ADR441A [ADI]

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source; 超低噪声, LDO XFET基准电压与电流吸收和源
ADR441A
型号: ADR441A
厂家: ADI    ADI
描述:

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
超低噪声, LDO XFET基准电压与电流吸收和源

文件: 总20页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise, LDO XFET® Voltage  
References with Current Sink and Source  
ADR440/ADR441/ADR443/ADR444/ADR445  
FEATURES  
PIN CONFIGURATIONS  
Ultralow noise (0.1 Hz to 10 Hz)  
ADR440: 1 μV p-p  
ADR441: 1.2 μV p-p  
ADR443: 1.4 μV p-p  
ADR444: 1.8 μV p-p  
ADR445: 2.25 μV p-p  
Superb temperature coefficient  
A Grade: 10 ppm/°C  
ADR440/  
TP  
1
2
3
4
8
7
6
5
TP  
ADR441/  
ADR443/  
ADR444/  
ADR445  
V
NC  
IN  
NC  
V
OUT  
TOP VIEW  
(Not to Scale)  
GND  
TRIM  
NOTES  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
Figure 1. 8-Lead SOIC_N (R-Suffix)  
B Grade: 3 ppm/°C  
Low dropout operation: 500 mV  
Input range: (VOUT + 500 mV) to 18 V  
High output source and sink current: +10 mA and −5 mA  
Wide temperature range: −40°C to +125°C  
ADR440/  
TP  
1
2
3
4
8
7
6
5
TP  
ADR441/  
ADR443/  
ADR444/  
ADR445  
V
NC  
IN  
NC  
V
OUT  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
GND  
TRIM  
Precision data acquisition systems  
High resolution data converters  
Battery-powered instrumentations  
Portable medical instruments  
Industrial process control systems  
Precision instruments  
NOTES  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
Figure 2. 8-Lead MSOP (RM-Suffix)  
Optical control circuits  
GENERAL DESCRIPTION  
Offered in two electrical grades, the ADR44x family is avail-  
able in 8-lead MSOP and narrow SOIC packages. All versions  
are specified over the extended industrial temperature range of  
−40°C to +125°C.  
The ADR44x series is a family of XFET voltage references  
featuring ultralow noise, high accuracy, and low temperature  
drift performance. Using Analog Devices, Inc., patented  
temperature drift curvature correction and XFET (eXtra  
implanted junction FET) technology, voltage change vs.  
temperature nonlinearity in the ADR44x is greatly minimized.  
Table 1. Selection Guide  
Output  
Voltage  
(V)  
Initial  
Accuracy,  
(mV)  
Temperature  
Coefficient  
(ppm/°C)  
The XFET references offer better noise performance than  
buried Zener references, and XFET references operate off  
low supply voltage headroom (0.5 V). This combination of  
features makes the ADR44x family ideally suited for precision  
signal conversion applications in high-end data acquisition  
systems, optical networks, and medical applications.  
Model  
ADR440A 2.048  
ADR440B 2.048  
ADR441A 2.500  
ADR441B 2.500  
ADR443A 3.000  
ADR443B 3.000  
ADR444A 4.096  
ADR444B 4.096  
ADR445A 5.000  
ADR445B 5.000  
3
1
3
1
4
1.2  
5
1.6  
6
2
10  
3
10  
3
10  
3
10  
3
The ADR44x family has the capability to source up to 10 mA of  
output current and sink up to 5 mA. It also comes with a trim  
terminal to adjust the output voltage over a 0.5% range without  
compromising performance.  
10  
3
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
TABLE OF CONTENTS  
Theory of Operation ...................................................................... 14  
Power Dissipation Considerations........................................... 14  
Basic Voltage Reference Connections ..................................... 14  
Noise Performance..................................................................... 14  
Turn-On Time ............................................................................ 14  
Applications..................................................................................... 15  
Output Adjustment .................................................................... 15  
Bipolar Outputs .......................................................................... 15  
Negative Reference..................................................................... 15  
