ADRF6650ACPZ [ADI]

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz;
ADRF6650ACPZ
型号: ADRF6650ACPZ
厂家: ADI    ADI
描述:

Dual Downconverter with DVGA and PLL/VCO, 450 MHz to 2700 MHz

电信 信息通信管理 电信集成电路
文件: 总61页 (文件大小:1124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Downconverter with DVGA and  
PLL/VCO, 450 MHz to 2700 MHz  
ADRF6650  
Data Sheet  
The on-chip RF baluns enable the ADRF6650 to support 50 Ω  
terminated RF inputs. The integrated passive mixer provides a  
highly linear downconversion for a 200 MHz, sliding, intermediate  
frequency (IF) window. The ADRF6650 uses broadband square  
wave limiting local oscillator (LO) amplifiers to achieve an RF  
bandwidth of 450 MHz to 2700 MHz. Unlike conventional  
narrow-band sine wave LO amplifier solutions, this amplifier  
permits the LO to be applied either above or below the RF input  
over an extremely wide bandwidth.  
FEATURES  
Dual down-converter with integrated fractional-N PLL/VCO  
RF: 450 MHz to 2700 MHz continuous  
LO frequency: 450 MHz to 2900 MHz,  
high-side or low-side injection  
43 dB gain control range  
Gain control with up/down and SPI  
Integrated RF balun for single-ended 50 Ω inputs  
Power supply: 3.3 and 5 V  
8 mm × 8 mm, 56-lead LFCSP package  
The ADRF6650 offers two alternatives for generating the differ-  
ential LO input signal: internally via the on-chip fractional-N  
synthesizer with low phase noise VCOs, or externally via a low  
phase noise LO signal. The integrated PLL/VCO enables contin-  
uous LO coverage from 450 MHz to 2900 MHz. The PLL reference  
input supports a wide frequency range and includes integrated  
reference dividers before the phase frequency detector (PFD).  
APPLICATIONS  
Multiband/multistandard cellular base station diversity  
receivers  
Wideband radio link diversity downconverters  
Multimode cellular extenders and picocells  
GENERAL DESCRIPTION  
The ADRF6650 is fabricated using an advanced silicon-germa-  
nium (SiGe) bipolar complementary metal-oxide semiconductor  
(BiCMOS) process. It is available in a 56-lead, RoHS-compliant,  
8 mm × 8 mm, lead frame chip scale package (LFCSP) package  
with an exposed pad. Performance is specified over the −40°C to  
+105°C maximum paddle temperature.  
The ADRF6650 is a highly integrated downconverter that  
integrates dual mixers, dual digital switched attenuators, dual  
digital variable gain amplifiers, a phase-locked loop (PLL), and  
voltage controlled oscillators (VCOs). In addition, the ADRF6650  
integrates two radio frequency (RF) baluns, serial gain control  
(SGC) controls, and fast enable inputs for time division duplex  
(TDD) operation.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
ADRF6650  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Mixers .......................................................................................... 22  
Low-Pass Filters.......................................................................... 22  
IF Amplifiers............................................................................... 22  
DVGA .......................................................................................... 22  
TDD Operation .......................................................................... 24  
LO Generation Block................................................................. 24  
Serial Port Interface ................................................................... 27  
Applications Information.............................................................. 28  
Basic Connections...................................................................... 28  
RF Frequency and IF Bandwidth Optimization .................... 31  
IF DVGA vs. Load...................................................................... 31  
ADC Interfacing......................................................................... 32  
Power Modes............................................................................... 33  
Power Supply Configuration .................................................... 34  
Layout .......................................................................................... 35  
Register Map ................................................................................... 37  
Register Details........................................................................... 40  
Outline Dimensions....................................................................... 61  
Ordering Guide .......................................................................... 61  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
RF Input to IF Output System Specifications ........................... 5  
Gain Control Specifications ........................................................ 6  
PLL/VCO Specifications.............................................................. 6  
Digital Logic Specifications......................................................... 8  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Phase-Locked Loop (PLL)......................................................... 18  
Spurious Performance................................................................ 21  
Theory of Operation ...................................................................... 22  
RF Balun ...................................................................................... 22  
REVISION HISTORY  
11/2019—Revision A  
Rev. A | Page 2 of 61  
 
Data Sheet  
ADRF6650  
FUNCTIONAL BLOCK DIAGRAM  
REF_IN  
45  
56 55  
50  
49  
53 52  
ADRF6650  
DVGA SPI  
SPI  
RFIN_A  
TDD_A  
4
2
÷R  
PFD  
÷N  
LPF  
41  
30  
CP  
CPOUT  
Σ-Δ  
VTUNE  
÷
32  
31  
EX_LO_IN–  
EX_LO_IN+  
13  
11  
TDD_B  
RFIN_B  
39 LO_OUT–  
38  
LO_OUT+  
LPF  
SPI  
DVGA SPI  
15 16  
21  
22  
18 19  
24 25 26 27  
Figure 1.  
Rev. A | Page 3 of 61  
 
ADRF6650  
Data Sheet  
SPECIFICATIONS  
VCC_DVGA_A/VCC_DVGA_B = 5 V, remaining supplies = 3.3 V, TA = 25°C, low-side LO injection, fIF = 184 MHz, internal LO, maximum  
gain setting, 5 V high performance settings, unless otherwise noted. All losses from input and output traces and baluns are de-embedded  
from results.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Input Impedance  
RF Frequency Range  
IF OUTPUT INTERFACE  
Return loss  
RFIN_A/RFIN_B internally matched to 50 Ω  
−10  
50  
dB  
MHz  
450  
2700  
IF output with 100 Ω differential load (25 Ω external  
resistors are required on each differential output pin)  
Differential impedance  
−10  
10  
dB  
Output Impedance  
LO INPUT INTERFACE  
Required Input Power  
Input Impedance  
Return Loss  
External LO operation, differential  
−6  
+6  
dBm  
dB  
100  
−10  
Frequency Range  
LO OUTPUT INTERFACE  
Power1  
Low-side or high-side LO  
Differential  
TRM_XLODRV_DRV_POUT = 01  
450  
2900  
MHz  
fLO = 900 MHz  
fLO = 1800 MHz  
fLO = 2700 MHz  
Output Impedance  
Return Loss  
0
1
0
50  
−10  
dBm  
dBm  
dBm  
dB  
Frequency Range  
Low-side or high-side LO  
450  
2900  
MHz  
POWER SUPPLY  
VCC_DVGA_A and VCC_DVGA_B2  
5 V mode  
3.3 V mode  
4.75  
3.1  
3.2  
5.0  
3.3  
3.3  
3.3  
5.25  
3.5  
3.4  
V
V
V
V
PLL/VCO Supplies3  
RF and IF Supplies  
POWER CONSUMPTION  
fLO = 1050 MHz  
3.1  
3.5  
Total  
Internal LO  
2.6  
2.4  
2.7  
2.5  
2.6  
2.47  
W
W
W
W
W
W
Internal LO, auxiliary LO output buffer disabled  
Internal LO  
Internal LO, auxiliary LO output buffer disabled  
Internal LO  
fLO = 1565 MHz  
fLO = 2350 MHz  
Internal LO, auxiliary LO output buffer disabled  
1 For details on LO output power setting, see the LO Generation Block section.  
2 For the 3.3 V DVGA supply option, see the Applications Information section.  
3 Design practices for the best noise performance are discussed in the Applications Information section.  
Rev. A | Page 4 of 61  
 
Data Sheet  
ADRF6650  
RF INPUT TO IF OUTPUT SYSTEM SPECIFICATIONS  
VCC_DVGA_A/VCC_DVGA_B = 5 V, remaining supplies = 3.3 V, TA = 25°C, low-side LO injection, fIF = 184 MHz, internal LO, maximum  
gain setting, 5 V high performance settings, unless otherwise noted. All losses from input and output traces and baluns are de-embedded  
from results.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE AT RF Frequency  
(fRF) = 900 MHz  
High-side LO  
Power Gain  
Output 1 dB Compression Point (OP1dB)  
30  
16  
8
dB  
Maximum gain  
Gain = 1 dB  
dBm  
dBm  
dBm  
Output Third-Order Intercept Point (OIP3) Output power (POUT) = −4 dBm/tone, 1 MHz to 40 MHz  
separation  
44  
Maximum gain minus 16 dB, POUT = −4 dBm/tone, 1 MHz to  
40 MHz separation  
38  
dBm  
Noise Figure  
Maximum gain and maximum gain minus 5 dB  
Internal LO, 3 MHz offset blocking, PIN = 0 dBm, POUT = 1 dBm  
PIN = 0 dBm, POUT = 1 dBm  
9.5  
21  
dB  
dB  
Noise Figure Under Blocker  
Second Harmonic Distortion (HD2)  
Third Harmonic Distortion (HD3)  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Leakage  
−66.7  
−58  
−22.5  
−54  
−46  
52  
dBc  
dBc  
dBm  
dBm  
dBc  
dBc  
PIN = 0 dBm, POUT = 1 dBm  
Isolation  
Channel to channel  
DYNAMIC PERFORMANCE AT fRF = 1800 MHz Low-side LO  
Power Gain  
29  
16  
9
43  
41  
dB  
OP1dB  
Maximum gain  
dBm  
dBm  
dBm  
dBm  
Gain = 1 dB  
OIP3  
POUT = −4 dBm/tone, 1 MHz to 40 MHz separation  
Maximum gain minus 16 dB, POUT = −4 dBm/tone, 1 MHz to  
40 MHz separation  
Noise Figure  
Noise Figure Under Blocker  
Maximum gain and maximum gain minus 5 dB  
Internal LO, 3 MHz offset blocking, input power (PIN) = 0 dBm,  
11  
22.5  
dB  
dB  
POUT = 1 dBm  
HD2  
HD3  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Leakage  
Isolation  
PIN = 0 dBm, POUT = 1 dBm  
PIN = 0 dBm, POUT = 1 dBm  
−75  
−67  
−37.5  
−55  
−68  
50  
dBc  
dBc  
dBm  
dBm  
dBc  
dBc  
Channel to channel  
DYNAMIC PERFORMANCE AT fRF = 2700 MHz High-side LO  
Power Gain  
29  
16  
9
43.5  
40  
dB  
OP1dB  
Maximum gain  
dBm  
dBm  
dBm  
dBm  
Gain = 1 dB  
OIP3  
POUT = −4 dBm/tone, 1 MHz to 40 MHz separation  
Maximum gain minus 16 dB, POUT = −4 dBm/tone, 1 MHz to  
40 MHz separation  
Noise Figure  
Noise Figure Under Blocker  
HD2  
Maximum gain and maximum gain minus 5 dB  
Internal LO, 3 MHz offset blocking, PIN = 0 dBm, POUT = 1 dBm  
PIN = 0 dBm, POUT = 1 dBm  
11.5  
23.5  
−59  
−63  
−43  
−46  
−81  
57  
dB  
dB  
dBc  
dBc  
dBm  
dBm  
dBc  
dBc  
HD3  
PIN = 0 dBm, POUT = 1 dBm  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Leakage  
Isolation  
Channel to channel  
Rev. A | Page 5 of 61  
 
ADRF6650  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
MxN SPURS  
See the Spurious Performance section  
RF TO IF DELAY DIFFERENCE BETWEEN  
CHANNELS  
Channel A = 5 dB attenuation, Channel B sweep  
attenuation from 0 dB to 40 dB  
1
1
ns  
µs  
TDD SWITCH TIME  
Level sensitive, from effective level of control signal to  
99%/1% of final RF signal level; the amplitude response,  
phase response, and group delay must all be settled in this  
time interval  
2
GAIN CONTROL SPECIFICATIONS  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
GAIN ADJUSTMENT  
Range  
Step  
43  
1
dB  
dB  
Gain Step Error  
Cumulative Gain Error  
Phase Error  
Between any two adjacent steps  
Error vs. line (maximum gain reference)  
fRF = 200 MHz and with 20 dB gain change  
At any gain settings, this specification must be met with  
any gain adjustment between 1 dB to 16 dB and the  
output power settled within 1 dB of the final value  
0.2  
dB  
dB  
Degrees  
ns  
1
10  
15  
Gain Adjustment Setting Time  
Gain Adjustment Setting Time  
At any gain settings, this specification must be met with  
any gain adjustment between 1 dB to 16 dB and the  
output power settled within 0.1 dB of the final value  
70  
ns  
PLL/VCO SPECIFICATIONS  
VCC_x and VCC_DVGA_A/VCC_DVGA_B = 5 V, remaining supplies = 3.3 V, TA = 25°C, fREF = 122.88 MHz, fREF power = 2.5 V p-p,  
PFD frequency (fPFD) = 30.72 MHz, charge pump current setting of 7, and loop filter bandwidth = 20 kHz, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PLL REFERENCE  
PLL Reference Frequency  
PLL Reference Level  
10  
0.7  
30.72  
250  
3.3  
MHz  
V p-p  
For PLL lock condition, 50 Ω to ground required  
close to REF_IN pin  
Step Size  
Lock Time  
240  
0.4  
kHz  
ms  
PFD FREQUENCY  
30.72  
61.44  
8000  
MHz  
MHz  
INTERNAL VCO RANGE  
OPEN-LOOP VCO PHASE NOISE  
VCO Frequency (fVCO) = 4200 MHz  
4000  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
−86  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−112  
−133  
−153  
−84  
−112  
−134  
−154  
−83  
fVCO = 4700 MHz  
fVCO = 5440 MHz  
−110  
−132  
−152  
Rev. A | Page 6 of 61  
 
 
Data Sheet  
ADRF6650  
Parameter  
Test Conditions/Comments  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
10 kHz offset  
100 kHz offset  
1 MHz offset  
Min  
Typ  
Max  
Unit  
fVCO = 6260 MHz  
−82  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−108  
−130  
−150  
−80  
−106  
−127  
−147  
fVCO = 7060 MHz  
10 MHz offset  
SYNTHESIZER SPECIFICATIONS  
Fractional Figure of Merit (FOM)  
Flicker FOM  
−227  
−262  
dBc/Hz  
dBc/Hz  
fPFD Spurs1  
At the input of internal mixer and daisy-chained  
ADRF6650 mixer  
fPFD × 1  
fPFD × 2  
−90  
−95  
−95  
−70  
dBc  
dBc  
dBc  
dBc  
fPFD × 3 and Higher  
Unwanted Spurs (Other Than PFD and  
Harmonics)1  
At the input of internal mixer and daisy-chained  
ADRF6650 mixer  
LO Frequency (fLO) = 1050 MHz, fVCO  
4200 MHz  
=
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
600 kHz offset  
800 kHz offset  
1.6 MHz offset  
3 MHz offset  
10 MHz offset  
−110  
−107  
−122  
−141  
−143  
−149  
−153  
−157  
−159  
0.08  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
100 MHz offset  
100 Hz to 10 MHz integration bandwidth  
Integrated Phase Noise and Spurs  
fLO = 1565 MHz, fVCO = 6260 MHz  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
600 kHz offset  
800 kHz offset  
1.6 MHz offset  
3 MHz offset  
10 MHz offset  
−106  
−102  
−119  
−137  
−140  
−145  
−151  
−156  
−157  
0.13  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
100 MHz offset  
100 Hz to 10 MHz integration bandwidth  
Integrated Phase Noise and Spurs  
fLO = 1765 MHz, fVCO = 7060 MHz  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
950 kHz offset  
2.1 MHz offset  
3.5 MHz offset  
7.5 MHz offset  
10 MHz offset  
−102  
−97  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−117  
−138  
−145  
−149  
−153  
−156  
−158  
0.2  
100 MHz offset  
100 Hz to 10 MHz integration bandwidth  
Integrated Phase Noise and Spurs  
Rev. A | Page 7 of 61  
ADRF6650  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
fLO = 2350 MHz, fVCO = 4700 MHz  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
950 kHz offset  
2.1 MHz offset  
3.5 MHz offset  
7.5 MHz offset  
10 MHz offset  
−103  
−101  
−116  
−140  
−147  
−151  
−156  
−156  
−157  
0.16  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
100 MHz offset  
100 Hz to 10 MHz integration bandwidth  
Integrated Phase Noise and Spurs  
fLO = 2720 MHz, fVCO = 5440 MHz  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
950 kHz offset  
2.1 MHz offset  
3.5 MHz offset  
7.5 MHz offset  
10 MHz offset  
−102  
−99  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−114  
−137  
−144  
−148  
−153  
−155  
−156  
0.2  
100 MHz offset  
100 Hz to 10 MHz integration bandwidth  
Integrated Phase Noise and Spurs  
1 Auxiliary LO output measurements are performed under daisy-chain configuration with another ADRF6650 device. Measurements are taken from the auxiliary LO  
output of the daisy-chained ADRF6650.  
DIGITAL LOGIC SPECIFICATIONS  
Table 5.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ALL DIGITAL INPUTS/OUTPUTS  
Input Voltage  
Logic Low  
VIL  
VIH  
0
1.2  
0.5  
3.6  
V
V
Logic High  
Input Current  
Logic High  
Logic Low  
IIH  
IIL  
−100  
−100  
+100  
+100  
µA  
µA  
Output Voltage  
Logic Low  
Logic High  
VOL  
VOH  
0
1.4  
0.4  
1.8  
V
V
When driving loads with complementary metal-  
oxide semiconductor (CMOS) 1.8 V interface  
When driving loads with CMOS 3.3 V interface  
2.4  
3.3  
V
Output Driving Current  
Logic High  
Logic Low  
IOH  
IOL  
1
1
2
2
mA  
mA  
Rev. A | Page 8 of 61  
 
 
Data Sheet  
ADRF6650  
Serial Peripheral Interface (SPI) Timing  
Table 6.  
Parameter  
Description  
Min  
8
8
50  
25  
25  
10  
30  
18  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
tDS  
tDH  
tCLK  
tHIGH  
tLOW  
tS  
SDI to SCLK rising edge setup  
SCLK rising edge to SDI hold  
Period of SCLK  
High width of SCLK  
Low width of SCLK  
CS falling edge to SCLK rising edge, setup time  
SCLK rising edge to CS rising edge, hold time  
SCLK falling edge to valid readback data, SDIO/SDO; not shown in Figure 2  
ns  
ns  
tC  
ns  
tDV  
ns  
SPI Timing Diagram  
tHIGH  
DS  
CLK  
tC  
tLOW  
S
DH  
CS  
DON'T CARE  
DON'T CARE  
DON'T CARE  
R/W  
A10  
A9  
DON'T CARE  
Figure 2. Serial Control Port Write Timing—MSB First, 16-Bit Instruction  
Rev. A | Page 9 of 61  
 
 
ADRF6650  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 7.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
VCC_MIX_A, VCC_LOA_S2, VCC_LOA_S1,  
VCC_LOB_S1, VCC_LOB_S2, VCC_MIX_B,  
MIX_PU_A+, MIX_PU_A−, MIX_PU_B+,  
MIX_PU_B−  
−0.3 V to +3.6 V  
Typical θJA and θJC are specified vs. the number of PCB layers.  
The use of appropriate thermal management techniques is  
recommended to ensure that the maximum junction  
temperature does not exceed the limits shown in Table 7.  
VCC_DVGA_B, VCC_DVGA_A  
−0.3 V to +5.4 V  
VCCVCO_3V3, VCCDIV_3V3, VCCFBDIV_3V3, −0.3 V to +3.6 V  
VCCLO_MIX_3V3, VCCLO_AUX_3V3,  
VCCCP_3V3, VCCPFD_3V3, VCCREF_3V3,  
VBAT_DIG_3V3  
Table 8. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
RF Input Power (RFIN_A, RFIN_B)  
External LO Input Power  
VTUNE, CPOUT, REF_IN, DCL_BIAS  
TDD_A, TDD_B, RXA_ATT_CLK,  
RXA_ATT_DATA, RXB_ATT_CLK,  
RXB_ATT_DATA  
20 dBm  
CP-56-161  
10 dBm differential  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
JEDEC 1s0p Board2  
Cold Plate Only, No PCB3  
JEDEC 2s2p Board2  
N/A4  
N/A4  
29.3  
3.3  
2.8  
N/A  
°C/W  
°C/W  
°C/W  
1 The maximum junction temperature of 125°C cannot be exceeded.  
2 Per JEDEC JESD51-12.  
SCLK, SDIO, SDO, CS  
−0.3 V to +3.6 V  
125°C  
−40°C to +105°C  
3 For nonstandardized testing where the paddle of the device is directly  
connected to a cold plate. This approach can be useful to estimate junction  
temperature when the exact paddle temperature is known in the application.  
4 N/A means not applicable.  
Maximum Junction Temperature  
Operating Temperature Range  
(Measured at Pad)  
Storage Temperature Range  
−65°C to +150°C  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 10 of 61  
 
 
 
 
Data Sheet  
ADRF6650  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VCC_MIX_A  
TDD_A  
1
2
3
4
5
6
7
8
9
42 VCCCP_3V3  
41 CPOUT  
40 GND  
GND  
RFIN_A  
39 LO_OUT–  
RFBT_A  
38 LO_OUT+  
37 VCCLO_AUX_3V3  
36 VCCLO_MIX_3V3  
35 VCCFBDIV_3V3  
34 VCCDIV_3V3  
33 VCCVCO_3V3  
32 EXT_LO_IN–  
31 EXT_LO_IN+  
30 VTUNE  
VCC_LOA_S2  
VCC_LOA_S1  
VCC_LOB_S1  
VCC_LOB_S2  
ADRF6650  
TOP VIEW  
(Not to Scale)  
RFBT_B 10  
RFIN_B 11  
GND 12  
TDD_B 13  
29 DCL_BIAS  
VCC_MIX_B 14  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO A GROUND PLANE  
WITH LOW THERMAL IMPEDANCE.  
Figure 3. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
3
VCC_MIX_A  
TDD_A  
GND  
Channel A Mixer IF Amplifier VCC  
TDD Enable, Channel A.  
Ground.  
.
4
5
6
7
8
9
RFIN_A  
RFBT_A  
Channel A Single-Ended, RF, 50 Ω Input.  
Channel A RF Balun Low Frequency Inductor Connection.  
Channel A LO Path VCC (Stage 3 and Stage 4).  
Channel A LO Path VCC (Stage 1 and Stage 2).  
Channel B LO Path VCC (Stage 1 and Stage 2).  
Channel B LO Path VCC (Stage 3 and Stage 4).  
Channel B RF Balun Low Frequency Inductor Connection.  
Channel B Single-Ended, RF, 50 Ω Input.  
Ground.  
TDD Enable, Channel B.  
Channel B Mixer IF Amplifier VCC.  
Channel B Mixer IF Amplifier Positive Output Pull-Up.  
Channel B Mixer IF Amplifier Negative Output Pull-Up.  
Channel B Variable Gain Amplifier (VGA) Decouple Output.  
Channel B VGA Negative Output.  
VCC_LOA_S2  
VCC_LOA_S1  
VCC_LOB_S1  
VCC_LOB_S2  
RFBT_B  
RFIN_B  
GND  
TDD_B  
VCC_MIX_B  
MIX_PU_B+  
MIX_PU_B−  
VCPL_B  
IFOUT_B−  
IFOUT_B+  
VCC_DVGA_B  
RXB_ATT_DATA  
RXB_ATT_CLK  
LO_LCKDT  
SCLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Channel B VGA Positive Output.  
Channel B Digital Step Attenuator (DSA) and VGA VCC  
Channel B VGA Serial Gain Control (Up/Down) Data.  
Channel B VGA Serial Gain Control (Up/Down) Clock.  
LO Lock Detect.  
.
SPI Clock.  
Rev. A | Page 11 of 61  
 
ADRF6650  
Data Sheet  
Pin No. Mnemonic  
Description  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
SDIO  
SDO  
CS  
SPI Data Input/Output (3-Wire Mode); Input Only (4-Wire Mode).  
SPI Data Output (4-Wire Mode); Not Used (3-Wire Mode).  
SPI Chip Select (Active Low).  
RST  
Reset (Active Low).  
DCL_BIAS  
VTUNE  
VCO Core Bias Decouple Output.  
Tuning Voltage (VTUNE) Input.  
External LO Positive Input.  
External LO Negative Input.  
VCO 3.3 V Supply.  
LO Chain and Divider 3.3 V Supply.  
PLL Feedback Divider 3.3 V Supply.  
LO Mixer Output Buffer 3.3 V Supply.  
LO External Output Buffer 3.3 V Supply.  
External LO Positive Output.  
External LO Negative Output.  
Charge Pump GND.  
Charge Pump Output.  
Charge Pump 3.3 V Supply.  
PFD 3.3 V Supply.  
Reference Input Buffer 3.3 V Supply.  
Reference Input Buffer.  
SPI 1.8 V LDO External Decouple Output.  
SDM 1.8 V LDO External Decouple Output.  
SPI and SDM LDO 3.3 V Supply.  
Channel A VGA Serial Gain Control (Up/Down) Clock.  
Channel A VGA Serial Gain Control (Up/Down) Data.  
EXT_LO_IN+  
EXT_LO_IN−  
VCCVCO_3V3  
VCCDIV_3V3  
VCCFBDIV_3V3  
VCCLO_MIX_3V3  
VCCLO_AUX_3V3  
LO_OUT+  
LO_OUT−  
GND  
CPOUT  
VCCCP_3V3  
VCCPFD_3V3  
VCCREF_3V3  
REF_IN  
SPILDO_OUT_1V8  
SDMLDO_OUT_1V8  
VBAT_DIG_3V3  
RXA_ATT_CLK  
RXA_AT T_DATA  
VCC_DVGA_A  
IFOUT_A+  
IFOUT_A−  
VCPL_A  
Channel A DSA and VGA VCC  
.
Channel A VGA Positive Output.  
Channel A VGA Negative Output.  
Channel A VGA Decouple Output.  
Channel A Mixer Amplifier Negative Output Pull-Up.  
Channel A Mixer Amplifier Positive Output Pull-Up.  
MIX_PU_A−  
MIX_PU_A+  
EPAD  
Exposed Pad. The exposed pad must be connected to a ground plane with low thermal impedance.  
Rev. A | Page 12 of 61  
Data Sheet  
ADRF6650  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC_DVGA_x = 5 V, VCCx = 3.3 V, TA = 27°C, fIF = 184 MHz, internal LO, digital variable gain amplifier (DVGA) attenuation = 0 dB,  
LTUNE = 1 nH, LSHUNT = 150 nH, and 25 Ω external resistors on each differential leg, 5 V high power mode, low-pass filter setting = 7,  
unless otherwise noted. The LO is high-side for RF frequencies lower than 1 GHz and higher than 2.5 GHz, and LO is low-side for the  
remaining RF frequencies. For two-tone measurements, IF output power is −4 dBm/tone and 10 MHz tone spacing, unless otherwise  
noted. All losses from input and output traces and baluns are de-embedded from results.  
35  
30  
25  
20  
15  
10  
5
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
–40°C  
+27°C  
+105°C  
LO FREQUENCY = 800MHz  
LO FREQUENCY = 1800MHz  
LO FREQUENCY = 2700MHz  
0
500  
940  
1380  
1820  
2260  
2700  
50  
125  
200  
275  
350  
425  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 4. Gain vs. RF Frequency  
Figure 7. Gain vs. IF Frequency; RF Sweep with Fixed LO, LSHUNTx = 150 nH  
20  
35  
LO FREQUENCY = 800MHz  
LO FREQUENCY = 1800MHz  
18  
16  
14  
12  
10  
8
LO FREQUENCY = 2700MHz  
30  
25  
20  
15  
10  
5
6
4
–40°C  
+27°C  
+105°C  
2
0
500  
0
940  
1380  
1820  
2260  
2700  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 5. OP1dB vs. RF Frequency  
Figure 8. Gain vs. IF Frequency; RF Sweep with Fixed LO, LSHUNTx = 47 nH  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
21  
LO FREQUENCY = 800MHz  
LO FREQUENCY = 1800MHz  
19  
17  
15  
13  
11  
9
LO FREQUENCY = 2700MHz  
OIP3  
GAIN  
7
OP1dB  
5
CHANNEL A  
CHANNEL B  
0
500  
3
50  
125  
200  
275  
350  
425  
500  
940  
1380  
1820  
2260  
2700  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 9. OP1dB vs. IF Frequency; RF Sweep with Fixed LO  
Figure 6. OP1dB, Gain, and OIP3 vs. RF Frequency, Channel Comparison  
Rev. A | Page 13 of 61  
 
ADRF6650  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
–40°C  
+27°C  
+105°C  
–40°C  
+27°C  
+105°C  
500 720 940 1160 1380 1600 1820 2040 2260 2480 2700  
RF FREQUENCY (MHz)  
500  
940  
1380  
1820  
2260  
2700  
RF FREQUENCY (MHz)  
Figure 10. OIP3 vs. RF Frequency; Maximum Gain, LSHUNTx = 150 nH  
Figure 13. OIP3 vs. RF Frequency; Maximum Gain − 16 dB, LSHUNTx = 47 nH,  
IF = 368 MHz  
50  
50  
45  
40  
35  
30  
25  
20  
LO FREQUENCY = 800MHz  
LO FREQUENCY = 1800MHz  
45  
40  
35  
30  
25  
20  
15  
10  
LO FREQUENCY = 2700MHz  
15  
–40°C  
+27°C  
+105°C  
10  
500  
940  
1380  
1820  
2260  
2700  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 11. OIP3 vs. RF Frequency; Maximum Gain, LSHUNTx = 47 nH,  
IF = 368 MHz  
Figure 14. OIP3 vs. IF Frequency; RF Sweep with Fixed LO, Maximum Gain,  
LSHUNTx = 150 nH  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
–40°C  
5
–40°C  
+27°C  
+105°C  
5
+27°C  
+105°C  
0
0
500  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 12. OIP3 vs. RF Frequency; Maximum Gain − 16 dB, LSHUNTx = 150 nH  
Figure 15. OIP3 vs. IF Frequency; RF Sweep with Fixed LO, Maximum Gain,  
SHUNTx = 47 nH, IF = 368 MHz  
L
Rev. A | Page 14 of 61  
Data Sheet  
ADRF6650  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
140  
130  
120  
110  
100  
90  
–40°C  
+27°C  
+105°C  
0
80  
–5  
–10  
–15  
30  
20  
70  
–40°C  
+27°C  
+105°C  
60  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
500 720 940 1160 1380 1600 1820 2040 2260 2480 2700  
DVGA ATTENUATION SETTING  
RF FREQUENCY (MHz)  
Figure 16. HD2 and HD3 vs. RF Frequency, Maximum Gain  
Figure 19. Gain vs. DVGA Attenuation Setting, RF = 2700 MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
130  
18  
16  
14  
12  
10  
8
120  
110  
100  
90  
80  
70  
6
60  
4
–40°C  
2
50  
+27°C  
+105°C  
0
40  
2700  
450  
900  
1350  
1800  
2250  
0
5
10  
15  
20  
25  
30  
35  
40  
RF FREQUENCY (MHz)  
DVGA ATTENUATION SETTING  
Figure 17. HD2 and HD3 vs. RF Frequency, Gain = 1 dB  
Figure 20. OP1dB vs. DVGA Attenuation Setting, RF = 2700 MHz  
20  
50  
–40°C  
+27°C  
+105°C  
LO FREQUENCY = 800MHz  
LO FREQUENCY = 1800MHz  
45  
18  
16  
14  
12  
10  
8
LO FREQUENCY = 2700MHz  
40  
35  
30  
25  
20  
15  
10  
5
6
4
700  
0
1200  
1700  
2200  
2700  
30  
26  
22  
18  
14  
10  
6
2
–2  
–6  
RF FREQUENCY (MHz)  
GAIN (dB)  
Figure 18. Noise Figure vs. RF Frequency; Maximum Gain  
Figure 21. OIP3 vs. Gain for Various LO Frequencies  
Rev. A | Page 15 of 61  
 
 
ADRF6650  
Data Sheet  
30  
25  
20  
15  
10  
12  
10  
8
–40°C  
+27°C  
+105°C  
6
4
2
0
–2  
–4  
5
29  
24  
19  
14  
9
4
–1  
–6  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
GAIN (dB)  
DVGA ATTENUATION SETTING  
Figure 22. Noise Figure vs. Gain, RF = 2100 MHz  
Figure 25. Cumulative Phase Error vs. DVGA Attenuation Setting,  
RF = 2700 MHz  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
–40°C  
RF FREQUENCY = 950MHz  
RF FREQUENCY = 1850MHz  
+27°C  
+105°C  
0
450  
0
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
900  
1350  
1800  
2250  
2700  
BLOCKER OUTPUT POWER (dBm)  
RF FREQUENCY (MHz)  
Figure 23. Noise Figure Under Blocker vs. Blocker Output Power,  
PIN = 0 dBm, Internal LO  
Figure 26. Channel to Channel Isolation vs. RF Frequency  
1.5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–40°C  
+27°C  
+105°C  
1.0  
–40°C  
+27°C  
+105°C  
0.5  
0
–0.5  
–1.0  
–1.5  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
500  
940  
1380  
1820  
2260  
2700  
DVGA ATTENUATION SETTING  
RF FREQUENCY (MHz)  
Figure 24. Cumulative Gain Error vs. DVGA Attenuation Setting,  
RF = 2700 MHz  
Figure 27. RF to IF Feedthrough vs. RF Frequency  
Rev. A | Page 16 of 61  
Data Sheet  
ADRF6650  
0
0
–2  
–40°C  
+27°C  
+105°C  
–10  
–4  
–20  
–30  
–40  
–50  
–60  
–70  
–6  
–8  
–10  
–12  
–14  
–16  
650  
1100  
1550  
2000  
2450  
2900  
2900  
2900  
0
100  
200  
300  
400  
500  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 28. LO to IF Feedthrough vs. LO Frequency  
Figure 31. IF Output Return Loss , External 25 Ω on Each Differential Leg  
0
0
–5  
–40°C  
+27°C  
+105°C  
–10  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–20  
–30  
–40  
–50  
–60  
–70  
550  
1020  
1490  
1960  
2430  
450  
900  
1350  
1800  
2250  
2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 29. LO to RF Feedthrough vs. LO Frequency  
Figure 32. RF Input Return Loss  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
PLL/VCO 3.3V  
RF/IF 3.3V  
DVGA 5V  
0
700  
1140  
1580  
2020  
2460  
LO FREQUENCY (MHz)  
Figure 30. RF/IF 3.3 V, DVGA 5 V, and PLL/VCO 3.3 V Supply Currents vs.  
LO Frequency  
Rev. A | Page 17 of 61  
ADRF6650  
Data Sheet  
PHASE-LOCKED LOOP (PLL)  
VCC_DVGA_x = 5 V, VCCx = 3.3 V, TA = 27°C, fPFD = 30.72 MHz, fREF = 122.88 MHz, 20 kHz loop filter, measured at the LO output,  
unless otherwise noted. All losses from input and output traces and baluns are de-embedded from results.  
0
–10  
–60  
–40°C  
+27°C  
+105°C  
–70  
–20  
–30  
–80  
–40  
–90  
–50  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 33. Open-Loop VCO Phase Noise vs. Offset Frequency, fLO = 2350 MHz,  
VCO = 4700 MHz  
Figure 36. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 1765 MHz  
f
–60  
–70  
0
–10  
VCO = 4GHz  
VCO = 4.7GHz  
VCO = 5.6GHz  
VCO = 6.8GHz  
–20  
–30  
–80  
–40  
–90  
–50  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 34. Open-Loop VCO Phase Noise vs. Offset Frequency, for Various VCO  
Frequencies, Divide by 2 Selected  
Figure 37. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 2350 MHz  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 35. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 1565 MHz  
Figure 38. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 2720 MHz  
Rev. A | Page 18 of 61  
 
Data Sheet  
ADRF6650  
–170  
–50  
–60  
–40°C  
–40°C  
+27°C  
+105°C  
+27°C  
–180  
+105°C  
–190  
–200  
–210  
–220  
–230  
–240  
–250  
–260  
–270  
–70  
FRACTIONAL  
–80  
–90  
–100  
FLICKER  
–110  
450  
940  
1430  
1920  
2410  
2900  
450  
940  
1430  
1920  
2410  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 39. PLL Figure of Merit (FOM) vs. LO Frequency  
Figure 42. Reference Spurs vs. LO Frequency, 1 × fPFD Offset,  
Daisy-Chain Measurement  
–50  
–60  
–50  
–40°C  
+27°C  
+105°C  
–40°C  
+27°C  
+105°C  
–70  
–60  
–70  
–80  
10kHz  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–80  
100kHz  
–90  
1MHz  
10MHz  
–100  
–110  
450  
940  
1430  
1920  
2410  
2900  
450  
940  
1430  
1920  
2410  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 40. Closed-Loop LO Phase Noise vs. LO Frequency for  
Various Offset Frequencies  
Figure 43. Reference Spurs vs. LO Frequency, 2 × fPFD Offset,  
Daisy-Chain Measurement  
–50  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
PFD × 3  
PFD × 4  
PFD × 5  
PFD × 6  
PFD × 7  
–40°C  
+27°C  
+105°C  
–60  
–70  
–80  
–90  
–100  
–110  
450  
940  
1430  
1920  
2410  
2900  
450  
940  
1430  
1920  
2410  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 41. 100 Hz to 10 MHz Integrated Phase Noise vs. LO Frequency  
Figure 44. Reference Spurs vs. LO Frequency, 3 and Higher × fPFD Offset,  
Daisy-Chain Measurement  
Rev. A | Page 19 of 61  
ADRF6650  
Data Sheet  
0
2101.5  
2101.0  
2100.5  
2100.0  
2099.5  
2099.0  
2098.5  
HD2  
HD3  
–10  
–20  
–30  
–40  
–50  
–60  
1000  
1380  
1760  
2140  
2520  
2900  
2900  
2900  
0
100  
200  
300  
400  
500  
600  
LO FREQUENCY  
TIME (µs)  
Figure 45. LO HD2/HD3 vs. LO Frequency  
Figure 48. LO Frequency Settling Time, fLO = 2.1 GHz  
10  
0
–5  
–40°C  
EXTERNAL LO INPUTS  
AUXILIARY LO OUTPUTS  
+27°C  
8
+105°C  
6
4
–10  
–15  
–20  
–25  
–30  
–35  
–40  
2
0
–2  
–4  
–6  
–8  
–10  
450  
940  
1430  
1920  
2410  
450  
940  
1430  
1920  
2410  
2900  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 46. LO Output Power vs. LO Frequency  
Figure 49. Auxiliary Output Return Loss, External LO Input Return Loss vs.  
LO Frequency  
20  
16  
12  
8
LO OUT LEVEL = 0  
LO OUT LEVEL = 1  
LO OUT LEVEL = 2  
LO OUT LEVEL = 3  
4
0
–4  
–8  
–12  
–16  
–20  
450  
940  
1430  
1920  
2410  
LO FREQUENCY (MHz)  
Figure 47. LO Output Power vs. LO Frequency, for Various  
Output Power Level Settings  
Rev. A | Page 20 of 61  
Data Sheet  
ADRF6650  
SPURIOUS PERFORMANCE  
(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products were measured in  
decibels (dB) relative to the carrier (dBc) from the IF output power level. IF = 184 MHz, and RF spur frequency is found with the formula;  
fRF_SPUR = ((M × fLO) + fIF))/N. Data is shown for all spurious components greater than −115 dBc and frequencies of less than 2.7 GHz.  
Table 10. 900 MHz Spurious Performance  
N
1
2
3
4
5
6
M = 1  
M = 2  
M = 3  
M = 4  
M = 5  
M = 6  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
−53  
−84  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
−10.5  
Not applicable  
−115  
Not applicable  
Not applicable  
Not applicable  
−49  
−17  
Not applicable  
−115  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Rev. A | Page 21 of 61  
 
ADRF6650  
Data Sheet  
THEORY OF OPERATION  
The ADRF6650 is a wideband, highly integrated, dual-channel  
downconverter ideally suited for multiple input, multiple output  
(MIMO) applications. Additionally, the ADRF6650 integrates an  
LO generation block consisting of a synthesizer and a multicore  
VCO with an octave range and low phase noise. The synthesizer  
uses a fractional-N PLL to enable continuous LO coverage from  
450 MHz to 2900 MHz. The wideband frequency response and  
flexible frequency programming simplifies the receiver design,  
saves on-board space, and minimizes the need for external  
components.  
In addition, the input side of the LPF has a series 50 Ω resistor  
on each differential leg which improves the mixer termination  
for low RF frequencies (<1 GHz). The resistors can be bypassed  
by DPLX_EN_OVERRIDE (Register 0x0300, Bit 0).  
IF AMPLIFIERS  
The IF amplifier following the LPF is a fixed gain, balanced  
feedback design that simultaneously provides the desired gain,  
noise figure, and input impedance that is required to achieve  
the overall performance. The balanced open-collector output of  
the IF amplifier, with an impedance modified by the feedback  
within the amplifier, connects internally to the DSA stage, but  
requires external pull-up inductors of approximately 220 nH.  
It is also possible to use a tuned load to improve the filtering of  
unwanted mixing products but can limit the signal bandwidth  
for wide bandwidth applications.  
The RF subsystem of the ADRF6650 consists of an integrated,  
wideband, low loss RF balun; a double balanced, passive metal-  
oxide semiconductor field-effect transistor (MOSFET) mixer; a  
tunable filter; a fixed gain IF amplifier; a DVGA, and fractional  
synthesizer with on-chip VCO.  
PULL-UP  
INDUCTORS  
RF BALUN  
VCC_3V3  
The ADRF6650 integrates a wideband balun operating over a  
frequency range from 450 MHz to 2700 MHz. The RF balun  
offers the benefit of ease of drivability from a single-ended 50 Ω  
RF input, and the single-ended to differential conversion of the  
balun optimizes common-mode rejection. The balun uses an  
external compensation inductor to improve the balance for low  
RF frequency. See the RF Frequency and IF Bandwidth  
Optimization section for details.  
VCC_3V3  
BAND  
OPTIMIZATION  
INDUCTOR  
MIX_PU_A+  
MIX_PU_A–  
IF AMPLIFIER  
DSA  
DVGA  
Figure 50. External Pull-Up Inductor Connection  
MIXERS  
The IP3 performance can be optimized by adjusting the low-  
pass filter between the mixer and the IF amplifier. Further  
optimization can be made, via SPI control, by adjusting the IF  
main bias current, IFMAIN_BIAS_OVERRIDE (Register 0x0301,  
Bits[3:0]), and a linearizing optimization current, IFLIN_BIAS_  
OVERRIDE (Register 0x0302, Bits[3:0]). The linearization current  
generally maintains the same IP3 for a given IF frequency but  
may need to be adjusted for different IF frequencies.  
The output of the balun is applied to a passive mixer that  
commutates the RF input in accordance with the output of the  
LO subsystem. The passive mixer is essentially a balanced, low  
loss switch that adds minimum noise to the frequency translation.  
The only noise contribution from the mixer is due to the resistive  
loss of the switches, which is in the order of a few ohms.  
LOW-PASS FILTERS  
Because the mixer is inherently broadband and bidirectional,  
it is necessary to properly terminate all idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation  
products and reduces the level of unwanted signals at the input  
of the IF amplifier, where high peak signal levels can compromise  
the compression and intermodulation performance of the  
system. This termination is accomplished by the addition of a  
programmable low-pass filter (LPF) network between the IF  
amplifier and the mixer and in the feedback elements in the IF  
amplifier. The LPF filter has programmable filter bandwidths  
and is tuned by switching parallel capacitances on the primary  
and secondary sides by writing to the LPF_OVERRIDE register  
(Register 0x0300). Therefore, selecting the proper combination  
of LPF1_OVERRIDE (Register 0x0300, Bits[3:1]) and  
DVGA  
The ADRF6650 integrates a differential variable gain amplifier  
consisting of a differential, digitally controlled passive  
attenuator (DSA) followed by a DVGA. The total attenuation  
range is 43 dB, in 1 dB steps, with the first 12 dB of attenuation  
provided by the DVGA and the remaining 31 dB provided by  
the DSA. The 12 dB of attenuation from the DVGA has less  
than 1 dB degradation of the ADRF6650 noise figure for the  
entire 12 dB range. The OIP3 also remains nearly constant over  
that attenuation range, as shown in Figure 21. The input  
digitally controlled binary weighted attenuator has a 31 dB  
range in 1 dB steps. The noise figure for this attenuator  
increases 1 dB for each dB of attenuation of this 31 dB  
attenuation range.  
LPF2_OVERRIDE (Register 0x0300, Bits[6:4]) sets the desired  
bandwidth. It is recommended to set the LPF1_OVERRIDE and  
LPF2_OVERRIDE bit fields to the same value.  
Rev. A | Page 22 of 61  
 
 
 
 
 
 
Data Sheet  
ADRF6650  
Output Impedance and Matching  
SPI Mode  
The differential output impedance of each channel of the  
ADRF6650 is 10 Ω. External series resistors are required to  
increase the output impedance for matching considerations, but  
reduce the maximum output power of the ADRF6650. A series  
resistor of 25 Ω on each differential leg of each output provides  
a −10 dB return loss for a 100 Ω differential load and the  
maximum output power.  
In SPI mode, the DVGA gain is controlled by DVGA_GAIN1  
(Register 0x0104, Bits[5:0]) and DVGA_GAIN2 (Register 0x0104,  
Bits[5:0]), as shown in Table 12.  
Table 12. DVGA Attenuation Setting  
DVGA_GAIN_CH1 (Register 0x0104,  
Bits[5:0]) and DVGA_GAIN_CH2  
(Register 0x0105, Bits[5:0])  
Attenuation  
Power Supply and Common Mode  
000000  
000001  
101010  
101011  
0
1
42  
43  
The DVGA in each channel of the ADRF6650 can be powered  
either at 3.3 V or 5.0 V through the VCC_DVGA_A and VCC_  
DVGA_B pins. A 5.0 V supply provides increased performance,  
mainly in OIP3 and in OP1dB but results in increased power  
consumption. The current consumption of the DVGA is main-  
tained at the same level for each power voltage (approximately  
75 mA) and is controlled by DVGA_5V_SEL (Register 0x0103,  
Bit 7). If desired, the current can be reduced for lower power  
consumption and reduced performance. The performance mode  
select is controlled by DVGA_HP_SEL (Register 0x0104, Bit 6).  
Up/Down Mode  
The up/down interface reuses the RXx_ATT_DATA and RXx_  
ATT_CLK pins to control the gain. Gain is increased by a clock  
pulse on RXx_ATT_CLK (rising edges) when RXx_ATT_DATA  
is low. Gain is decreased by a clock pulse on RXx_ATT_CLK  
when RXx_ATT_DATA is high. Reset is detected by a rising  
edge latching data having one polarity with the falling edge  
latching the opposite polarity. Reset results in minimum gain  
code 111111 (binary).  
TheADRF6650 is also flexible in terms of input/output  
coupling. It can be ac-coupled or dc-coupled at the outputs  
within the specified output common-mode levels of 1.2 V to  
2.8 V, depending on the supply voltage. The output common-  
mode voltage can be set by VCPL_A and VCPL_B, which allows  
the driving of an analog-to-digital converter (ADC) directly  
without external components. If no external output common-  
mode voltage is applied, the output common mode is VCC/2.  
RXx_ATT_DATA  
RXx_ATTN_CLK  
Gain Control Modes  
UP  
DOWN  
RESET  
The attenuation of the DVGA can be controlled by several  
different modes:  
Figure 51. Up/Down Data and Clock Bit Sequence  
The step size is selectable via DVGA_UPDN_STEP  
(Register 0x0103, Bits[4:3]), as shown in Table 13. The default  
step size is 1 dB. The gain code count rails at the top and  
bottom of the control range.  
SPI mode through a dedicated register for each channel in  
the main SPI.  
Up/down mode through the serial gain control 2-wire SPI  
port for each channel.  
Table 13. Up/Down Step Size  
DVGA_UPDN_STEP  
(Register 0x0103, Bits[4:3])  
The mode is set by DVGA_GAIN_MODE (Register 0x0103,  
Bits[2:0]) as shown in Table 11. The attenuation setting at any  
configuration can be read from the ATTEN_READBACK_CH1  
register (Register 0x003C) and ATTEN_READBACK_CH2  
register (Register 0x003D) for Channel A and Channel B,  
respectively. When the gain control mode is changed between  
different modes, a reset needs to be issued through DVGA_  
CH1_RSTB (Register 0x0021, Bit 1) and DVGA_CH2_RSTB  
(Register 0x0021, Bit 0) to the Channel A DVGA and  
Step Size  
00  
01  
10  
11  
1
2
4
8
Channel B DVGA, respectively. See the description details for  
the DVGA_CH1_RSTB and DVGA_CH2_RSTB registers.  
Table 11. DVGA Gain Modes  
DVGA_GAIN_MODE  
(Register 0x0103, Bits[2:0])  
DVGA Mode  
SPI  
Up/down  
01  
11  
Rev. A | Page 23 of 61  
 
 
 
ADRF6650  
Data Sheet  
Internal LO Mode  
TDD OPERATION  
For internal LO mode, the ADRF6650 uses the on-chip PLL and  
VCO to synthesize the frequency of the LO signal. The PLL,  
shown in Figure 52, consists of a reference path, phase and  
frequency detector (PFD), charge pump, and a programmable  
integer divider with a prescaler. The reference path takes in a  
reference clock and divides it down by a value calculated with  
the R divider together with doubler bit and prescaler bit. Then  
the divided down reference signal passes to the PFD. The PFD  
compares this signal to the divided down signal from the VCO.  
The PFD sends an up/down signal to the charge pump if the  
VCO signal is slow/fast compared to the reference frequency.  
The charge pump sends a current pulse to the off-chip loop  
filter to increase or decrease the tuning voltage (VTUNE).  
The ADRF6650 provides two separate pins to control the  
channels (enable/disable) in TDD operation. When the TDD_A  
(Pin 2) and TDD_B (Pin 13) pins are pulled low, Channel A and  
Channel B are active, respectively. When TDD_A and TDD_B  
are pulled high, the channels are disabled.  
The ADRF6650 also provides TDD enable masks to enable/  
disable certain blocks during TDD operation. The TDD enable  
masks select which blocks are disabled during TDD off time.  
The EN_MASK register (Register 0x0102) includes the mask  
bits for the LO stages, the IF amplifiers, the DVGAs, and the  
PLL. When set to 1, the bits shown in Table 14 disable the  
related block during TDD off time. The enable mask bits for  
the LO Stage 23, the IF amplifiers, and the DVGA disable the  
related block (when set to 1) when either one of the TDD_A  
and TDD_B pins is set to high. Alternatively, the LO_STG1_  
ENB_MASK bit (Register 0x0102, Bit 0) disables the LO stage  
amplifier only when both TDD_A and TDD_B are high. In the  
same manner, the PLL_ENB_CH12_MASK bit (Register 0x0102,  
Bit 7) disables the PLL/VCO only when both TDD_A and  
TDD_B are high.  
The ADRF6650 integrates a multicore VCO covering an octave  
range of 4 GHz to 8 GHz. The suitable VCO is selected with the  
autotune functionality built in the chip. After the user determines  
the necessary register values, a write to the INT_L register  
(Register 0x1200) initiates the autotune process.  
LO Frequency and Dividers  
The signal originating from the VCO or the external LO inputs  
goes through a series of dividers before it is buffered to drive  
the mixer. The programmable divide by two stages divide the  
frequency of the incoming signal by 1, 2, 4, 8, and 16 before  
reaching to the mixers. The control bits (Register 0x1414, Bits[4:0])  
needed to select the different LO frequency ranges are listed in  
Table 15.  
Table 14. TDD Enable Mask Register (Register 0x0102)  
TDD Enable Mask Bit  
LO_STG1_ENB_MASK  
LO_STG23_ENB_CH1_MASK  
LO_STG23_ENB_CH2_MASK  
IF_ENB_CH1_MASK  
Default Block  
0
1
1
1
1
1
1
0
LO Stage 1  
Channel A LO Stage 23  
Channel B LO Stage 23  
Channel A IF amplifier  
Channel B IF amplifier  
Channel A DVGA  
Channel B DVGA  
PLL  
IF_ENB_CH2_MASK  
Table 15. Output Divide Ratio for Frequency Ranges  
DVGA_ENB_CH1_MASK  
DVGA_ENB_CH1_MASK  
PLL_ENB_CH12_MASK  
LO Frequency  
(MHz)  
OUT_DIVRATIO  
(Register 0x1414, Bits[4:0])  
VCO Frequency  
(MHz)  
450 to 500  
10000  
01000  
00100  
00010  
LO × 16  
LO × 8  
LO × 4  
LO × 2  
500 to 1000  
1000 to 2000  
2000 to 2900  
LO GENERATION BLOCK  
The ADRF6650 supports the use of both internal and external  
LO signals for the mixers. The internal LO is generated by an  
on-chip VCO, which is tunable over a frequency range of  
4000 MHz to 8000 MHz. The output of the VCO is phase-  
locked to an external reference clock through a fractional-N  
PLL that is programmable through the SPI control registers. To  
produce LO signals over the 450 MHz to 2900 MHz frequency  
range to drive the mixers, the VCO outputs passes through an  
output divider. Alternatively, an external signal can be used to  
supply the LO signals to the mixers.  
Rev. A | Page 24 of 61  
 
 
 
 
Data Sheet  
ADRF6650  
AUXILIARY  
LO OUTPUT  
LO OUT ENABLE  
REGISTER 0x1414[6]  
31  
32  
EXT_LO_IN+  
EXT_LO_IN–  
SEE PLL FREQUENCY  
PROGRAMMING SECTION  
REGISTER 0x1414[4:0]  
REF_IN  
TO MIXER  
OUT  
DIVIDER  
EXTERNAL  
LOOP FILTER  
R
CPOUT  
41  
VTUNE  
45  
DIVIDER  
PFD  
CHARGE  
PUMP  
30  
MIX OUT ENABLE  
REGISTER 0x1414[7]  
SEE PLL FREQUENCY  
PROGRAMMING SECTION  
SEE EXTERNAL  
LO MODE  
SECTION  
REGISTER 0x120B[1]  
PRESCALER  
FRAC2  
MOD2  
16,777,216  
FRAC1 +  
N = INT +  
Figure 52. PLL/VCO Block Diagram  
Rev. A | Page 25 of 61  
 
ADRF6650  
Data Sheet  
PLL Frequency Programming  
5. Calculate FRAC2 by the following equation:  
The INT, FRAC1, FRAC2, and MOD values, in conjunction  
with the R counter, make it possible to generate output  
frequencies that are spaced by fractions of the PFD frequency  
(fPFD). Calculate the VCO frequency (VCOOUT) by  
FRAC2 = (N INT) × 224 − FRAC1)) × MOD  
(5)  
(6)  
The FRAC2 and MOD fraction results in outputs with zero  
frequency error for channel spacings when  
f
PFD/GCD(fPFD/fCHSP) < 16,383  
where:  
PFD is the frequency of the phase frequency detector.  
GCD is a greatest common denominator function.  
CHSP is the desired channel spacing frequency.  
VCOOUT = fPFD × N  
(1)  
where:  
f
VCOOUT is the output frequency of the VCO (without using  
the output divider).  
f
f
PFD is the frequency of the phase frequency detector.  
After determining the necessary register values for PLL, also set  
the SD_EN_FRAC0 bit (Register 0x122A, Bit 4) to 1.  
N is the desired value of the feedback counter.  
Calculate fPFD by  
It is recommended to set the charge pump current to be 2.4 mA  
by setting the CP_CURRENT bit (Register 0x122E, Bits[3:0]) to  
7. Together with a 20 kHz loop filter, the charge pump current  
setting results in an optimized performance.  
f
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
(2)  
where:  
REFIN is the reference input frequency.  
D is the reference doubler bit (Register 0x120E, Bit 3).  
R is the preset divide ratio of the binary 7-bit programmable  
reference counter (1 to 255) (Register 0x120C, Bits[6:0]).  
Bleed Setting  
The PFD circuitry compares the PFD and divided down VCO  
signals. The ADRF6650 employs a bleed circuit to put the PFD  
circuit in the linear operation region. The bleed circuit introduces a  
delay to the incoming PFD signal, indicated as PFD_OFFSET in  
Equation 7. Calculate the bleed current, BICP (Register 0x122F,  
Bits[7:0]), from the desired PFD_OFFSET, as shown in  
Equation 7.  
T is the reference divide by 2 bit (0 or 1) (Register 0x120E, Bit 0).  
N comprises  
FRAC2  
MOD  
FRAC1 +  
N = INT +  
16,777,216  
(3)  
BICP = integer(round(float(ICP × PFD_OFFSET ×  
where:  
f
PFD)/960)/255))  
where:  
CP is the charge pump current.  
(7)  
INT is the 16-bit integer value (23 to 32,767 for the 4/5  
prescaler, 75 to 65,535 for the 8/9 prescaler) referenced with  
Register 0x1201 and Register 0x1200.  
FRAC1 is the 24-bit numerator of the primary modulus (0 to  
16,777,215) with Register 0x1204, Register 0x1203, and  
Register 0x1202.  
FRAC2 is the numerator of the 14-bit auxiliary modulus (0 to  
16,383) with Register 0x1234, Bits[5:0] and Register 0x1233.  
MOD is the programmable, 14-bit auxiliary fractional modulus  
(2 to 16,383), referenced with Register 0x1209, Bits[5:0] and  
Register 0x1208.  
I
The recommended PFD_OFFSET for the 20 kHz loop filter  
is 2 ns.  
PLL Lock Time  
The time it takes to lock the PLL after the last register is written  
breaks down into two parts: VCO band calibration and loop  
settling.  
After writing to the last register, the PLL automatically performs  
a VCO band calibration to choose the correct VCO band. This  
calibration requires approximately 200 µs. After calibration  
completes, the feedback action of the PLL causes the VCO to  
lock to the correct frequency eventually. The speed with which  
this lock occurs depends on the small signal settling of the loop.  
Settling time, after calibration, depends on the PLL loop filter  
bandwidth. With a 20 kHz loop filter bandwidth, the settling  
time is approximately 200 µs.  
Equation 3 results in a very fine frequency resolution with no  
residual frequency error. To apply this formula, take the  
following steps:  
1. Calculate N by VCOOUT/fPFD. The integer value of this  
number forms INT.  
2. Subtract the INT value from the full N value.  
3. Multiply the remainder by 224. The integer value of this  
number forms FRAC1.  
Lock Detection Control  
4. Calculate MOD based on the channel spacing (fCHSP) by  
The ADRF6650 provides two ways of observing lock detection.  
Lock detection can be monitored from a dedicated register,  
LOCK_DETECT (Register 0x124D, Bit 0). Lock detection can  
also be monitored through the dedicated LO_LCKDT pin (Pin 23).  
The SD_SM_2 bit (Register 0x122A, Bit 1) must be set to 0 to  
observe lock detection.  
MOD = fPFD/GCD(fPFD, fCHSP  
)
(4)  
where:  
GCD(fPFD, fCHSP) is the greatest common divider of the PFD  
frequency and the channel spacing frequency.  
f
CHSP is the desired channel spacing frequency.  
Rev. A | Page 26 of 61  
Data Sheet  
ADRF6650  
Required PLL/VCO Settings and Register Write Sequence  
SERIAL PORT INTERFACE  
Configure the PLL registers accordingly to achieve the desired  
frequency, and the last write must be to Register 0x1200  
(INT_L). When Register 0x1200 is programmed, an internal  
VCO calibration initiates, which is the last step to locking the  
PLL. After the PLL locks, enable the buffer to the mixer via the  
MIX_OE bit (Register 0x1414, Bit 7) to provide the LO signal to  
the mixer.  
The SPI of the ADRF6650 allows the user to configure the  
device for specific functions or operations through a structured  
register space provided inside the chip. This interface provides  
the user with added flexibility and customization. Addresses are  
accessed via the serial port interface and can be written to or  
read from the serial port interface.  
The serial port interface consists of four control lines: SCLK, SDIO,  
External LO Mode  
CS  
SDO, and . The SPI supports both 3-wire (default) and 4-wire  
modes of operation. Enable SDOACTIVE (Register 0x0000, Bit 4)  
and SDOACTIVE (Register 0x0000, Bit 3) for 4-wire mode. SCLK  
(serial clock) is the serial shift clock, and it synchronizes the serial  
interface reads and writes. SDIO is the serial data input or the  
serial data output depending on the instruction sent and the  
The external LO frequency range is 450 MHz to 2900 MHz, and  
the applied LO signal is fed to the mixers after passing through  
the divide by 1 block. To configure for external LO mode, write  
the following register sequence Table 16 and apply the differential  
LO signals to Pin 31 (EXT_LO_IN+) and Pin 32 (EXT_LO_IN−).  
CS  
relative position in the timing frame.  
is an active low control  
Table 16. Register Settings for External LO Mode  
CS  
that gates the read and write cycles. The falling edge of , in  
conjunction with the rising edge of SCLK, determines the start  
Register  
0x120B  
0x122D  
0x1240  
0x1217  
0x121F  
0x1021  
0x1414  
Required Value  
Description  
0x00  
0x00  
0x03  
0x00  
0x40  
0xD8  
0xA1  
Disable feedback divider  
Disable PFD and CP  
Disable VCO adjust  
Set VCO select to a low value  
Disable calibration  
Disable PLL blocks  
Use external LO  
CS  
of the frame. When  
is high, all SCLK and SDIO activity is  
ignored. See Table 6 for the serial timing and its definitions.  
The ADRF6650 protocol consists of a read/write followed by  
16 register address bits and 8 data bits. Both the address and  
data fields are organized with the MSB first and end with the  
LSB.  
SPI and GPIO 1.8 V/3.3 V Compatibility  
The EXT_LO_IN+ and EXT_LO_IN− input pins must be ac-  
coupled. When not in use, leave the EXT_LO_IN+ and  
EXT_LO_IN− pins unconnected.  
The SPI and general-purpose input/output (GPIO) interfaces of  
the ADRF6650 provide two options for the logic voltage levels,  
namely 1.8 V and 3.3 V. The interfaces use 1.8 V logic levels as  
the default. Enable SPI_18_33_SEL (Register 0x0101, Bit 0) and  
SPI_1P8_3P3_CTRL (Register 0x1401, Bit 4) for 3.3 V-compatible  
logic levels. See Table 5 for the SPI and GPIO specifications.  
In external LO mode of operation, the ADRF6650 consumes  
approximately 0.5 W less of power compared to the internal LO  
mode of operation.  
Rev. A | Page 27 of 61  
 
 
ADRF6650  
Data Sheet  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
39Ω  
35.7Ω  
270nH  
0.1µF  
0.1µF  
25Ω  
25Ω  
IF OUTPUT A  
TC1-1-13X+  
PULL-UP  
INDUCTORS  
VCC 3.3V  
270nH  
35.7Ω  
39Ω  
REF_IN  
45  
56 55  
50  
49  
53 52  
220Ω  
220Ω  
CPOUT  
4300pF  
VTUNE  
4300pF  
ADRF6650  
DVGA  
SPI  
100pF  
RFIN_A  
TDD_A  
RF  
INPUT A  
÷R  
PFD  
÷N  
4
2
0.12µF  
LPF  
41  
30  
CP  
CPOUT  
Σ-Δ  
VTUNE  
EX LO  
÷
100pF  
INPUT  
EX_LO_IN–  
32  
31  
TCM1-83X+  
EX_LO_IN+  
LO_OUT–  
100pF  
100pF  
13  
11  
TDD_B  
RFIN_B  
39  
38  
100pF  
LO OUTPUT  
TCM1-83X+  
RF  
INPUT B  
LPF  
LO_OUT+  
SPI  
DVGA  
SPI  
100pF  
15 16  
21  
22  
18 19  
24 25 26 27  
39Ω  
270nH  
0.1µF  
25Ω  
35.7Ω  
IF OUTPUT B  
TC1-1-13X+  
PULL-UP  
INDUCTORS  
VCC 3.3V  
25Ω  
35.7Ω  
270nH  
0.1µF  
BAND  
OPTIMIZATION  
INDUCTOR  
39Ω  
Figure 53. Basic Connections Diagram  
Table 17. Basic Connections  
Pin No.  
RF Inputs  
4, 11  
Mnemonic  
Description  
Basic Connection  
The single-ended RF inputs have a 50 Ω impedance.  
These pins must be ac-coupled. Terminate unused RF  
inputs with a dc blocking capacitor to GND to improve  
isolation. See the Layout section for the recommended  
PCB layout.  
RFIN_A, RFIN_B  
RF inputs  
RF Balun Optimization  
5, 10  
Connect the balun tuning inductors (LTUNEx) to ground.  
See the RF Frequency and IF Bandwidth Optimization  
section for LTUNEx values.  
RFBT_A, RFBT_B  
TDD_A, TDD_B  
RF balun tuning inductor  
TDD enable control pins  
TDD_x Pins  
2, 13  
Active high. 1.8 V and 3.3 V logic level compatible. See the  
TDD Operation section for details about TDD pin use.  
Serial VGA Control  
21, 50  
Follow the layout considerations given under the Layout  
section.  
RXB_ATT_DATA,  
RXA_ATT_DATA  
RXB_ATT_CLK,  
RXA_ATT_CLK  
DVGA data pins  
DVGA clock pins  
22, 49  
Rev. A | Page 28 of 61  
 
 
Data Sheet  
ADRF6650  
Pin No.  
Mnemonic  
Description  
Basic Connection  
3.3 V RF/IF Power  
1, 14  
Decouple all power supply pins to ground using 100 pF  
and 0.1 µF capacitors. Place the decoupling capacitors  
close to the pins.  
VCC_MIX_A,  
VCC_MIX_B  
Mixer IF amplifier supply  
6, 9  
7, 8  
VCC_LOA_S2,  
VCC_LOB_S2  
LO path supply for Stage 3 and Stage 4  
LO path supply for Stage 1 and Stage 2  
IF amplifier pull-up connections  
VCC_LOA_S1,  
VCC_LOB_S1  
Mixer Supply Pull-Up  
15, 16, 55, 56  
Connect the pull-up pins to 3.3 V RF/IF power supply rail  
with 270 nH pull-up inductors on each leg. Place the  
decoupling capacitors of 100 pF and 0.1 µF between the  
supply rail and the pull-up inductors. Place the inductor  
to optimize the IF bandwidth (LSHUNTx) in between the  
negative and positive pins. See the RF Frequency and IF  
Bandwidth Optimization section for LSHUNTx values.  
MIX_PU_B+,  
MIX_PU_B−,  
MIX_PU_A−,  
MIX_PU_A+  
DVGA Decoupling  
17, 54  
Decouple the DVGA decoupling pins to ground using  
100 pF and 0.1 µF capacitors and connect to the DVGA  
power supply rail (5 V). Place the decoupling capacitors  
close to the pins. Place a resistor divider to divide the  
power supply for the DVGA into two. Use 5.1 kΩ (or  
similar) for resistor divider component values.  
VCPL_B, VCPL_A  
DVGA decoupling pins  
5 V Power  
20, 51  
Decouple all power supply pins to ground using 100 pF  
and 0.1 µF capacitors. Place the decoupling capacitors  
close to the pins.  
VCC_DVGA_B,  
VCC_DVGA_A  
DVGA power supply  
IF outputs  
IF Outputs  
Place 25 Ω in series for each differential leg. The  
differential IF output impedance, together with the series  
25 Ω, becomes 60 Ω. For optimized performance, the 60 Ω  
output impedance must be terminated with a 100 Ω load.  
18, 19, 52, 53  
IFOUT_A−,  
IFOUT_B+,  
IFOUT_A+,  
IFOUT_A−  
3.3 V PLL/VCO Power  
Decouple all power supply pins to ground using 100 pF  
and 0.1 µF capacitors. Place the decoupling capacitors  
close to the pins. Employ ferrite beads to provide  
isolation between the PLL/VCO supply pins. Beware of  
the series resistance of the ferrite beads and try to  
minimize the voltage drop.  
33  
34  
VCCVCO_3V3  
VCCDIV_3V3  
VCO 3.3 V supply  
LO chain and divider 3.3 V supply  
PLL feedback divider 3.3 V supply  
LO mixer output buffer 3.3 V supply  
LO external output buffer 3.3 V supply  
Charge pump 3.3 V supply  
35  
VCCFBDIV_3V3  
VCCLO_MIX_3V3  
VCCLO_AUX_3V3  
VCCCP_3V3  
36  
37  
42  
43  
VCCPFD_3V3  
VCCREF_3V3  
PFD 3.3 V supply  
44  
Reference input buffer 3.3 V supply  
SPI and SDM LDO 3.3 supply V supply  
48  
VBAT_DIG_3V3  
PLL/VCO  
29  
30  
DCL_BIAS  
VTUNE  
VCO core bias decouple  
VTUNE input  
Decouple this pin to ground using 0.1 µF capacitor.  
This pin is driven by the output of the loop filter; its  
nominal input voltage range is 1.5 V to 2.5 V.  
41  
45  
CPOUT  
REF_IN  
Charge pump output  
Reference input buffer  
Connect this pin to the VTUNE pin through the loop filter.  
The nominal input level of this pin is 1 V p-p. The input  
range is 10 MHz to 250 MHz. This pin is internally biased  
and must be ac-coupled and terminated externally with  
a 50 Ω resistor. Place the ac coupling capacitor between  
the pin and the resistor.  
46  
47  
SPILDO_OUT_  
1V8  
SPI 1.8 V LDO external decouple  
output  
Decouple the decoupling pins to ground using 100 pF  
and 0.1 µF capacitors. Place the decoupling capacitors  
close to the pins.  
Decouple the decoupling pins to ground using 100 pF  
and 0.1 µF capacitors. Place the decoupling capacitors  
close to the pins.  
SDMLDO_OUT_  
1V8  
SDM 1.8 V LDO external decouple  
output  
23  
LO_LCKDT  
LO lock detect  
LO output  
This pin has1.8 V/3.3 V logic levels.  
Auxiliary LO Output  
38, 39  
The differential output impedance of the LO output  
buffer is 100 Ω.  
LO_OUT+,  
LO_OUT−  
Rev. A | Page 29 of 61  
ADRF6650  
Data Sheet  
Pin No.  
Mnemonic  
Description  
Basic Connection  
External LO Inputs  
31, 32  
The differential input impedance of the external LO  
input buffer is 100 Ω.  
EXT_LO_IN+,  
EXT_LO_IN−  
External LO input  
Serial Port Interface  
24  
25  
SCLK  
SDIO  
SPI clock  
This pin has1.8 V/3.3 V logic levels.  
This pin has 1.8 V/3.3 V logic levels.  
SPI data input/output (3-wire mode),  
input only for 4-wire mode  
26  
SDO  
CS  
SPI data output (4-wire mode),  
not used for 3-wire mode  
SPI chip select  
This pin has 1.8 V/3.3 V logic levels.  
27  
Active low. This pin has 1.8 V/3.3 V logic levels.  
Reset  
28  
RST  
Reset  
Active low. This pin has 1.8 V/3.3 V logic levels.  
Connect these pins to the ground of the PCB.  
Do not connect this pin to the pad ground; connect this  
pin to the PCB ground.  
Ground  
3, 12  
40  
GND  
GND  
Ground  
Charge pump ground  
Exposed Pad  
Exposed pad  
The exposed thermal pad is on the bottom of the package.  
The exposed pad must be soldered to ground.  
Rev. A | Page 30 of 61  
Data Sheet  
ADRF6650  
Table 19. IF Band Optimization Inductor Values for Various  
IF Center Frequencies  
RF FREQUENCY AND IF BANDWIDTH  
OPTIMIZATION  
IF Center  
Frequency (MHz)  
IF Band Optimization Inductor,  
LSHUNTx (nH)  
The ADRF6650 incorporates a wideband balun at its RF inputs  
for each channel. The wideband balun requires a tuning inductor  
(LTUNEx) for optimized performance for various RF frequencies  
of operation. Optimized LTUNEx provides optimized gain, noise  
figure, and OIP3. Table 18 provides the LTUNEx values required  
for some of the popular RF frequency points. As shown in Table 18,  
the lower the RF frequency, the higher the LTUNEx inductor.  
Figure 54 incorporates the ADRF6650 RF balun and the tuning  
inductor.  
120  
180  
270  
360  
35  
Open  
150  
100  
47  
30  
25  
20  
15  
10  
Table 18. LTUNEx Values for Various RF frequencies  
RF Frequency (MHz)  
LTUNEx (nH)  
450  
900  
1800  
2700  
15  
3.9  
3.9  
1
5
OPEN  
150nH  
ADRF6650  
47nH  
0
50  
RF INPUT A  
100  
150  
200  
250  
300  
350  
400  
450  
500  
4
5
IF FREQUENCY (MHz)  
CHANNEL A  
CHANNEL B  
TO MIXER A  
Figure 56. Centering the IF Bandwidth with LTUNEx Gain vs. IF Frequency  
L
A
TUNE  
IF DVGA VS. LOAD  
RF INPUT B  
11  
10  
By design, the ADRF6650 has an output impedance of 10 Ω.  
The ADRF6650 is optimized to perform with external 25 Ω in  
each differential leg. External resistors are employed to increase  
the output impedance. Together with the external 25 Ω, the  
total differential output impedance equals 60 Ω. With a 100 Ω  
differential load, the return loss is below −10 dB for a wide  
range of IF frequency.  
TO MIXER B  
L
B
TUNE  
Figure 54. Block Diagram Incorporating LTUNEx  
40  
36  
32  
28  
24  
20  
1nH  
3.9nH  
8.2nH  
ADRF6650  
IFOUT_A–  
10  
IF OUTPUT A  
IFOUT_A+  
100FOR  
OPTIMAL  
450  
750  
1050  
1350  
1650  
1950  
2250  
2550  
PERFORMANCE  
RF FREQUENCY (MHz)  
Figure 57. IF Output Schematic, Channel A Output Shown  
Figure 55. RF Gain Roll-Off for Various LTUNEx Values  
Different application circuits may require various loading  
conditions for the IF outputs. Therefore it is important to  
understand the effect of IF output loading on the performance  
characteristics, such as OP1dB, gain, OIP3, and OIP2.  
The IF amplifier employed within the ADRF6650 requires pull-  
up inductors tied to a 3.3 V power supply. In addition to these  
pull-up inductors, an IF band optimization inductor (LSHUNTx) is  
used for each of the channels, as shown in Figure 54. LSHUNTx  
places the center of the IF with a 200 MHz bandwidth. Complete  
coverage of 500 MHz IF bandwidth is achieved by shifting the  
200 MHz IF window, as shown in Figure 56. The IF band  
optimization inductor provides optimized gain flatness and  
OIP3.  
Rev. A | Page 31 of 61  
 
 
 
 
 
ADRF6650  
Data Sheet  
35  
ADC INTERFACING  
100  
200Ω  
30  
25  
20  
15  
10  
5
The integrated IF DVGA of the ADRF6650 provides variable  
and sufficient drive capability for both buffered and unbuffered  
ADCs. The DVGA also provides isolation between the sampling  
edges of the ADC and the mixer core. As result, only a selective  
band-pass filter is required when interfacing with an ADC.  
The filter resides between the ADRF6650 and the ADC. The  
band-pass filter eliminates all out-of-band signals that might  
degrade the performance of the ADRF6650 and ADC pair. The  
band-pass filter center and bandwidth are selected for the  
specific application, that is, the topology, system requirements,  
signal bandwidth, ADC type, and sampling rate. The type and  
the order of the filter are chosen by taking into account the  
trade-off between the amount of rejection required and the  
insertion loss. In this section, a filter design is explained for a  
band-pass sampling use case with a step by step analysis.  
0
0
100  
200  
300  
400  
500  
600  
IF FREQUENCY (MHz)  
Figure 58. IF Gain vs. IF Frequency for Various Loads  
60  
50  
40  
30  
20  
10  
0
100Ω  
200Ω  
Band-pass sampling is a popular way of reconstructing the  
information from the received signals, especially for wireless  
communication standards with high dynamic range requirements.  
Band-pass sampling relies on the idea that the sampling rate  
required to completely represent an analog signal is twice the  
highest frequency of signal bandwidth of interest. With this  
fact, a signal at a high IF frequency can be reconstructed by  
accurately placing the signal of interest to one of the Nyquist  
zones. To better illustrate the idea, a case for IF center frequency  
of 187.5 MHz with a signal bandwidth of 30 MHz is considered.  
To place the signal bandwidth to the first Nyquist zone, a  
sampling rate of 250 MSPS is adequate, which puts the center  
frequency of the retrieved signal to 62.5 MHz. One important  
consideration for the band-pass sampling is that all of the  
Nyquist zones fold on top of each other, which reduces the  
available dynamic range. To overcome excessive noise due to  
folding, employ a sharp antialiasing filter between the  
ADRF6650 and the ADC.  
0
50  
100 150 200 250 300 350 400 450 500  
IF FREQUENCY (MHz)  
Figure 59. OIP3 vs. IF Frequency for Various Loads  
120  
100  
80  
60  
40  
20  
0
100  
200Ω  
To determine a proper candidate for the ADC, consider the signal-  
to-noise ratio (SNR)/spurious-free dynamic range (SFDR) and  
analog input bandwidth requirements. The SNR/SFDR require-  
ments are provided for a given input power. Considering a  
standard LTE uplink signal with a peak-to-average power ratio  
(PAPR) of 8 dB to 10 dB, the average input signal power is backed  
off at least 10 dB from the full scale. The SNR/SFDR of the  
ADC at the backed off level allows a dynamic range compatible  
with the system requirements. The analog input specification, alter-  
natively, must be able to cope with the high IF frequency signal  
(centered at 187.5 MHz). With these requirements in mind, the  
AD9694 14-bit, 500 MSPS ADC or the AD6684 135 MHz quad  
IF receiver are proper candidates with an SNR of 68 dBFS and  
SFDR of 97 dBFS at 10 dB back-off from full scale.  
HD2  
HD3  
56  
106  
156  
206  
256  
306  
356  
406  
456  
IF FREQUENCY (MHz)  
Figure 60. HD2/HD3 vs. IF Frequency for Various Loads  
As mentioned previously in this section, the IF outputs are  
optimized for a load of 100 Ω; however, this may not be the  
most readily available load impedance. As a result, load vs.  
performance trade-offs must be considered. Use Figure 58  
through Figure 60 as guides only; do not interpret them in the  
absolute sense. The results are obtained for one chip under  
nominal voltage and supply.  
The IF center frequency of the received signal (187.5 MHz) is  
on the second Nyquist zone for a sampling rate of 250 MSPS.  
The antialiasing filter provides enough rejection on other  
Nyquist zones so that inherent folding of the zones does not  
degrade the SNR and SFDR of the ADC. Considering that there  
Rev. A | Page 32 of 61  
 
 
 
Data Sheet  
ADRF6650  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
are RF filters (diplexer, SAW, BAW, and others) at the front end  
of the signal chain, the major spurious contents result from the  
HD2 and HD3 products of the ADRF6650. As shown in Figure 17,  
for an ADRF6650 gain of 1 dB, the HD2 and HD3 products are  
−60 dBc. To avoid degrading the SFDR performance of the  
AD9694 or AD6684, the antialiasing filter must reject the HD2  
and HD3 products by 37 dB (97 dBFS − 60 dBc = 37 dB). Consi-  
dering the tolerances of the filter components, a filter with a  
bandwidth of 36 MHz and a rejection of at least 40 dB at second  
and third harmonic zones is sufficient.  
STANDALONE BPF  
NORMALIZED ADRF6650 + BPF  
When designing the band-pass filter, it is important to consider  
the IF output impedance of the ADRF6650 and the input impe-  
dance of the ADC. As mentioned in the IF DVGA vs. Load  
section, the ADRF6650 IF outputs have an impedance of 60 Ω  
(together with the external 25 Ω on each differential leg) and  
are optimized for a 100 Ω differential load.  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IF FREQUENCY (MHz)  
Figure 63. Standalone BPF and Normalized ADRF6650 and Band-Pass Filter  
Insertion Loss Response  
POWER MODES  
Figure 61 shows a band-pass filter designed around 187.5 MHz  
with a bandwidth of 36 MHz. Figure 62 shows the return loss of  
the filter. Figure 63 shows the performance of the filter with and  
without the ADRF6650.  
The ADRF6650 incorporates dual DVGAs that are compatible  
with either a 5 V or 3.3 V supply. The specifications are given  
under the 5 V supply condition. However, it is possible to use  
the DVGA with a 3.3 V supply with decreased gain and OP1dB,  
whereas a 3.3 V supply consumes the same amount of current,  
which in turn saves power consumption.  
IF OUTPUTS  
3pF  
0.1µF  
0.1µF  
220nH  
220nH  
25Ω  
25Ω  
The ADRF6650 allows the user to select between two power  
modes for each supply voltage: high performance and low  
power. The 5 V high performance mode achieves the best  
linearity given in the Specifications section. Alternatively, low  
power mode enables power consumption savings in return of  
decreased linearity.  
39pF 19nH  
3pF  
39pF 18nH  
100Ω  
100Ω  
Figure 61. Antialiasing Band-Pass Filter Schematic  
To summarize, the ADRF6650 has four power modes, as  
outlined in Table 21.  
Table 20. Component Values for Band Pass Filter Design  
(Center at 184 MHz and Bandwidth 75 MHz)  
Table 21. Power Mode Bit Settings  
Value  
39 pF  
3 pF  
18 nH  
19 nH  
220 nH  
Type  
Manufacturer  
DVGA_5V_SEL  
(Register 0x0103,  
Bit 7)  
DVGA_HP_SEL  
(Register 0x0104,  
Bit 6)  
0402, NPO  
0402, NPO  
0402HP  
0402HP  
0402HP  
Murata  
Murata  
Coilcraft  
Coilcraft  
Coilcraft  
Power Mode  
DVGA 5 V and High  
Performance  
DVGA 5 V and Low  
Power  
DVGA 3.3 V and High  
Performance  
DVGA 3.3 V and Low  
Power  
1
1
0
0
1
0
1
0
0
–5  
–10  
–15  
–20  
–25  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IF FREQUENCY (MHz)  
Figure 62. Standalone Return Loss Response  
Rev. A | Page 33 of 61  
 
 
 
 
 
ADRF6650  
Data Sheet  
To provide insight on the various power modes of the ADRF6650,  
Figure 64 to Figure 66 display OP1dB, OIP3, and gain vs. IF  
frequency.  
POWER SUPPLY CONFIGURATION  
The ADRF6650 employs high performance mixers, IF amplifiers,  
DVGAs, PLL, and VCOs. To achieve the best performance,  
especially in terms of spurs and phase noise, the power supply  
configuration must be dealt with great care.  
18  
16  
14  
12  
10  
8
There are three main supply domains for the ADRF6650, namely,  
DVGA (5 V), RF/IF (3.3 V), and PLL/VCO (3.3 V). For the best  
performance, each of the supply domains requires specific attention  
in the power supply design.  
DVGA (5 V) Supply Domain  
6
DVGAs on each channel are supplied thorough the same linear  
regulator, taking into account the total amount of current drawn.  
The linear regulator must have high power supply rejection ratio  
(PSRR) and low noise to avoid spur injection from the supply  
circuitry. Another consideration is the transient response, which is  
important for the TDD operation. If the DVGAs are set to turn on  
and off during TDD cycles, the transient response of the power  
supply IC may affect the settling time of the ADRF6650. Take  
care to avoid long transient times. The ADM7170/ADM7171  
are ultralow noise, high PSRR, and fast transient response LDOs  
that are suitable for the DVGA (5 V) supply domain. Their fast  
transient response ensures that the ADRF6650 settling time is  
not affected by variations in supply.  
4
2
DVGA 5V  
DVGA 3.3V  
0
800  
1800  
2700  
4000  
LO FREQUENCY (MHz)  
Figure 64. OP1dB vs. LO Frequency for Various Power Modes  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ADRF6650  
BEAD  
VCC_DVGA_A  
0.1µF  
0.1µF  
100pF  
100pF  
5V  
ADM7170/  
ADM7171  
DVGA 5V LOW POWER  
DVGA 5V HIGH PERFORMANCE  
DVGA 3.3V HIGH PERFORMANCE  
DVGA 3.3V LOW POWER  
10µF  
BEAD  
0
50  
VCC_DVGA_B  
100  
150  
200  
250  
300  
350  
400  
450  
IF FREQUENCY (MHz)  
Figure 65. OIP3 vs. IF Frequency for Various Power Modes, fLO = 1800 MHz  
35  
Figure 67. DVGA (5 V) Supply Domain with the ADM7170/ADM7171  
30  
25  
20  
15  
10  
RF/IF (3.3 V) Supply Domain  
The RF/IF supply domain includes all of the supplies related to  
RF and IF blocks within the ADRF6650, namely mixers, IF  
amplifiers, and LO path to the mixers. All of the RF/IF supply  
domain pins are supplied with the same linear regulator with  
beads separating each individual pin. Each pin requires its own  
decoupling capacitors, placed close to the pin.  
The linear regulator must have high PSRR and low noise to avoid  
spur injection from the supply circuitry. Another consideration  
is the transient response, which becomes important for the  
TDD operation. If the RF/IF blocks are set to turn on and off  
during TDD cycles, transient response of the power supply IC  
can affect the settling time of the ADRF6650. Take care to avoid  
long transient times. The ADM7170/ADM7171 are ultralow  
noise, high PSRR, and fast transient response LDOs that are  
suitable for the RF/IF (3.3 V) supply domain. Their fast transient  
response ensures that the ADRF6650 settling time is not  
affected by variations in supply.  
DVGA 5V LOW POWER  
5
DVGA 5V HIGH PERFORMANCE  
DVGA 3.3V HIGH PERFORMANCE  
DVGA 3.3V LOW POWER  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
IF FREQUENCY (MHz)  
Figure 66. Gain vs. IF Frequency for Various Power Modes, fLO = 1800 MHz  
Rev. A | Page 34 of 61  
 
 
 
Data Sheet  
ADRF6650  
BEAD  
BEAD  
0.1µF  
BEAD  
0.1µF  
MIX_PU_A±  
100pF  
MIX_PU_B±  
100pF  
VCCVCO_3V3  
10µF  
0.1µF  
100pF  
BEAD  
0.1µF  
BEAD  
0.1µF  
VCCCP_3V3  
100pF  
100pF  
10µF  
VCCPFD_3V3  
BEAD  
0.1µF  
BEAD  
0.1µF  
VCC_MIX_A  
100pF  
VCC_MIX_B  
100pF  
ADM7170  
10µF  
VR1  
VR2  
VR3  
VR4  
BEAD  
0.1µF  
BEAD  
VCCREF_3V3  
HMC1060  
100pF  
100pF  
10µF  
VBAT_DIG_3V3  
BEAD  
0.1µF  
BEAD  
0.1µF  
VCC_LOA_S1/2  
100pF  
VCC_LOB_S1/2  
100pF  
0.1µF  
BEAD  
BEAD  
VCCLO_AUX_3V3  
VCCLO_MIX_3V3  
0.1µF  
100pF  
10µF  
VCCDIV_3V3  
0.1µF  
0.1µF  
100pF  
100pF  
Figure 68. RF/IF (3.3 V) Supply Domain with the ADM7170  
VCCFBDIV_3V3  
Note that if the DVGA is supplied through 3.3 V, the two supply  
domains can be tied together to reduce the number of power  
supply ICs. Take care for the increased current drawn from the  
power supply IC when the DVGA and RF/IF supply domains  
are connected together.  
Figure 69. PLL/VCO Domain Power Supply Circuit  
LAYOUT  
PLL/VCO (3.3 V) Supply Domain  
Careful layout of the ADRF6650 is necessary to optimize  
performance and minimize stray parasitics. Because the  
ADRF6650 supports two channels, the layout of the RF section  
is critical in achieving isolation between channels. Figure 70  
shows the recommended layout for the RF inputs. The best  
layout approach is to keep the traces short and direct. In addition,  
for improved isolation, do not route the RF input traces in  
parallel to each other and spread the traces immediately after  
each one leaves the pins. Keep the traces as far away from each  
other as possible (and at an angle, if possible) to prevent cross  
coupling.  
The PLL/VCO supply domain requires specific attention, which  
can otherwise result in performance degradation. The ADRF6650  
incorporates an ultralow noise PLL/VCO, which is sensitive to  
any noise and/or frequency component at the supply pins.  
These unwanted noise and frequency components degrade the  
performance of the overall system. To avoid performance  
degradation, the ADRF6650-EVALZ evaluation board employs  
the PLL/VCO supply domain circuit given in Figure 69, which  
uses the HMC1060, an ultralow noise LDO with four isolated  
outputs. Noise performance and isolated outputs makes the  
HMC1060 the perfect solution for the PLL/VCO supply domain.  
For more configurability options, see the ADRF6650-EVALZ  
evaluation board user guide.  
The input impedance of the RF inputs is 50 Ω, and the traces  
leading to the pin must also have a 50 Ω characteristic impedance.  
Terminate the unused RF inputs with a dc blocking capacitor to  
ground.  
Rev. A | Page 35 of 61  
 
 
ADRF6650  
Data Sheet  
Figure 70. Serial Gain Control Clock and Data Routing (Green is Top Layer,  
Blue is Inner Layer, Yellow is Component Placement)  
Figure 71. PLL/VCO Pin Connections  
The ADRF6650 incorporates a very low noise PLL/VCO, and  
care must be taken when designing the PCB routing around the  
PLL/VCO pins. It is required to place the decoupling capacitors  
for the supply pins as close as possible. If 0402 capacitors are  
used, placing all of the decoupling capacitors close to the pin  
becomes problematic. In such a case, place the smaller value  
decoupling capacitor as close as possible to the pin. It is a good  
practice to keep the first capacitor of the loop filter close to the  
CPOUT pin, and the last capacitor close to the VTUNE pin, as  
shown in Figure 71.  
Rev. A | Page 36 of 61  
 
 
Data Sheet  
ADRF6650  
REGISTER MAP  
Table 22. Register Details  
Reg  
0x0000 ADI_SPI_CONFIG [7:0] SOFTRESET_ LSB_FIRST_  
0x0001 SPI_CONFIG_B [7:0] SINGLE_ CSB_STALL  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
ENDIAN_  
SDOACTIVE_ SDOACTIVE ENDIAN  
LSB_FIRST  
SOFTRESET 0x00 R/W  
MASTER_SLAVE_ RESERVED  
RB  
SOFT_RESET  
MASTER_  
SLAVE_  
0x00 R/W  
INSTRUCTION  
TRANSFER  
0x0002 DEVICE_CONFIG [7:0]  
0x0003 CHIP_TYPE [7:0]  
RESERVED  
OPERATING_MODE  
POWER_MODE  
0x00 R/W  
CHIPTYPE  
0x00  
0x12  
0x00  
R
R
R
0x0004 PRODUCT_ID_1 [7:0]  
0x0005 PRODUCT_ID_2 [7:0]  
PRODUCT_ID[7:0]  
PRODUCT_ID[15:8]  
SCRATCHPAD  
0x000A SCRATCH  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
0x00 R/W  
0x000B SPI_REVISON  
0x000C VENDOR_ID_L  
0x000D VENDOR_ID_H  
SPI_VER  
0x00  
0x56  
0x04  
R
R
R
VENDOR_ID[7:0]  
VENDOR_ID[15:8]  
0x0021 BLOCK_RESETS [7:0]  
RESERVED  
DVGA_CH2_  
RSTB  
DVGA_CH1_ 0x1F R/W  
RSTB  
0x003C ATTEN_  
READBACK_CH1  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
ATTEN_READBACK_CH1  
ATTEN_READBACK_CH2  
0x00  
0x00  
0x00  
0x00  
R
R
R
R
0x003D ATTEN_  
READBACK_CH2  
0x003E DVGA_TRIM_  
READBACK_CH1  
DVGA_TRIM_READBACK_CH1  
DVGA_TRIM_READBACK_CH2  
0x003F DVGA_TRIM_  
READBACK_CH2  
0x0100 TDD_BYPASS  
[7:0] DVGA_ENB_ DVGA_ENB_CH1 IF_ENB_CH2  
CH2  
IF_ENB_CH1  
LO_STG23_ LO_STG23_  
ENB_CH2 ENB_CH1  
LO_STG1_ENB BYPASS_TD 0xFE R/W  
D
0x0101 CONFIG  
[7:0] Reserved  
Reserved  
IFLIN_BIAS_EN  
IFMAIN_BIAS_  
EN  
RESERVED  
SPI_18_33_ 0x38 R/W  
SEL  
0x0102 EN_MASK  
[7:0] PLL_ENB_  
DVGA_ENB_  
DVGA_ENB_  
CH1_MASK  
IF_ENB_CH2_ IF_ENB_  
LO_STG23_  
LO_STG23_  
ENB_CH1_  
MASK  
LO_STG1_ 0x7E R/W  
ENB_MASK  
CH12_MASK CH2_MASK  
MASK  
CH1_MASK ENB_CH2_  
MASK  
0x0103 DVGA_MODE  
0x0104 DVGA_GAIN1  
0x0105 DVGA_GAIN2  
0x0300 LPF_OVERRIDE  
[7:0] DVGA_5V_SEL  
DVGA_FA_STEP  
DVGA_HP_SEL  
RESERVED  
DVGA_UPDN_STEP  
DVGA_GAIN_MODE  
0x80 R/W  
0x68 R/W  
0x28 R/W  
[7:0] RESERVED  
[7:0]  
DVGA_GAIN_CH1  
DVGA_GAIN_CH2  
[7:0] RESERVED  
LPF2_OVERRIDE  
LPF1_OVERRIDE  
LPF_DPLX_ 0x7F R/W  
EN_  
OVERRIDE  
0x0301 IFMAIN_  
OVERRIDE  
[7:0]  
RESERVED  
IFMAIN_BIAS_OVERRIDE  
0x15 R/W  
0x0302 IFLIN_OVERRIDE [7:0]  
0x0303 VGS_OVERRIDE [7:0]  
RESERVED  
RESERVED  
IFLIN_BIAS_OVERRIDE  
VGS_OVERRIDE  
0x1F R/W  
0x04 R/W  
0x10 R/W  
0x0304 DVGA_TRIM1_  
LP3V_OVERRIDE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
DVGA_TRIM_LP_3V_CH1_OVERRIDE  
0x0305 DVGA_TRIM1_  
HP3V_OVERRIDE  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DVGA_TRIM_HP_3V_CH1_OVERRIDE  
DVGA_TRIM_LP_5V_CH1_OVERRIDE  
DVGA_TRIM_HP_5V_CH1_OVERRIDE  
DVGA_TRIM_LP_3V_CH2_OVERRIDE  
DVGA_TRIM_HP_3V_CH2_OVERRIDE  
DVGA_TRIM_LP_5V_CH2_OVERRIDE  
DVGA_TRIM_HP_5V_CH2_OVERRIDE  
0x10 R/W  
0x10 R/W  
0x10 R/W  
0x10 R/W  
0x10 R/W  
0x10 R/W  
0x10 R/W  
0x0306 DVGA_TRIM1_  
LP5V_OVERRIDE  
0x0307 DVGA_TRIM1_  
HP5V_OVERRIDE  
0x0308 DVGA_TRIM2_  
LP3V_OVERRIDE  
0x0309 DVGA_TRIM2_  
HP3V_OVERRIDE  
0x030A DVGA_TRIM2_  
LP5V_OVERRIDE  
0x030B DVGA_TRIM2_  
HP5V_OVERRIDE  
Rev. A | Page 37 of 61  
 
ADRF6650  
Data Sheet  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x0310 OVERRIDE_  
SELECT  
[7:0] SPARE2_  
OVERRIDE_  
SEL  
SPARE1_  
OVERRIDE_SEL  
DVGA_TRIM_  
CH2_  
OVERRIDE_SEL  
DVGA_TRIM_ VGS_  
CH1_  
OVERRIDE_SEL SEL  
IFLIN_TRIM_ IFMAIN_TRIM_ LPF_TRIM_ 0x00 R/W  
OVERRIDE_ OVERRIDE_ OVERRIDE_SEL OVERRIDE_  
SEL  
SEL  
0x1021 BLOCK_RESETS [7:0] RESERVED  
ARSTB_BLOCK_ ARSTB_BLOCK_ ARSTB_  
ARSTB_  
ARSTB_  
BLOCK_  
DSMOSTG  
ARSTB_BLOCK_ ARSTB_  
0xFF R/W  
0x02 R/W  
LKD  
AUTOCAL  
BLOCK_NDIV BLOCK_  
RDIV  
DSMCORE  
BLOCK_  
DSMALL  
0x1032 GPO1_CONTROL [7:0] RESERVED  
GPO1_BLK_SEL  
RESERVED  
GPO1_  
ENABLE  
0x1033 GPO1_SELECT  
[7:0]  
[7:0]  
GPO1_SGNL_SEL  
0x00 R/W  
0x0A R/W  
0x1109 SIG_PATH_9_  
NORMAL  
RESERVED  
TRM_MIXLODRV_DRV_  
POUT  
TRM_XLODRV_DRV_POUT RESERVED  
0x1200 INT_L  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
INT_DIV[7:0]  
INT_DIV[15:8]  
FRAC[7:0]  
0x89 R/W  
0x01 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x00 R/W  
0x01 R/W  
0x03 R/W  
0x1201 INT_H  
0x1202 FRAC1_L  
0x1203 FRAC1_M  
0x1204 FRAC1_H  
FRAC[15:8]  
FRAC[23:16]  
PHASE[7:0]  
PHASE[15:8]  
PHASE[23:16]  
MOD2[7:0]  
0x1205 SD_PHASE_L_0 [7:0]  
0x1206 SD_PHASE_M_0 [7:0]  
0x1207 SD_PHASE_H_0 [7:0]  
0x1208 MOD_L  
0x1209 MOD_H  
0x120B SYNTH  
0x120C R_DIV  
0x120E SYNTH_0  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
MOD2[13:8]  
RESERVED  
PRE_SEL  
EN_FBDIV  
RESERVED  
R_DIV  
RESERVED  
DOUBLER_  
EN  
RESERVED  
RESERVED  
RDIV2_SEL 0x04 R/W  
0x1214 MULTI_FUNC_  
SYNTH_CTRL_  
0214  
[7:0]  
LD_BIAS  
LDP  
0x48 R/W  
0x1217 SI_VCO_SEL  
0x121F VCO_FSM  
0x122A SD_CTRL  
[7:0]  
RESERVED  
DISABLE_CAL  
RESERVED  
SI_VCO_SEL  
0x00 R/W  
0x00 R/W  
[7:0] RESERVED  
[7:0]  
RESERVED  
RESERVED  
SD_EN_FRAC0  
SD_EN_OUT_  
OFF  
SD_SM_2  
RESERVED  
CP_HIZ  
0x02 R/W  
0x122C MULTI_FUNC_  
SYNTH_CTRL_  
022C  
[7:0]  
RESERVED  
0x03 R/W  
0x122D MULTI_FUNC_  
SYNTH_CTRL_  
022D  
[7:0] EN_PFD_CP  
BLEED_POL  
RESERVED  
INT_ABP  
RESERVED  
BLEED_EN 0x81 R/W  
0x122E CP_CURR  
0x122F BICP  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
CP_CURRENT  
0x0F R/W  
0x08 R/W  
0x00 R/W  
0x00 R/W  
BICP  
FRAC2[7:0]  
0x1233 FRAC2_L  
0x1234 FRAC2_H  
RESERVED  
FRAC2[13:8]  
RESERVED  
0x1235 MULTI_FUNC_  
SYNTH_CTRL_  
0235  
RESERVED  
PHASE_ADJ_EN RESERVED  
0x00 R/W  
0x1240 VCO_LUT_CTRL [7:0]  
RESERVED  
SI_VCO_  
FORCE_  
CAPSVCOI  
SI_VCO_  
FORCE_VCO  
SI_VCO_  
FORCE_  
CAPS  
0x00 R/W  
0x124D LOCK_DETECT  
[7:0]  
[7:0]  
RESERVED  
LOCK_  
DETECT  
0x00  
R
0x1401 MULTI_FUNC_  
CTRL  
RESERVED  
RESERVED  
SPI_1P8_3P3_  
CTRL  
RESERVED  
0x00 R/W  
0x140E LO_CNTRL2  
0x1414 LO_CNTRL8  
[7:0] EN_BIAS_R  
[7:0] MIX_OE  
REFBUF_EN  
USEEXT_LOI  
RESERVED  
OUT_DIVRATIO  
0xB3 R/W  
0x02 R/W  
LO_OE  
0x1541 FRAC2_L_SLAVE [7:0]  
0x1542 FRAC2_H_SLAVE [7:0]  
0x1543 FRAC_L_SLAVE [7:0]  
0x1544 FRAC_M_SLAVE [7:0]  
FRAC2_SLV[7:0]  
0x00  
0x00  
0x00  
0x00  
R
R
R
R
RESERVED  
FRAC2_SLV[13:8]  
FRAC_SLV[7:0]  
FRAC_SLV[15:8]  
Rev. A | Page 38 of 61  
Data Sheet  
ADRF6650  
Reg  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x1545 FRAC_H_SLAVE2 [7:0]  
0x1546 PHASE_L_SLAVE [7:0]  
FRAC_SLV[23:16]  
0x00  
0x00  
0x00  
R
R
R
PHASE_SLV[7:0]  
PHASE_SLV[15:8]  
0x1547 PHASE_M_  
SLAVE2  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
0x1548 PHASE_H_  
SLAVE3  
PHASE_SLV[23:16]  
INT_DIV_SLV[7:0]  
INT_DIV_SLV[15:8]  
0x00  
0x89  
0x01  
0x03  
R
R
R
0x1549 INT_DIV_L_  
SLAVE  
0x154A INT_DIV_H_  
SLAVE  
0x154B R_DIV_SLAVE  
[7:0] RESERVED  
[7:0]  
R_DIV_SLV  
R
R
0x154C RDIV2_SEL_  
SLAVE  
RESERVED  
RDIV2_SEL_ 0x00  
SLV  
0x1583 DISABLE_CFG  
[7:0]  
RESERVED  
DSM_LAUNCH_DLY  
DISABLE_  
FREQHOP  
DISABLE_  
DBLBUFFERING PHASEADJ  
DISABLE_  
0x00 R/W  
Rev. A | Page 39 of 61  
ADRF6650  
Data Sheet  
REGISTER DETAILS  
Address: 0x0000, Reset: 0x00, Name: ADI_SPI_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 ] SO FT RESET _ ( R/W )  
Soft Reset  
[ 0 ] SO FT RESET ( R/W )  
Soft Reset  
[ 6 ] LSB_FIRST _ ( R/W )  
LSB First  
[ 1] LSB_FIRST ( R/W )  
LSB First  
[ 5] ENDIAN_ ( R/W )  
Endian  
[ 2] ENDIAN ( R/W )  
Endian  
[ 4 ] SDO ACT IVE_ ( R/W )  
SDO Active  
[ 3] SDO ACT IVE ( R/W )  
SDO Active  
Table 23. Bit Descriptions for ADI_SPI_CONFIG  
Bits  
Bit Name  
Settings  
Description  
Soft Reset  
LSB First  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
SOFTRESET_  
LSB_FIRST_  
ENDIAN_  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
Endian  
SDO Active  
SDO Active  
Endian  
LSB First  
Soft Reset  
LSB_FIRST  
SOFTRESET  
Address: 0x0001, Reset: 0x00, Name: SPI_CONFIG_B  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SINGLE_INSTRUCTION (R/W)  
[0] MASTER_SLAVE_TRANSFER (R/W)  
Single Instruction  
Master Slave Transfer  
[6] CSB_STALL (R/W)  
[2:1] SOFT_RESET (R/W)  
CSB Stall  
Soft Reset  
[5] MASTER_SLAVE_RB (R/W)  
[4:3] RESERVED  
Master Slave RB  
Table 24. Bit Descriptions for SPI_CONFIG_B  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
[4:3]  
[2:1]  
0
SINGLE_INSTRUCTION  
CSB_STALL  
MASTER_SLAVE_RB  
RESERVED  
SOFT_RESET  
MASTER_SLAVE_TRANSFER  
Single Instruction  
CSB Stall  
Master Slave RB  
Reserved  
Soft Reset  
Master Slave Transfer  
Address: 0x0002, Reset: 0x00, Name: DEVICE_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :4 ] RESERVED  
[ 1:0 ] PO W ER_M O DE ( R/W )  
Not employed.  
[ 3:2] O PERAT ING_M O DE ( R/W )  
Operation Mode - Not employed.  
Table 25. Bit Descriptions for DEVICE_CONFIG  
Bits  
[7:4]  
[3:2]  
[1:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
R
R/W  
R/W  
RESERVED  
OPERATING_MODE  
POWER_MODE  
Reserved.  
Operation Mode - Not employed.  
Not employed.  
0x0  
Rev. A | Page 40 of 61  
 
Data Sheet  
ADRF6650  
Address: 0x0003, Reset: 0x00, Name: CHIP_TYPE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CHIPTYPE (R)  
Chip Type, Read Only  
Table 26. Bit Descriptions for CHIP_TYPE  
Bits  
Bit Name  
Settings  
Description  
Chip Type, Read Only  
Reset  
Access  
[7:0]  
CHIPTYPE  
0x0  
R
Address: 0x0004, Reset: 0x12, Name: Product_ID_1  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
1
0
[7:0] PRODUCT_ID[7:0] (R)  
Product ID  
Table 27. Bit Descriptions for Product_ID_1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID[7:0]  
Product ID  
0x12  
R
Address: 0x0005, Reset: 0x00, Name: Product_ID_2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PRODUCT_ID[15:8] (R)  
Product ID  
Table 28. Bit Descriptions for Product_ID_2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID[15:8]  
Product ID  
0x12  
R
Address: 0x000A, Reset: 0x00, Name: Scratch  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] SCRAT CHPAD ( R/W )  
Scratch Pad  
Table 29. Bit Descriptions for Scratch  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
[7:0]  
SCRATCHPAD  
Scratch Pad  
R/W  
Address: 0x000B, Reset: 0x00, Name: SPI_Revision  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SPI_VER (R)  
SPI Register Map Revision  
Table 30. Bit Descriptions for SPI_Revision  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
SPI_VER  
SPI Register Map Revision  
0x0  
R
Address: 0x000C, Reset: 0x56, Name: VENDOR_ID_L  
7
6
5
4
3
2
1
0
0
1
0
1
0
1
1
0
[7:0] VENDOR_ID[7:0] (R)  
Vendor ID  
Table 31. Bit Descriptions for VENDOR_ID_L  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x456  
Access  
[7:0]  
VENDOR_ID[7:0]  
Vendor ID  
R
Rev. A | Page 41 of 61  
ADRF6650  
Data Sheet  
Address: 0x000D, Reset: 0x04, Name: VENDOR_ID_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7:0] VENDOR_ID[15:8] (R)  
Vendor ID  
Table 32. Bit Descriptions for VENDOR_ID_H  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR_ID[15:8]  
Vendor ID  
0x456  
R
Address: 0x0021, Reset: 0x1F, Name: BLOCK_RESETS  
7
6
5
4
3
2
1
0
0
0
0
1
1
1
1
1
[ 7 :2] RESERVED  
[ 0 ] DVGA_CH2_RST B ( R/W )  
Resets the DVGA of Channel 2  
[ 1] DVGA_CH1_RST B ( R/W )  
Resets the DVGA of Channel 1  
Table 33. Bit Descriptions for BLOCK_RESETS  
Bits  
[7:2]  
1
Bit Name  
Settings  
Description  
Reset  
0x7  
0x1  
Access  
R
R/W  
R/W  
RESERVED  
DVGA_CH1_RSTB  
DVGA_CH2_RSTB  
Reserved.  
Resets the DVGA of Channel 1  
Resets the DVGA of Channel 2  
0
0x1  
Address: 0x003C, Reset: 0x00, Name: ATTEN_READBACK_CH1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] AT T EN_READBACK_CH1 ( R)  
Readback of the current attenuation  
state from Channel 1  
Table 34. Bit Descriptions for ATTEN_READBACK_CH1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ATTEN_READBACK_CH1  
Readback of the current attenuation state from Channel 1  
0x0  
R
Address: 0x003D, Reset: 0x00, Name: ATTEN_READBACK_CH2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] AT T EN_READBACK_CH2 ( R)  
Readback of the current attenuation  
state from Channel 2  
Table 35. Bit Descriptions for ATTEN_READBACK_CH2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
ATTEN_READBACK_CH2  
Readback of the current attenuation state from Channel 2  
0x0  
R
Address: 0x003E, Reset: 0x00, Name: DVGA_TRIM_READBACK_CH1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] DVGA_T RIM _READBACK_CH1 ( R)  
Readback the DVGA trim that is finally  
sent out to the DVGA, Channel 1 (post  
3V/5V and power mode)  
Table 36. Bit Descriptions for DVGA_TRIM_READBACK_CH1  
Bits Bit Name  
Settings Description  
Reset Access  
0x0  
[7:0] DVGA_TRIM_READBACK_CH1  
Readback the DVGA trim that is finally sent out to the DVGA,  
Channel 1 (post 3 V/5 V and power mode)  
R
Rev. A | Page 42 of 61  
Data Sheet  
ADRF6650  
Address: 0x003F, Reset: 0x00, Name: DVGA_TRIM_READBACK_CH2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] DVGA_T RIM _READBACK_CH2 ( R)  
Readback the DVGA trim that is finally  
sent out to the DVGA, Channel 2 (post  
3V/5V and power mode)  
Table 37. Bit Descriptions for DVGA_TRIM_READBACK_CH2  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] DVGA_TRIM_READBACK_CH2  
Readback the DVGA trim that is finally sent out to the DVGA,  
Channel 2 (post 3 V/5 V and power mode)  
0x0  
R
Address: 0x0100, Reset: 0xFE, Name: TDD_BYPASS  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
0
[ 7 ] DVGA_ENB_CH2 ( R/W )  
Channel 2 DVGA Enable When BYPASS_TDD= 1  
[ 0 ] BYPASS_T DD ( R/W )  
Bypass TDD  
[ 6 ] DVGA_ENB_CH1 ( R/W )  
Channel 1 DVGA Enable When BYPASS_TDD= 1  
[ 1 ] LO _ST G1 _EN B ( R/W )  
Input LO Buffer Enable When BYPASS_TDD= 1  
[ 5] IF_ENB_CH2 ( R/W )  
Channel 2 Mix IF Buffer Enable When  
BYPASS_TDD= 1  
[ 2] LO _ST G23_ENB_CH1 ( R/W )  
Channel 1 LO Buffer Enable When BYPASS_TDD= 1  
[ 3] LO _ST G23_ENB_CH2 ( R/W )  
Channel 2 LO Buffer Enable When BYPASS_TDD= 1  
[ 4 ] IF_ENB_CH1 ( R/W )  
Channel 1 Mix IF Buffer Enable When  
BYPASS_TDD= 1  
Table 38. Bit Descriptions for TDD_BYPASS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
DVGA_ENB_CH2  
DVGA_ENB_CH1  
IF_ENB_CH2  
Channel 2 DVGA Enable When BYPASS_TDD = 1  
Channel 1 DVGA Enable When BYPASS_TDD = 1  
Channel 2 Mix IF Buffer Enable When BYPASS_TDD = 1  
Channel 1 Mix IF Buffer Enable When BYPASS_TDD = 1  
Channel 2 LO Buffer Enable When BYPASS_TDD = 1  
Channel 1 LO Buffer Enable When BYPASS_TDD = 1  
Input LO Buffer Enable When BYPASS_TDD = 1  
Bypass TDD  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
IF_ENB_CH1  
LO_STG23_ENB_CH2  
LO_STG23_ENB_CH1  
LO_STG1_ENB  
BYPASS_TDD  
Address: 0x0101, Reset: 0x38, Name: CONFIG  
Table 39. Bit Descriptions for CONFIG  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
5
4
[3:1]  
0
IFLIN_BIAS_EN  
IFMAIN_BIAS_EN  
RESERVED  
Enable Internal Bias Adjustment for IF Amplifier Linearization  
Enable Internal Bias Adjustment for IF Amplifier  
Reserved  
0x1  
0x1  
0x4  
0x0  
SPI_18_33_SEL  
SPI Tristate Buffer Output Voltage Level, 0 = 1.8 V, 1 = 3.3 V  
Rev. A | Page 43 of 61  
ADRF6650  
Data Sheet  
Address: 0x0102, Reset: 0x7E, Name: EN_MASK  
7
6
5
4
3
2
1
0
0
1
1
1
1
1
1
0
[ 7 ] P LL _EN B_CH 1 2 _M AS K ( R/W )  
[ 0 ] LO _S T G 1 _EN B_M AS K ( R/W )  
PLL Dis ab le fo r TDD O p e ratio n.  
Inp ut LO Buffe r Dis ab le fo r TDD O p e ratio n.  
[ 6 ] D V G A_EN B_CH 2 _M AS K ( R/W )  
Channe l 2 DVGA Dis ab le fo r TDD O p e ratio n.  
[ 1 ] LO _S T G 2 3 _EN B_CH 1 _M AS K ( R/W )  
Channe l 1 LO Buffe r Dis ab le fo r TDD  
O p e ratio n.  
[ 5 ] D V G A_EN B_CH 1 _M AS K ( R/W )  
Channe l 1 DVGA Dis ab le fo r TDD O p e ratio n.  
[ 2 ] LO _S T G 2 3 _EN B_CH 2 _M AS K ( R/W )  
Channe l 2 LO Buffe r Dis ab le fo r TDD  
O p e ratio n.  
[ 4 ] IF_EN B_CH 2 _M AS K ( R/W )  
Channe l 2 Mix e r IF Buffe r Dis ab le fo r  
TDD O p e ratio n.  
[ 3 ] IF _EN B_CH 1 _M AS K ( R/W )  
Channe l 1 Mix e r IF Buffe r Dis ab le fo r  
TDD O p e ratio n.  
Table 40. Bit Descriptions for EN_MASK  
Bits Bit Name Settings Description  
Reset Access  
7
6
5
4
3
2
1
0
PLL_ENB_CH12_MASK  
PLL Disable for TDD Operation. Pass PLL disable to PLL when TDD_A and  
TDD_B are both high. PLL Blocks disable according to PLL register setting  
Channel 2 DVGA Disable for TDD Operation. 1 = disable when TDD_A is  
high (active low), 0 = enable.  
Channel 1 DVGA Disable for TDD Operation. 1 = disable when TDD_A is  
high (active low), 0 = enable.  
Channel 2 Mixer IF Buffer Disable for TDD Operation. 1 = disable when  
TDD_A is high (active low), 0 = enable.  
Channel 1 Mixer IF Buffer Disable for TDD Operation. 1 = disable when  
TDD_A is high (active low), 0 = enable.  
Channel 2 LO Buffer Disable for TDD Operation. 1 = disable when TDD_A  
is high (active low), 0 = enable.  
Channel 1 LO Buffer Disable for TDD Operation. 1 = disable when TDD_A  
is high (active low), 0 = enable.  
Input LO Buffer Disable for TDD Operation. 1 = disable when TDD_A is  
high (active low), 0 = enable.  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DVGA_ENB_CH2_MASK  
DVGA_ENB_CH1_MASK  
IF_ENB_CH2_MASK  
IF_ENB_CH1_MASK  
LO_STG23_ENB_CH2_MASK  
LO_STG23_ENB_CH1_MASK  
LO_STG1_ENB_MASK  
Address: 0x0103, Reset: 0x80, Name: DVGA_MODE  
Table 41. Bit Descriptions for DVGA_MODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x1  
Access  
R/W  
7
DVGA_5V_SEL  
DVGA_UPDN_STEP  
5 V Power Supply Select for DVGA. 1 = 5 V mode.  
[4:3]  
VGA Up-Down Gain Step Size for Both Channels.  
0x0  
R/W  
0
1
1 dB  
2 dB  
10 4 dB  
11 8 dB  
[2:0]  
DVGA_GAIN_MODE  
VGA Gain Mode for Both Channels.  
SPI  
11 Up/Down  
0x0  
R/W  
1
Rev. A | Page 44 of 61  
Data Sheet  
ADRF6650  
Address: 0x0104, Reset: 0x68, Name: DVGA_GAIN1  
7
6
5
4
3
2
1
0
0
1
1
0
1
0
0
0
[7] RESERVED  
[5:0] DVGA_GAIN_CH1 (R/W)  
Channel 1 Gain Setting, SPI Mode  
[6] DVGA_HP_SEL (R/W)  
High Power Select for DVGA  
0: Low Power.  
1: High Performance.  
Table 42. Bit Descriptions for DVGA_GAIN1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
7
RESERVED  
Reserved  
6
DVGA_HP_SEL  
High Power Select for DVGA  
Low Power  
High Performance  
0x1  
R/W  
0
1
[5:0]  
DVGA_GAIN_CH1  
Channel 1 Gain Setting, SPI Mode  
0x28  
R/W  
Address: 0x0105, Reset: 0x28, Name: DVGA_GAIN2  
7
6
5
4
3
2
1
0
0
0
1
0
1
0
0
0
[7:6] RESERVED  
[5:0] DVGA_GAIN_CH2 (R/W)  
Channel 2 Gain Setting, SPI Mode  
Table 43. Bit Descriptions for DVGA_GAIN2  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x28  
Access  
R
R/W  
RESERVED  
DVGA_GAIN_CH2  
Reserved  
Channel 2 Gain Setting, SPI Mode  
Address: 0x0300, Reset: 0x7F, Name: LPF_OVERRIDE  
7
6
5
4
3
2
1
0
0
1
1
1
1
1
1
1
[ 7 ] RES ERV ED  
[ 0 ] LP F_D P LX _EN _O V ERRID E ( R/W )  
LPF Dip le x e r O v e rrid e Value  
[ 6 :4 ] LP F 2 _O V ERRID E ( R/W )  
LPF CDAC2 O v e rrid e Value  
[ 3 :1 ] L P F1 _O V ERRID E ( R/W )  
LPF CDAC1 O v e rrid e Value  
Table 44. Bit Descriptions for LPF_OVERRIDE  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
7
RESERVED  
Reserved  
[6:4]  
[3:1]  
0
LPF2_OVERRIDE  
LPF1_OVERRIDE  
LPF_DPLX_EN_OVERRIDE  
LPF CDAC2 Override Value  
LPF CDAC1 Override Value  
LPF Diplexer Override Value  
0x7  
0x7  
0x1  
R/W  
R/W  
R/W  
Address: 0x0301, Reset: 0x15, Name: IFMAIN_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
1
0
1
[ 7 :4 ] RES ERV ED  
[ 3 :0 ] IFM AIN _BIAS _O V ERRID E ( R/W )  
Bias Ad jus tm e nt Value fo r IF Main Am p lifie r  
O v e rrid e .  
Table 45. Bit Descriptions for IFMAIN_OVERRIDE  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
0x1  
0x5  
Access  
R/W  
R/W  
RESERVED  
IFMAIN_BIAS_OVERRIDE  
Reserved  
Bias Adjustment for IF Main Amplifier Override Value  
Rev. A | Page 45 of 61  
ADRF6650  
Data Sheet  
Address: 0x0302, Reset: 0x1F, Name: IFLIN_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
1
1
1
1
[ 7 :4 ] RES ERV ED  
[ 3 :0 ] IFL IN _BIAS _O V ERRID E ( R/W )  
Bias Ad jus tm e nt Value fo r IF Am p lifie r  
Line ariz e r O v e rrid e .  
Table 46. Bit Descriptions for IFLIN_OVERRIDE  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
0x1  
0xF  
Access  
R/W  
R/W  
RESERVED  
IFLIN_BIAS_OVERRIDE  
Reserved  
Bias Adjustment Value for IF Amplifier Linearizer Override  
Address: 0x0303, Reset: 0x04, Name: VGS_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[ 7 :4 ] RES ERV ED  
[ 3 :0 ] V G S _O V ERRID E ( R/W )  
Mixe r Gate Vo ltag e Se tting O v e rrid e  
Value  
Table 47. Bit Descriptions for VGS_OVERRIDE  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings Description  
Reset Access  
RESERVED  
VGS_OVERRIDE  
Reserved.  
0x0  
0x4  
R/W  
R/W  
Mixer Gate Voltage Setting Override Value  
Address: 0x0304, Reset: 0x10, Name: DVGA_TRIM1_LP3V_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
[ 7 :5 ] RES ERV ED  
[ 4 :0 ] D V G A_T RIM _LP _3 V _CH 1 _O V ERRID E ( R/W )  
DVGA Channe l 1 Trim O v e rrid e Bits fo r  
3 .3  
V Lo w Po w e r O p e ratio n.  
Table 48. Bit Descriptions for DVGA_TRIM1_LP3V_OVERRIDE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
R
[4:0] DVGA_TRIM_LP_3V_CH1_OVERRIDE  
DVGA Channel 1 Trim Override Bits for 3.3 V Low Power  
Operation. When DVGA_5V_SEL = 0 and DVGA_HP_SEL = 0.  
0x10  
R/W  
Address: 0x0305, Reset: 0x10, Name: DVGA_TRIM1_HP3V_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
[ 7 :5 ] RES ERV ED  
[ 4 :0 ] D V G A_T RIM _H P _3 V _CH 1 _O V ERRID E ( R/W )  
DVGA Channe l 1 Trim O v e rrid e Bits fo r  
3 .3  
V Hig h Pe rfo rm anc e O p e ratio n.  
Table 49. Bit Descriptions for DVGA_TRIM1_HP3V_OVERRIDE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
R
[4:0] DVGA_TRIM_HP_3V_CH1_OVERRIDE  
DVGA Channel 1 Trim Override Bits for 3.3 V High Performance 0x10  
Operation. When DVGA_5V_SEL = 0 and DVGA_HP_SEL = 1.  
R/W  
Rev. A | Page 46 of 61  
Data Sheet  
ADRF6650  
Address: 0x0306, Reset: 0x10, Name: DVGA_TRIM1_LP5V_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
[ 7 :5 ] RES ERV ED  
[ 4 :0 ] D V G A_T RIM _LP _5 V _CH 1 _O V ERRID E ( R/W )  
DVGA Channe l 1 Trim O v e rrid e Bits fo r  
5
V Lo w Po w e r O p e ratio n.  
Table 50. Bit Descriptions for DVGA_TRIM1_LP5V_OVERRIDE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
R
[4:0] DVGA_TRIM_LP_5V_CH1_OVERRIDE  
DVGA Channel 1 Trim Override Bits for 5 V Low Power  
0x10  
R/W  
Operation. When DVGA_5V_SEL = 1 and DVGA_HP_SEL = 0.  
Address: 0x0307, Reset: 0x10, Name: DVGA_TRIM1_HP5V_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
[ 7 :5 ] RES ERV ED  
[ 4 :0 ] D V G A_T RIM _H P _5 V _CH 1 _O V ERRID E ( R/W )  
DVGA Channe l 1 Trim O v e rrid e Bits fo r  
5
V Hig h Pe rfo rm anc e O p e ratio n.  
Table 51. Bit Descriptions for DVGA_TRIM1_HP5V_OVERRIDE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
R
[4:0] DVGA_TRIM_HP_5V_CH1_OVERRIDE  
DVGA Channel 1 Trim Override Bits for 5 V High Performance  
Operation. When DVGA_5V_SEL = 1 and DVGA_HP_SEL = 1  
0x10  
R/W  
Address: 0x0308, Reset: 0x10, Name: DVGA_TRIM2_LP3V_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
[ 7 :5 ] RES ERV ED  
[ 4 :0 ] D V G A_T RIM _LP _3 V _CH 2 _O V ERRID E ( R/W )  
DVGA Channe l 2 Trim O v e rrid e Bits fo r  
3 .3  
V Lo w Po w e r O p e ratio n.  
Table 52. Bit Descriptions for DVGA_TRIM2_LP3V_OVERRIDE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
R
[4:0] DVGA_TRIM_LP_3V_CH2_OVERRIDE  
DVGA Channel 2 Trim Override Bits for 3.3 V Low Power  
Operation. When DVGA_5V_SEL = 0 and DVGA_HP_SEL = 0.  
0x10  
R/W  
Address: 0x0309, Reset: 0x10, Name: DVGA_TRIM2_HP3V_OVERRIDE  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
0
0
[ 7 :5 ] RES ERV ED  
[ 4 :0 ] D V G A_T RIM _H P _3 V _CH 2 _O V ERRID E ( R/W )  
DVGA Channe l 2 Trim O v e rrid e Bits fo r  
3 .3  
V Hig h Pe rfo rm anc e O p e ratio n.  
Table 53. Bit Descriptions for DVGA_TRIM2_HP3V_OVERRIDE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
R
[4:0] DVGA_TRIM_HP_3V_CH2_OVERRIDE  
DVGA Channel 2 Trim Override Bits for 3.3 V High Performance 0x10  
Operation. When DVGA_5V_SEL = 0 and DVGA_HP_SEL = 1.  
R/W  
Rev. A | Page 47 of 61  
ADRF6650  
Data Sheet  
Address: 0x0310, Reset: 0x00, Name: OVERRIDE_SELECT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 0 ] LPF_T RIM _O VERRIDE_SEL ( R/W )  
LPF Override Select Bit; 1 = SPI value  
[ 5] DVGA_T RIM _CH2_O VERRIDE_SEL ( R/W )  
DVGA Trim Channel 2 Override Select  
Bit; 1 = SPI value  
[ 1] IFM AIN_T RIM _O VERRIDE_SEL ( R/W )  
IF Main Amplifier Trim Override Select  
Bit; 1 = SPI value  
[ 4 ] DVGA_T RIM _CH1_O VERRIDE_SEL ( R/W )  
DVGA Trim Channel 1 Override Select  
Bit; 1 = SPI value  
[ 2] IFLIN_T RIM _O VERRIDE_SEL ( R/W )  
IF Amplifier Linearizer Override Select  
Bit; 1 = SPI value  
[ 3] VGS_O VERRIDE_SEL ( R/W )  
Mixer Gate Voltage Override Select.  
Bit; 1 = SPI value  
Table 56. Bit Descriptions for OVERRIDE_SELECT  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[7:6] RESERVED  
Reserved.  
5
4
3
2
1
0
DVGA_TRIM_CH2_OVERRIDE_SEL  
DVGA_TRIM_CH1_OVERRIDE_SEL  
VGS_OVERRIDE_SEL  
IFLIN_TRIM_OVERRIDE_SEL  
IFMAIN_TRIM_OVERRIDE_SEL  
LPF_TRIM_OVERRIDE_SEL  
DVGA Trim Channel 2 Override Select Bit; 1 = SPI value  
DVGA Trim Channel 1 Override Select Bit; 1 = SPI value  
Mixer Gate Voltage Override Select. Bit; 1 = SPI value  
IF Amplifier Linearizer Override Select Bit; 1 = SPI value  
IF Main Amplifier Trim Override Select Bit; 1 = SPI value  
LPF Override Select Bit; 1 = SPI value  
Address: 0x1021, Reset: 0xFF, Name: BLOCK_RESETS  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
[ 7 ] RESERVED  
[ 0 ] ARST B_BLO CK_DSM ALL ( R/W )  
RSTB - DSM Reference Counters, Core,  
Output Stage (+ NDIV)  
[ 6 ] ARST B_BLO CK_LKD ( R/W )  
RSTB - Lock detect  
[ 1] ARST B_BLO CK_DSM CO RE ( R/W )  
RSTB - DSM Core and Output Stage  
(+ NDIV)  
[ 5] ARST B_BLO CK_AUT O CAL ( R/W )  
RSTB - Autocalibration of FSM/Counters  
[ 4 ] ARST B_BLO CK_NDIV ( R/W )  
RSTB - NDIV  
[ 2] ARST B_BLO CK_DSM O ST G ( R/W )  
RSTB - DSM Output Stage (and NDIV)  
[ 3] ARST B_BLO CK_RDIV ( R/W )  
RSTB - Reference Divider  
Table 57. Bit Descriptions for BLOCK_RESETS  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
RESERVED  
Reserved.  
RSTB - Lock detect  
RSTB - Autocalibration of FSM/Counters  
RSTB - NDIV  
RSTB - Reference Divider  
RSTB - DSM Output Stage (and NDIV)  
RSTB - DSM Core and Output Stage (+NDIV)  
RSTB - DSM Reference Counters, Core, Output Stage (+NDIV)  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
ARSTB_BLOCK_LKD  
ARSTB_BLOCK_AUTOCAL  
ARSTB_BLOCK_NDIV  
ARSTB_BLOCK_RDIV  
ARSTB_BLOCK_DSMOSTG  
ARSTB_BLOCK_DSMCORE  
ARSTB_BLOCK_DSMALL  
Rev. A | Page 48 of 61  
Data Sheet  
ADRF6650  
Address: 0x1032, Reset: 0x02, Name: GPO1_CONTROL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[ 7 ] RESERVED  
[ 0 ] GPO 1_ENABLE ( R/W )  
Enable the GPO1 Output  
[ 6 :3] GPO 1_BLK_SEL ( R/W )  
Select Which Block to Take the Signal  
from  
[ 2:1] RESERVED  
Table 58. Bit Descriptions for GPO1_CONTROL  
Bits  
7
Bit Name  
RESERVED  
Settings  
Description  
Reserved.  
Reset  
0x0  
Access  
R/W  
[6:3]  
[2:1]  
0
GPO1_BLK_SEL  
RESERVED  
GPO1_ENABLE  
Select Which Block to Take the Signal from  
Reserved.  
Enable the GPO1 Output  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
Address: 0x1033, Reset: 0x00, Name: GPO1_SELECT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] GPO 1_SGNL_SEL ( R/W )  
Selection of Which Signal to Output  
from the Selected Block  
Table 59. Bit Descriptions for GPO1_SELECT  
Bits  
[7:0]  
Bit Name  
GPO1_SGNL_SEL  
Settings  
Description  
Reset  
0x0  
Access  
R/W  
Selection of Which Signal to Output from the Selected Block  
Address: 0x1109, Reset: 0x0A, Name: SIG_PATH_9_NORMAL  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
1
0
[7:5] RESERVED  
[0] RESERVED  
[4:3] TRM_MIXLODRV_DRV_POUT (R/W)  
[2:1] TRM_XLODRV_DRV_POUT (R/W)  
Table 60. Bit Descriptions for SIG_PATH_9_NORMAL  
Bits  
[7:5]  
[4:3]  
[2:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
0x1  
0x1  
0x0  
Access  
R
R/W  
R/W  
R
RESERVED  
Reserved  
TRM_MIXLODRV_DRV_POUT  
TRM_XLODRV_DRV_POUT  
RESERVED  
LO Output to Mixer Power Level  
Auxiliary LO output Power Level  
Reserved  
Address: 0x1200, Reset: 0x89, Name: INT_L  
7
6
5
4
3
2
1
0
1
0
0
0
1
0
0
1
[ 7 :0 ] INT _DIV[ 7 :0 ] ( R/W )  
Integer-N Word, Optionally Double Buffered.  
Table 61. Bit Descriptions for INT_L  
Bits  
Bit Name  
Settings  
Description  
Reset Access  
[7:0]  
INT_DIV[7:0]  
Integer-N Word, Optionally Double Buffered. Writing the LSB of  
the integer word normally causes an autotune event.  
0x189 R/W  
Rev. A | Page 49 of 61  
ADRF6650  
Data Sheet  
Address: 0x1201, Reset: 0x01, Name: INT_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[ 7 :0 ] INT _DIV[ 15:8 ] ( R/W )  
Integer-N Word, Optionally Double Buffered.  
Table 62. Bit Descriptions for INT_H  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] INT_DIV[15:8]  
Integer-N Word, Optionally Double Buffered. Writing the LSB of the integer word  
normally causes an autotune event.  
0x189 R/W  
Address: 0x1202, Reset: 0x00, Name: FRAC1_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC[ 7 :0 ] ( R/W )  
Fractional N Word, Optionally Double  
Buffered  
Table 63. Bit Descriptions for FRAC1_L  
Bits  
Bit Name  
Settings  
Description  
Fractional-N Word, Optionally Double Buffered. Lower 8 bits of 24-bit FRAC value.  
Reset Access  
[7:0] FRAC[7:0]  
0x0  
R/W  
Address: 0x1203, Reset: 0x00, Name: FRAC1_M  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC[ 15:8 ] ( R/W )  
Fractional N Word, Optionally Double  
Buffered  
Table 64. Bit Descriptions for FRAC1_M  
Bits Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0] FRAC[15:8]  
Fractional-N Word, Optionally Double Buffered. Lower 8 bits of 24-bit FRAC value.  
Address: 0x1204, Reset: 0x00, Name: FRAC1_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC[ 23:16 ] ( R/W )  
Fractional N Word, Optionally Double  
Buffered  
Table 65. Bit Descriptions for FRAC1_H  
Bits Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0] FRAC[23:16]  
Fractional-N Word, Optionally Double Buffered. Lower 8 bits of 24-bit FRAC value.  
Rev. A | Page 50 of 61  
Data Sheet  
ADRF6650  
Address: 0x1205, Reset: 0x00, Name: SD_PHASE_L_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE[7:0] (R/W)  
Sigma-Delta Phase Word  
Table 66. Bit Descriptions for SD_PHASE_L_0  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] PHASE[7:0]  
Sigma-Delta Phase Word. Lower bits. If phase adjust mode is enabled (PHASE_ADJ_EN = 0x0  
1), the phase in the DSM is incremented by this amount on each phase adjustment  
trigger. The phase adjustment trigger can be caused from SPI, via a write to the LSB of  
this register (provided DISABLE_PHASEADJ = 0), or from the GPI port. The value is  
represented as an unsigned 24-bit fractional-Number, in units of VCO cycles. It therefore  
has a resolution of 21 µ°. For example, to adjust the phase by 5° of the fundamental VCO,  
program this word to (5°/360°) × 224 = 233,017. This process can be done repetitively to  
effectively recede by multiple VCO cycles, or to embed the PLL itself inside phase or  
frequency control loops under some other supervisory control. The phase adjust feature  
must not be done any faster than once every 5 PFD cycles, and by no more than 180° on  
any individual adjustment.  
R/W  
Address: 0x1206, Reset: 0x00, Name: SD_PHASE_M_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE[15:8] (R/W)  
Sigma-Delta Phase Word  
Table 67. Bit Descriptions for SD_PHASE_M_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE[15:8]  
Sigma-Delta Phase Word. Middle bits. See description for SD_PHASE_L_0.  
0x0  
R/W  
Address: 0x1207, Reset: 0x00, Name: SD_PHASE_H_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE[23:16] (R/W)  
Sigma-Delta Phase Word  
Table 68. Bit Descriptions for SD_PHASE_H_0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE[23:16]  
Sigma-Delta Phase Word. Upper bits. See description for SD_PHASE_L_0.  
0x0  
R/W  
Address: 0x1208, Reset: 0x00, Name: MOD_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] M O D2[ 7 :0 ][ 7 :0 ] ( R/W )  
MOD2 word.  
Table 69. Bit Descriptions for MOD_L  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
MOD2[7:0][7:0]  
MOD2 word. Upper bits.  
0x0  
R/W  
Address: 0x1209, Reset: 0x00, Name: MOD_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 5:0 ] M O D2[ 7 :0 ][ 13:8 ] ( R/W )  
MOD2 word.  
Table 70. Bit Descriptions for MOD_H  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reset Access  
RESERVED  
MOD2[7:0][13:8]  
Reserved  
MOD2 word. Upper bits.  
0x0  
0x0  
R
R/W  
Rev. A | Page 51 of 61  
ADRF6650  
Data Sheet  
Address: 0x120B, Reset: 0x01, Name: SYNTH  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[ 7 :2] RESERVED  
[ 0 ] EN_FBDIV ( R/W )  
Enable Feedback Divider  
[ 1] PRE_SEL ( R/W )  
Prescaler Select  
0: Disable 2x Prescaler.  
1: Enable 2x Prescaler.  
Table 71. Bit Descriptions for SYNTH  
Bits  
[7:2]  
1
Bit Name  
RESERVED  
PRE_SEL  
Settings  
Description  
Reset  
0x0  
Access  
R
Reserved.  
Prescaler Select  
Disable 2x Prescaler.  
Enable 2x Prescaler.  
0x0  
R/W  
0
1
0
EN_FBDIV  
Enable Feedback Divider  
0x1  
R/W  
Address: 0x120C, Reset: 0x03, Name: R_DIV  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7] RESERVED  
[6:0] R_DIV (R/W)  
R Divider Word  
Table 72. Bit Descriptions for R_DIV  
Bits  
7
[6:0]  
Bit Name  
RESERVED  
R_DIV  
Settings  
Description  
Reserved.  
R Divider Word. Lower 8 bits of 10-bit reference R divider word.  
Reset  
Access  
R
R/W  
0x0  
0x3  
Address: 0x120E, Reset: 0x04, Name: SYNTH_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7:4] RESERVED  
[0] RDIV2_SEL (R/W)  
Reference Divide by 2  
0: Reference Divide by 2 Disabled.  
1: Reference Divide by 2 Enabled.  
[3] DOUBLER_EN (R/W)  
Reference Doubler enable - Optionally  
double-buffered  
[2:1] RESERVED  
Table 73. Bit Descriptions for SYNTH_0  
Bits  
[7:4]  
3
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
RESERVED  
DOUBLER_EN  
RESERVED  
RDIV2_SEL  
Reserved  
Reference Doubler Enable, Optionally Double-Buffered  
Reserved  
0x0  
R/W  
R/W  
R/W  
[2:1]  
0
0x2  
Reference Divide by 2  
0x0  
0
1
Reference Divide by 2 Disabled  
Reference Divide by 2 Enabled  
Rev. A | Page 52 of 61  
Data Sheet  
ADRF6650  
Address: 0x1214, Reset: 0x48, Name: MULTI_FUNC_SYNTH_CTRL_0214  
7
6
5
4
3
2
1
0
0
1
0
0
1
0
0
0
[7:6] LD_BIAS (R/W)  
Lock Detect Bias  
00: 40uA.  
[2:0] RESERVED  
01: 30uA.  
10: 20uA.  
11: 10uA.  
[5:3] LDP (R/W)  
Lock Detect Precision  
000: Check 1024 Consecutive PFD Cycles  
for Lock.  
001: Check 2048 Consecutive PFD Cycles.  
010: Check 4096 Consecutive PFD Cycles.  
011: Check 8192 Consecutive PFD Cycles.  
Table 74. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_0214  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
LD_BIAS  
Lock Detect Bias  
0x1  
R/W  
00 40 µA  
01 30 µA  
10 20 µA  
11 10 µA  
[5:3]  
LDP  
Lock Detect Precision  
0x1  
0x0  
R/W  
R/W  
000 Check 1024 Consecutive PFD Cycles for Lock  
001 Check 2048 Consecutive PFD Cycles  
010 Check 4096 Consecutive PFD Cycles  
011 Check 8192 Consecutive PFD Cycles  
Reserved  
[2:0]  
RESERVED  
Address: 0x1217, Reset: 0x00, Name: SI_VCO_SEL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :4 ] RESERVED  
[ 3:0 ] SI_VCO _SEL ( R/W )  
Manual VCO Core Select  
Table 75. Bit Descriptions for SI_VCO_SEL  
Bits  
[7:4]  
[3:0]  
Bit Name  
RESERVED  
SI_VCO_SEL  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
R
R/W  
Reserved  
Manual VCO Core Select  
Address: 0x121F, Reset: 0x00, Name: VCO_FSM  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESERVED  
[5:0] RESERVED  
[6] DISABLE_CAL (R/W)  
Disable VCO ALC and AFC Calibration  
0: Power Down Synth.  
1: Power Up Synth.  
Table 76. Bit Descriptions for VCO_FSM  
Bits Bit Name Settings Description  
Reserved.  
Reset Access  
7
6
RESERVED  
0x0  
R
DISABLE_CAL  
Disable VCO ALC and AFC Calibration. The PLL does not reset the calibration machine, 0x0  
or trigger a new calibration if set to 1 on a frequency hop to maintain ALC and  
capacitor positions.  
R/W  
0
1
Power Down Synth.  
Power Up Synth.  
[5:0] RESERVED  
Reserved.  
0x0  
R/W  
Rev. A | Page 53 of 61  
ADRF6650  
Data Sheet  
Address: 0x122A, Reset: 0x02, Name: SD_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[7:6] RESERVED  
[0] RESERVED  
[5] SD_EN_FRAC0 (R/W)  
[1] SD_SM_2 (R/W)  
Sigma Delta Enable with FRAC = 0  
Loss of Lock Enabled  
[4] SD_EN_OUT_OFF (R/W)  
[3:2] RESERVED  
Sigma Delta Enable, Output off  
Table 77. Bit Descriptions for SD_CTRL  
Bits Bit Name  
Settings Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
5
SD_EN_FRAC0  
Sigma-Delta Enable with FRAC = 0. The DSM normally recognizes a FRAC value of  
all 0, and disables itself. Setting this mode can keep the DSM running even when  
a zero fractional is presented.  
4
SD_EN_OUT_OFF  
Sigma-Delta Enable, Output Off. Keeps the DSM core enabled and clocking, but  
ignores the output of the DSM and instead muxes the N divider setpoint from the  
double-buffer data directly.  
0x0  
R/W  
[3:2] RESERVED  
Reserved.  
0x0  
0x1  
0x0  
R
R/W  
R/W  
1
0
SD_SM_2  
RESERVED  
Loss of Lock Enabled. Enables the CSP/LOL circuit. Recommend reserved 1.  
Reserved.  
Address: 0x122C, Reset: 0x03, Name: MULTI_FUNC_SYNTH_CTRL_022C  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7:2] RESERVED  
[1:0] CP_HIZ (R/W)  
Charge Pump Tristate  
0: Charge Pump Tristate Mode 0.  
1: Charge Pump Tristate Mode 1.  
2: Charge Pump Tristate Mode 2.  
3: Charge Pump Tristate Mode 3.  
Table 78. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022C  
Bits  
[7:2]  
[1:0]  
Bit Name  
RESERVED  
CP_HIZ  
Settings  
Description  
Reset  
0x0  
Access  
R
Reserved  
Charge Pump Tristate  
Charge Pump Tristate Mode 0  
Charge Pump Tristate Mode 1  
Charge Pump Tristate Mode 2  
Charge Pump Tristate Mode 3  
0x3  
R/W  
0
1
2
3
Address: 0x122D, Reset: 0x81, Name: MULTI_FUNC_SYNTH_CTRL_022D  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
1
[7] EN_PFD_CP (R/W)  
[0] BLEED_EN (R/W)  
Enable Phase Detector and Charge  
Pump  
Bleed Enable  
[1] RESERVED  
[6] BLEED_POL (R/W)  
Selects the Bleed Polarity  
[2] INT_ABP (R/W)  
Integer-N ABP Select  
[5:3] RESERVED  
Table 79. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022D  
Bits  
Bit Name  
EN_PFD_CP  
BLEED_POL  
RESERVED  
INT_ABP  
Settings  
Description  
Reset  
0x1  
0x0  
0x0  
0x0  
0x0  
0x1  
Access  
R/W  
R/W  
R
R/W  
R
7
6
[5:3]  
2
1
Enable Phase Detector and Charge Pump.  
Selects the Bleed Polarity.  
Reserved.  
Integer-N ABP Select. Shortens the reset delay of the PFD by 4 inverters.  
Reserved.  
RESERVED  
BLEED_EN  
0
Bleed Enable.  
R/W  
Rev. A | Page 54 of 61  
Data Sheet  
ADRF6650  
Address: 0x122E, Reset: 0x0F, Name: CP_CURR  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
1
1
[7:4] RESERVED  
[3:0] CP_CURRENT (R/W)  
Main Charge Pump Current  
Table 80. Bit Descriptions for CP_CURR  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
Access  
R
R/W  
RESERVED  
CP_CURRENT  
Reserved  
Main Charge Pump Current  
0x0  
0xF  
Address: 0x122F, Reset: 0x08, Name: BICP  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
[7:0] BICP (R/W)  
Binary Scaled Bleed Current  
Table 81. Bit Descriptions for BICP  
Bits  
Bit Name  
Settings  
Description  
Binary Scaled Bleed Current  
Reset  
Access  
[7:0]  
BICP  
0x8  
R/W  
Address: 0x1233, Reset: 0x00, Name: FRAC2_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC2[ 7 :0 ] ( R/W )  
FRAC2 Word for Exact Frequency Mode,  
Optionally Double buffered  
Table 82. Bit Descriptions for FRAC2_L  
Bits  
Bit Name  
Settings Description  
FRAC2 Word for Exact Frequency Mode, Optionally Double Buffered  
Reset  
Access  
[7:0]  
FRAC2[7:0]  
0x0  
R/W  
Address: 0x1234, Reset: 0x00, Name: FRAC2_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 5:0 ] FRAC2[ 13:8 ] ( R/W )  
FRAC2 Word for Exact Frequency Mode,  
Optionally Double buffered  
Table 83. Bit Descriptions for FRAC2_H  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reserved.  
FRAC2 Word for Exact Frequency Mode, Optionally Double Buffered  
Reset  
0x0  
0x0  
Access  
R
R/W  
RESERVED  
FRAC2[13:8]  
Address: 0x1235, Reset: 0x00, Name: MULTI_FUNC_SYNTH_CTRL_0235  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] RESERVED  
[0] RESERVED  
[1] PHASE_ADJ_EN (R/W)  
DSM Phase Adjust Enable  
Table 84. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_0235  
Bits Bit Name  
Settings Description  
Reset Access  
[7:2] RESERVED  
Reserved.  
0x0  
0x0  
R
1
PHASE_ADJ_EN  
DSM Phase Adjust Enable. If set to 1, a phase adjust trigger causes a phase shift in  
the delta-sigma by the amount programmed in the phase word. The phase trigger  
is either caused by a write to the LSB of the phase word or through a GPI trigger.  
R/W  
0
RESERVED  
Reserved.  
0x0  
R
Rev. A | Page 55 of 61  
ADRF6650  
Data Sheet  
Address: 0x1240, Reset: 0x00, Name: VCO_LUT_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :5] RESERVED  
[ 0 ] SI_VCO _FO RCE_CAPS ( R/W )  
Force the SPI to Select the VCO Capacitor  
[ 4 ] SI_VCO _FO RCE_CAPSVCO I ( R/W )  
Manual VCO Capacitor Select  
[ 1] SI_VCO _FO RCE_VCO ( R/W )  
Force the VCO Select  
[ 3:2] RESERVED  
Table 85. Bit Descriptions for VCO_LUT_CTRL  
Bits  
[7:5]  
4
[3:2]  
1
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
R
R/W  
R/W  
R/W  
R/W  
RESERVED  
SI_VCO_FORCE_CAPSVCOI  
RESERVED  
SI_VCO_FORCE_VCO  
SI_VCO_FORCE_CAPS  
Reserved  
Manual VCO Capacitor Select  
Reserved  
Force the VCO Select  
Force the SPI to Select the VCO Capacitor  
0
0x0  
Address: 0x124D, Reset: 0x00, Name: LOCK_DETECT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] LOCK_DETECT (R)  
State of the Lock Detect Signal  
Table 86. Bit Descriptions for LOCK_DETECT  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RESERVED  
LOCK_DETECT  
Reserved  
State of the Lock Detect Signal  
R
R
Address: 0x1401, Reset: 0x00, Name: MULTI_FUNC_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :5] RESERVED  
[ 3:0 ] RESERVED  
[ 4 ] SPI_1P8 _3P3_CT RL ( R/W )  
SPI Supply Control  
0: 1.8 V Read Back.  
1: 3.3 V Read Back.  
Table 87. Bit Descriptions for MULTI_FUNC_CTRL  
Bits  
[7:5]  
4
Bit Name  
Settings  
Description  
Reset  
Access  
R
RESERVED  
Reserved  
0x0  
0x0  
SPI_1P8_3P3_CTRL  
SPI Supply Control  
1.8 V Read Back  
3.3 V Read Back  
Reserved  
R/W  
0
1
[3:0]  
RESERVED  
0x0  
R
Address: 0x140E, Reset: 0xB3, Name: LO_CNTRL2  
7
6
5
4
3
2
1
0
1
0
1
1
0
0
1
1
[7] EN_BIAS_R (R/W)  
[4:0] RESERVED  
Enable the Resistor Bias  
[5] REFBUF_EN (R/W)  
[6] RESERVED  
Reference Buffer Enable  
Table 88. Bit Descriptions for LO_CNTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
EN_BIAS_R  
Enable the Resistor Bias. Selects the resistor bias  
instead of bandgap-based bias for the LO path.  
0x1  
R/W  
6
5
[4:0]  
RESERVED  
REFBUF_EN  
RESERVED  
Reserved.  
Reference Buffer Enable.  
Reserved.  
0x0  
0x1  
0x13  
R/W  
R/W  
R/W  
Rev. A | Page 56 of 61  
Data Sheet  
ADRF6650  
Address: 0x1414, Reset: 0x02, Name: LO_CNTRL8  
Recommended register for use to control the LO path from a single spot. By programming this register, all of the individual block enables  
and configuration bits are set appropriately.  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[7] MIX_OE (R/W)  
Mix Output Enable  
[4:0] OUT_DIVRATIO (R/W)  
Output Path Div Ratio  
1: /1.  
[6] LO_OE (R/W)  
LO PAth Output Enable  
10: /2.  
100: /4.  
1000: /8.  
10000: /16.  
[5] USEEXT_LOI (R/W)  
Use External LO Path  
Table 89. Bit Descriptions for LO_CNTRL8  
Bits Bit Name Settings Description  
Reset Access  
7
6
5
MIX_OE  
Mix Output Enable. When disabled (MIX_OE = 0), MUTE = 1, or DIVRATIO = 0, the  
mute depth is selected via GEN_MUTE_DEPTH. Note that the mute depth may be  
artificially restricted if the other output path is still enabled and relies on a shared  
branch of the LO chain.  
0x0  
R/W  
LO_OE  
LO Path Output Enable. When disabled (LO_OE = 0), MUTE = 1, or DIVRATIO = 0, the  
mute depth is selected via GEN_MUTE_DEPTH. Note that the mute depth may be  
artificially restricted if the other output path is still enabled and relies on a shared  
branch of the LO chain.  
0x0  
R/W  
USEEXT_LOI  
Use External LO Path.  
0x0  
0x2  
R/W  
R/W  
[4:0] OUT_DIVRATIO  
Output Path Divide Ratio. Sets the divide ratio from the fundamental VCOs or  
external input path to the output paths. Nominally, the internal VCO range is 4 GHz  
to 8 GHz. 0 = mute.  
1
/1.  
10 /2.  
100 /4.  
1000 /8.  
10000 /16.  
Address: 0x1541, Reset: 0x00, Name: FRAC2_L_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC2_SLV[ 7 :0 ] ( R)  
FRAC2 Word Double Buffered Value  
Table 90. Bit Descriptions for FRAC2_L_SLAVE  
Bits  
Bit Name  
Settings  
Description  
FRAC2 Word Double Buffered Value  
Reset  
Access  
[7:0]  
FRAC2_SLV[7:0]  
0x0  
R
Address: 0x1542, Reset: 0x00, Name: FRAC2_H_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 5:0 ] FRAC2_SLV[ 13:8 ] ( R)  
FRAC2 Word Double Buffered Value  
Table 91. Bit Descriptions for FRAC2_H_SLAVE  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
Access  
RESERVED  
FRAC2_SLV[13:8]  
Reserved  
FRAC2 Word Double Buffered Value  
R
R
Rev. A | Page 57 of 61  
ADRF6650  
Data Sheet  
Address: 0x1543, Reset: 0x00, Name: FRAC_L_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC_SLV[ 7 :0 ] ( R)  
Fractional-N Word Double Buffered Value  
Table 92. Bit Descriptions for FRAC_L_SLAVE  
Bits Bit Name Settings Description  
[7:0] FRAC_SLV[7:0] Fractional-N Word Double Buffered Value. Lower 8 bits of 24-bit FRAC value.  
Reset Access  
0x0  
R
Address: 0x1544, Reset: 0x00, Name: FRAC_M_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC_SLV[ 15:8 ] ( R)  
Fractional-N Word Double Buffered Value  
Table 93. Bit Descriptions for FRAC_M_SLAVE  
Bits Bit Name  
Settings Description  
Reset Access  
0x0  
[7:0] FRAC_SLV[15:8]  
Fractional-N Word Double Buffered Value. Middle 8 bits of 24-bit FRAC value.  
R
Address: 0x1545, Reset: 0x00, Name: FRAC_H_SLAVE2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC_SLV[ 23:16 ] ( R)  
Fractional-N Word Double Buffered Value  
Table 94. Bit Descriptions for FRAC_H_SLAVE2  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] FRAC_SLV[23:16]  
Fractional-N Word Double Buffered Value. Higher 8 bits of 24-bit FRAC value.  
0x0  
R
Address: 0x1546, Reset: 0x00, Name: PHASE_L_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_SLV[7:0] (R)  
Sigma-Delta Phase Word  
Table 95. Bit Descriptions for PHASE_L_SLAVE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE_SLV[7:0]  
Sigma-Delta Phase Word. Lower 8 bits of 24-bit SD phase word.  
0x0  
R
Address: 0x1547, Reset: 0x00, Name: PHASE_M_SLAVE2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_SLV[15:8] (R)  
Sigma-Delta Phase Word  
Table 96. Bit Descriptions for PHASE_M_SLAVE2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE_SLV[15:8]  
Sigma-Delta Phase Word. Middle 8 bits of 24-bit SD phase word.  
0x0  
R
Address: 0x1548, Reset: 0x00, Name: PHASE_H_SLAVE3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_SLV[23:16] (R)  
Sigma-Delta Phase Word  
Table 97. Bit Descriptions for PHASE_H_SLAVE3  
Bits Bit Name Settings Description  
[7:0] PHASE_SLV[23:16]  
Reset  
Access  
Sigma-Delta Phase Word. Lower Higher 8 bits of 24-bit SD phase word.  
0x0  
R
Rev. A | Page 58 of 61  
Data Sheet  
ADRF6650  
Address: 0x1549, Reset: 0x89, Name: INT_DIV_L_SLAVE  
7
6
5
4
3
2
1
0
1
0
0
0
1
0
0
1
[7:0] INT_DIV_SLV[7:0] (R)  
Integer-N Word - Double Buffered  
Readback Value  
Table 98. Bit Descriptions for INT_DIV_L_SLAVE  
Bits Bit Name Settings Description  
[7:0] INT_DIV_SLV[7:0]  
Reset Access  
Integer-N Word, Double Buffered Readback Value. Readback data from the  
N setpoint double buffer output.  
0x189  
R
Address: 0x154A, Reset: 0x01, Name: INT_DIV_H_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] INT_DIV_SLV[15:8] (R)  
Integer-N Word - Double Buffered  
Readback Value  
Table 99. Bit Descriptions for INT_DIV_H_SLAVE  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] INT_DIV_SLV[15:8]  
Integer-N Word, Double Buffered Readback Value. Readback data from the  
N setpoint double buffer output.  
0x189  
R
Address: 0x154B, Reset: 0x03, Name: R_DIV_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7] RESERVED  
[6:0] R_DIV_SLV (R)  
R Divider Word  
Table 100. Bit Descriptions for R_DIV_SLAVE  
Bits  
Bit Name  
RESERVED  
R_DIV_SLV  
Settings  
Description  
Reset  
Access  
7
[6:0]  
Reserved.  
0x0  
0x3  
R
R
R Divider Word. Lower 8 bits of 10-bit reference R divider word.  
Address: 0x154C, Reset: 0x00, Name: RDIV2_SEL_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] RDIV2_SEL_SLV (R)  
Reference Divide by 2  
0: Reference Divide by 2 Disabled.  
1: Reference Divide by 2 Enabled.  
Table 101. Bit Descriptions for RDIV2_SEL_SLAVE  
Bits  
[7:1]  
0
Bit Name  
Settings Description  
Reset  
Access  
RESERVED  
Reserved  
0x0  
0x0  
R
R
RDIV2_SEL_SLV  
Reference Divide by 2  
0
1
Reference Divide by 2 Disabled  
Reference Divide by 2 Enabled  
Rev. A | Page 59 of 61  
ADRF6650  
Data Sheet  
Address: 0x1583, Reset: 0x00, Name: DISABLE_CFG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :5] RESERVED  
[ 0 ] DISABLE_PHASEADJ( R/W )  
Disable the Phase Adjust from the SPI  
Register  
[ 4 :3] DSM _LAUNCH_DLY ( R/W )  
Delay the DSM Clock Launch.  
[ 1] DISABLE_DBLBUFFERING ( R/W )  
If Disabled, an RDIV Write Resets R Divider  
[ 2] DISABLE_FREQ HO P ( R/W )  
Disable the Generation of Frequency  
Hop from the SPI Register  
Table 102. Bit Descriptions for DISABLE_CFG  
Bits Bit Name Settings  
Description  
Reset  
0x0  
Access  
R
[7:5] RESERVED  
Reserved.  
[4:3] DSM_LAUNCH_DLY  
Delay the DSM Clock Launch.  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
2
1
0
DISABLE_FREQHOP  
DISABLE_DBLBUFFERING  
DISABLE_PHASEADJ  
Disable the Generation of Frequency Hop from the SPI Register  
If Disabled, an RDIV Write Resets R Divider  
Disable the Phase Adjust from the SPI Register  
Rev. A | Page 60 of 61  
Data Sheet  
ADRF6650  
OUTLINE DIMENSIONS  
8.10  
8.00 SQ  
7.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
43  
56  
1
42  
0.50  
BSC  
EXPOSED  
PAD  
*
6.80  
6.70 SQ  
6.60  
29  
14  
28  
15  
0.45  
0.40  
0.35  
BOTTOM VIEW  
6.50 REF  
0.20 MIN  
TOP VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WLLD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 72. 56-Lead Lead Frame Chip Scale Package [LFCSP]  
8 mm × 8 mm Body and 0.75 mm Package Height  
(CP-56-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADRF6650ACPZ  
ADRF6650ACPZ-RL7  
ADRF6650-EVALZ  
−40°C to +105°C  
−40°C to +105°C  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-56-16  
CP-56-16  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14813-0-11/19(A)  
Rev. A | Page 61 of 61  
 
 

相关型号:

ADRF6650ACPZ-RL7

RF and Baseband Circuit, BICMOS
ADI

ADRF6655

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6655-EVALZ

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6655ACPZ-R7

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
ADI

ADRF6658

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ-RL7

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6701

2050 MHz to 3000 MHz Quadrature Modulator
ADI

ADRF6701-EVALZ

400 MHz to 1250 MHz Quadrature Modulator
ADI

ADRF6701ACPZ

RF/Microwave Modulator/Demodulator, 750 MHz - 1160 MHz RF/MICROWAVE I/Q MODULATOR, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP_VQ, CP-40-1, 40 PIN
ADI

ADRF6701ACPZ-R7

400 MHz to 1250 MHz Quadrature Modulator
ADI

ADRF6702

2050 MHz to 3000 MHz Quadrature Modulator
ADI