ADR5041A [ADI]

Precision Micropower Shunt Mode Voltage References; 精密微功耗并联模式电压基准
ADR5041A
型号: ADR5041A
厂家: ADI    ADI
描述:

Precision Micropower Shunt Mode Voltage References
精密微功耗并联模式电压基准

文件: 总16页 (文件大小:557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower Shunt Mode  
Voltage References  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
FEATURES  
PIN CONFIGURATION  
ADR5040/ADR5041/  
ADR5043/ADR5044/  
Ultracompact SC70 and SOT-23 packages  
Low temperature coefficient: 75 ppm/°C (maximum)  
Pin compatible with LM4040/LM4050  
Initial accuracy: 0.1ꢀ  
No external capacitor required  
Wide operating current range: 50 μA to 15 mA  
Extended temperature range: −40°C to +125°C  
ADR5045  
V+  
1
2
3
NC  
V–  
NOTES  
1. NC = NO CONNECT.  
2. PIN 3 MUST BE LEFT FLOATING OR  
CONNECTED TO GROUND.  
APPLICATIONS  
Portable, battery-powered equipment  
Automotives  
Figure 1. 3-Lead SC70 (KS) and 3-Lead SOT-23 (RT)  
Power supplies  
Data acquisition systems  
Instrumentation and process control  
Energy management  
GENERAL DESCRIPTION  
Designed for space-critical applications, the ADR5040/  
ADR5041/ADR5043/ADR5044/ADR5045 are high precision  
shunt voltage references, housed in ultrasmall SC70 and SOT-23  
packages. These voltage references are multipurpose, easy-to-use  
references that can be used in a vast array of applications. They  
feature low temperature drift, an initial accuracy of better than  
0.1%, and fast settling time.  
Table 1. Selection Table  
Temperature  
Coefficient  
(ppm/°C)  
Initial  
Part  
Voltage (V) Accuracy (ꢀ)  
ADR5040A 2.048  
ADR5040B 2.048  
ADR5041A 2.5  
ADR5041B 2.5  
ADR5043A 3.0  
ADR5043B 3.0  
ADR5044A 4.096  
ADR5044B 4.096  
ADR5045A 5.0  
ADR5045B 5.0  
0.2  
0.1  
0.2  
0.1  
0.2  
0.1  
0.2  
0.1  
0.2  
0.1  
100  
75  
100  
75  
100  
75  
100  
75  
Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V, and  
5.0 V, the advanced design of the ADR5040/ADR5041/ADR5043/  
ADR5044/ADR5045 eliminates the need for compensation by an  
external capacitor, yet the references are stable with any capacitive  
load. The minimum operating current increases from 50 μA to  
a maximum of 15 mA. This low operating current and ease of use  
make these references ideally suited for handheld, battery-powered  
applications. This family of references has been characterized  
over the extended temperature range of −40°C to +125°C.  
100  
75  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ADR5045 Electrical Characteristics ...........................................6  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
ADR5040 Electrical Characteristics .......................................... 4  
ADR5041 Electrical Characteristics .......................................... 4  
ADR5043 Electrical Characteristics .......................................... 5  
ADR5044 Electrical Characteristics .......................................... 5  
Absolute Maximum Ratings ............................................................7  
Thermal Resistance.......................................................................7  
ESD Caution...................................................................................7  
Typical Performance Characteristics ..............................................8  
Terminology.................................................................................... 11  
Theory of Operation ...................................................................... 12  
Applications Information.......................................................... 12  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
12/07—Rev. 0 to Rev. A  
Changes to Features.......................................................................... 1  
Changes to Initial Accuracy and Temperature Coefficient  
Parameters in Table 2 Through Table 6......................................... 3  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
1/07—Revision 0: Initial Version  
Rev. A | Page 2 of 17  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
SPECIFICATIONS  
ADR5040 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
OUTPUT VOLTAGE  
Grade A  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT  
IIN = 100 μA  
2.044  
2.046  
2.048  
2.048  
2.052  
2.050  
V
V
Grade B  
INITIAL ACCURACY  
Grade A  
VOERR  
IIN = 100 μA  
–4.096  
–2.048  
+4.096  
0.2  
+2.048  
0.1  
mV  
%
mV  
%
Grade B  
TEMPERATURE COEFFICIENT1  
Grade A  
Grade B  
TCVOUT  
∆VR  
–40°C < TA < +125°C  
10  
10  
100  
75  
ppm/°C  
ppm/°C  
OUTPUT VOLTAGE CHANGE vs. IIN  
IIN = 50 μA to 1 mA  
–40°C < TA < +125°C  
IIN = 1 mA to 15 mA  
–40°C < TA < +125°C  
IIN = 50 μA to 15 mA  
TA = 25°C  
–40°C < TA < +125°C  
IIN = 100 μA; 0.1 Hz to 10 Hz  
IIN = 100 μA; 10 Hz to 10 kHz  
CLOAD = 0 μF  
0.4  
4
1.75  
mV  
8
mV  
DYNAMIC OUTPUT IMPEDANCE  
MINIMUM OPERATING CURRENT  
(∆VR/∆IR)  
IIN  
0.2  
50  
60  
Ω
μA  
μA  
VOLTAGE NOISE  
eN  
2.8  
120  
28  
μV rms  
μV rms  
μs  
TURN-ON SETTLING TIME  
tR  
OUTPUT VOLTAGE HYSTERESIS  
∆VOUT_HYS  
IIN = 1 mA  
40  
ppm  
1 Guaranteed by design.  
ADR5041 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
OUTPUT VOLTAGE  
Grade A  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT  
IIN = 100 μA  
2.495  
2.4975  
2.500  
2.500  
2.505  
2.5025  
V
V
Grade B  
INITIAL ACCURACY  
Grade A  
VOERR  
IIN = 100 μA  
–5  
+5  
mV  
%
mV  
%
0.2  
+2.5  
0.1  
Grade B  
–2.5  
TEMPERATURE COEFFICIENT1  
Grade A  
Grade B  
TCVOUT  
∆VR  
–40°C < TA < +125°C  
10  
10  
100  
75  
ppm/°C  
ppm/°C  
OUTPUT VOLTAGE CHANGE vs. IIN  
IIN = 50 μA to 1 mA  
–40°C < TA < +125°C  
IIN = 1 mA to 15 mA  
–40°C < TA < +125°C  
0.5  
4
1.8  
8
mV  
mV  
Rev. A | Page 3 of 16  
 
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
Parameter  
Symbol  
(∆VR/∆IR)  
IIN  
Conditions  
Min  
Typ  
Max  
0.2  
50  
Unit  
Ω
DYNAMIC OUTPUT IMPEDANCE  
MINIMUM OPERATING CURRENT  
IIN = 50 μA to 15 mA  
TA = 25°C  
μA  
–40°C < TA < +125°C  
IIN = 100 μA; 0.1 Hz to 10 Hz  
IIN = 100 μA; 10 Hz to 10 kHz  
CLOAD = 0 μF  
60  
μA  
VOLTAGE NOISE  
eN  
3.2  
150  
35  
μV rms  
μV rms  
μs  
TURN-ON SETTLING TIME  
tR  
OUTPUT VOLTAGE HYSTERESIS  
∆VOUT_HYS  
IIN = 1 mA  
40  
ppm  
1 Guaranteed by design.  
ADR5043 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
OUTPUT VOLTAGE  
Grade A  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT  
IIN = 100 μA  
2.994  
2.997  
3.000  
3.000  
3.006  
3.003  
V
V
Grade B  
INITIAL ACCURACY  
Grade A  
VOERR  
IIN = 100 μA  
–6  
–3  
+6  
0.2  
+3  
0.1  
mV  
%
mV  
%
Grade B  
TEMPERATURE COEFFICIENT1  
Grade A  
Grade B  
TCVOUT  
∆VR  
–40°C < TA < +125°C  
10  
10  
100  
75  
ppm/°C  
ppm/°C  
OUTPUT VOLTAGE CHANGE vs. IIN  
IIN = 50 μA to 1 mA  
–40°C < TA < +125°C  
IIN = 1 mA to 15 mA  
–40°C < TA < +125°C  
IIN = 50 μA to 15 mA  
TA = 25°C  
–40°C < TA < +125°C  
IIN = 100 μA; 0.1 Hz to 10 Hz  
IIN = 100 μA; 10 Hz to 10 kHz  
CLOAD = 0 μF  
0.7  
4
2.2  
mV  
8
mV  
DYNAMIC OUTPUT IMPEDANCE  
MINIMUM OPERATING CURRENT  
(∆VR/∆IR)  
IIN  
0.2  
50  
60  
Ω
μA  
μA  
VOLTAGE NOISE  
eN  
4.3  
180  
42  
μV rms  
μV rms  
μs  
TURN-ON SETTLING TIME  
tR  
OUTPUT VOLTAGE HYSTERESIS  
∆VOUT_HYS  
IIN = 1 mA  
40  
ppm  
1 Guaranteed by design.  
ADR5044 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
OUTPUT VOLTAGE  
Grade A  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT  
IIN = 100 μA  
4.088  
4.092  
4.096  
4.096  
4.104  
4.100  
V
V
Grade B  
INITIAL ACCURACY  
Grade A  
VOERR  
IIN = 100 μA  
–8.192  
–4.096  
+8.192  
0.2  
+4.096  
0.1  
mV  
%
mV  
%
Grade B  
Rev. A | Page 4 of 16  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
Parameter  
TEMPERATURE COEFFICIENT1  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
TCVOUT  
–40°C < TA < +125°C  
Grade A  
Grade B  
10  
10  
100  
75  
ppm/°C  
ppm/°C  
OUTPUT VOLTAGE CHANGE vs. IIN  
∆VR  
IIN = 50 μA to 1 mA  
–40°C < TA < +125°C  
IIN = 1 mA to 15 mA  
–40°C < TA < +125°C  
IIN = 50 μA to 15 mA  
TA = 25°C  
0.7  
4
3
mV  
8
mV  
DYNAMIC OUTPUT IMPEDANCE  
MINIMUM OPERATING CURRENT  
(∆VR/∆IR)  
IIN  
0.2  
50  
60  
Ω
μA  
μA  
–40°C < TA < +125°C  
IIN = 100 μA; 0.1 Hz to 10 Hz  
IIN = 100 μA; 10 Hz to 10 kHz  
CLOAD = 0 μF  
VOLTAGE NOISE  
eN  
5.4  
240  
56  
μV rms  
μV rms  
μs  
TURN-ON SETTLING TIME  
tR  
OUTPUT VOLTAGE HYSTERESIS  
∆VOUT_HYS  
IIN = 1 mA  
40  
ppm  
1 Guaranteed by design.  
ADR5045 ELECTRICAL CHARACTERISTICS  
IIN = 50 μA to 15 mA, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
OUTPUT VOLTAGE  
Grade A  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT  
IIN = 100 μA  
4.990  
4.995  
5.000  
5.000  
5.010  
5.005  
V
V
Grade B  
INITIAL ACCURACY  
Grade A  
VOERR  
IIN = 100 μA  
–10  
–5  
+10  
0.2  
+5  
mV  
%
mV  
%
Grade B  
0.1  
TEMPERATURE COEFFICIENT1  
Grade A  
Grade B  
TCVOUT  
∆VR  
–40°C < TA < +125°C  
10  
10  
100  
75  
ppm/°C  
ppm/°C  
OUTPUT VOLTAGE CHANGE vs. IIN  
IIN = 50 μA to 1 mA  
–40°C < TA < +125°C  
IIN = 1 mA to 15 mA  
–40°C < TA < +125°C  
IIN = 50 μA to 15 mA  
TA = 25°C  
–40°C < TA < +125°C  
IIN = 100 μA; 0.1 Hz to 10 Hz  
IIN = 100 μA; 10 Hz to 10 kHz  
CLOAD = 0 μF  
0.8  
4
4
mV  
8
mV  
DYNAMIC OUTPUT IMPEDANCE  
MINIMUM OPERATING CURRENT  
(∆VR/∆IR)  
IIN  
0.2  
50  
60  
Ω
μA  
μA  
VOLTAGE NOISE  
eN  
6.6  
280  
70  
μV rms  
μV rms  
μs  
TURN-ON SETTLING TIME  
tR  
OUTPUT VOLTAGE HYSTERESIS  
∆VOUT_HYS  
IIN = 1 mA  
40  
ppm  
1 Guaranteed by design.  
Rev. A | Page 5 of 16  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Ratings apply at 25°C, unless otherwise noted.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 7.  
Parameter  
Rating  
Table 8. Thermal Resistance  
Reverse Current  
25 mA  
Forward Current  
20 mA  
Package Type  
θJA  
θJC  
Unit  
Storage Temperature Range  
Extended Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
–65°C to +150°C  
–40°C to +125°C  
–65°C to +150°C  
300°C  
177.4  
102  
3-Lead SC70 (KS)  
580.5  
270  
°C/W  
°C/W  
3-Lead SOT-23 (RT)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. A | Page 6 of 16  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, IIN = 100 μA, unless otherwise noted.  
6
15  
I
= 150µA  
R
I
= 150µA  
R
4
2
10  
5
0
0
–2  
–4  
–5  
–10  
–15  
–6  
–8  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. ADR5041 VOUT Change vs. Temperature  
Figure 5. ADR5045 VOUT Change vs. Temperature  
5
8
6
4
4
3
2
1
–40°C  
2
0
+125°C  
+25°C  
–2  
–4  
–6  
–8  
+125°C  
+25°C  
–40°C  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
I
(mA)  
I
(mA)  
SHUNT  
SHUNT  
Figure 3. ADR5041 Reverse Voltage Change vs. ISHUNT  
Figure 6. ADR5045 Reverse Voltage Change vs. ISHUNT  
V
IN  
V
IN  
V
OUT  
V
OUT  
10µs/DIV  
10µs/DIV  
Figure 4. ADR5041 Start-Up Characteristics  
Figure 7. ADR5045 Start-Up Characteristics  
Rev. A | Page 7 of 16  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
+25µA  
+25µA  
–25µA  
–25µA  
I
R
= 100µA ± 25µA  
I
= 100mA ± 25µA  
SHUNT  
= 100k  
SHUNT  
R = 100k  
L
L
10µs/DIV  
40µs/DIV  
Figure 8. ADR5041 Load Transient Response  
Figure 11. ADR5045 Load Transient Response  
+250µA  
–250µA  
+250µA  
–250µA  
I
= 1mA ± 250µA  
= 10kΩ  
I
= 1mA ± 250µA  
= 10kΩ  
SHUNT  
R
SHUNT  
R
L
L
10µs/DIV  
10µs/DIV  
Figure 9. ADR5041 Transient Response  
Figure 12. ADR5045 Transient Response  
+2.5mA  
–2.5mA  
+2.5mA  
–2.5mA  
I
= 10mA ± 2.5mA  
I
= 10mA ± 2.5mA  
SHUNT  
SHUNT  
R
= 1kΩ  
R
= 1kΩ  
L
L
10µs/DIV  
10µs/DIV  
Figure 10. ADR5041 Transient Response  
Figure 13. ADR5045 Transient Response  
Rev. A | Page 8 of 16  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
10k  
1k  
10k  
C = 0µF  
C = 0µF  
1k  
100  
100  
I
= 150µA  
IN  
I
= 150µA  
IN  
10  
1
10  
1
C = 1µF  
C = 1µF  
I
= 1mA  
IN  
I
= 1mA  
IN  
0.1  
100  
0.1  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 14. ADR5041 Output Impedance vs. Frequency  
Figure 17. ADR5045 Output Impedance vs. Frequency  
10k  
10k  
1k  
1k  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. ADR5045 Voltage Noise Density  
Figure 15. ADR5041 Voltage Noise Density  
100  
90  
2.048V  
2.5V  
80  
70  
60  
50  
40  
30  
20  
10  
3V  
4.096V 5V  
0
0
1
2
3
4
5
6
REVERSE VOLTAGE (V)  
Figure 16. ADR504x Reverse Characteristics and Minimum Operating Current  
Rev. A | Page 9 of 16  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
TERMINOLOGY  
Thermal Hysteresis  
Temperature Coefficient  
The change in output voltage after the device is cycled through  
temperatures ranging from +25°C to −40°C, then to +125°C, and  
back to +25°C. This is common in precision reference and is  
caused by thermal-mechanical package stress. Changes in envi-  
ronmental storage temperature, board mounting temperature, and  
the operating temperature are some of the factors that can  
contribute to thermal hysteresis. The following equation  
expresses a typical value from a sample of parts put through  
such a cycle:  
The change in output voltage with respect to operating temperature  
changes. It is normalized by an output voltage of 25°C. This  
parameter is expressed in ppm/°C and is determined by the  
following equation:  
VOUT  
(
T2  
25°C  
)
VOUT  
(
T1  
)
ppm  
°C  
TCVOUT  
=
×106  
(1)  
VO  
(
)
×
(
T2 T1  
)
UT  
where:  
V
V
V
OUT(25°C) = VOUT at 25°C.  
OUT(T1) = VOUT at Temperature 1.  
OUT(T2) = VOUT at Temperature 2.  
VOUT _ HYS = VOUT  
(
25°C  
)
VOUT _ TC  
VOUT  
(
25°C VOUT _ TC  
)
(2)  
VOUT _ HYS  
[
ppm  
]
=
×106  
VOUT 25°C  
( )  
where:  
V
V
OUT(25°C) = VOUT at 25°C.  
OUT_TC = VOUT at 25°C after a temperature cycle from +25°C to  
−40°C, then to +125°C, and back to +25°C.  
Rev. A | Page 10 of 16  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
THEORY OF OPERATION  
V
S
The ADR504x family uses the band gap concept to produce  
a stable, low temperature coefficient voltage reference suitable  
for high accuracy data acquisition components and systems. The  
devices use the physical nature of a silicon transistor base-emitter  
voltage in the forward-biased operating region. All such transistors  
have approximately a −2 mV/°C temperature coefficient (TC),  
making them unsuitable for direct use as a low temperature  
coefficient reference. Extrapolation of the temperature charac-  
teristic of any one of these devices to absolute zero (with the  
collector current proportional to the absolute temperature),  
however, reveals that its VBE approaches approximately the  
silicon band gap voltage. Therefore, if a voltage develops with  
an opposing temperature coefficient to sum the VBE, a zero  
temperature coefficient reference results.  
R
I
+ I  
L
BIAS  
IN  
V
OUT  
I
L
I
IN  
ADR5040/ADR5041/  
ADR5043/ADR5044/  
ADR5045  
Figure 19. Shunt Reference  
Precision Negative Voltage Reference  
The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 are  
suitable for applications where a precise negative voltage is desired.  
Figure 20 shows the ADR5045 configured to provide a negative  
output. Caution should be exercised in using a low temperature  
sensitive resistor to avoid errors from the resistor.  
APPLICATIONS INFORMATION  
The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 are  
a series of precision shunt voltage references. They are designed  
to operate without an external capacitor between the positive  
and negative terminals. If a bypass capacitor is used to filter the  
supply, the references remain stable.  
ADR5045  
V
OUT  
–5V  
R
BIAS  
For a stable voltage, all shunt voltage references require an  
external bias resistor (RBIAS) between the supply voltage and the  
reference (see Figure 19). The RBIAS sets the current that flows  
through the load (IL) and the reference (IIN). Because the load  
and the supply voltage can vary, the RBIAS needs to be chosen  
based on the following considerations:  
V
CC  
Figure 20. Negative Precision Reference Configuration  
Stacking the ADR504x for User-Definable Outputs  
Multiple ADR504x parts can be stacked together to allow the  
user to obtain a desired higher voltage. Figure 21a shows three  
ADR5045 devices configured to give 15 V. The bias resistor,  
RBIAS, is chosen using Equation 3, noting that the same bias current  
flows through all the shunt references in series. Figure 21b shows  
three ADR5045 devices stacked together to give −15 V. RBIAS is  
calculated in the same manner as before. Parts of different voltages  
can also be added together; that is, an ADR5041 and an ADR5045  
can be added together to give an output of +7.5 V or −7.5 V, as  
desired. Note, however, that the initial accuracy error is the sum  
of the errors of all the stacked parts, as are the temperature  
coefficient and output voltage change vs. input current.  
RBIAS must be small enough to supply the minimum IIN current  
to the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045,  
even when the supply voltage is at its minimum value and  
the load current is at its maximum value.  
RBIAS must be large enough so that IIN does not exceed 15 mA  
when the supply voltage is at its maximum value and the  
load current is at its minimum value.  
Given these conditions, RBIAS is determined by the supply  
voltage (VS), the ADR5040/ADR5041/ADR5043/ADR5044/  
ADR5045 load and operating current (IL and IIN), and the  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 output  
voltage (VOUT).  
V
DD  
R
ADR5045  
ADR5045  
ADR5045  
BIAS  
VS VOUT  
RBIAS  
=
(3)  
+15V  
IL + IIN  
ADR5045  
ADR5045  
ADR5045  
–15V  
R
BIAS  
–V  
DD  
(a)  
(b)  
Figure 21. 15 V Output with Stacked ADR5045 Devices  
Rev. A | Page 11 of 16  
 