Programmable Voltage Source ................................................. 16  
Programmable Current Source ................................................ 16  
High Voltage Floating Current Source.................................... 16  
Precision Output Regulator (Boosted Reference).................. 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR440 Electrical Characteristics............................................. 3  
ADR441 Electrical Characteristics............................................. 4  
ADR443 Electrical Characteristics............................................. 5  
ADR444 Electrical Characteristics............................................. 6  
ADR445 Electrical Characteristics............................................. 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
9/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Pin Configurations....................................................... 1  
Changes to the Specifications Section ........................................... 3  
Changes to Figure 4 and Figure 5................................................... 9  
Inserted Figure 6 and Figure 7........................................................ 9  
Changes to Figure 15...................................................................... 11  
Changes to the Power Dissipation Considerations Section...... 14  
Changes to Figure 35 and Figure 36............................................. 15  
Changes to Figure 38 and Table 9................................................. 16  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
10/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
SPECIFICATIONS  
ADR440 ELECTRICAL CHARACTERISTICS  
VIN = 3 V to 18 V, TA = 25°C, CIN = COUT = 0.1 μF, unless otherwise noted.  
Table 2.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
2.045  
2.047  
2.048  
2.048  
2.051  
2.049  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
3
0.15  
1
mV  
%
mV  
%
B Grade  
0.05  
TEMPERATURE DRIFT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
10  
3
ppm/°C  
ppm/°C  
ppm/V  
LINE REGULATION  
LOAD REGULATION  
ΔVO/ΔVIN  
−20  
−50  
−50  
+10  
+20  
ΔVO/ΔILOAD  
ILOAD = 0 mA to 10 mA, VIN = 3.5 V,  
−40°C < TA < +125°C  
ILOAD = 0 mA to −5 mA, VIN = 3.5 V,  
−40°C < TA < +125°C  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No load, −40°C < TA < +125°C  
0.1 Hz to 10 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
1
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
1 kHz  
45  
10  
50  
70  
−75  
27  
tR  
VO  
1000 hours  
fIN = 10 kHz  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
mA  
VIN  
3
18  
V
VIN − VO  
500  
mV  
1 The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.  
Rev. A | Page 3 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR441 ELECTRICAL CHARACTERISTICS  
VIN = 3 V to 18 V, TA = 25°C, CIN = COUT = 0.1 μF, unless otherwise noted.  
Table 3.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
2.497  
2.499  
2.500  
2.500  
2.503  
2.501  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
3
0.12  
1
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE DRIFT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
10  
3
ppm/°C  
ppm/°C  
ppm/V  
LINE REGULATION  
LOAD REGULATION  
ΔVO/ΔVIN  
10  
20  
ΔVO/ΔILOAD  
ILOAD = 0 mA to 10 mA, VIN = 4 V,  
−40°C < TA < +125°C  
ILOAD = 0 mA to −5 mA, VIN = 4 V,  
−40°C < TA < +125°C  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No load, −40°C < TA < +125°C  
0.1 Hz to 10 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
1.2  
48  
10  
50  
70  
−75  
27  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
1 kHz  
tR  
VO  
1000 hours  
fIN = 10 kHz  
ppm  
ppm  
dB  
VO_HYS  
RRR  
ISC  
mA  
VIN  
3
18  
V
VIN − VO  
500  
mV  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000-hour period is significantly lower than in the first 1000-hour period.  
