUT  
V
IN  
TIME (20µs/DIV)  
TIME (200µs/DIV)  
Figure 33. ADR391 Turn-On Response Time at 15 V  
Figure 36. ADR391 Turn-On/Turn-Off Response at 5 V  
V
= 15V  
IN  
R
C
= 500Ω  
= 100nF  
L
L
V
5V/DIV  
IN  
2V/DIV  
5V/DIV  
V
OUT  
V
2V/DIV  
OUT  
V
IN  
TIME (40  
µ
s/DIV)  
TIME (200µs/DIV)  
Figure 34. ADR391 Turn-Off Response at 15 V  
Figure 37. ADR391 Turn-On/Turn-Off Response at 5 V  
80  
60  
40  
C
= 0.1µF  
BYPASS  
2V/DIV  
5V/DIV  
V
20  
0
OUT  
–20  
–40  
V
IN  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
TIME (200µs/DIV)  
FREQUENCY (Hz)  
Figure 35. ADR391 Turn-On/Turn-Off Response at 5 V  
Figure 38. Ripple Rejection vs. Frequency  
Rev. F | Page 14 of 20  
ADR390/ADR391/ADR392/ADR395  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
= 0µF  
L
C
= 0.1µF  
L
C
= 1µF  
L
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 39. Output Impedance vs. Frequency  
Rev. F | Page 15 of 20  
ADR390/ADR391/ADR392/ADR395  
THEORY OF OPERATION  
Band gap references are the high performance solution for low  
supply voltage and low power voltage reference applications,  
and the ADR390/ADR391/ADR392/ADR395 are no exception.  
The uniqueness of these devices lies in the architecture. As  
shown in Figure 40, the ideal zero TC band gap voltage is  
referenced to the output, not to ground. Therefore, if noise  
exists on the ground line, it is greatly attenuated on VOUT. The  
band gap cell consists of the PNP pair, Q51 and Q52, running at  
unequal current densities. The difference in VBE results in a  
voltage with a positive TC, which is amplified by a ratio of  
DEꢀICE POWER DISSIPATION CONSIDERATIONS  
The ADR390/ADR391/ADR392/ADR395 are capable of deli-  
vering load currents to 5 mA, with an input voltage that ranges  
from 2.8 V (ADR391 only) to 15 V. When these devices are  
used in applications with large input voltages, care should be  
taken to avoid exceeding the specified maximum power  
dissipation or junction temperature because it could result in  
premature device failure. The following formula should be used  
to calcu-late a devices maximum junction temperature or  
dissipation:  
R58  
2 ×  
T T  
J
A
PD =  
R54  
θJA  
This PTAT voltage, combined with VBEs of Q51 and Q52,  
produces a stable band gap voltage.  
In this equation, TJ and TA are, respectively, the junction and  
ambient temperatures. PD is the device power dissipation, and  
θJA is the device package thermal resistance.  
Reduction in the band gap curvature is performed by the ratio  
of the resistors R44 and R59, one of which is linearly  
temperature dependent. Precision laser trimming and other  
patented circuit techniques are used to further enhance the  
drift performance.  
SHUTDOWN MODE OPERATION  
The ADR390/ADR391/ADR392/ADR395 include a shutdown  
feature that is TTL/CMOS level compatible. A logic low or a  
SHDN  
zero volt condition on the  
pin is required to turn the  
VIN  
devices off. During shutdown, the output of the reference  
becomes a high impedance state, where its potential would then  
be determined by external circuitry. If the shutdown feature is  
Q1  
VOUT (FORCE)  
VOUT (SENSE)  
R59  
R44  
R58  
SHDN  
not used, the  
pin should be connected to VIN (Pin 2).  
R49  
R54  
Q51  
SHDN  
R53  
Q52  
R48  
R60  
R61  
GND  
Figure 40. Simplified Schematic  
Rev. F | Page 1± of 20  
 