 
 
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
Adjustable Precision Voltage Source  
Programmable Current Source  
The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045,  
combined with a precision low input bias op amp such as the  
AD8610, can be used to output a precise adjustable voltage.  
Figure 22 illustrates the implementation of this application  
using the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045.  
The output of the op amp, VOUT, is determined by the gain of the  
circuit, which is completely dependent on the resistors, R1 and R2.  
By using just a few ultrasmall and inexpensive parts, it is possible  
to build a programmable current source, as shown in Figure 23.  
The constant voltage on the gate of the transistor sets the current  
through the load. Varying the voltage on the gate changes the  
current. The AD5247 is a digital potentiometer with I2C® digital  
interface, and the AD8601 is a precision rail-to-rail input op  
amp. Each incremental step of the digital potentiometer increases  
or decreases the voltage at the noninverting input of the op amp.  
Therefore, this voltage varies with respect to the reference  
voltage.  
V
OUT = (1 + R2/R1)VREF  
An additional capacitor, C1, in parallel with R2, can be added to  
filter out high frequency noise. The value of C1 is dependent on  
the value of R2.  
V
DD  
R
R
SENSE  
BIAS  
V
CC  
R
BIAS  
V
REF  
ADR5040/  
ADR5041/  
ADR5043/  
ADR5044/  
ADR5045  
V
= V (1 + R2/R1)  
REF  
AD8610  
R2  
OUT  
ADR5040/ADR5041/  
ADR5043/ADR5044/  
ADR5045  
V+  
AD8601  
V–  
AD5247  
R1  
I
LOAD  
C1  
(OPTIONAL)  
GND  
Figure 22. Adjustable Voltage Source  
Figure 23. Programmable Current Source  
Rev. A | Page 12 of 16  
 
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
1.35  
1.25  
1.15  
2.40  
2.10  
1.80  
3
1
2
PIN 1  
0.65 BSC  
0.40  
0.10  
1.00  
0.80  
1.10  
0.80  
0.30  
0.20  
0.10  
0.26  
0.10  
0.40  
0.25  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
ALL DIMENSIONS COMPLIANT WITH EIAJ SC70  
Figure 24. 3-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-3)  
Dimensions shown in millimeters  
3.04  
2.80  
1.40  
1.20  
3
2.64  
2.10  
1
2
0.60  
0.45  
1.03  
0.89  
2.05  
1.78  
1.12  
0.89  
0.100  
0.013  
0.180  
0.085  
0.51  
0.37  
SEATING  
PLANE  
0.55  
REF  
COMPLIANT TO JEDEC STANDARDS TO-236-AB  
Figure 25. 3-Lead Small Outline Transistor Package [SOT-23-3]  
(RT-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Voltage  
Initial  
Tempco  
Accuracy Industrial Temperature  
Package  
Description  
Package Ordering  
Model  
(V)  
(mV)  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
2.048  
2.048  
2.048  
2.048  
(ppm/°C)  
100  
100  
100  
100  
100  
100  
75  
Range  
Option  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
RT-3  
RT-3  
Quantity  
Branding  
R2J  
R2J  
R2J  
R2J  
R2J  
R2J  
R2L  
R2L  
ADR5040AKSZ-R21  
2.048  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
250  
ADR5040AKSZ-REEL1 2.048  
ADR5040AKSZ-REEL71 2.048  
ADR5040ARTZ-R21  
ADR5040ARTZ-REEL1 2.048  
ADR5040ARTZ-REEL71 2.048  
ADR5040BKSZ-R21  
ADR5040BKSZ-REEL71 2.048  
ADR5040BRTZ-R21  
2.048  
ADR5040BRTZ-REEL71 2.048  
10,000  
3,000  
250  
10,000  
3,000  
250  
3,000  
250  
3,000  
2.048  
2.048  
75  
75  
75  
R2L  
R2L  
Rev. A | Page 13 of 16  
 
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
Output  
Voltage  
(V)  
Initial  
Tempco  
Accuracy Industrial Temperature  
(mV)  
5
5
5
5
5
5
2.5  
2.5  
2.5  
2.5  
6
6
6
6
6
Package  
Description  
Package Ordering  
Model  
(ppm/°C)  
100  
100  
100  
100  
100  
100  
75  
Range  
Option  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
RT-3  
RT-3  
KS-3  
KS-3  
KS-3  
RT-3  
RT-3  
RT-3  
KS-3  
KS-3  
RT-3  
RT-3  
Quantity  
Branding  
R2N  
R2N  
R2N  
R2N  
R2N  
R2N  
R2Q  
R2Q  
R2Q  
R2Q  
R2S  
ADR5041AKSZ-R21  
2.500  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SC70  
–40°C to +125°C 3-Lead SOT-23-3  
–40°C to +125°C 3-Lead SOT-23-3  
250  
ADR5041AKSZ-REEL1 2.500  
ADR5041AKSZ-REEL71 2.500  
10,000  
3,000  
250  
10,000  
3,000  
250  
3,000  
250  
3,000  
250  
10,000  
3,000  
250  
10,000  
3,000  
250  
3,000  
250  
3,000  
250  
10,000  
3,000  
250  
10,000  
3,000  
250  
3,000  
250  
3,000  
250  
10,000  
3,000  
250  
10,000  
3,000  
250  
3,000  
250  
3,000  
ADR5041ARTZ-R21  
2.500  
ADR5041ARTZ-REEL1 2.500  
ADR5041ARTZ-REEL71 2.500  
ADR5041BKSZ-R21  
ADR5041BKSZ-REEL71 2.500  
ADR5041BRTZ-R21  
2.500  
ADR5041BRTZ-REEL71 2.500  
ADR5043AKSZ-R21  
3.0  
2.500  
75  
75  
75  
100  
100  
100  
100  
100  
100  
75  
75  
75  
75  
ADR5043AKSZ-REEL1 3.0  
ADR5043AKSZ-REEL71 3.0  
R2S  
R2S  
R2S  
R2S  
ADR5043ARTZ-R21  
3.0  
ADR5043ARTZ-REEL1 3.0  
ADR5043ARTZ-REEL71 3.0  
6
3
3
3
R2S  
ADR5043BKSZ-R21  
ADR5043BKSZ-REEL71 3.0  
ADR5043BRTZ-R21  
3.0  
ADR5043BRTZ-REEL71 3.0  
3.0  
R2U  
R2U  
R2U  
R2U  
R2W  
R2W  
R2W  
R2W  
R2W  
R2W  
R2Y  
R2Y  
R2Y  
R2Y  
R30  
R30  
R30  
R30  
R30  
R30  
R32  
R32  
R32  
3
ADR5044AKSZ-R21  
4.096  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
4.096  
4.096  
4.096  
4.096  
10  
10  
10  
10  
10  
10  
5
100  
100  
100  
100  
100  
100  
75  
75  
75  
75  
ADR5044AKSZ-REEL1 4.096  
ADR5044AKSZ-REEL71 4.096  
ADR5044ARTZ-R21  
4.096  
ADR5044ARTZ-REEL1 4.096  
ADR5044ARTZ-REEL71 4.096  
ADR5044BKSZ-R21  
ADR5044BKSZ-REEL71 4.096  
ADR5044BRTZ-R21  
4.096  
ADR5044BRTZ-REEL71 4.096  
ADR5045AKSZ-R21  
5.0  
4.096  
100  
100  
100  
100  
100  
100  
75  
75  
75  
75  
ADR5045AKSZ-REEL1 5.0  
ADR5045AKSZ-REEL71 5.0  
ADR5045ARTZ-R21  
5.0  
ADR5045ARTZ-REEL1 5.0  
ADR5045ARTZ-REEL71 5.0  
ADR5045BKSZ-R21  
ADR5045BKSZ-REEL71 5.0  
5.0  
5
5
5
ADR5045BRTZ-R21  
5.0  
ADR5045BRTZ-REEL71 5.0  
R32  
1 Z = RoHS Compliant Part.  
Rev. A | Page 14 of 16  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
NOTES  
Rev. A | Page 15 of 16  
ADR5040/ADR5041/ADR5043/ADR5044/ADR5045  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06526-0-12/07(A)  
Rev. A | Page 16 of 16  

相关型号:

ADR5041AKSZ-R2

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041AKSZ-R21

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041AKSZ-REEL

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041AKSZ-REEL1

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041AKSZ-REEL7

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041AKSZ-REEL71

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041ARTZ-R2

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041ARTZ-R21

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041ARTZ-REEL

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041ARTZ-REEL1

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041ARTZ-REEL7

Precision Micropower Shunt Mode Voltage References
ADI

ADR5041ARTZ-REEL71

Precision Micropower Shunt Mode Voltage References
ADI