Rev. A | Page 4 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR443 ELECTRICAL CHARACTERISTICS  
VIN = 3.5 V to 18 V, TA = 25°C, CIN = COUT = 0.1 μF, unless otherwise noted.  
Table 4.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
2.996  
2.9988  
3.000  
3.000  
3.004  
3.0012  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
4
mV  
%
mV  
%
0.13  
1.2  
0.04  
B Grade  
TEMPERATURE DRIFT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
10  
3
ppm/°C  
ppm/°C  
ppm/V  
LINE REGULATION  
LOAD REGULATION  
ΔVO/ΔVIN  
10  
20  
ΔVO/ΔILOAD  
ILOAD = 0 mA to 10 mA, VIN = 5 V,  
−40°C < TA < +125°C  
ILOAD = 0 mA to −5 mA, VIN = 5 V,  
−40°C < TA < +125°C  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No load, −40°C < TA < +125°C  
0.1 Hz to 10 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
1.4  
57.6  
10  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
1 kHz  
tR  
VO  
1000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
70  
−75  
27  
mA  
VIN  
3.5  
18  
V
VIN − VO  
500  
mV  
1 The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.  
Rev. A | Page 5 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR444 ELECTRICAL CHARACTERISTICS  
VIN = 4.6 V to 18 V, TA = 25°C, CIN = COUT = 0.1 μF, unless otherwise noted.  
Table 5.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
4.091  
4.0944  
4.096  
4.096  
4.101  
4.0976  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
5
mV  
%
mV  
%
0.13  
1.6  
0.04  
B Grade  
TEMPERATURE DRIFT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
10  
3
ppm/°C  
ppm/°C  
ppm/V  
LINE REGULATION  
LOAD REGULATION  
ΔVO/ΔVIN  
10  
20  
ΔVO/ΔILOAD  
ILOAD = 0 mA to 10 mA, VIN = 5.5 V,  
−40°C < TA < +125°C  
ILOAD = 0 mA to −5 mA, VIN = 5.5 V,  
−40°C < TA < +125°C  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No load, −40°C < TA < +125°C  
0.1 Hz to 10 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
1.8  
78.6  
10  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
1 kHz  
tR  
VO  
1000 hours  
fIN = 10 kHz  
50  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
70  
−75  
27  
mA  
VIN  
4.6  
18  
V
VIN − VO  
500  
mV  
1 The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.  
Rev. A | Page 6 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ADR445 ELECTRICAL CHARACTERISTICS  
VIN = 5.5 V to 18 V, TA = 25°C, CIN = COUT = 0.1 μF, unless otherwise noted.  
Table 6.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
4.994  
4.998  
5.000  
5.000  
5.006  
5.002  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
6
0.12  
2
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE DRIFT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
10  
3
ppm/°C  
ppm/°C  
ppm/V  
LINE REGULATION  
LOAD REGULATION  
ΔVO/ΔVIN  
10  
20  
ΔVO/ΔILOAD  
ILOAD = 0 mA to 10 mA, VIN = 6.5 V,  
−40°C < TA < +125°C  
ILOAD = 0 mA to −5 mA, VIN = 6.5 V,  
−40°C < TA < +125°C  
−50  
−50  
+50  
ppm/mA  
ΔVO/ΔILOAD  
+50  
3.75  
ppm/mA  
mA  
QUIESCENT CURRENT  
IIN  
No load, −40°C < TA < +125°C  
0.1 Hz to 10 Hz  
3
VOLTAGE NOISE  
eN p-p  
eN  
2.25  
90  
10  
50  
70  
–75  
27  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
1 kHz  
tR  
VO  
1000 hours  
fIN = 10 kHz  
ppm  
ppm  
dB  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
SUPPLY VOLTAGE OPERATING RANGE  
SUPPLY VOLTAGE HEADROOM  
VO_HYS  
RRR  
ISC  
mA  
VIN  
5.5  
18  
V
VIN − VO  
500  
mV  
1 The long-term stability specification is noncumulative. The drift in the subsequent 1000-hour period is significantly lower than in the first 1000-hour period.  
Rev. A | Page 7 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
TA = 25°C, unless otherwise noted.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 7.  
Parameter  
Rating  
Table 8. Thermal Resistance  
Supply Voltage  
20 V  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature, Soldering (60 sec)  
Indefinite  
Package Type  
θJA  
θJC  
Unit  
°C/W  
°C/W  
−65°C to +125°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
8-Lead SOIC_N (R-Suffix)  
8-Lead MSOP (RM-Suffix)  
130  
190  
43  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 8 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 7 V, TA = 25°C, CIN = COUT = 0.1 μF, unless otherwise noted.  
2.051  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.050  
2.049  
2.048  
2.047  
2.046  
2.045  
2.4995  
2.4990  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. ADR441 Output Voltage vs. Temperature  
Figure 6. ADR440 Output Voltage vs. Temperature  
5.006  
3.0020  
3.0015  
3.0010  
3.0005  
3.0000  
2.9995  
2.9990  
5.004  
5.002  
UNIT 1  
UNIT 2  
5.000  
4.998  
4.996  
4.994  
UNIT 3  
2.9985  
2.9980  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. ADR443 Output Voltage vs. Temperature  
Figure 7. ADR445 Output Voltage vs. Temperature  
4.0980  
4.0  
3.5  
3.0  
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
UNIT 1  
+125°C  
+25°C  
UNIT 2  
UNIT 3  
–40°C  
2.5  
2.0  
4.0945  
4.0940  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
4
6
8
10  
12  
14  
16  
18  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 5. ADR444 Output Voltage vs. Temperature  
Figure 8. ADR441 Supply Current vs. Input Voltage  
Rev. A | Page 9 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
4.0  
10  
8
3.5  
3.0  
6
4
2.5  
2.0  
2
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. ADR441 Supply Current vs. Temperature  
Figure 12. ADR441 Line Regulation vs. Temperature  
60  
3.5  
3.4  
3.3  
3.2  
55  
50  
45  
V
= 18V  
IN  
3.1  
3.0  
+125°C  
I
= 0mA TO 10mA  
LOAD  
V
= 6V  
IN  
2.9  
2.8  
+25°C  
–40°C  
40  
2.7  
35  
30  
2.6  
2.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
5.3  
7.3  
9.3  
11.3  
13.3  
15.3  
17.3  
19.3  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 13. ADR441 Load Regulation vs. Temperature  
Figure 10. ADR445 Supply Current vs. Input Voltage  
7
3.25  
6
5
4
3.15  
3.05  
3
2
2.95  
2.85  
2.75  
1
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. ADR445 Line Regulation vs. Temperature  
Figure 11. ADR445 Quiescent Current vs. Temperature  
Rev. A | Page 10 of 20  
ADR440/ADR441/ADR443/ADR444/ADR445  
50  
40  
30  
1.0  
0.9  
0.8  
I
= 0mA TO +10mA  
LOAD  
+125°C  
0.7  
0.6  
0.5  
20  
10  
V
= 6V  
IN  
0
+25°C  
–10  
0.4  
0.3  
0.2  
–40°C  
–20  
–30  
–40  
–50  
I
= 0mA TO –5mA  
LOAD  
0.1  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–5  
0
5
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 15. ADR445 Load Regulation vs. Temperature  
Figure 18. ADR445 Minimum Input/Output  
Differential Voltage vs. Load Current  
0.7  
0.5  
NO LOAD  
0.6  
0.5  
0.4  
0.4  
0.3  
0.2  
+125°C  
+25°C  
–40°C  
0.3  
0.2  
0.1  
0
0.1  
0
–10  
–5  
0
5
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 16. ADR441 Minimum Input/Output  
Differential Voltage vs. Load Current  
Figure 19. ADR445 Minimum Headroom vs. Temperature  
0.5  
NO LOAD  
C
, C = 0.1µF  
OUT  
IN  
0.4  
0.3  
0.2  
V
= 5V/DIV  
IN  
0.1  
0
V
= 1V/DIV  
OUT  
TIME = 10µs/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 17. ADR441 Minimum Headroom vs. Temperature  
Figure 20. ADR441 Turn-On Response  
Rev. A | Page 11 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
C
, C  
= 0.1µF  
C
, C = 0.1µF  
IN  
OUT  
IN OUT  
LOAD OFF  
LOAD ON  
V
= 5V/DIV  
IN  
5mV/DIV  
V
= 1V/DIV  
OUT  
TIME = 200µs/DIV  
TIME = 200µs/DIV  
Figure 24. ADR441 Load Transient Response  
Figure 21. ADR441 Turn-Off Response  
C
C
= 0.1µF  
IN  
C
C
= 0.1µF  
IN  
= 10µF  
OUT  
= 10µF  
OUT  
LOAD ON  
LOAD OFF  
V
= 5V/DIV  
IN  
5mV/DIV  
V
= 1V/DIV  
OUT  
TIME = 200µs/DIV  
TIME = 200µs/DIV  
Figure 22. ADR441 Turn-On Response  
Figure 25. ADR441 Load Transient Response  
C
C
= 0.1µF  
IN  
= 10µF  
OUT  
2V/DIV  
4V  
1µV/DIV  
CH1 p-p  
1.18µV  
2mV/DIV  
TIME = 1s/DIV  
TIME = 100µs/DIV  
Figure 23. ADR441 Line Transient Response  
Figure 26. ADR441 0.1 Hz to 10.0 Hz Voltage Noise  
Rev. A | Page 12 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
16  
14  
12  
10  
8
50µV/DIV  
6
CH1 p-p  
49µV  
4
2
0
TIME = 1s/DIV  
DEVIATION (PPM)  
Figure 30. ADR441 Typical Output Voltage Hysteresis  
Figure 27. ADR441 10 Hz to 10 kHz Voltage Noise  
10  
9
8
7
ADR445  
6
5
1µV/DIV  
ADR443  
CH1 p-p  
2.24µV  
4
3
2
ADR441  
1
0
10  
100  
1k  
10k  
100k  
TIME = 1s/DIV  
FREQUENCY (Hz)  
Figure 31. Output Impedance vs. Frequency  
Figure 28. ADR445 0.1 Hz to 10.0 Hz Voltage Noise  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
50µV/DIV  
CH1 p-p  
66µV  
100  
1k  
10k  
100k  
1M  
TIME = 1s/DIV  
FREQUENCY (Hz)  
Figure 32. Ripple Rejection Ratio vs. Frequency  
Figure 29. ADR445 10 Hz to 10 kHz Voltage Noise  
Rev. A | Page 13 of 20  
ADR440/ADR441/ADR443/ADR444/ADR445  
THEORY OF OPERATION  
POWER DISSIPATION CONSIDERATIONS  
The ADR44x series of references uses a new reference generation  
technique known as XFET (eXtra implanted junction FET).  
This technique yields a reference with low dropout, good  
thermal hysteresis, and exceptionally low noise. The core of the  
XFET reference consists of two junction field-effect transistors  
(JFETs), one of which has an extra channel implant to raise its  
pinch-off voltage. By running the two JFETs at the same drain  
current, the difference in pinch-off voltage can be amplified  
and used to form a highly stable voltage reference.  
The ADR44x family of references is guaranteed to deliver load  
currents to 10 mA with an input voltage that ranges from 3 V to  
18 V. When these devices are used in applications at higher  
currents, users should use the following equation to account for  
the temperature effects of increases in power dissipation:  
TJ =PD × θJA + TA  
where:  
(2)  
TJ and TA are the junction and ambient temperatures,  
respectively.  
PD is the device power dissipation.  
The intrinsic reference voltage is around 0.5 V with a negative  
temperature coefficient of about –120 ppm/°C. This slope is  
essentially constant to the dielectric constant of silicon, and it can  
be closely compensated for by adding a correction term generated  
in the same fashion as the proportional-to-temperature (PTAT)  
term used to compensate band gap references. The advantage  
of an XFET reference is its correction term, which is approx-  
imately 20 times lower and requires less correction than that of a  
band gap reference. Because most of the noise of a band gap  
reference comes from the temperature compensation circuitry,  
the XFET results in much lower noise.  
θJA is the device package thermal resistance.  
BASIC VOLTAGE REFERENCE CONNECTIONS  
The ADR44x family requires a 0.1 μF capacitor on the input  
and the output for stability. While not required for operation,  
a 10 μF capacitor at the input can help with line voltage  
transient performance.  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
TP  
1
2
3
4
8
7
6
5
TP  
Figure 33 shows the basic topology of the ADR44x series. The  
temperature correction term is provided by a current source  
with a value designed to be proportional to absolute temperature.  
The general equation is  
V
IN  
NC  
+
V
OUT  
10µF  
0.1µF  
NC  
GND  
TOP VIEW  
(Not to Scale)  
0.1µF  
TRIM  
NOTES  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
(
)
VOUT = G ΔVP R1× IPTAT  
(1)  
where:  
Figure 34. Basic Voltage Reference Configuration  
G is the gain of the reciprocal of the divider ratio.  
VP is the difference in pinch-off voltage between the two JFETs.  
NOISE PERFORMANCE  
The noise generated by the ADR44x family of references is  
typically less than 1.4 μV p-p over the 0.1 Hz to 10.0 Hz band  
for ADR440, ADR441, and ADR443. Figure 26 shows the 0.1 Hz  
to 10 Hz noise of the ADR441, which is only 1.2 μV p-p. The  
noise measurement is made with a band-pass filter made of a  
2­pole high-pass filter with a corner frequency at 0.1 Hz and a  
2­pole low-pass filter with a corner frequency at 10.0 Hz.  
I
PTAT is the positive temperature coefficient correction current.  
ADR44x devices are created by on-chip adjustment of R2  
and R3 to achieve the different voltage option at the  
reference output.  
V
IN  
I
I
I
PTAT  
1
1
TURN-ON TIME  
V
ADR44x  
OUT  
Upon application of power (cold start), the time required for  
the output voltage to reach its final value within a specified  
error band is defined as the turn-on settling time. Two compo-  
nents normally associated with this are the time for the active  
circuits to settle and the time for the thermal gradients on the  
chip to stabilize. Figure 20 and Figure 21 show the turn-on and  
turn-off settling times for the ADR441.  
R2  
R3  
*
ΔV  
P
R1  
*EXTRA CHANNEL IMPLANT  
= G (ΔV – R1 × I  
V
)
OUT  
P
PTAT  
GND  
Figure 33. Simplified Schematic Device  
Rev. A | Page 14 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
APPLICATIONS  
OUTPUT ADJUSTMENT  
+V  
DD  
The ADR44x family features a TRIM pin that allows the user to  
adjust the output voltage of the part over a limited range. This  
allows errors from the reference and overall system errors to be  
trimmed out by connecting a potentiometer between the output  
and the ground, with the wiper connected to the TRIM pin.  
Figure 35 shows the optimal trim configuration. R1 allows fine  
adjustment of the output and is not always required. RP should  
be sufficiently large so that the maximum output current from  
the ADR44x is not exceeded.  
2
V
IN  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
0.1µF  
V
6
+5V  
–5V  
OUT  
R1  
10k  
R2  
0.1µF  
GND  
4
10kΩ  
+10V  
0.1µF  
R3  
5kΩ  
2
–10V  
V
IN  
V
Figure 36. ADR44x Bipolar Outputs  
V
O
= ±0.5%  
6
OUT  
0.1µF  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
NEGATIVE REFERENCE  
Figure 37 shows how to connect the ADR44x and a standard  
operational amplifier, such as the OP1177, to provide negative  
voltage. This configuration provides two main advantages. First,  
it only requires two devices; therefore, it does not require  
excessive board space. Second, and more importantly, it does  
not require any external resistors. This means the performance  
of this circuit does not rely on choosing low temperature  
coefficient resistors to ensure accuracy.  
R
10k  
P
5
TRIM  
GND  
4
R1  
100kΩ  
R2  
1kΩ  
Figure 35. ADR44x Trim Function  
Using the trim function has a negligible effect on the temperature  
performance of the ADR44x. However, all resistors need to be  
low temperature coefficient resistors, or errors can occur.  
+V  
DD  
2
BIPOLAR OUTPUTS  
V
IN  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
By connecting the output of the ADR44x to the inverting  
terminal of an operational amplifier, it is possible to obtain both  
positive and negative reference voltages. Care must be taken  
when choosing Resistor R1 and Resistor R2 (see Figure 36).  
They must be matched as closely as possible to ensure minimal  
differences between the negative and positive outputs. In  
addition, care must be taken to ensure performance over  
temperature. Use low temperature coefficient resistors if the  
circuit is used over temperature; otherwise, differences exist  
between the two outputs.  
6
V
OUT  
GND  
4
–V  
REF  
–V  
DD  
Figure 37. ADR44x Negative Reference  
VOUT is at virtual ground, and the negative reference is taken  
directly from the output of the operational amplifier. If the  
negative supply voltage is close to the reference output, the  
operational amplifier must be dual supply and have low offset  
and rail-to-rail capability.  
Rev. A | Page 15 of 20  
 
 
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
PROGRAMMABLE VOLTAGE SOURCE  
PROGRAMMABLE CURRENT SOURCE  
To obtain different voltages than those offered by the ADR44x,  
some extra components are needed. In Figure 38, two  
potentiometers are used to set the desired voltage, while the  
buffering amplifier provides current drive. The potentiometer  
connected between VOUT and GND, with its wiper connected to  
the noninverting input of the operational amplifier, takes care of  
coarse trim. The second potentiometer, with its wiper  
It is possible to build a programmable current source using a  
setup similar to the programmable voltage source, as shown in  
Figure 39. The constant voltage on the gate of the transistor sets  
the current through the load. Varying the voltage on the gate  
changes the current. This circuit does not require a dual digital  
potentiometer.  
V
CC  
connected to the trim terminal of the ADR44x, is used for fine  
adjustment. Resolution depends on the end-to-end resistance  
value and the resolution of the selected potentiometer.  
2
0.1µF  
V
IN  
R
SENSE  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
+V  
DD  
2
V
OUT  
6
V
IN  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
GND  
4
0.1µF  
ADJ V  
REF  
AD5259  
6
V
OUT  
I
LOAD  
R1  
R2  
GND  
4
10k10kΩ  
Figure 39. Programmable Current Source  
HIGH VOLTAGE FLOATING CURRENT SOURCE  
Figure 38. Programmable Voltage Source  
Use the circuit in Figure 40 to generate a floating current source  
with minimal self heating. This particular configuration can  
operate on high supply voltages, determined by the breakdown  
voltage of the N-channel JFET.  
For a completely programmable solution, replace the two  
potentiometers in Figure 38 with one Analog Devices dual  
digital potentiometer, offered with either an SPI® or an I2C®  
interface. These interfaces set the position of the wiper on both  
potentiometers and allow the output voltage to be set. Table 9  
lists compatible Analog Devices digital potentiometers.  
+V  
S
SST111  
VISHAY  
Table 9. Digital Potentiometer Parts  
2
V
IN  
No. of  
No. of  
1
Part No.  
AD5251  
AD5207  
AD5242  
AD5262  
AD5282  
AD5252  
AD5232  
AD5235  
ADN2850  
Channels  
Positions  
ITF  
I2C  
SPI  
I2C  
SPI  
I2C  
I2C  
SPI  
SPI  
SPI  
R (kΩ)  
VDD  
5.5  
5.5  
5.5  
15  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
2.00  
64.00  
1, 10, 50, 100  
10, 50, 100  
10, 100, 1M  
20, 50, 200  
20, 50, 100  
1, 10, 50, 100  
10, 50, 100  
25, 250  
256.00  
256.00  
256.00  
256.00  
256.00  
256.00  
1024.00  
1024.00  
V
OUT  
6
2N3904  
OP90  
15  
GND  
4
5.5  
5.5  
5.5  
5.5  
25, 250  
–V  
S
1 Can also use a negative supply.  
Figure 40. Floating Current Source  
Adding a negative supply to the operational amplifier allows  
the user also to produce a negative programmable reference,  
by connecting the reference output to the inverting terminal  
of the operational amplifier. Choose feedback resistors to  
minimize errors over temperature.  
Rev. A | Page 16 of 20  
 
 
 
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
PRECISION OUTPUT REGULATOR  
(BOOSTED REFERENCE)  
V
IN  
2
V
IN  
2N7002  
ADR440/  
ADR441/  
ADR443/  
ADR444/  
ADR445  
C
15V  
IN  
0.1µF  
V
OUT  
6
V
O
R
C
L
1µF  
C
L
OUT  
0.1µF  
200Ω  
GND  
4
–V  
Figure 41. Boosted Output Reference  
Higher current drive capability can be obtained, without  
sacrificing accuracy, by using the circuit in Figure 41. The  
operational amplifier regulates the MOSFET turn-on, forcing  
VO to equal the VREF. Current is then drawn from VIN, allowing  
increased current drive capability. The circuit allows a 50 mA  
load; if higher current drive is required, use a larger MOSFET.  
For fast transient response, add a buffer at VO to aid with  
capacitive loading.  
Rev. A | Page 17 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 42. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 43. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions show in millimeters  
Rev. A | Page 18 of 20  
 
ADR440/ADR441/ADR443/ADR444/ADR445  
ORDERING GUIDE  
Initial  
Temperature  
Coefficient  
Package (ppm/°C) Description  
Accuracy,  
(mV) (%)  
Output  
Voltage (V)  
Package  
Temperature  
Branding Range  
Package  
Option  
Model  
ADR440ARZ1  
ADR440ARZ-REEL71  
ADR440ARMZ1  
ADR440ARMZ-REEL71  
ADR440BRZ1  
ADR440BRZ-REEL71  
ADR441ARZ1  
ADR441ARZ-REEL71  
ADR441ARMZ1  
ADR441ARMZ-REEL71  
ADR441BRZ1  
ADR441BRZ-REEL71  
ADR443ARZ1  
ADR443ARZ-REEL71  
ADR443ARMZ1  
ADR443ARMZ-REEL71  
ADR443BRZ1  
ADR443BRZ-REEL71  
ADR444ARZ1  
ADR444ARZ-REEL71  
ADR444ARMZ1  
ADR444ARMZ-REEL71  
ADR444BRZ1  
ADR444BRZ-REEL71  
ADR445ARZ1  
ADR445ARZ-REEL71  
ADR445ARMZ1  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
3
3
3
3
0.15 10  
0.15 10  
0.15 10  
0.15 10  
8-Lead SOIC_N  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C RM-8  
–40°C to +125°C RM-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C RM-8  
–40°C to +125°C RM-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C RM-8  
–40°C to +125°C RM-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C RM-8  
–40°C to +125°C RM-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
–40°C to +125°C RM-8  
–40°C to +125°C RM-8  
–40°C to +125°C R-8  
–40°C to +125°C R-8  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
R01  
R01  
1
1
0.05  
0.05  
3
3
3
3
3
3
0.12 10  
0.12 10  
0.12 10  
0.12 10  
R02  
R02  
1
1
0.04  
0.04  
3
3
4
4
4
4
0.13 10  
0.13 10  
0.13 10  
0.13 10  
R03  
R03  
1.2  
1.2  
5
0.04  
0.04  
3
3
0.13 10  
0.13 10  
0.13 10  
0.13 10  
5
5
5
R04  
R04  
1.6  
1.6  
6
0.04  
0.04  
3
3
0.12 10  
0.12 10  
0.12 10  
0.12 10  
6
6
6
R05  
R05  
ADR445ARMZ-REEL71  
ADR445BRZ1  
ADR445BRZ-REEL71  
2
2
0.04  
0.04  
3
3
1 Z = Pb-free part.  
Rev. A | Page 19 of 20  
 
 
ADR440/ADR441/ADR443/ADR444/ADR445  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05428-0-9/06(A)  
Rev. A | Page 20 of 20  

相关型号:

ADR441ARMZ

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARMZ-REEL7

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARZ

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441ARZ-REEL7

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441B

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441BRZ

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441BRZ-REEL7

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR441TRZ-EP

Ultralow Noise, LDO XFET&reg; 2.5V Voltage Reference w/Current Sink and Source
ADI

ADR441TRZ-EP-R7

Ultralow Noise, LDO XFET&reg; 2.5V Voltage Reference w/Current Sink and Source
ADI

ADR441_15

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI

ADR443

2.048 V High Precision, LDO XFET® References for High Performance Sigma-Delta and PulSAR® Converters
ADI

ADR443A

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI