ADR525ART-R2 [ADI]

High Precision Shunt Mode Voltage References; 高精密并联模式电压基准
ADR525ART-R2
型号: ADR525ART-R2
厂家: ADI    ADI
描述:

High Precision Shunt Mode Voltage References
高精密并联模式电压基准

文件: 总16页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Precision Shunt Mode  
Voltage References  
ADR520/ADR525/ADR530/ADR540/ADR550  
FEATURES  
PIN CONFIGURATION  
Ultracompact SC70 and SOT-23 packages  
Temperature coefficient: 40 ppm/°C (max)  
2× the tempco improvement over the LM4040  
Pin compatible with LM4040/LM4050  
Initial accuracy: 0.2ꢀ  
ADR520/  
V+  
V–  
1
2
ADR525/  
ADR530/  
3
TRIM  
ADR540/  
ADR550  
Low output voltage noise: 14 µV p-p @ 2.5 V output  
No external capacitor required  
Operating current range: 50 µA to 10 mA  
Industrial temperature range: −40°C to +85°C  
Figure 1. 3-Lead SC70 (KS)  
and 3-Lead SOT-23 (RT)  
APPLICATIONS  
Portable, battery-powered equipment  
GENERAL DESCRIPTION  
Designed for space-critical applications, the ADR520/ADR525/  
ADR530/ADR540/ADR550 are high precision shunt voltage  
references, housed in ultrasmall SC70 and SOT-23 packages.  
These references feature low temperature drift of 40 ppm/°C, an  
initial accuracy of better than 0.2%, and ultralow output noise  
of 14 µV p-p.  
Automotive  
Power supplies  
Data acquisition systems  
Instrumentation and process control  
Energy measurement  
Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V, and  
5.0 V, the ADR5xxs advanced design eliminates the need for  
compensation by an external capacitor, yet the references are  
stable with any capacitive load. The minimum operating current  
increases from a mere 50 µA to a maximum of 10 mA. This low  
operating current and ease of use make these references ideally  
suited for handheld, battery-powered applications.  
Table 1. Selection Guide  
Temperature  
Coeffecient  
Voltage  
(V)  
Initial  
Part  
Accuracy (ꢀ) (ppm/°C)  
ADR520A 2.048  
ADR520B 2.048  
ADR525A 2.5  
ADR525B 2.5  
ADR530A 3.0  
ADR530B 3.0  
ADR540A 4.096  
ADR540B 4.096  
ADR550A 5.0  
ADR550B 5.0  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
70  
40  
70  
40  
70  
40  
70  
40  
70  
40  
A TRIM terminal is available on the ADR5xx to allow adjustment  
of the output voltage over a 0.5% range, without affecting the  
temperature coefficient of the device. This feature provides users  
with the flexibility to trim out any system errors.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADR520/ADR525/ADR530/ADR540/ADR550  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Theory of Operation...................................................................... 11  
Applications ................................................................................ 11  
Outline Dimensions....................................................................... 13  
Ordering Guide............................................................................... 14  
Absolute Maximum Ratings............................................................ 6  
Parameter Definitions...................................................................... 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
11/03—Revision 0: Initial Version  
12/03—Data Sheet Changed from REV. 0 to REV. A  
Updated Outline Dimensions....................................................... 13  
Change to Ordering Guide............................................................ 14  
Rev. A | Page 2 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
SPECIFICATIONS  
Table 2. ADR520 Electrical Characteristics @ IIN = 50 µA to 10 mA, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VO  
2.040  
2.044  
2.048  
2.048  
2.056  
2.052  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
–40°C < TA < +85°C  
–8  
–4  
+8  
+4  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
4
mV  
I
IN = 1 mA to 10 mA  
–40°C < TA < +85°C  
IIN = 0.1 mA to10 mA  
–40°C < TA < +85°C  
0.1 Hz to 10 Hz  
2
0.27  
mV  
µA  
µV p-p  
µs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
14  
2
40  
∆VO_HYS  
IIN = 1 mA  
1Guaranteed by design  
Table 3. ADR525 Electrical Characteristics @ IIN = 50 µA to 10 mA, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VO  
2.490  
2.495  
2.500  
2.500  
2.510  
2.505  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
–40°C < TA < +85°C  
–10  
–5  
+10  
+5  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
I
IN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
IN = 1 mA to 10 mA  
4
mV  
I
–40°C < TA < +85°C  
IIN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
0.1 Hz to 10 Hz  
2
0.2  
mV  
µA  
µV p-p  
µs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
14  
2
40  
∆VO_HYS  
IIN = 1 mA  
1 Guaranteed by design  
Rev. A | Page 3 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
Table 4. ADR530 Electrical Characteristics @ IIN = 50 µA to 10 mA, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VO  
2.988  
2.994  
3.000  
3.000  
3.012  
3.006  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
–40°C < TA < +85°C  
–12  
–6  
+12  
+6  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
IIN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
4
mV  
I
IN = 1 mA to 10 mA  
–40°C < TA < +85°C  
IIN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
0.1 Hz to 10 Hz  
2
0.2  
mV  
µA  
µV p-p  
µs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
16  
2
40  
∆VO_HYS  
IIN = 1 mA  
1Guaranteed by design  
Table 5. ADR540 Electrical Characteristics @ IIN = 50 µA to 10 mA, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VO  
4.08  
4.088  
4.096  
4.096  
4.112  
4.104  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
–40°C < TA < +85°C  
–16  
–8  
+16  
+8  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
I
IN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
IN = 1 mA to 10 mA  
5
mV  
I
–40°C < TA < +85°C  
IIN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
0.1 Hz to 10 Hz  
2
0.2  
mV  
µA  
µV p-p  
µs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
18  
2
40  
∆VO_HYS  
IIN = 1 mA  
1Guaranteed by design  
Rev. A | Page 4 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
Table 6. ADR550 Electrical Characteristics @ IIN = 50 µA to 10 mA, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Grade A  
Grade B  
VO  
4.980  
4.090  
5.000  
5.000  
5.020  
5.010  
V
V
Initial Accuracy  
Grade A  
Grade B  
Temperature Coefficient1  
Grade A  
VOERR  
TCVO  
∆VR  
0.4ꢀ  
0.2ꢀ  
–40°C < TA < +85°C  
–20  
–10  
+20  
+10  
mV  
mV  
25  
15  
70  
40  
1
ppm/°C  
ppm/°C  
mV  
Grade B  
Output Voltage Change vs. IIN  
I
IN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
IN = 1 mA to 10 mA  
5
mV  
I
–40°C < TA < +85°C  
IIN = 0.1 mA to 10 mA  
–40°C < TA < +85°C  
0.1 Hz to 10 Hz  
2
0.2  
mV  
µA  
µV p-p  
µs  
ppm  
Dynamic Output Impedance  
Minimum Operating Current  
Voltage Noise  
Turn-On Settling Time  
Output Voltage Hysteresis  
(∆VR/∆IR)  
IIN  
eN p-p  
tR  
50  
18  
2
40  
∆VO_HYS  
IIN = 1 mA  
1Guaranteed by design  
Rev. A | Page 5 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
ABSOLUTE MAXIMUM RATINGS  
Ratings apply at 25°C, unless otherwise noted.  
Table 7.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Reverse Current  
25 mA  
Forward Current  
20 mA  
Storage Temperature Range  
Industrial Temperature Range  
Junction Temperature Range  
–65°C to +150°C  
–40°C to +85°C  
–65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) 300°C  
1
Package Type  
θJA  
θJC  
Unit  
3-Lead SC70 (KS)  
376  
230  
°C/W  
°C/W  
3-Lead SOT-23 (RT)  
146  
1 θJA is specified for worst-case conditions, i.e., θJA is specified for devices  
soldered on circuit boards for surface-mount packages. Contact factory for  
latest information on release dates.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
PARAMETER DEFINITIONS  
TEMPERATURE COEFFICIENT  
THERMAL HYSTERESIS  
Temperature coefficient is defined as the change in output  
voltage with respect to operating temperature changes, and is  
normalized by an output voltage of 25°C. This parameter is  
expressed in ppm/°C, and is determined by the following  
equation:  
Thermal hysteresis is defined as the change in output voltage  
after the device is cycled through temperatures ranging from  
+25°C to –40°C, then to +85°C, and back to +25°C. The  
following equation expresses a typical value from a sample of  
parts put through such a cycle:  
VO _ HYS =VO  
VO _ HYS ppm  
(
25°C  
)
(
VO _TC  
25°C VO _TC  
VO 25°C  
VO  
(
T2  
)
VO  
(
T
)
ppm  
°C  
×106  
(1)  
1
TCVO  
=
VO 25°C  
(
)
×
(
T2 T  
)
VO  
)
(2)  
1
[
]
=
×106  
(
)
where:  
VO(25°C) = VO at 25°C.  
where:  
VO(25°C) = VO at 25°C.  
O_TC = VO at 25°C after a temperature cycle from +25°C to  
VO(T1) = VO at Temperature 1.  
VO(T2) = VO at Temperature 2.  
V
–40°C, then to +85°C, and back to +25°C.  
Rev. A | Page 7 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.5  
8
7
6
5
4
3
2
1
0
ADR550  
5.0  
4.5  
ADR540  
4.0  
3.5  
ADR530  
ADR525  
ADR520  
3.0  
2.5  
2.0  
T
= +85°C  
A
T
= +25°C  
A
1.5  
T
= 25°C  
A
T
= –40°C  
A
1.0  
0.5  
0
0
25  
50  
75  
100  
0
3
6
9
12  
15  
MINIMAL OPERATING CURRENT (µA)  
I
(mA)  
IN  
Figure 5. ADR550 Reverse Voltage vs. Operating Current  
Figure 2. Reverse Characteristics and Minimum Operating Current  
8
7
V = 2V/DIV  
IN  
T
= +25°C  
A
6
5
4
3
2
1
0
T
= +85°C  
A
T
= –40°C  
V
= 1V/DIV  
A
OUT  
4µs/DIV  
I
= 10mA  
IN  
0
3
6
9
12  
15  
TIME (µs)  
I
(mA)  
IN  
Figure 6. ADR525 Turn-On Response  
Figure 3. ADR520 Reverse Voltage vs. Operating Current  
8
6
V
= 2V/DIV  
IN  
T
= –40°C  
A
4
V
= 1V/DIV  
OUT  
2
T
= +25°C  
A
0
4µs/DIV  
I
= 100µA  
IN  
T
= +85°C  
A
–2  
0
3
6
9
12  
15  
TIME (µs)  
I
(mA)  
IN  
Figure 7. ADR525 Turn-On Response  
Figure 4. ADR525 Reverse Voltage vs. Operating Current  
Rev. A | Page 8 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
V
= 2V/DIV  
IN  
V
= 2V/DIV  
IN  
V
= 1V/DIV  
OUT  
V
= 2V/DIV  
OUT  
4µs/DIV  
20µs/DIV  
I
= 10mA  
IN  
I
= 100µA  
IN  
TIME (µs)  
TIME (µs)  
Figure 8. ADR520 Turn-On Response  
Figure 11. ADR550 Turn-On Response  
PEAK-TO-PEAK  
13.5µV  
V
= 2V/DIV  
IN  
RMS  
2.14µV  
V
= 1V/DIV  
OUT  
10µs/DIV  
I
IN  
= 100µA  
5µs/DIV  
TIME (µs)  
TIME (µs)  
Figure 9. ADR520 Turn-On Response  
Figure 12. ADR520 Noise Voltage 0.1 Hz to 10 Hz  
V
= 2V/DIV  
IN  
V GEN = 2V/DIV  
I
= 10mA  
IN  
V
= 50mV/DIV  
OUT  
V
= 2V/DIV  
OUT  
4µs/DIV  
10µs/DIV  
I
IN  
= 10mA  
TIME (µs)  
TIME (µs)  
Figure 10. ADR550 Turn-On Response  
Figure 13. ADR525 Load Transient Response  
Rev. A | Page 9 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
3.0055  
3.0050  
3.0045  
3.0040  
3.0035  
3.0030  
3.0025  
3.0020  
3.0015  
3.0010  
3.0005  
3.0000  
V GEN = 2V/DIV  
I
= 10mA  
IN  
V
= 50mV/DIV  
OUT  
10µs/DIV  
TIME (µs)  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 14. ADR550 Load Transient Response  
Figure 16. ADR530 VOUT over Temperature  
2.5030  
2.5025  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
5.008  
5.006  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
4.992  
4.990  
4.988  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. ADR525 VOUT over Temperature  
Figure 17. ADR550 VOUT over Temperature  
Rev. A | Page 10 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
THEORY OF OPERATION  
The ADR520/ADR525/ADR530/ADR540/ADR550 use the  
band gap concept to produce a stable, low temperature  
coefficient voltage reference suitable for high accuracy data  
acquisition components and systems. The devices use the  
physical nature of a silicon transistor base-emitter voltage in the  
forward-biased operating region. All such transistors have  
approximately a –2 mV/°C temperature coefficient (TC),  
making them unsuitable for direct use as a low temperature  
coefficient reference. Extrapolation of the temperature  
characteristic of any one of these devices to absolute zero (with  
the collector current proportional to the absolute temperature),  
however, reveals that its VBE approaches approximately the  
silicon band gap voltage. Thus, if a voltage develops with an  
opposing temperature coefficient to sum the VBE, a zero  
temperature coefficient reference results. The ADR5xx circuit  
shown in Figure 18 provides such a compensating voltage (V1)  
by driving two transistors at different current densities and  
amplifying the resultant VBE difference (∆VBE, which has a  
positive temperature coefficient). The sum of VBE and V1  
provides a stable voltage reference over temperature.  
The RBIAS must be large enough so that IIN does not exceed  
10 mA when the supply voltage is at its maximum value  
and the load current is at its minimum value.  
Given these conditions, the RBIAS is determined by the supply  
voltage (VCC), the ADR5xx load and operating current (IL and  
IQ), and the ADR5xx output voltage (VOUT).  
VCC VOUT  
IL IIN  
RBIAS  
=
(3)  
V
S
I
+ I  
L
R
IN  
BIAS  
V
OUT  
I
L
I
IN  
ADR550  
Figure 19. Shunt Reference  
Precision Negative Voltage Reference  
V+  
+
The ADR5xx is suitable for applications where a precise  
negative voltage is desired. Figure 20 shows the ADR5xx  
configured to provide a negative output.  
V1  
+
BE  
ADR525  
V  
–2.5V  
+
R
BIAS  
V
BE  
V–  
V
CC  
Figure 18. Circuit Schematic  
Figure 20. Negative Precision Reference Configuration  
APPLICATIONS  
Output Voltage Trim  
The ADR520/ADR525/ADR530/ADR540/ADR550 are a series  
of precision shunt voltage references. They are designed to  
operate without an external capacitor between the positive and  
negative terminals. If a bypass capacitor is used to filter the  
supply, the references remains stable.  
The ADR5xx TRIM terminal can be used to adjust the output  
voltage over a range of 0.5%. This allows systems designers to  
trim system errors by setting the reference to a voltage other  
than the preset output voltage. An external mechanical or elec-  
trical potentiometer can be used for this adjustment. Figure 21  
illustrates how the output voltage can be trimmed by using the  
AD5273, an Analog Devices 10 kΩ potentiometer.  
All shunt voltage references require an external bias resistor  
(RBIAS) between the supply voltage and the reference (see  
Figure 19). The RBIAS sets the current that flows through the load  
(IL) and the reference (IIN). Because the load and the supply  
voltage can vary, the RBIAS needs to be chosen based on the  
following considerations:  
V
CC  
V
OUT  
R
BIAS  
R1  
470k  
AD5273  
POTENTIOMETER  
ADR530  
10k  
The RBIAS must be small enough to supply the minimum IIN  
current to the ADR5xx, even when the supply voltage is at  
its minimum value and the load current is at its maximum  
value.  
Figure 21. Output Voltage Trim  
Rev. A | Page 11 of 16  
 
 
 
 
ADR520/ADR525/ADR530/ADR540/ADR550  
Stacking ADR5xx for User-Definable Outputs  
Adjustable Precision Voltage Source  
Multiple ADR5xx parts can be stacked together to allow the  
user to obtain a desired higher voltage. Figure 22a shows three  
ADR550s configured to give 15 V. The bias resistor, RBIAS, is  
chosen using Equation 3, noting that the same bias current will  
flow through all the shunt references in series. Figure 22b shows  
three ADR550s stacked together to give –15 V. RBIAS is calculated  
in the same manner as before. Parts of different voltages can  
also be added together, i.e., an ADR525 and an ADR550 can be  
added together to give an output of +7.5 V or –7.5 V, as desired.  
Note, however, that the initial accuracy error is now the sum of  
the errors of all the stacked parts, as are the tempco and output  
voltage change versus input current.  
The ADR5xx, combined with a precision low input bias op amp,  
such as the AD8610, can be used to output a precise adjustable  
voltage. Figure 23 illustrates the implementation of this  
application using the ADR5xx. The output of the op amp, VOUT  
is determined by the gain of the circuit, which is completely  
dependant on the resistors, R1 and R2.  
,
VOUT = (1 + R2/R1)VREF  
An additional capacitor, C1, in parallel with R2, can be added to  
filter out high frequency noise. The value of C1 is dependent on  
the value of R2.  
V
CC  
+V  
R
DD  
R
BIAS  
ADR550  
ADR550  
ADR550  
GND  
+15V  
V
REF  
ADR550  
ADR550  
ADR550  
AD8610  
R2  
V
= V  
(1+R2/R1)  
REF  
OUT  
R
–15V  
ADR5xx  
–V  
GND  
DD  
R1  
(a)  
(b)  
C1  
(OPTIONAL)  
GND  
Figure 22. 15 V Output with Stacked ADR550s  
Figure 23. Adjustable Voltage Source  
Rev. A | Page 12 of 16  
 
ADR520/ADR525/ADR530/ADR540/ADR550  
OUTLINE DIMENSIONS  
2.20  
1.80  
1.35  
1.15  
3
2.40  
1.80  
1
2
PIN 1  
0.65 BSC  
1.00  
0.80  
1.10 MAX  
0.18  
0.10  
0.30  
0.40  
0.25  
0.10  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
Figure 24. Surface-Mount Package [SC70]  
(KS-3)  
Dimensions shown in millimeters  
3.04  
2.90  
2.80  
1.40  
1.30  
1.20  
3
2.64  
2.10  
2
1
PIN 1  
0.95 BSC  
1.90 BSC  
1.12  
0.89  
0.20  
0.08  
0.10  
0.01  
0.60  
0.50  
0.40  
0.50  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS TO-236AB  
Figure 25. Surface-Mount Package[SOT-23]  
(RT-3)  
Dimensions shown in millimeters  
Rev. A | Page 13 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
ORDERING GUIDE  
Output  
Voltage  
(V)  
Initial  
Tempco  
Number  
of Parts  
per Reel  
Package  
Option  
RT  
RT  
RT  
RT  
KS  
KS  
Accuracy Industrial Package  
(mV)  
8
8
4
4
4
4
Temperature  
Range (°C)  
Model  
(ppm/°C)  
70  
70  
40  
40  
40  
40  
70  
70  
40  
40  
40  
40  
70  
70  
40  
40  
40  
40  
70  
70  
40  
40  
40  
40  
70  
70  
40  
40  
40  
40  
Description  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
Branding  
RQA  
RQA  
RQB  
RQB  
RQB  
RQB  
RRA  
RRA  
RRB  
RRB  
RRB  
RRB  
RSA  
RSA  
RSB  
ADR520ART-REEL7  
ADR520ART-R2  
ADR520BRT-REEL7  
ADR520BRT-R2  
ADR520BKS-REEL7  
ADR520BKS-R2  
ADR525ART-REEL7  
ADR525ART-R2  
ADR525BRT-REEL7  
ADR525BRT-R2  
ADR525BKS-REEL7  
ADR525BKS-R2  
ADR530ART-REEL7  
ADR530ART-R2  
ADR530BRT-REEL7  
ADR530BRT-R2  
ADR530BKS-REEL7  
ADR530BKS-R2  
ADR540ART-REEL7  
ADR540ART-R2  
ADR540BRT-REEL7  
ADR540BRT-R2  
ADR540BKS-REEL7  
ADR540BKS-R2  
ADR550ART-REEL7  
ADR550ART-R2  
ADR550BRT-REEL7  
ADR550BRT-R2  
ADR550BKS-REEL7  
ADR550BKS-R2  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
3.0  
3,000  
250  
3,000  
250  
3,000  
250  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
SC70  
10  
10  
5
5
5
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
RT  
RT  
RT  
RT  
KS  
KS  
3,000  
250  
3,000  
250  
3,000  
250  
5
SC70  
12  
12  
6
6
6
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
RT  
RT  
RT  
RT  
KS  
KS  
3,000  
250  
3,000  
250  
3,000  
250  
3.0  
3.0  
3.0  
3.0  
RSB  
RSB  
RSB  
3.0  
6
SC70  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
5.0  
5.0  
5.0  
5.0  
5.0  
16  
16  
8
8
8
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
RT  
RT  
RT  
RT  
KS  
KS  
RTA  
RTA  
RTB  
RTB  
RTB  
RTB  
RVA  
RVA  
RVB  
RVB  
RVB  
RVB  
3,000  
250  
3,000  
250  
3,000  
250  
8
SC70  
20  
20  
10  
10  
10  
10  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
RT  
RT  
RT  
RT  
KS  
KS  
3,000  
250  
3,000  
250  
3,000  
250  
5.0  
SC70  
Rev. A | Page 14 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
NOTES  
Rev. A | Page 15 of 16  
ADR520/ADR525/ADR530/ADR540/ADR550  
NOTES  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04501–0–12/03(A)  
Rev. A | Page 16 of 16  

相关型号:

ADR525ART-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525ARTZ-R2

High Precision Shunt Mode Voltage References
ADI

ADR525ARTZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525B

High Precision Shunt Mode Voltage References
ADI

ADR525BKS-R2

High Precision Shunt Mode Voltage References
ADI

ADR525BKS-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525BKSZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525BRT-R2

High Precision Shunt Mode Voltage References
ADI

ADR525BRT-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525BRTZ-REEL7

High Precision Shunt Mode Voltage References
ADI

ADR525_15

High Precision Shunt Mode Voltage References
ADI

ADR530

High Precision Shunt Mode Voltage References
ADI