ADR390/ADR391/ADR392/ADR395  
APPLICATIONS  
BASIC ꢀOLTAGE REFERENCE CONNECTION  
The circuit shown in Figure 41 illustrates the basic configuration  
for the ADR39x family. Decoupling capacitors are not required  
for circuit stability. The ADR39x family is capable of driving  
capacitive loads from 0 µF to 10 µF. However, a 0.1 µF ceramic  
output capacitor is recommended to absorb and deliver the  
charge, as required by a dynamic load.  
Two reference ICs are used, fed from an unregulated input, VIN.  
The outputs of the individual ICs are simply connected in  
series, which provides two output voltages, VOUT1 and VOUT2  
.
VOUT1 is the terminal voltage of U1, while VOUT2 is the sum of  
this voltage and the terminal voltage of U2. U1 and U2 are  
simply chosen for the two voltages that supply the required  
outputs (see the Output Table in Figure 42). For example, if  
both U1 and U2 are ADR391s, VOUT1 is 2.5 V and VOUT2 is 5.0 V.  
SHUTDOWN  
GND  
SHDN  
ADR39x  
IN  
INPUT  
V
V
While this concept is simple, a precaution is required. Since the  
lower reference circuit must sink a small bias current from U2  
plus the base current from the series PNP output transistor in  
U2, either the external load of U1 or R1 must provide a path for  
this current. If the U1 minimum load is not well defined, the R1  
resistor should be used and set to a value that will conservatively  
pass 600 µA of current with the applicable VOUT1 across it. Note  
that the two U1 and U2 reference circuits are treated locally as  
macrocells; each has its own bypasses at input and output for  
best stability. Both U1 and U2 in this circuit can source dc  
currents up to their full rating. The minimum input voltage,  
VIN, is determined by the sum of the outputs, VOUT2, plus the  
dropout voltage of U2.  
*
0.1µF  
C
B
V
OUT(F)  
OUT(S)  
OUTPUT  
µF  
*
0.1  
C
B
*NOT REQUIRED  
Figure 41. Basic Configuration for the ADR39x Family  
Stacking Reference ICs for Arbitrary Outputs  
Some applications may require two reference voltage sources,  
which are a combined sum of standard outputs. Figure 42 shows  
how this stacked output reference can be implemented.  
OUTPUTTABLE  
A Negative Precision Reference without Precision  
Resistors  
U1/U2  
V
(V)  
V
(V)  
OUT1  
OUT2  
ADR390/ADR390  
ADR391/ADR391  
ADR392/ADR392  
ADR395/ADR395  
2.048  
2.5  
4.096  
5
4.096  
5.0  
8.192  
10  
A negative reference can be easily generated by adding an A1 op  
amp and is configured as shown in Figure 43. VOUTF and VOUTS  
are at virtual ground and, therefore, the negative reference can  
be taken directly from the output of the op amp. The op amp  
must be dual-supply, low offset, and rail-to-rail if the negative  
supply voltage is close to the reference output.  
V
IN  
2
U2  
V
IN  
1
4
V
V
OUT2  
SHDN  
C2  
0.1µF  
OUT(F)  
+V  
DD  
3
V
OUT(S)  
GND  
5
2
V
IN  
4
3
V
OUT(F)  
2
U1  
1
V
SHDN  
OUT(S)  
V
IN  
1
4
3
V
V
SHDN  
V
OUT1  
C2  
0.1µF  
OUT(F)  
GND  
5
OUT(S)  
GND  
5
–V  
REF  
A1  
–V  
DD  
Figure 42. Stacking Voltage References with the  
ADR390/ADR391/ADR392/ADR395  
Figure 43. Negative Reference  
Rev. F | Page 17 of 20  
 
 
 
ADR390/ADR391/ADR392/ADR395  
The transistor Q2 protects Q1 during short-circuit limit faults  
by robbing its base drive. The maximum current is  
General-Purpose Current Source  
Many times in low power applications, the need arises for a  
precision current source that can operate on low supply vol-  
tages. ADR390/ADR391/ADR392/ADR395 can be configured  
as a precision current source. As shown in Figure 45, the circuit  
configuration is a floating current source with a grounded load.  
ILMAX 0.6 V/RS  
R1  
4.7k  
U1  
V
IN  
The reference’s output voltage is bootstrapped across RSET  
which sets the output current into the load. With this  
,
GND  
SHDN  
V
IN  
configuration, circuit precision is maintained for load currents  
in the range from the reference’s supply current, typically 90 µA  
to approximately 5 mA.  
V
Q1  
Q2N4921  
OUT (FORCE)  
V
OUT (SENSE)  
Q2  
Q2N2222  
R
S
ADR39x  
V
IN  
I
R
L
L
SHDN  
V
OUT  
Figure 45. ADR39x for High Power Performance with Current Limit  
ADR39x  
I
V
SET  
V
IN  
OUT  
A similar circuit function can also be achieved with the  
Darlington transistor configuration, as shown in Figure 46.  
R1  
R1  
P1  
0.1µF  
GND  
R
R1  
SET  
I
4.7kΩ  
SY  
ADJUST  
U1  
V
IN  
I
(I )  
SY SET  
GND  
SHDN  
V
I
OUT  
= I  
+ I (I )  
SY SET  
Q2N2222  
IN  
SET  
V
Q1  
OUT (FORCE)  
R
L
Q2  
V
OUT (SENSE)  
Q2N4921  
R
S
ADR39x  
Figure 44. A General-Purpose Current Source  
R
L
High Power Performance with Current Limit  
In some cases, the user may want higher output current  
delivered to a load and still achieve better than 0.5% accuracy  
out of the ADR39x. The accuracy for a reference is normally  
specified on the data sheet with no load. However, the output  
voltage changes with load current.  
Figure 46. ADR39x for High Output Current  
with Darlington Drive Configuration  
The circuit shown in Figure 45 provides high current without  
compromising the accuracy of the ADR39x. The series pass  
transistor Q1 provides up to 1 A load current. The ADR39x  
delivers only the base drive to Q1 through the force pin. The  
sense pin of the ADR39x is a regulated output and is connected  
to the load.  
Rev. F | Page 18 of 20  
 
 
ADR390/ADR391/ADR392/ADR395  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
0.90  
0.87  
0.84  
1.00 MAX  
8°  
4°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
0.20  
0.08  
COMPLIANT TO JEDEC STANDARDS MO-193AB  
Figure 47. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output Initial  
ꢀoltage Accuracy  
Temperature  
Coefficient  
(ppm/°C)  
Number  
of Parts Temperature  
Branding per Reel Range  
Package  
Description  
Package  
Option  
Models  
(ꢀO)  
2.048  
2.048  
2.048  
2.048  
2.5  
(mꢀ) (%)  
ADR390AUJZ-REEL71  
ADR390AUJZ-R21  
ADR390BUJZ-REEL71  
ADR390BUJZ-R21  
ADR391AUJZ-REEL71  
ADR391AUJZ-R21  
ADR391BUJZ-REEL71  
ADR391BUJZ-R21  
ADR392AUJZ-REEL71  
ADR392AUJZ-R21  
ADR392BUJZ-REEL71  
ADR392BUJZ-R21  
ADR395AUJZ-REEL71  
ADR395AUJZ-R21  
ADR395BUJZ-REEL71  
ADR395BUJZ-R21  
±
±
4
4
±
±
4
4
±
±
5
5
±
±
5
5
0.29  
0.29  
0.19  
0.19  
0.24  
0.24  
0.1±  
0.1±  
0.15  
0.15  
0.12  
0.12  
0.12  
0.12  
0.10  
0.10  
25  
25  
9
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
TSOT  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
R0A  
R0A  
R0B  
R0B  
R1A  
R1A  
R1B  
R1B  
RCA  
RCA  
RCB  
RCB  
RDA  
RDA  
RDB  
RDB  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
3,000  
250  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
9
25  
25  
9
2.5  
2.5  
2.5  
9
4.09±  
4.09±  
4.09±  
4.09±  
5.0  
25  
25  
9
9
25  
25  
9
5.0  
5.0  
5.0  
9
1 Z = Pb-free part.  
Rev. F | Page 19 of 20  
 
 
ADR390/ADR391/ADR392/ADR395  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00419–0–5/05(F)  
Rev. F | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY