ADRF6720-EVALZ [ADI]

Wideband Quadrature Modulator with Integrated Fractional-N PLL and VCOs;
ADRF6720-EVALZ
型号: ADRF6720-EVALZ
厂家: ADI    ADI
描述:

Wideband Quadrature Modulator with Integrated Fractional-N PLL and VCOs

文件: 总44页 (文件大小:3418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband Quadrature Modulator with  
Integrated Fractional-N PLL and VCOs  
Data Sheet  
ADRF6720  
FEATURES  
GENERAL DESCRIPTION  
I/Q modulator with integrated fractional-N PLL  
RF output frequency range: 700 MHz to 3000 MHz  
Internal LO frequency range: 356.25 MHz to 2855 MHz  
Output P1dB: 12.2 dBm at 2140 MHz  
The ADRF6720 is a wideband quadrature modulator with an  
integrated synthesizer ideally suited for 3G and 4G  
communication systems. The ADRF6720 consists of a high  
linearity broadband modulator, an integrated fractional-N  
phase-locked loop (PLL), and four low phase noise multicore  
voltage controlled oscillators (VCOs).  
Output IP3: 32.6 dBm at 2140 MHz  
Carrier feedthrough: −40.3 dBm at 2140 MHz  
Sideband suppression: −37.6 dBc at 2140 MHz  
Noise floor: −157.9 dBm/Hz at 2140 MHz  
Baseband 1 dB modulation bandwidth: >1000 MHz  
Baseband input bias level: 0.5 V  
Power supply: 3.3 V/425 mA  
Integrated RF tunable balun allowing single-ended RF output  
Multicore integrated VCOs  
HD3/IP3 optimization  
Sideband suppression and carrier feedthrough optimization  
High-side/low-side LO injection  
Programmable via 3-wire serial port interface (SPI)  
40-lead 6 mm × 6 mm LFCSP  
The ADRF6720 local oscillator (LO) signal can be generated  
internally via the on-chip integer-N and fractional-N  
synthesizers, or externally via a high frequency, low phase noise  
LO signal. The internal integrated synthesizer enables LO  
coverage from 356.25 MHz to 2855 MHz using the multicore  
VCOs. In the case of internal LO generation or external LO  
input, quadrature signals are generated with a divide-by-2 phase  
splitter. When the ADRF6720 is operated with an external 1 ×  
LO input, a polyphase filter generates the quadrature inputs to  
the mixer.  
The ADRF6720 offers digital programmability for carrier  
feedthrough optimization, sideband suppression, HD3/IP3  
optimization, and high-side or low-side LO injection.  
APPLICATIONS  
2G/3G/4G/LTE broadband communication systems  
Microwave point-to-point radios  
Satellite modems  
Military/aerospace  
Instrumentation  
The ADRF6720 is fabricated using an advanced silicon-  
germanium BiCMOS process. It is available in a 40-lead,  
RoHS-compliant, 6 mm × 6 mm LFCSP package with an  
exposed pad. Performance is specified over the −40°C to +85°C  
temperature range.  
FUNCTIONAL BLOCK DIAGRAM  
VPOSx  
40  
35  
30  
26  
22  
17  
11  
6
I+  
I–  
3
4
27  
24  
ENBL  
ADRF6720  
V TO I  
PHASE  
CORRECTION  
LO NULLING  
DAC  
RFOUT  
LO NULLING  
DAC  
PHASE  
CORRECTION  
8
Q–  
Q+  
V TO I  
PLL  
18  
19  
LOOUT+  
LOOUT–  
9
39  
36  
REFIN  
CP  
QUAD  
DIVIDER  
32  
VTUNE  
LOIN–  
LOIN+  
33  
34  
15  
14  
13  
CS  
SERIAL  
PORT  
INTERFACE  
POLYPHASE  
FILTER  
LDO  
2.5V  
LDO  
VCO  
SCLK  
SDIO  
2
5
7 10 16 20 23 25 29 37 38  
12  
31  
28  
DECL1 DECL2  
DECL3  
GND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF6720  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Baseband Inputs ......................................................................... 24  
LO Input ...................................................................................... 24  
Loop Filter................................................................................... 24  
RF Output.................................................................................... 24  
Applications Information .............................................................. 25  
DAC-to-I/Q Modulator Interfacing......................................... 25  
Baseband Bandwidth ................................................................. 25  
Carrier Feedthrough Nulling.................................................... 26  
Sideband Suppression Optimization ....................................... 26  
Linearity....................................................................................... 27  
LO Amplitude and Common Mode Voltage.......................... 27  
Layout........................................................................................... 27  
Characterization Setups................................................................. 29  
Register Map ................................................................................... 31  
Register Details ............................................................................... 32  
Outline Dimensions ....................................................................... 42  
Ordering Guide .......................................................................... 42  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 18  
LO Generation Block.................................................................. 18  
Baseband...................................................................................... 21  
Active Mixers .............................................................................. 21  
Serial Port Interface.................................................................... 22  
Basic Connections for Operation................................................. 23  
Power Supply and Grounding................................................... 23  
REVISION HISTORY  
4/14—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
Data Sheet  
ADRF6720  
SPECIFICATIONS  
VPOSx = 3.3 V, TA = 25°C; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a 500 mV dc bias, unless  
otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
OPERATING FREQUENCY  
RANGE  
RF output range  
700  
3000 MHz  
Internal LO range  
External LO range  
356.25  
700  
2855 MHz  
3000 MHz  
RF OUTPUT = 940 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
Third Harmonic  
Baseband VIQ = 1 V p-p differential  
5.8  
1.82  
13.1  
−44.0  
−47.1  
−0.15  
−0.01  
−66.1  
−60.6  
66.4  
dBm  
dB  
dBm  
dBm  
dBc  
Degrees  
dB  
dBc  
dBc  
dBm  
POUT − P(fLO (2 × fBB))  
POUT − P(fLO (3 × fBB))  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
Output IP2  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset  
36.2  
dBm  
−157.6  
−157.3  
dBm/Hz  
dBm/Hz  
I/Q input with 500 mV dc bias and −10 dBm RF output, 20 MHz carrier  
offset  
RF OUTPUT = 1900 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
Third Harmonic  
Baseband VIQ = 1 V p-p differential  
5.6  
1.62  
13.1  
−39.2  
−41.2  
1.15  
−0.0175  
−66.2  
−57.2  
62.2  
dBm  
dB  
dBm  
dBm  
dBc  
Degrees  
dB  
dBc  
POUT − P(fLO (2 × fBB))  
POUT − P(fLO (3 × fBB))  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
dBc  
dBm  
Output IP2  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset  
35.7  
dBm  
−158.8  
−158.1  
dBm/Hz  
dBm/Hz  
I/Q input with 500 mV dc bias and −10 dBm RF output, 20 MHz carrier  
offset  
RF OUTPUT = 2140 MHz  
Output Power, POUT  
Modulator Voltage Gain  
Output P1dB  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
Third Harmonic  
Baseband VIQ = 1 V p-p differential  
5
1.12  
12.2  
−40.3  
−37.6  
−1.15  
−0.022  
−57.9  
−58.1  
dBm  
dB  
dBm  
dBm  
dBc  
Degrees  
dB  
dBc  
POUT − P(fLO (2 × fBB))  
POUT − P(fLO (3 × fBB))  
dBc  
Rev. 0 | Page 3 of 44  
 
ADRF6720  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
Output IP2  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
57.7  
dBm  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset  
32.6  
dBm  
−157.9  
−156.3  
dBm/Hz  
dBm/Hz  
I/Q input with 500 mV dc bias and −10 dBm RF output, 20 MHz carrier  
offset  
RF OUTPUT = 2300 MHz  
Output Power, POUT  
Modulator Voltage  
Gain  
Baseband VIQ = 1 V p-p differential  
4.6  
0.62  
dBm  
dB  
Output P1dB  
11.8  
dBm  
dBm  
dBc  
Degrees  
dB  
dBc  
dBc  
dBm  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
Third Harmonic  
−37.6  
−36.6  
−1.5  
−0.0285  
−54.8  
−56.6  
57.6  
POUT − P(fLO (2 × fBB))  
POUT − P(fLO (3 × fBB))  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
Output IP2  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset  
30.4  
dBm  
−159.2  
−157.5  
dBm/Hz  
dBm/Hz  
I/Q input with 500 mV dc bias and −10 dBm RF output, 20 MHz carrier  
offset  
RF OUTPUT = 2600 MHz  
Output Power, POUT  
Modulator Voltage  
Gain  
Baseband VIQ = 1 V p-p differential  
3.9  
−0.08  
dBm  
dB  
Output P1dB  
11.3  
dBm  
dBm  
dBc  
Degrees  
dB  
dBc  
dBc  
dBm  
Carrier Feedthrough  
Sideband Suppression  
Quadrature Error  
I/Q Amplitude Balance  
Second Harmonic  
Third Harmonic  
−36.5  
−42.3  
−0.55  
−0.021  
−60.3  
−54.7  
56.6  
POUT − P(fLO (2 × fBB))  
POUT − P(fLO (3 × fBB))  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
Output IP2  
Output IP3  
Noise Floor  
f1BB = 3.5 MHz, f2BB = 4.5 MHz, baseband I/Q amplitude per tone =  
0.45 V p-p differential  
I/Q input with 500 mV dc bias and no RF output, 20 MHz carrier offset  
29.9  
dBm  
−159.2  
−157.3  
dBm/Hz  
dBm/Hz  
I/Q input with 500 mV dc bias and −10 dBm RF output, 20 MHz carrier  
offset  
SYNTHESIZER  
Synthesizer specifications referenced to the modulator output  
SPECIFICATIONS  
Figure of Merit (FOM)1  
−218.5  
dBc/Hz/Hz  
REFERENCE  
REFIN, MUXOUT pins  
CHARACTERISTICS  
REFIN Input  
Frequency  
REFIN Input  
Amplitude  
Phase Detector  
Frequency  
5.7  
320  
40  
MHz  
dBm  
MHz  
4
11.4  
Rev. 0 | Page 4 of 44  
Data Sheet  
ADRF6720  
Parameter  
Test Conditions/Comments  
Min  
Typ  
0.25  
2.7  
Max Unit  
MUXOUT Output Level Low (lock detect output selected)  
High (lock detect output selected)  
MUXOUT Duty Cycle  
V
V
%
50  
CHARGE PUMP  
Charge Pump Current  
Programmable to 250 μA, 500 μA, 750 μA, or 1000 μA  
1000  
μA  
Output Compliance  
Range  
1
2.8  
V
PHASE NOISE,  
FREQUENCY =  
940 MHz,  
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter  
design)  
fPFD = 38.4 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
5 MHz offset  
−97.8  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
−120.8  
−144.4  
−154.4  
−154.9  
−155.3  
0.175  
10 MHz offset  
20 MHz offset  
1 kHz to 40 MHz integration bandwidth, with spurs  
Integrated Phase  
Noise  
Reference Spurs  
fPFD  
−104.8  
−97.8  
−98.8  
−103  
dBc  
dBc  
dBc  
dBc  
fPFD × 2  
fPFD × 3  
fPFD × 4  
PHASE NOISE,  
FREQUENCY =  
1900 MHz,  
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter  
design)  
f
PFD = 38.4 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
5 MHz offset  
−91.5  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
−114.5  
−139.9  
−151.4  
−153  
10 MHz offset  
20 MHz offset  
1 kHz to 40 MHz integration bandwidth, with spurs  
−153.5  
0.332  
Integrated Phase  
Noise  
Reference Spurs  
fPFD  
−102  
dBc  
dBc  
dBc  
dBc  
fPFD × 2  
fPFD × 3  
fPFD × 4  
−90.8  
−93.6  
−100.5  
PHASE NOISE,  
FREQUENCY =  
2140 MHz,  
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter  
design)  
fPFD = 38.4 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
5 MHz offset  
10 MHz offset  
20 MHz offset  
1 kHz to 40 MHz integration bandwidth, with spurs  
−92  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
−115.7  
−140.3  
−151.3  
−152.1  
−152.9  
0.305  
Integrated Phase  
Noise  
Reference Spurs  
fPFD  
−95.9  
−93.1  
−87.4  
−91.5  
dBc  
dBc  
dBc  
dBc  
fPFD × 2  
fPFD × 3  
fPFD × 4  
Rev. 0 | Page 5 of 44  
ADRF6720  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
PHASE NOISE,  
FREQUENCY =  
2300 MHz,  
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter  
design)  
fPFD = 38.4 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
5 MHz offset  
10 MHz offset  
20 MHz offset  
1 kHz to 40 MHz integration bandwidth, with spurs  
−94.1  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
° rms  
−114.6  
−138.7  
−150.1  
−151.4  
−152.6  
0.270  
Integrated Phase  
Noise  
Reference Spurs  
fPFD  
−100.8  
−95.6  
−89.4  
−93.1  
dBc  
dBc  
dBc  
dBc  
fPFD × 2  
fPFD × 3  
fPFD × 4  
PHASE NOISE,  
FREQUENCY =  
2600 MHz,  
Closed-loop operation (20 kHz loop filter, see Figure 44 for loop filter  
design)  
f
PFD = 38.4 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
5 MHz offset  
10 MHz offset  
20 MHz offset  
1 kHz to 40 MHz integration bandwidth, with spurs  
−91.5  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−111.3  
−136.8  
−148.3  
−150  
−150.7  
0.378  
Integrated Phase  
Noise  
Reference Spurs  
fPFD  
−97.4  
−89.3  
−95.2  
−91.4  
dBc  
dBc  
dBc  
dBc  
fPFD × 2  
fPFD × 3  
fPFD × 4  
LO INPUT/OUTPUT  
LO Output Frequency  
Range  
LO Output Level  
LO output  
700  
−6  
2855 MHz  
2 × LO or 1 × LO mode, into a 50 Ω load, LO buffer enabled at 2140 MHz  
LO_DRV_LVL = 0  
LO_DRV_LVL = 1  
−5.1  
−0.5  
3
0
50  
dBm  
dBm  
dBm  
LO_DRV_LVL = 2  
LO Input Level  
LO Input Impedance  
BASEBAND INPUTS  
Externally applied LO, PLL disabled  
Externally applied LO, PLL disabled  
I and Q pins  
+6  
dBm  
Ω
I and Q Input DC Bias  
Level  
0.5  
V
Bandwidth  
Differential Input  
Impedance  
Differential Input  
Capacitance  
1 dB  
>1000  
465  
MHz  
Ω
Frequency = 10 MHz2  
Frequency = 10 MHz2  
1.84  
pF  
OUT ENABLE  
ENBL pin  
Turn-On Settling Time  
ENBL high to low (90% of envelope), when Register 0x01[10] = 1,  
Register 0x10[10] = 1  
190  
20  
ns  
ns  
Turn-Off Settling Time ENBL low to high (10% of envelope), when Register 0x01[10] = 1,  
Register 0x10[10] = 1  
Rev. 0 | Page 6 of 44  
 
Data Sheet  
ADRF6720  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
DIGITAL LOGIC  
SCLK, SDIO, CS, and ENBL  
Input Voltage High (VIH)  
Input Voltage Low (VIL)  
Input Current (IIH/IIL)  
Input Capacitance  
(CIN)  
1.4  
−1  
V
V
µA  
pF  
0.7  
1
5
Output Voltage High  
(VOH)  
Output Voltage Low  
(VOL)  
IOH = −100 uA  
IOL = 100 uA  
2.3  
V
V
0.2  
POWER SUPPLIES  
Voltage Range  
Supply Current  
VPOSx  
3.3  
425  
V
mA  
Tx mode at internal LO mode (PLL, internal VCO , and modulator  
enabled, LO output driver disabled)  
Tx mode at external 1× LO mode (PLL, internal VCO disabled,  
modulator enabled, LO output driver disabled)  
228  
mA  
LO output driver; LO_DRV_LVL bits (Register 0x22[7:6]) = 10  
Power-down mode  
50  
14.5  
mA  
mA  
1 The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10log10(fPFD) − 20log10(fLO/fPFD). The FOM was measured across the full LO range, with fREF  
153.6 MHz, fREF power = 4 dBm with a 38.4 MHz fPFD. The FOM was computed at a 50 kHz offset.  
=
2 Refer to Figure 47 for a plot of input impedance over frequency.  
TIMING CHARACTERISTICS  
Table 2.  
Parameter Description  
tSCLK Serial clock period  
tDS  
Min Typ Max Units  
38  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time between data and rising edge of SCLK  
tDH  
Hold time between data and rising edge of SCLK  
8
tS  
Setup time between falling edge of CS and SCLK  
10  
10  
10  
10  
tH  
Hold time between rising edge of CS and SCLK  
tHIGH  
tLOW  
tACCESS  
tz  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Maximum time delay between falling edge of SCLK and output data valid for a read operation  
Maximum time delay between CS deactivation and SDIO bus return to high impedance  
231  
5
tHIGH  
tH  
tDS  
tSCLK  
tS  
tDH  
tLOW  
tACCESS  
CS  
DON'T CARE  
tZ  
DON'T CARE  
DON'T CARE  
SCLK  
SDIO  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D15  
D14  
D13  
D3  
D2  
D1  
D0  
DON'T CARE  
Figure 2. Serial Port Timing Diagram  
Rev. 0 | Page 7 of 44  
 
 
ADRF6720  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is thermal resistance, junction to ambient (°C/W), and θJC is  
thermal resistance, junction to case (°C/W).  
Parameter  
Rating  
Supply Voltage  
I+, I−, Q+, Q−  
LOIN+, LOIN−  
REFIN  
ENBL  
−0.3 V to +3.6 V  
−0.5 V to +1.5 V  
16 dBm differential  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
150°C  
Table 4. Thermal Resistance  
1
1
Package Type  
θJA  
θJC  
0.44  
Unit  
40-Lead LFCSP  
30.23  
°C/W  
VTUNE  
1 See JEDEC standard JESD51-2 for information on optimizing thermal  
impedance.  
CS, SCLK, SDIO  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 8 of 44  
 
 
 
Data Sheet  
ADRF6720  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
MUXOUT  
GND  
I+  
1
2
3
4
5
6
7
8
9
30 VPOS6  
29 GND  
28 DECL2  
I–  
ENBL  
27  
26  
ADRF6720  
GND  
VPOS1  
GND  
Q–  
Q+  
GND 10  
VPOS5  
TOP VIEW  
25 GND  
RFOUT  
(Not to Scale)  
24  
23 GND  
22 VPOS4  
21 NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE  
GROUND PLANE.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
MUXOUT  
Multiplexer Output. This output allows a digital lock detect signal, a voltage  
proportional to absolute temperature ( VPTAT ), or a buffered, frequency-scaled  
reference signal to be accessed externally. The output is selected by programming  
Bits[6:4] in Register 0x21.  
2, 10  
3, 4  
5, 7  
6
GND  
I+, I−  
GND  
Baseband Ground.  
Differential In-Phase Baseband Inputs.  
Mixer Core (I and Q) Ground.  
3.3 V Supply Voltage for Baseband. Decouple VPOS1 with 100 pF and 0.1 µF  
capacitors located close to the pin.  
VPOS1  
8, 9  
11  
Q−, Q+  
VPOS2  
Differential Quadrature Baseband Inputs.  
3.3 V Supply Voltage for 2.5 V LDO. Decouple VPOS2 with 100 pF and 0.1 µF  
capacitors located close to the pin.  
12  
DECL1  
Decoupling Pin for 2.5 V LDO. Connect 100 pF, 0.1 µF, and 10 µF capacitors between  
this pin and ground.  
13  
14  
15  
16  
17  
SDIO  
SCLK  
CS  
Serial Data Input/Output for SPI.  
Serial Clock Input/Output for SPI.  
Chip Select Input/Output for SPI.  
Digital Ground.  
3.3 V Supply Voltage for LO. Decouple VPOS3 with 100 pF and 0.1 µF capacitors  
located close to the pin.  
GND  
VPOS3  
18, 19  
LOOUT+, LOOUT−  
Differential LO Outputs. Either the internally generated LO or external 1 × LO/2 × LO  
is available at 1 × LO or 2 × LO on these pins.  
20  
21  
22  
GND  
NIC  
VPOS4  
LO Ground.  
Not Internally Connected. This pin can be left open or tied to RF ground.  
3.3 V Supply Voltage for RF. Decouple VPOS4 with 100 pF and 0.1 µF capacitors  
located close to the pin.  
23, 25  
24  
26  
GND  
RFOUT  
VPOS5  
RF Ground.  
Single-Ended 0 V DC RF Output.  
3.3 V Supply Voltage for RF. Decouple VPOS5 with 100 pF and 0.1 µF capacitors  
located close to the pin.  
27  
28  
29  
ENBL  
DECL2  
GND  
Enables/Disables the Circuit Blocks. References the settings at Register 0x01 and  
Register 0x10. Refer to the ENBL section for more information.  
Decoupling Pin for VCO LDO. Connect 100 pF, 0.1 µF, and 10 µF capacitors between  
this pin and ground.  
VCO Ground.  
Rev. 0 | Page 9 of 44  
 
ADRF6720  
Data Sheet  
Pin No.  
Mnemonic  
Description  
30  
VPOS6  
3.3 V Supply Voltage for VCO LDO. Decouple VPOS6 with 100 pF and 0.1 µF  
capacitors located close to the pin.  
31  
DECL3  
Decoupling Pin for VCO LDO. Connect 100 pF, 0.1 µF, and 10 µF capacitors between  
this pin and ground.  
32  
VTUNE  
VCO Tuning Voltage.  
33, 34  
35  
LOIN−, LOIN+  
VPOS7  
Differential External LO Inputs.  
3.3 V Supply Voltage for Charge Pump. Decouple VPOS7 with 100 pF and 0.1 µF  
capacitors located close to the pin.  
36  
37  
38  
39  
40  
CP  
Charge Pump Output.  
Charge Pump Ground.  
PLL Reference Ground.  
PLL Reference Input.  
3.3 V Supply Voltage for PLL Reference. Decouple VPOS8 with 100 pF and 0.1 µF  
capacitors located close to the pin.  
GND  
GND  
REFIN  
VPOS8  
EP  
Exposed Pad. Solder the exposed pad to a low impedance ground plane.  
Rev. 0 | Page 10 of 44  
Data Sheet  
ADRF6720  
TYPICAL PERFORMANCE CHARACTERISTICS  
VPOSx = 3.3 V; TA = 25°C; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a 500 mV dc bias; baseband I/Q  
frequency (fBB) = 1 MHz; fPFD = 38.4 MHz; fREF = 153.6 MHz at 4 dBm referred to 50 Ω (1 V p-p); 20 kHz loop filter, unless otherwise  
noted.  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
3.15V  
3.3V  
3.45V  
A
A
A
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 4. Single Sideband (SSB) Output Power (POUT) vs. LO Frequency (fLO  
)
Figure 7. SSB Output Power (POUT) vs. LO Frequency (fLO) and Supply  
and Temperature; Multiple Devices Shown  
16  
16  
T
T
T
= –40°C  
= +25°C  
= +85°C  
3.15V  
3.3V  
3.45V  
A
A
A
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
700  
0
700  
1200  
1700  
2200  
2700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 5. SSB 1 dB Output Compression Point (OP1dB) vs. LO Frequency (fLO  
)
Figure 8. SSB 1 dB Output Compression Point (OP1dB) vs. LO Frequency (fLO)  
and Temperature; Multiple Devices Shown  
and Supply  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
A
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
A
T
A
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 6. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature Before  
Nulling; Multiple Devices Shown  
Figure 9. Carrier Feedthrough vs. LO Frequency (fLO) and Temperature After  
Nulling Using DCOFF_I and DCOFF_Q at 25°C; Multiple Devices Shown  
Rev. 0 | Page 11 of 44  
 
ADRF6720  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–90  
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 10. Sideband Suppression vs. LO Frequency (fLO) and Temperature  
Before Nulling; Multiple Devices Shown  
Figure 13. Sideband Suppression vs. LO Frequency (fLO) and Temperature  
After Nulling Using I_LO and Q_LO at 25°C; Multiple Devices Shown  
80  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
SECOND-ORDER  
THIRD-ORDER  
70  
60  
50  
40  
30  
20  
10  
0
OIP2  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
OIP3  
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FEQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 11. OIP3 and OIP2 vs. LO Frequency (fLO) and Temperature (POUT  
−5 dBm per Tone); Multiple Devices Shown  
Figure 14. Second- and Third-Order Harmonics vs. LO Frequency (fLO) and  
Temperature (POUT ≈ 5 dBm)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
20  
15  
10  
5
THIRD-ORDER  
THIRD-ORDER  
HARMONIC (dBc)  
HARMONIC (dBC)  
15  
SSB OUTPUT  
POWER (dBm)  
SSB OUTPUT  
POWER (dBm)  
10  
5
SIDEBAND  
SUPPRESSION (dBC)  
SIDEBAND  
SUPPRESSION (dBc)  
0
0
CARRIER  
FEEDTHROUGH (dBm)  
–5  
–10  
–15  
–20  
–5  
–10  
–15  
–20  
CARRIER  
SECOND-ORDER  
HARMONIC (dBC)  
FEEDTHROUGH (dBm)  
SECOND-ORDER  
HARMONIC (dBc)  
0.1  
1
10  
0.1  
1
10  
BASEBAND INPUT VOLTAGE (V p-p Differential)  
BASEBAND INPUT VOLTAGE (V p-p Differential)  
Figure 15. SSB Output Power, Second- and Third-Order Harmonics, Carrier  
Feedthrough, and Sideband Suppression vs. Baseband Differential Input  
Voltage (fOUT = 2140 MHz)  
Figure 12. SSB Output Power, Second- and Third-Order Harmonics, Carrier  
Feedthrough, and Sideband Suppression vs. Baseband Differential Input  
Voltage (fOUT = 940 MHz)  
Rev. 0 | Page 12 of 44  
Data Sheet  
ADRF6720  
0
–20  
0
–10  
–20  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
THIRD-ORDER  
A
A
A
HARMONIC (dBC)  
SSB OUTPUT  
POWER (dBm)  
–40  
CARRIER  
FEEDTHROUGH (dBm)  
–60  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
0
–100  
–120  
–140  
–160  
–180  
–5  
–10  
–15  
–20  
SECOND-ORDER  
HARMONIC (dBC)  
SIDEBAND  
SUPPRESSION (dBC)  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
OFFSET FREQUENCY (Hz)  
BASEBAND INPUT VOLTAGE (V p-p Differential)  
Figure 16. SSB Output Power, Second- and Third-Order Harmonics, Carrier  
Feedthrough, and Sideband Suppression vs. Baseband Differential Input  
Voltage (fOUT = 2600 MHz)  
Figure 19. Closed-Loop Phase Noise vs. Offset Frequency and Temperature,  
LO = 940 MHz; 20 kHz Loop Filter  
f
0
–20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 20. Closed-Loop Phase Noise vs. Offset Frequency and Temperature,  
LO = 2140 MHz; 20 kHz Loop Filter  
Figure 17. Closed-Loop Phase Noise vs. Offset Frequency and Temperature,  
LO = 1900 MHz; 20 kHz Loop Filter  
f
f
0
–20  
0
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 21. Closed-Loop Phase Noise vs. Offset Frequency and Temperature,  
LO = 2600 MHz; 20 kHz Loop Filter  
Figure 18. Closed-Loop Phase Noise vs. Offset Frequency and Temperature,  
LO = 2300 MHz; 20 kHz Loop Filter  
f
f
Rev. 0 | Page 13 of 44  
ADRF6720  
Data Sheet  
–80  
–80  
–90  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
OFFSET = 10kHz  
OFFSET = 1kHz  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
OFFSET = 100kHz  
OFFSET = 1MHz  
OFFSET = 10MHz  
OFFSET = 5MHz  
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 22. Closed-Loop Phase Noise vs. LO Frequency at 1 kHz, 100 kHz, and  
5 MHz Offsets  
Figure 25. Closed-Loop Phase Noise vs. LO Frequency at 10 kHz, 1 MHz, and  
10 MHz Offsets  
–70  
–70  
–75  
1 × PFD FREQUENCY  
3 × PFD FREQUENCY  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–75  
–80  
–80  
–85  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–100  
–105  
–110  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–115  
1 × PFD FREQUENCY  
3 × PFD FREQUENCY  
–120  
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 23. PLL Reference Spurs vs. LO Frequency (1 × PFD and 3 × PFD) at  
Modulator Output  
Figure 26. PLL Reference Spurs vs. LO Frequency (1 × PFD and 3 × PFD) at LO  
Output  
–70  
–70  
–75  
2 × PFD FREQUENCY  
4 × PFD FREQUENCY  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–75  
–80  
–80  
–85  
–85  
–90  
–90  
–95  
–95  
–100  
–105  
–110  
–115  
–120  
–100  
–105  
–110  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–115  
–120  
2 × PFD FREQUENCY  
4 × PFD FREQUENCY  
700  
1200  
1700  
2200  
2700  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 24. PLL Reference Spurs vs. LO Frequency (2 × PFD and 4 × PFD) at  
Modulator Output  
Figure 27. PLL Reference Spurs vs. LO Frequency (2 × PFD and 4 × PFD) at LO  
Output  
Rev. 0 | Page 14 of 44  
Data Sheet  
ADRF6720  
1.0  
2.8  
2.6  
2.4  
2.2  
2
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
A
A
A
A
A
A
= +25°C  
= +85°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
700  
1200  
1700  
2200  
2700  
2800  
3300  
3800  
4300  
4800  
5300  
5800  
LO FREQUENCY (MHz)  
VCO FREQUENCY (MHz)  
Figure 28. Integrated Phase Noise with Spurs vs. LO Frequency and  
Temperature  
Figure 31. VTUNE vs. VCO Frequency and Temperature  
–40  
–60  
–40  
2860.8MHz  
2579.83MHz  
2300.22MHz  
2300.78MHz  
2156.06MHz  
2009.22MHz  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32. Open-Loop VCO Phase Noise for VCO 1 Measured at 2009.22 MHz,  
2156.06 MHz, and 2300.78 MHz (VCO ÷ 2)  
Figure 29. Open-Loop VCO Phase Noise for VCO 0 Measured at 2300.22 MHz,  
2579.83 MHz, and 2860.8 MHz (VCO ÷ 2)  
–40  
–40  
1751.47MHz  
1587.28MHz  
1425.29MHz  
–60  
2010.75MHz  
1882.97MHz  
1750.48MHz  
–60  
–80  
–100  
–120  
–140  
–160  
–80  
–100  
–120  
–140  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. Open-Loop VCO Phase Noise for VCO 3 Measured at 1425.29 MHz,  
1587.28 MHz, and 1751.47 MHz (VCO ÷ 2)  
Figure 30. Open-Loop VCO Phase Noise for VCO 2 Measured at 1750.48 MHz,  
1882.97 MHz, and 2010.75 MHz (VCO ÷ 2)  
Rev. 0 | Page 15 of 44  
ADRF6720  
Data Sheet  
100  
5
4
T
T
T
= –40°C  
= +25°C  
= +85°C  
940MHz  
A
A
A
1900MHz  
90  
2140MHz  
2300MHz  
2600MHz  
3
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
LO_DRV_LVL = 1  
LO_DRV_LVL = 2  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
LO_DRV_LVL = 0  
–163 –162 –161 –160 –159 –158 –157 –156 –155 –154 –153  
700  
1200  
1700  
2200  
2700  
NOISE FLOOR (dBm/Hz)  
LO FREQUENCY (MHz)  
Figure 34. Noise Floor Cumulative Distribution at Various LO Frequencies  
Using Internal LO; I/Q Input with 500 mV DC Bias and No RF Output  
Figure 37. LO Output Power vs. LO Frequency at Various LO_DRV_LVL  
Settings  
100  
520  
T
T
T
= –40°C  
= +25°C  
= +85°C  
940MHz  
A
A
A
1900MHz  
90  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
2140MHz  
2300MHz  
2600MHz  
80  
70  
60  
50  
40  
30  
20  
10  
0
–163 –162 –161 –160 –159 –158 –157 –156 –155 –154 –153  
700  
1200  
1700  
2200  
2700  
NOISE FLOOR (dBm/Hz)  
LO FREQUENCY (MHz)  
Figure 35. Noise Floor Cumulative Distribution at Various LO Frequencies  
Using Internal LO; I/Q Input with 500 mV DC Bias and RF Output = −10 dBm  
Figure 38. Supply Current vs. LO Frequency and Temperature (PLL and  
I/Q Modulator Enabled, LO Buffer Disabled)  
20  
0
15  
–5  
10  
–10  
5
BAL_CIN = 0, BAL_COUT = 0  
BAL_CIN = 1, BAL_COUT = 0  
0
–15  
–20  
–25  
–30  
BAL_CIN = 2, BAL_COUT = 0  
BAL_CIN = 3, BAL_COUT = 0  
BAL_CIN = 4, BAL_COUT = 0  
BAL_CIN = 8, BAL_COUT = 0  
BAL_CIN = 9, BAL_COUT = 0  
BAL_CIN = 10, BAL_COUT = 0  
BAL_CIN = 11, BAL_COUT = 0  
BAL_CIN = 12, BAL_COUT = 0  
BAL_CIN = 13, BAL_COUT = 0  
BAL_CIN = 14, BAL_COUT = 0  
BAL_CIN = 15, BAL_COUT = 0  
BAL_CIN = 15, BAL_COUT = 3  
–5  
–10  
–15  
–20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.7  
1.2  
1.7  
2.2  
2.7  
LO FREQUENCY (GHz)  
TIME (ms)  
Figure 36. Frequency Deviation from LO Frequency at LO = 1.91 GHz to  
1.9 GHz vs. Lock Time  
Figure 39. RF Output Return Loss vs. LO Frequency (fLO) for Multiple BAL_CIN  
and BAL_COUT Combinations  
Rev. 0 | Page 16 of 44  
Data Sheet  
ADRF6720  
0
–5  
0
–2  
–4  
–10  
–15  
–20  
–25  
–30  
–35  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0.3  
1.3  
2.3  
3.3  
4.3  
5.3  
6.3  
0.3  
1.3  
2.3  
3.3  
4.3  
5.3  
6.3  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 40. LO Input Return Loss vs. LO Frequency (fLO  
)
Figure 41. LO Output Return Loss vs. LO Frequency (fLO)  
Rev. 0 | Page 17 of 44  
ADRF6720  
Data Sheet  
THEORY OF OPERATION  
The ADRF6720 integrates a high performance broadband I/Q  
modulator with a fractional-N PLL and low noise multicore  
VCOs. The baseband inputs mix with the LO generated  
internally or provided externally, and convert it to a single-  
ended RF using an integrated RF balun. A block diagram of the  
device is shown in Figure 1. The ADRF6720 is programmed via  
an SPI.  
Internal LO Mode  
For internal LO mode, the ADRF6720 uses the on-chip PLL and  
VCO to synthesize the frequency of the LO signal. The PLL,  
shown in Figure 42, consists of a reference path, phase and  
frequency detector (PFD), charge pump, and a programmable  
integer divider with prescaler. The reference path takes in a  
reference clock and divides it down by a factor of 2, 4, or 8, or  
multiplies it by a factor of 1 or 2, and then passes it to the PFD.  
The PFD compares this signal to the divided down signal from  
the VCO. Depending on the PFD polarity selected, the PFD  
sends either an up or down signal to the charge pump if the  
VCO signal is either slow or fast compared to the reference  
frequency. The charge pump sends a current pulse to the off-  
chip loop filter to increase or decrease the tuning voltage  
(VTUNE).  
LO GENERATION BLOCK  
The ADRF6720 supports the use of both internal and external  
LO signals for the mixers. The internal LO is generated by an  
on-chip VCO, which is tunable over an octave frequency range  
of 2850 MHz to 5710 MHz. The output of the VCO is phase-  
locked to an external reference clock through a fractional-N  
PLL that is programmable through the SPI control registers. To  
produce in-phase and quadrature phase LO signals over the  
356.25 MHz to 2855 MHz frequency range to drive the mixers,  
steer the VCO outputs through a combination of frequency  
dividers, as shown in Figure 42.  
The ADRF6720 integrates four VCO cores, covering an octave  
range of 2850 MHz to 5710 MHz.  
Table 6 lists the frequency range covered by each VCO. The  
desired VCO can be selected by addressing the VCO_SEL bits at  
Register 0x22[2:0].  
Alternatively, an external signal can be used with the dividers or  
a polyphase phase splitter to generate the LO signals in  
quadrature to the mixers. In demanding applications that  
require the lowest possible phase noise performance, it may be  
necessary to source the LO signal externally. The different  
methods of quadrature LO generation and the control register  
programming needed are listed in Table 6.  
The LO source and quadrature generation path can be selected  
by setting the QUAD_DIV_EN bit (Register 0x01[9]) and the  
LO_1XVCO_EN bit (Register 0x01[11]). The mode of the VCO  
signal through a polyphase filter is intended to extend the  
operating frequency with an internal VCO and is only useful for  
baseband input frequencies high enough to prevent the RF  
output from pulling the VCO.  
POLYPHASE  
FILTER  
34  
33  
LOIN+  
LOIN–  
I+  
I–  
REF_SEL  
REG 0x21[2:0]  
QUAD_DIV_EN  
REG 0x01[9]  
TO MIXER  
LO_1XVCO_EN  
REG 0x01[11]  
Q+  
Q–  
EXTERNAL  
LOOP  
PFD_POLARITY  
÷8  
÷4  
÷2  
×1  
×2  
FILTER  
REG 0x21[3]  
QUAD  
DIVIDER  
÷1, ÷2,  
÷4  
CP  
36  
VTUNE  
32  
PFD  
CHARGE  
PUMP  
39  
REFIN  
+
LPF  
CP_CTL  
REG 0x20[14:0]  
DIV8 _EN/  
DIV4_EN  
REG 0x22[4:3]  
÷1,÷2  
FRAC  
MOD  
÷2  
N = INT +  
DRVDIV2_EN  
REG 0x22[5]  
LOOUT+  
LOOUT–  
MUXOUT  
1
VCO_SEL  
REG 0x22[2:0]  
DIV_MODE: REG 0x02[11]  
INT_DIV: REG 0x02[10:0]  
FRAC_DIV: REG 0x03[15:0]  
MOD_DIV: REG 0x04[15:0]  
LOCK_DET  
VPTAT  
LO_DRV2X_EN  
REG 0x01[8]  
LO_DRV1X_EN REG 0x01[7]  
REF_MUX_SEL  
REG 0x21[6:4]  
Figure 42. LO Block Diagram  
Rev. 0 | Page 18 of 44  
 
 
 
Data Sheet  
ADRF6720  
Table 6. LO Mode Selection  
QUAD_DIV_EN  
(Register  
0x01[9])  
LO_1XVCO_EN  
(Register  
0x1 [11])  
Enables  
(Register  
0x01[6:0])  
VCO_SEL  
(Register  
0x22[2:0])  
Quadrature  
fVCO or fEXT (MHz) Generation  
LO Selection  
Internal (VCO)  
2850 to 3500  
3500 to 4020  
4020 to 4600  
4600 to 5710  
2855 to 3000  
700 to 6000  
700 to 3000  
Divide by 2  
Divide by 2  
Divide by 2  
Divide by 2  
Polyphase  
Divide by 2  
Polyphase  
1
1
1
1
0
1
0
0
0
0
0
0
0
0
111 111X1  
111 111X1  
111 111X1  
111 111X1  
111 111X1  
101 000X1  
000 000X1  
011  
010  
001  
000  
011  
1XX1  
XXX1  
External  
1 X = don’t care.  
LO Frequency and Dividers  
locked.  
LO_DIVIDER is the final frequency divider ratio that divides  
the frequency of the VCO or the external LO signal down by 2,  
4, or 8 before it reaches the mixer, as shown in Table 7.  
The signal coming from the VCO or the external LO inputs  
goes through a series of dividers before it is buffered to drive  
the active mixers. Two programmable divide-by-2 stages divide  
the frequency of the incoming signal by 1, 2, or 4 before  
reaching the quadrature divider that further divides the signal  
frequency by 2 to generate the in-phase and quadrature phase  
LO signals for the mixers. The control bits (Register 0x22[4:3])  
needed to select the different LO frequency ranges are listed in  
Table 7.  
Loop Filter  
The loop filter is connected between the CP and VTUNE pins.  
The recommended components for 20 kHz filter designs are  
shown in Table 8 and referenced in Figure 44.  
The ADRF6720 closed-loop phase noise is characterized using a  
20 kHz loop filter. Operation with an external VCO is possible.  
In this case, the output of the loop filter is connected to the  
tuning pin of the external VCO. The output of the VCO is  
brought back into the device on the LOIN+ and LOIN− pins.  
For assistance in designing loop filters with other characteristics,  
download the most recent revision of ADIsimPLL™ from  
http://www.analog.com/adisimpll.  
Table 7. LO Frequency and Dividers  
DIV8_EN  
DIV4_EN  
(Register  
0x22[3])  
LO Frequency fVCO/fLO or (Register  
Range (MHz)  
1425 to 2855  
712.5 to 1425  
356.25 to 712.5  
fEXT LO/fLO  
0x22[4])  
2
4
8
0
0
1
0
1
1
Table 8. Recommended Loop Filter Components  
PLL Frequency Programming  
Component  
20 kHz Loop Filter  
2700 pF  
300 Ω  
The N divider with divide-by-2 divides down the VCO signal to  
the PFD frequency. The N divider can be configured for  
fractional or integer mode by addressing the DIV_MODE bit  
(Register 0x02[11]). The default configuration is set for  
fractional mode. Use the following equations to determine the  
N value and PLL frequency:  
C57  
R12  
C58  
100 nF  
R23  
5.6 Ω  
C59  
R26  
2700 pF  
820 Ω  
fVCO  
2×N  
C60  
1500 pF  
fPFD  
=
PLL Lock Time  
FRAC  
MOD  
fvco  
It takes time to lock the PLL after the last register is written.  
VCO band calibration time and loop settling time are used to  
determine the PLL lock time.  
N = INT +  
fLO  
where:  
f
PFD ×2× N  
=
=
LO _ DIVIDER LO_DIVIDER  
After writing to the last register, the PLL automatically performs  
a VCO band calibration to choose the correct VCO band. This  
calibration takes approximately 94,208 PFD cycles. For a  
40 MHz fPFD, this corresponds to 2.36 ms. After a band  
calibration completes, the feedback action of the PLL results in  
the VCO locking to the correct frequency. The speed to be  
locked depends on the nonlinear cycle slipping behavior, as well  
as the small signal settling of the loop. For an accurate  
f
f
PFD is the phase frequency detector frequency.  
VCO is the VCO frequency.  
N is the fractional divide ratio (INT + FRAC/MOD).  
INT is the integer divide ratio programmed in Register 0x02.  
FRAC is the fractional divider programmed in Register 0x03.  
MOD is the modulus divide ratio programmed in Register 0x04.  
estimation of the lock time, download the ADIsimPLL tool to  
f
LO is the LO frequency going to the mixer core when the loop is  
Rev. 0 | Page 19 of 44  
 
 
 
 
ADRF6720  
Data Sheet  
capture these effects correctly. In general, higher bandwidth  
loops tend to lock more quickly than lower bandwidth loops.  
(fRF < fLO) when Q leads I and places the RF frequency above the  
LO (fRF > fLO) when I leads Q.  
The lock detect signal is available as one of the selectable  
outputs through the MUXOUT pin, with a logic high signifying  
that the loop is locked. The control bits for the MUXOUT pin  
are the REF_MUX_SEL bits (Register 0x21[6:4]), and the  
default configuration is for PLL lock detect.  
Table 10. LO Polarity Setting  
Bit  
Address  
Name  
Settings Description  
Quadrature polarity  
0x32[11:10]  
POL_Q  
switch, Q channel  
01  
10  
Inverted Q channel  
polarity  
Normal polarity  
Required PLL/VCO Settings and Register Write Sequence  
In addition to writing to the necessary registers to configure the  
PLL and VCO for the desired LO frequency and phase noise  
performance, the registers listed in Table 9 are the required  
registers to write.  
0x32[9:8]  
POL_I  
Quadrature polarity  
switch, I channel.  
Normal polarity  
Inverted I channel  
polarity  
01  
10  
To ensure that the PLL locks to the desired frequency, follow the  
proper write sequence of the PLL registers. Configure the PLL  
registers accordingly to achieve the desired frequency, and the  
last writes must be to Register 0x02 (INT_DIV), Register 0x03  
(FRAC_DIV), or Register 0x04 (MOD_DIV). When Register 0x02,  
Register 0x03, and Register 0x04 are programmed, an internal  
VCO calibration initiates, which is the last step to locking the  
PLL.  
LO Outputs  
The ADRF6720 can provide either a differential 1 × or 2 × LO  
output signal at the LOOUT+ and LOOUT− pins (Pin 18 and  
Pin 19, respectively). The availability of the LO signal makes it  
possible to daisy-chain many devices. One ADRF6720 device  
can serve as the master where the LO signal is sourced, and the  
subsequent slave devices can share the same LO output signal  
from the master.  
Table 9. Required PLL/VCO Register Writes  
Address  
Bit Name  
Setting Description  
When the quadrature LO signals are generated using the  
quadrature divider, the output signal is available at either 2× or  
1× the frequency of the LO signal at the mixer by setting  
LO_DRV2X_EN bit(Register 0x1[8]) and DRVDIV2_EN bit  
(Register 0x22[5]). However, 1× the frequency of the LO signal  
in this case has a phase ambiguity of 180° relative to the LO  
signal that drives the mixer core. Because of this phase  
ambiguity, the utility of this 1 × LO output signal as a system  
daisy-chained LO signal is compromised. To avoid this  
ambiguity, a second 1× the frequency of the LO signal output is  
made available after the quadrature divider. This second 1 × LO  
output path is enabled by setting the LO_DRV1X_EN bit  
(Register 0x01[7]) high.  
0x21[3]  
0x49[13:0]  
PFD_POLARITY 0x01  
Negative polarity  
Internal settings  
SET_1[13:9],  
SET_0[8:0]  
0x14B4  
External LO Mode  
Use the VCO_SEL bits (Register 0x22[2:0]) to select external or  
internal LO mode. To configure for external LO mode, set  
Register 0x22[2:0] to 4 decimal and apply the differential LO  
signals to Pin 33 (LOIN−) and Pin 34 (LOIN+). The external  
LO frequency range is 700 MHz to 3 GHz. When the polyphase  
phase splitter is selected, a 1 × LO signal is required for the  
active mixer, or a 2 × LO can be used with the internal  
quadrature divider, as shown in Table 6.  
There is also the option of using an external VCO with the  
internal PLL. In this case, the PLL is enabled, but the VCO  
blocks are turned off.  
When the quadrature LO signals are generated using the  
polyphase phase splitter, the output signal is also available at 1×  
the frequency of the LO signal by setting LO_DRV1X_EN bit  
(Register 0x10[7]) high.  
The LOIN+ and LOIN− input pins must be ac-coupled. When  
not in use, leave the LOIN+ and LOIN− pins unconnected.  
Set the output to different drive levels by accessing the  
LO_DRV_LVL bits (Register 0x22[7:6]), as shown in Table 11.  
LO Polarity  
The ADRF6720 offers the flexibility of specifying the  
quadrature polarity on LO to the I channel or Q channel  
mixers. This specification determines whether the LO is  
injected above or below the RF frequency. RF frequency can  
place either above or below the LO depending on the  
Register 0x32[11:8] setting as well as the phase relationship  
between the baseband I and Q. For normal operation and  
characterization, the Register 0x32 settings are 2 decimal for POL_I  
(Register 0x32[9:8]) and 1 decimal for POL_Q (Register 0x32,  
Bits[11:10]). Setting Register 0x32 as such places the RF  
frequency below the LO  
Table 11. LO Output Level at 2140 MHz  
LO_DRV_LVL (Register 0x22[7:6])  
Amplitude (dBm)  
00  
01  
10  
−5.1  
−0.5  
3
Rev. 0 | Page 20 of 44  
 
 
 
Data Sheet  
ADRF6720  
Table 12. Optimum Balun Setting For Desired Frequency Range  
BASEBAND  
BAL_CIN  
BAL_COUT  
Frequency Range (MHz)  
The input impedance of the baseband inputs is a 500 Ω  
differential. These inputs are designed to work with a 0.5 V  
common-mode voltage. To match the 100 Ω impedance of the  
DAC, place a shunt 125 Ω external resistor across the I and Q  
inputs.  
0
1
2
3
4
8
9
10  
11  
12  
13  
14  
15  
15  
0
0
0
0
0
0
0
0
0
0
0
0
0
3
fRF > 1730  
1550 < fRF < 1730  
1380 < fRF < 1550  
1250 < fRF < 1380  
1170 < fRF < 1250  
1100 < fRF < 1170  
1020 < fRF < 1100  
970 < fRF < 1020  
930 < fRF < 970  
890 < fRF < 930  
840 < fRF < 890  
820 < fRF < 840  
740 < fRF < 820  
The voltages applied to the differential baseband inputs (I+, I−,  
Q+, and Q−) drive the V-to-I stage that converts baseband  
voltages into currents. The converted modulated signal current  
feeds the modulator mixer core.  
A programmable dc current can be added to both the I and Q  
channels to null any carrier feedthrough at the RF output. Refer  
to the Carrier Feedthrough Nulling section for more  
information  
680 < fRF < 740  
The linearity can be optimized by adding the amplitude and  
phase correction signals to the current output via the MOD_RSEL  
(Register 0x31[12:6]) and MOD_CSEL (Register 0x31[5:0])  
adjustment. Refer to the Linearity section for more information.  
ENBL  
The ENBL pin quickly enables/disables the RF output. The  
circuit blocks that are enabled/disabled with the ENBL pin can  
be programmed by setting the appropriate bits in the enables  
register (Register 0x01) and the ENBL_MASK register  
(Register 0x10). When the bits in the enables and the  
ENBL_MASK register are 1, pulling the ENBL pin low disables  
and pulling high enables the internal blocks more quickly than  
possible with an SPI write operation.  
ACTIVE MIXERS  
The ADRF6720 has two double balanced mixers: one for the  
in-phase channel (I channel) and the other for the quadrature  
channel (Q channel). They upconvert the modulated baseband  
signal currents by the LO signals to the RF.  
Tunable RFOUT Balun  
Table 13. Enable/Disable Settings  
The ADRF6720 integrates a programmable balun operating  
over a frequency range from 700 MHz to 3000 MHz. It offers  
single-ended-to-differential conversion and provides additional  
common-mode noise rejection.  
Register  
0x01  
Register 0x10  
ENBL_MASK  
Bit1  
Enables  
ENBL Pin  
Voltage  
X2  
Bit1  
State  
X2  
Block controlled  
by Register 0x01,  
enables bit [A]  
disabled. No effect  
by ENBL.  
Block controlled  
by Register 0x01,  
enables bit [A]  
disabled. No effect  
by ENBL.  
Block controlled  
by Register 0x01,  
enables bit [A]  
enabled.  
Block controlled  
by Register 0x01,  
enables bit [A]  
disabled  
The capacitors at the input and output of the balun in parallel  
with the inductive windings of the balun change the resonant  
frequency of the inductor capacitor (LC) tank. Therefore,  
selecting the proper combination of BAL_CIN (Register 0x30[3:0])  
and BAL_COUT (Register 0x30[7:4]) sets the desired frequency  
and optimizes gain. Under most circumstances, it is suggested to  
set BAL_CIN and BAL_COUT over the frequency profile given  
in Table 12. However, for matching reasons, it is advantageous to  
tune the registers independently.  
0
1
0
X2  
1
1
1
1
>1.8 V  
<0.5 V  
RFOUT  
BAL_COUT  
BAL_CIN  
REG 0x30[3:0]  
REG 0x30[7:4]  
Figure 43. Integrated Tunable Balun  
1 This bit refers to any of the 11 bits in the register.  
2 X = don’t care.  
Rev. 0 | Page 21 of 44  
 
 
 
ADRF6720  
Data Sheet  
On a write cycle, up to 16 bits of serial write data are shifted in,  
SERIAL PORT INTERFACE  
CS  
MSB to LSB. If the rising edge of  
occurs before the LSB of  
The SPI of the ADRF6720 allows the user to configure the  
device for specific functions or operations via a 3-pin SPI port.  
This interface provides users with added flexibility and  
customization. The SPI consists of three control lines: SCLK,  
the serial data is latched, only the bits that were latched are  
written to the device. If more than 16 data bits are shifted in, the  
16 most recent bits are written to the device. The ADRF6720  
input logic level for the write cycle supports an interface as low  
as 1.4 V.  
CS  
SDIO, and . The timing requirements for the SPI port are  
shown in Table 2.  
On a read cycle, up to 16 bits of serial read data are shifted out,  
MSB first. Data shifted out beyond 16 bits is undefined.  
Readback content at a given register address does not  
necessarily correspond with the write data of the same address.  
The output logic level for a read cycle is 2.3 V.  
The ADRF6720 protocol consists of seven register address bits,  
followed by a read/write and 16 data bits. Both the address and  
data fields are organized with the most significant bit (MSB)  
first, and end with the least significant bit (LSB).  
Rev. 0 | Page 22 of 44  
 
Data Sheet  
ADRF6720  
BASIC CONNECTIONS FOR OPERATION  
Figure 44 shows the basic connections for operating the ADRF6720 as they are implemented on the evaluation board of the device.  
+3.3V  
RED  
10µF  
(0805)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
0.1µF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
100pF  
(0402)  
3.3V  
10kΩ  
VPOS8  
VPOS6  
VPOS5  
VPOS4  
VPOS3  
VPOS2  
VPOS1  
VPOS7  
40  
35  
30  
26  
22  
17  
11  
6
(0402)  
I+  
ENBL  
3
4
I+  
I–  
27  
24  
S1  
ADRF6720  
125Ω  
(0402)  
V TO I  
49.9Ω  
I–  
PHASE  
CORRECTION  
(0402)  
LO NULLING  
DAC  
RFOUT  
LO NULLING  
DAC  
PHASE  
CORRECTION  
Q–  
Q+  
8
9
Q–  
Q+  
125Ω  
(0402)  
V TO I  
LOOUT+  
LOOUT–  
LOOUT  
18  
19  
3
1
4
100pF  
(0402)  
LOCK_DET  
VPTAT  
6
100pF  
(0402)  
MUXOUT  
÷2  
1
0Ω  
(0402)  
CS  
CS  
15  
14  
13  
SCLK  
POLYPHASE  
FILTER  
0°  
SERIAL PORT  
INTERFACE  
SCLK  
90°  
SDIO  
SDIO  
DECL3  
÷1, ÷2,  
÷4  
REFIN  
31  
28  
12  
÷8  
÷4  
÷2  
×1  
×2  
LDO  
2.5V  
100pF  
(0402)  
100pF  
(0402)  
0.1µF  
(0402)  
10µF  
(0603)  
REF_IN  
REFIN  
NIC  
PFD  
FRAC  
MOD  
÷2  
N = INT +  
39  
21  
DECL2  
DECL1  
49.9Ω  
(0402)  
LDO  
VCO  
100pF  
(0402)  
0.1µF  
(0402)  
10µF  
(0603)  
CHARGE  
PUMP  
2
5
7
10 16 20 23 25 29 37 38  
36  
32  
33 34  
100pF  
(0402)  
0.1µF  
(0402)  
10µF  
(0603)  
VTUNE  
EXT LO  
CP  
3
4
6
R23  
5.6Ω  
(0402)  
R26  
820Ω  
(0402)  
100pF  
(0402)  
GND  
1
R12  
100pF  
(0402)  
300Ω  
C57  
2700pF  
(0402)  
C59  
2700pF  
(0402)  
C60  
1500pF  
(0402)  
(0402)  
C58  
100nF  
(0603)  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
Figure 44. Basic Connections for Operation (Loop Filter Set to 20 kHz)  
ground plane spans multiple layers on the circuit board, stitch  
them together under the exposed pad. The AN-772 Application  
Note discusses the thermal and electrical grounding of the  
LFCSP package in detail.  
POWER SUPPLY AND GROUNDING  
Connect the power supply pins to a 3.3 V source; the pins can  
range between 3.15 V and 3.45 V. Individually decouple the pins  
using 100 pF and 0.1 µF capacitors located as close as possible  
to the pins. Individually decouple the three internal decoupling  
nodes (labeled DECL3, DECL2, and DECL1) with capacitors as  
shown in Figure 44.  
Tie the 11 GND pins to the same ground plane through low  
impedance paths.  
Solder the exposed pad on the underside of the package to a  
ground plane with low thermal and electrical impedance. If the  
Rev. 0 | Page 23 of 44  
 
 
 
ADRF6720  
Data Sheet  
BASEBAND INPUTS  
LO INPUT  
Drive the four I and Q inputs with an external bias level of 500 mV.  
These inputs are generally dc-coupled to the outputs of a dual  
DAC. The nominal drive level used in the characterization of  
the ADRF6720 is 1 V p-p differential (or 500 mV p-p on each  
pin).  
The external LO input is designed to be driven differentially.  
AC couple both sides of the differential LO source through a  
pair of series capacitors to the LOIN+ and LOIN− pins.  
The typical LO drive level, used for the characterization of the  
ADRF6720, is 0 dBm.  
The I and Q input resistances are 500 Ω, differential. As a result,  
the external shunt resistors at the I and Q inputs may be  
required to interface a DAC or a filter. The effective value of the  
resistance is 500 Ω in parallel with the shunt resistor (see the  
DAC to I/Q Modulator Interfacing section for more  
information).  
Apply the reference frequency for the PLL (between 5.7 MHz  
and 320 MHz) to the REFIN pin, which is ac-coupled. If the  
REFIN pin is being driven from a 50 Ω source, terminate the  
pin with 50 Ω as shown in Figure 44. Apply a drive level of  
about 4 dBm to 14 dBm; 4 dBm is used at characterization.  
LOOP FILTER  
The loop filter in Figure 44 is connected between the CP and  
VTUNE pins. The recommended components for 20 kHz filter  
designs are shown in Table 8.  
RF OUTPUT  
The RF output is available at the RFOUT pin (Pin 24), which can  
drive a 50 Ω load.  
Rev. 0 | Page 24 of 44  
 
 
 
 
Data Sheet  
ADRF6720  
APPLICATIONS INFORMATION  
resulting in a value for RLI and RLQ of 125 Ω.  
DAC TO I/Q MODULATOR INTERFACING  
Figure 47 shows the differential input resistance and  
capacitance over baseband input frequencies.  
The ADRF6720 is designed to interface with minimal  
components to members of the Analog Devices, Inc., family of  
TxDAC® converters. These dual-channel differential current  
output DACs provide an output current swing from 0 mA to  
20 mA. The interface described in this section can be used with  
any DAC that has a similar output.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
An example of an interface using the AD9142A TxDAC is shown  
in Figure 45. The baseband inputs of the ADRF6720 require a dc  
bias of 500 m V. The nominal midscale output current on each of  
the outputs of the AD9142A is 10 mA. Therefore, an average  
current of 10 mA flowing through a single 50 Ω resistor to  
ground from each of the DAC outputs produces the desired  
500 mV dc bias for the inputs to the ADRF6720. Place a shunt  
125 Ω external resistor across the I and Q inputs to match the  
100 Ω impedance of the DAC. The external resistor reduces the  
voltage swing for a given DAC output current. The AD9142A  
output currents have a swing ranging from 0 mA to 20 mA.  
With the 50 Ω termination resistors to ground in the DAC  
outputs and the 125 Ω shunt resistors in place, the resulting  
drive signal from each differential pair is 1 V p-p differential  
(with the DAC running at 0 dBFS) with a 500 mV dc bias.  
10  
100  
1k  
10k  
EFFECTIVE AC SWING LIMITING RESISTANCE ()  
Figure 46. Relationship Between the Effective AC Swing Limiting Resistance  
and the Peak-to-Peak Voltage Swing with 50 Ω Bias Setting Resistors  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
RESISTANCE  
AD9142A  
IOUT1P  
ADRF6720  
I+  
67  
3
R
50Ω  
BI+  
R
125Ω  
LI  
500Ω  
R
BI–  
CAPACITANCE  
66  
57  
4
8
I–  
50Ω  
IOUT1N  
IOUT2N  
Q–  
R
BQ+  
50Ω  
R
125Ω  
LQ  
500Ω  
0
0
100 200 300 400 500 600 700 800 900 1000  
R
BQ–  
56  
Q+  
50Ω  
9
FREQUENCY (MHz)  
IOUT2P  
Figure 47. Differential Baseband Input Resistance and Input Capacitance  
Equivalents (Shunt R, Shunt C)  
Figure 45. Interface Between the AD9142A and ADRF6720 with 50 Ω  
Resistors to Ground to Establish the 500 mV DC Bias for the ADRF6720  
Baseband Inputs  
I/Q Filtering  
An antialiasing filter between the DAC and modulator is  
necessary to filter out Nyquist images, common-mode noise,  
and broadband DAC noise. The interface for setting up the  
biasing and ac swing described in the DAC to I/Q Modulator  
Interfacing section lends itself well to the introduction of such a  
filter. The filter can be inserted between the dc bias setting  
resistors and the ac swing limiting resistor. With this  
configuration, the dc bias setting resistors set the source  
impedance, and the ac swing limiting resistor sets the load  
impedance with a 500 Ω differential I and Q input impedance  
in parallel for the filter.  
Adjust the voltage swing for a given DAC output current by  
placing a different resistance value on RLI and RLQ to the interface  
(see Figure 45). This adjustment has the effect of varying the ac  
swing without changing the dc bias already established by the  
50 Ω resistors. A higher resistance value increases the output  
power of the ADRF6720 and signal-to-noise ratio (SNR) at the  
cost of higher intermodulation distortion.  
When setting the size of resistor to adjust swing level, take the input  
impedance of the I and Q inputs into account. The I and Q inputs  
have a differential input resistance of 500 Ω. As a result, the  
effective value of the resistance is 500 Ω in parallel with the  
chosen shunt resistor. For example, if a 100 Ω resistance is desired  
(based on Figure 45), the value of RLI or RLQ must be set such that  
BASEBAND BANDWIDTH  
The ADRF6720 can be used with a DAC generating a complex  
IF (CIF), as well as a zero IF signal (ZIF). The 1 dB bandwidth  
of the ADRF6720 is more than 1000 MHz. Figure 48 shows the  
100 Ω = (500 × RLI)/(500 + RLI)  
100 Ω = (500 × RLQ)/(500 + RLQ  
)
Rev. 0 | Page 25 of 44  
 
 
 
 
 
ADRF6720  
Data Sheet  
baseband frequency response of ADRF6720, facilitating high  
CIF and providing sufficient flat bandwidth for digital  
predistortion (DPD) algorithms. Any flatness variations across  
frequency at the ADRF6720 RF output have been calibrated out  
of this measurement.  
SIDEBAND SUPPRESSION OPTIMIZATION  
Sideband suppression results from gain and phase imperfection  
between the I and Q channels. Sideband suppression also results  
from the quadrature error in generating quadrature LO signals.  
The net unwanted sideband signal at the RF output is the vector  
combination of the signals as a result of these effects.  
1
0
–1  
–2  
–3  
–4  
–5  
–6  
The ADRF6720 offers quadrature phase adjustment through the  
I_LO (Register 0x32[3:0]) and Q_LO (Register 0x32[7:4])  
parameters to reject unwanted sideband signal.  
Figure 50 shows the level of unwanted sideband signal  
achievable from the ADRF6720 across the I_LO and Q_LO  
parameters  
If further optimization is required, the amplitude and phase  
adjustments can be made externally by a TxDAC. The result of  
this type of adjustment is shown in Figure 51.  
0
200  
400  
600  
800  
1000  
–30  
–35  
BB FREQUENCY (MHz)  
Figure 48. ADRF6720 Baseband Frequency Response  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–40  
–45  
–50  
–55  
–60  
–65  
CARRIER FEEDTHROUGH NULLING  
Carrier feedthrough results from minute dc offsets that occur  
on the differential baseband inputs. In an I/Q modulator,  
nonzero differential offsets mix with the LO and result in  
carrier feedthrough to the RF output. In addition to this effect,  
some of the signal power at the LO input couples directly to the  
RF output (this may be as a result of bond wire to bond wire  
coupling or coupling through the silicon substrate). The net  
carrier feedthrough at the RF output is the vector combination  
of the signals that appear at the output as a result of these two  
effects.  
–70  
15  
10  
5
15  
0
10  
5
0
Figure 50. Sideband Suppression Optimization Through I_LO and Q_LO  
Adjustment ; LO = 2140 MHz  
0
The ADRF6720 has a feature to add dc current, positive or  
negative, to both the I and Q channels for carrier feedthrough  
nulling. Figure 49 shows carrier feedthrough vs. DCOFF_I  
(Register 0x33[15:8]) and DCOFF_Q (Register 0x33[7:0]).  
BEFORE NULLING  
AFTER NULLING BY I_LO, Q_LO INADRF6720  
–10  
AFTER NULLING EXTERNALLY  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
The carrier feedthrough nulling can also be accomplished  
externally by a TxDAC.  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
700  
1200  
1700  
2200  
2700  
LO FREQUENCY (MHz)  
Figure 51. Sideband Suppression Before and After Nulling Using I_LO and  
Q_LO Through External Adjustment; LO = 2140 MHz  
–70  
300  
300  
200  
250  
200  
100  
150  
100  
50  
0
0
Figure 49. Carrier Feedthrough Optimization Through DCOFF_I and  
DCOFF_Q Adjustment  
Rev. 0 | Page 26 of 44  
 
 
 
 
 
 
Data Sheet  
ADRF6720  
LINEARITY  
LO AMPLITUDE AND COMMON-MODE VOLTAGE  
The linearity in ADRF6720 can be optimized through the  
MOD_RSEL (Register 0x31[12:6]) and MOD_CSEL  
(Register 0x31[5:0]) settings. The resistance and capacitance  
curves as a function of the MOD_RSEL and MOD_CSEL  
settings. These settings control the amount of antiphase  
distortion to the baseband input stages to correct for distortion.  
The typical External LO driving level of the ADRF6720 is  
0 dBm differential. All the baseband inputs must be externally  
dc biased to 500 mV. Figure 54 and Figure 55 show the  
performance variation vs. the external LO amplitude and  
baseband common-mode voltage, respectively.  
10  
70  
60  
50  
40  
30  
20  
10  
0
SSB OUTPUT POWER(dBm)  
The top two bits (Register 0x31[12:11]) of MOD_RSEL and the  
MSB (Register 0x31[5]) of MOD_CSEL are used as a range  
setting. Figure 52 and Figure 53 show the output IP3 and  
output IP2 that are achievable across the MOD_RSEL and  
MOD_CSEL settings.  
0
OUTPUT IP2 (dBm)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
OUTPUT IP3 (dBm)  
Figure 52 and Figure 53 show both a surface and a contour plot in  
one figure. The contour plot is located directly underneath the  
surface plot. The peaks on the surface plot indicate the maximum  
output IP3 and maximum output IP2, and the same color pattern  
on the contour plot determines the optimized MOD_RSEL and  
MOD_CSEL values. The overall shape of the output IP3 plot varies  
with the MOD_RSEL setting more than the MOD_CSEL setting.  
CARRIER FEEDTHROUGH (dBm)  
SIDEBAND SUPPRESSION (dBc)  
THIRD HARMONIC (dBc)  
10  
SECOND HARMONIC (dBc)  
10  
10  
5
0
5
EXTERNAL LO AMPLITUDE (dBm)  
36  
Figure 54. SSB Output Power, Second- and Third-Order Harmonics, Carrier  
Feedthrough, Sideband Suppression, OIP2, and OIP3 vs. External LO  
Amplitude; Baseband I/Q Amplitude = 1 V p-p Differential, fOUT = 2140 MHz  
34  
36  
34  
32  
30  
28  
26  
32  
30  
28  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
SSB OUTPUT POWER(dBm)  
OUTPUT IP2 (dBm)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
26  
30  
20  
OUTPUT IP3 (dBm)  
SIDEBAND SUPPRESSION (dBc)  
10  
30  
0
25  
20  
15  
D_RS  
10  
5
0
EL  
MO  
CARRIER FEEDTHROUGH (dBm)  
THIRD HARMONIC (dBc)  
Figure 52. OIP3 vs. MOD_CSEL and MOD_RSEL at fRF = 2140 MHz, I/Q  
Amplitude Per Tone = 0.5 V p-p Differential  
SECOND HARMONIC (dBc)  
10  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
60  
59  
58  
57  
56  
BASEBAND COMMON-MODE VOLTAGE (V)  
60  
59  
58  
57  
56  
Figure 55. SSB Output Power, Second- and Third-Order Harmonics, Carrier  
Feedthrough, Sideband Suppression, OIP2, and OIP3 vs. Baseband Common-  
Mode Voltage; Baseband I/Q Amplitude = 1 V p-p Differential, fOUT = 2140 MHz  
LAYOUT  
Solder the exposed pad on the underside of the ADRF6720 to a  
low thermal and electrical impedance ground plane. This pad is  
typically soldered to an exposed opening in the solder mask on  
the evaluation board. Notice the use of 25 via holes on the  
exposed pad of the ADRF6720 evaluation board. Connect these  
ground vias to all other ground layers on the evaluation board  
to maximize heat dissipation from the device package.  
55  
55  
30  
30  
20  
25  
20  
15  
10  
10  
5
0
0
Figure 53. OIP2 vs. MOD_CSEL and MOD_RSEL at fRF = 2140 MHz, I/Q  
Amplitude per Tone = 0.5 V p-p Differential  
Rev. 0 | Page 27 of 44  
 
 
 
 
 
 
 
ADRF6720  
Data Sheet  
Figure 56. Evaluation Board Layout for the ADRF6720 Package  
Rev. 0 | Page 28 of 44  
Data Sheet  
ADRF6720  
CHARACTERIZATION SETUPS  
The primary setup used to characterize the ADRF6720 is shown  
in Figure 57. This setup was used to evaluate the product as a  
single-sideband modulator. An automated software program  
(VEE) was used to control equipment over the IEEE bus. The  
setup was used to measure SSB, OIP2, OIP3, output P1 dB  
(OP1dB), LO, and USB null.  
For phase noise and reference spur measurements, see the phase  
noise setup shown in Figure 58. Phase noise was measured on  
an LO and modulator output.  
ADRF6720 TEST RACK ASSEMBLY (INTERNAL VCO CONFIGURATION)  
ALL INSTRUMENTS ARE CONNECTED IN DAISY-CHAIN  
FASHION VIA GBIP CABLE UNLESS OTHERWISE NOTED.  
E3631A POWER SUPPLY  
(+6V ADJUSTED TO 5V)  
+3.3V FOR  
VPOS TO 34950  
MODULE  
34401A DMM (FOR SUPPLY  
CURRENT MEASUREMENT)  
PROGRAMMING  
AND DC CABLE  
(×4 FOR MULTISITE)  
34980A  
WITH 34950 AND (×3) 34921 MODULES  
INPUT  
(RFOUT)  
AGILENT MXA N9020A SPECTRUM ANALYZER  
12-PIN  
CONNECTOR  
(REGISTER  
PROGRAMMING)  
20-PIN CONNECTOR  
DC HEADER  
REFIN  
KEITHLEY S46 SWITCH SYSTEM  
(FOR RFOUT AND REFIN ON 4 SITES)  
ADRF6720  
EVALUATION BOARD  
RFOUT  
6dB  
OUTPUT (REF)  
KEITHLEY S46 SWITCH SYSTEM  
(FOR BASEBAND INPUTS ON 4 SITES)  
Rohde & Schwarz SMT 06 SIGNAL GENERATOR  
(REFIN)  
BASEBAND INPUTS AT 1MHz  
BASEB AND OUTPUTS  
(I–, I+, Q–, Q+)  
AEROFLEX IFR 3416 FREQUENCY GENERATOR  
(WITH BASEBAND OUTPUTS AT 1MHz)  
PC CONTROL  
CONNECTED TO SYSTEM VIA USB TO GPIB ADAPTER  
Figure 57. General Characterization Setup  
Rev. 0 | Page 29 of 44  
 
 
ADRF6720  
Data Sheet  
ADRF6720 PHASE NOISE STAND SETUP  
ALL INSTRUMENTS ARE CONNECTED IN DAISY-CHAIN FASHION  
VIA GBIP CABLE UNLESS OTHERWISE NOTED.  
Rohde & Schwarz  
SMA 100A SIGNAL GENERATOR  
REFIN  
AGILENT MXA N9020A  
SPECTRUM ANALYZER  
AGILENT E5052A SIGNAL SOURCE  
ANALYZER  
IF OUT  
KEITHLEY S46 SWITCH SYSTEM 2  
(FOR RFOUT AND REFIN ON 4 SITES)  
REFIN  
LOOUT±  
BASEBAND INPUTS  
(I–, I+, Q–, Q+)  
IFR 3416 SIGNAL GENERATOR  
(BASEBAND SOURCE)  
KEITHLEY S46 SWITCH SYSTEM 1  
(FOR BASEBAND INPUTS ON 4 SITES)  
20-PIN CONNECTOR  
(DC MEASUREMENT, +3.3V POS)  
AND 12-PIN  
CONNECTOR (VCO AND PLL  
PROGRAMMING)  
ADRF6720  
EVALUATION BOARD  
34980A MULTIFUNCTION SWITCH  
(WITH 34950 AND 34921 MODULES)  
AGILENT E3631A POWER  
SUPPLY  
INPUT DC  
AGILENT 34401A DMM  
(IN DC I MODE, SUPPLY CURRENT  
MEASUREMENT)  
PC CONTROL  
CONNECTED TO SYSTEM VIA USB TO GPIB ADAPTER  
Figure 58. Characterization Setup for Phase Noise and Reference Spur Measurements  
Rev. 0 | Page 30 of 44  
 
Data Sheet  
ADRF6720  
REGISTER MAP  
Table 14. ADRF6720 Register Map  
Bit 15  
Bit 14  
Bit 6  
Bit 13  
Bit 5  
Bit 12  
Bit 4  
Bit 11  
Bit 3  
Bit 10  
Bit 2  
Bit 9  
Bit 1  
Bit 8  
Bit 0  
Reg Name  
Bits Bit 7  
Reset RW  
0x00 SOFT_RESET [15:8]  
[7:0]  
RESERVED  
0x0000 W  
RESERVED  
VCO_EN  
SOFT_RESET  
0x01  
ENABLES  
[15:8]  
RESERVED  
VCO_MUX_EN  
LO_1XVCO_EN  
DIV_EN  
MOD_EN  
CP_EN  
QUAD_DIV_EN  
LO_DRV2X_EN 0xF67F RW  
RESERVED  
[7:0] LO_DRV1X_EN  
REF_BUF_EN  
VCO_LDO_EN  
INT_DIV[10:8]  
0x02  
INT_DIV  
[15:8]  
[7:0]  
RESERVED  
DIV_MODE  
0x002C RW  
INT_DIV[7:0]  
0x03 FRAC_DIV [15:8]  
[7:0]  
FRAC_DIV[15:8]  
FRAC_DIV[7:0]  
MOD_DIV[15:8]  
MOD_DIV[7:0]  
0x0128 RW  
0x0600 RW  
0x04 MOD_DIV [15:8]  
[7:0]  
0x10 ENBL_MASK [15:8]  
RESERVED  
LO_1XVCO_MASK MOD_MASK QUAD_DIV_MASK LO_DRV2X_MASK 0xF67F RW  
DIV_MASK CP_MASK VCO_LDO_MASK RESERVED  
CP_CSCALE RESERVED  
[7:0] LO_DRV1X_MASK VCO_MUX_MASK REF_BUF_MASK VCO_MASK  
0x20  
0x21  
0x22  
CP_CTL  
PFD_CTL  
VCO_CTL  
[15:8]  
[7:0]  
RESERVED  
RESERVED  
CP_SEL  
0x0C26 RW  
0x000B RW  
0x2A03 RW  
0x0000 RW  
0x1101 RW  
0x0900 RW  
0x0000 RW  
0x0010 RW  
0x000E RW  
0x0000 RW  
0x0000 RW  
0x16BD RW  
CP_BLEED  
[15:8]  
[7:0]  
RESERVED  
PFD_POLARITY  
RESERVED  
REF_MUX_SEL  
VCO_LDO_R4SEL  
LO_DRV_LVL DRVDIV2_EN  
REF_SEL  
VCO_LDO_R2SEL  
VCO_SEL  
[15:8]  
[7:0]  
DIV8_EN  
DIV4_EN  
0x30 BALUN_CTL [15:8]  
RESERVED  
[7:0]  
BAL_COUT  
RESERVED  
MOD_RSEL[1:0]  
RESERVED  
BAL_CIN  
MOD_RSEL[6:2]  
MOD_CSEL  
POL_Q  
0x31 MOD_LIN_CTL [15:8]  
[7:0]  
0x32 MOD_CTL0 [15:8]  
[7:0]  
MOD_BLEED  
POL_I  
Q_LO  
I_LO  
0x33 MOD_CTL1 [15:8]  
[7:0]  
DCOFF_I  
DCOFF_Q  
RESERVED  
0x40 PFD_CP_CTL [15:8]  
[7:0]  
RESERVED  
ABLDLY  
CP_CTRL  
RESERVED  
DITH_EN  
PFD_CLK_EDGE  
0x42 DITH_CTL1 [15:8]  
[7:0]  
RESERVED  
DITH_MAG  
DITH_VAL  
0x43 DITH_CTL2 [15:8]  
[7:0]  
DITH_VAL[15:8]  
DITH_VAL[7:0]  
0x45 VCO_CTL2 [15:8]  
RESERVED  
VTUNE_CTRL  
[7:0] VCO_BAND_SRC  
0x49 VCO_CTL3 [15:8] RESERVED  
[7:0]  
BAND  
SET_1  
SET_0[8]  
SET_0[7:0]  
Rev. 0 | Page 31 of 44  
 
ADRF6720  
Data Sheet  
REGISTER DETAILS  
Address: 0x00, Reset: 0x0000, Name: SOFT_RESET  
Table 15. Bit Descriptions for SOFT_RESET  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
SOFT_RESET  
Soft Reset.  
0x0  
W
Address: 0x01, Reset: 0xF67F, Name: ENABLES  
Table 16. Bit Descriptions for ENABLES  
Bits  
11  
10  
9
8
7
6
5
4
3
Bit Name  
Settings  
Description  
Reset  
0x0  
0x1  
0x1  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LO_1XVCO_EN  
MOD_EN  
Enables 1 × LO with Internal VCO.  
Enables MOD/LO Drive Chain.  
Enables Quad Divider for 2 × LO Operation.  
Enables External 2 × LO Driver—Before Quad Divider.  
Enables External 1 × LO Driver—After Quad Divider.  
Enables VCO Mux.  
Enables Reference Buffer.  
Enables VCOs.  
Enables VCO Dividers.  
Enables Charge Pump.  
QUAD_DIV_EN  
LO_DRV2X_EN  
LO_DRV1X_EN  
VCO_MUX_EN  
REF_BUF_EN  
VCO_EN  
DIV_EN  
CP_EN  
VCO_LDO_EN  
2
1
Enables VCO LDO.  
Rev. 0 | Page 32 of 44  
 
Data Sheet  
ADRF6720  
Address: 0x02, Reset: 0x002C, Name: INT_DIV  
Table 17. Bit Descriptions for INT_DIV  
Bits  
Bit Name  
Settings  
Description  
Divide Mode.  
Fractional  
Reset  
Access  
11  
DIV_MODE  
0x0  
RW  
0
1
Integer  
[10:0]  
INT_DIV  
Divider INT Value.  
0x2C  
RW  
Address: 0x03, Reset: 0x0128, Name: FRAC_DIV  
Table 18. Bit Descriptions for FRAC_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
FRAC_DIV  
Divider FRAC Value.  
0x128  
RW  
Address: 0x04, Reset: 0x0600, Name: MOD_DIV  
Table 19. Bit Descriptions for MOD_DIV  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
MOD_DIV  
Divider Modulus Value.  
0x600  
RW  
Rev. 0 | Page 33 of 44  
ADRF6720  
Data Sheet  
Address: 0x10, Reset: 0xF67F, Name: ENBL_MASK  
Table 20. Bit Descriptions for ENBL_MASK  
Bits  
11  
10  
9
8
7
6
5
4
3
Bit Name  
Settings  
Description  
Reset  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LO_1XVCO_MASK  
MOD_MASK  
Enable 1 × LO with internal VCO.  
MOD Enable.  
Quadrature Divide Path Enable (2 ×/4 ×/8 × LO).  
External 2 × LO Driver Enable—Before Quad Divider.  
External 1 × LO Driver Enable—After Quad Divider.  
VCO_Mux_Enable.  
Reference Buffer Enable.  
Power Up VCOs.  
Power Up Dividers.  
Power Up Charge Pump.  
0x0  
0x1  
0x1  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
QUAD_DIV_MASK  
LO_DRV2X_MASK  
LO_DRV1X_MASK  
VCO_MUX_MASK  
REF_BUF_MASK  
VCO_MASK  
DIV_MASK  
CP_MASK  
VCO_LDO_MASK  
2
1
Power Up VCO LDO.  
Address: 0x20, Reset: 0x0C26, Name: CP_CTL  
Rev. 0 | Page 34 of 44  
Data Sheet  
ADRF6720  
Table 21. Bit Descriptions for CP_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
14  
CP_SEL  
Charge Pump Reference Current Select.  
Internal Charge Pump.  
External Charge Pump.  
0x0  
RW  
0
1
[13:10] CP_CSCALE  
Charge Pump Coarse Scale Current.  
0x3  
RW  
RW  
0001 250 μA.  
0011 500 μA.  
0111 750 μA.  
1111 1000 μA.  
[5:0]  
CP_BLEED  
Charge Pump Bleed.  
0x26  
000000 0 μA  
000001 15.625 μA Sink.  
000010 31.25 μA Sink.  
000011 46.875 μA Sink.  
011111 484.375 μA Sink.  
100000 0 μA.  
100001 15.625 μA Source.  
100010 31.25 μA Source.  
100011 46.875 μA Source.  
111111 484.375 μA Source.  
Address: 0x21, Reset: 0x000B, Name: PFD_CTL  
Table 22. Bit Descriptions for PFD_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:4]  
REF_MUX_SEL  
Reference (REF) Output Mux Select.  
0x0  
RW  
000 LOCK_DET.  
001 VPTAT.  
010 REFCLK.  
011 REFCLK/2.  
100 REFCLK × 2.  
101 REFCLK/8.  
110 REFCLK/4.  
3
PFD_POLARITY  
Set PFD Polarity.  
Positive.  
Negative.  
0x1  
RW  
0
1
Rev. 0 | Page 35 of 44  
ADRF6720  
Data Sheet  
Bits  
Bit Name  
REF_SEL  
Settings  
Description  
Reset  
Access  
[2:0]  
Set REF Input Multiply/Divide Ratio.  
0x3  
RW  
000 ×2.  
001 ×1.  
010 Divide by 2.  
011 Divide by 4.  
100 Divide by 8.  
Address: 0x22, Reset: 0x2A03, Name: VCO_CTL  
Table 23. Bit Descriptions for VCO_CTL  
Bits Bit Name Settings  
[15:12] VCO_LDO_R4SEL  
Description  
Reset  
0x2  
Access  
RW  
VCO LDO Resistor 4 Selections.  
VCO LDO Resistor 2 Selections.  
Set External LO Output Amplitude.  
[11:8]  
[7:6]  
VCO_LDO_R2SEL  
LO_DRV_LVL  
0xA  
RW  
0x0  
RW  
00 −5.1 dBm.  
01 −0.5 dBm.  
10 3 dBm.  
5
4
3
DRVDIV2_EN  
DIV8_EN  
Divide by 2 for External LO Driver Enable.  
Disable.  
Enable.  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
Divide by 2 in LO Path for Total of Division of 8.  
Disable.  
Enable.  
0
1
DIV4_EN  
Divide by 2 in LO Path for Total of Division of 4.  
0
1
Disable.  
Enable.  
Rev. 0 | Page 36 of 44  
Data Sheet  
ADRF6720  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[2:0]  
VCO_SEL  
Select VCO Core/External LO.  
0x3  
RW  
000 4.6 GHz to 5.71 GHz.  
001 4.02 GHz to 4.6 GHz.  
010 3.5 GHz to 4.02 GHz.  
011 2.85 GHz to 3.5 GHz.  
100 External LO/VCO.  
Address: 0x30, Reset: 0x0000, Name: BALUN_CTL  
Table 24. Bit Descriptions for BALUN_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
BAL_COUT  
Set Balun Output Capacitance.  
0x0  
RW  
0000 Minimum Capacitance Value.  
1111 Maximum Capacitance Value.  
Set Balun Input Capacitance.  
[3:0]  
BAL_CIN  
0x0  
RW  
0000 Minimum Capacitance Value.  
1111 Maximum Capacitance Value.  
Address: 0x31, Reset: 0x1101, Name: MOD_LIN_CTL  
Table 25. Bit Descriptions for MOD_LIN_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x44  
0x01  
Access  
RW  
[12:6]  
[5:0]  
MOD_RSEL  
MOD_CSEL  
Modulator Linearizer RSEL Value.  
Modulator Linearizer CSEL Value.  
RW  
Rev. 0 | Page 37 of 44  
ADRF6720  
Data Sheet  
Address: 0x32, Reset: 0x0900, Name: MOD_CTL0  
Table 26. Bit Descriptions for MOD_CTL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[14:12] MOD_BLEED  
[11:10] POL_Q  
Modulator Bleed Current.  
Quadrature Polarity Switch, Q Channel.  
01 Inverted Q Channel Polarity.  
10 Normal Polarity.  
0x2  
RW  
[9:8]  
POL_I  
Quadrature Polarity Switch, I Channel.  
01 Normal Polarity.  
0x1  
RW  
10 Inverted I Channel Polarity.  
Unwanted Sideband Nulling, Q Channel.  
Unwanted Sideband Nulling, I Channel.  
[7:4]  
[3:0]  
Q_LO  
I_LO  
0x0  
0x0  
RW  
RW  
Address: 0x33, Reset: 0x0000, Name: MOD_CTL1  
Rev. 0 | Page 38 of 44  
Data Sheet  
ADRF6720  
Table 27. Bit Descriptions for MOD_CTL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:8]  
DCOFF_I  
LO Nulling, I Channel.  
0x0  
RW  
00000000 0 μA.  
00000001 +5 μA.  
00000010 +10 μA.  
00000011 +15 μA.  
01111110 +630 μA.  
01111111 +635 μA.  
10000000 0 μA.  
10000001 −5 μA.  
10000010 −10 μA.  
10000011 −15 μA.  
11111110 −630 μA.  
11111111 −635 μA.  
[7:0]  
DCOFF_Q  
LO Nulling, Q Channel.  
0x0  
RW  
00000000 0 μA.  
00000001 +5 μA.  
00000010 +10 μA.  
00000011 +15 μA.  
01111110 +630 μA.  
01111111 +635 μA.  
10000000 0 μA.  
10000001 −5 μA.  
10000010 −10 μA.  
10000011 −15 μA.  
11111110 −630 μA.  
11111111 −635 μA.  
Address: 0x40, Reset: 0x0010, Name: PFD_CP_CTL  
Rev. 0 | Page 39 of 44  
ADRF6720  
Data Sheet  
Table 28. Bit Descriptions for PFD_CP_CTL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:5]  
ABLDLY  
Set Antibacklash Delay.  
0x0  
RW  
00 0 ns.  
01 0.5 ns.  
10 0.75 ns.  
11 0.9 ns.  
[4:2]  
[1:0]  
CP_CTRL  
Set Charge Pump Control.  
0x4  
0x0  
RW  
RW  
000 Both On.  
001 Pump Down.  
010 Pump Up.  
011 Tristate.  
100 PFD.  
PFD_CLK_EDGE  
Set PFD Clock Edge Trigger.  
00 Divide and Reference Down Edge.  
01 Divide Down Edge, Reference Up Edge.  
10 Divide Up Edge, Reference Down Edge.  
11 Divide and Reference Up Edge.  
Address: 0x42, Reset: 0x000E, Name: DITH_CTL1  
Table 29. Bit Descriptions for DITH_CTL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
DITH_EN  
Set Dither Enable.  
Disable.  
Enable.  
0x1  
RW  
0
1
[2:1]  
0
DITH_MAG  
DITH_VAL  
Set Dither Magnitude.  
Set Dither Value.  
0x3  
0x0  
RW  
RW  
Address: 0x43, Reset: 0x0000, Name: DITH_CTL2  
Table 30. Bit Descriptions for DITH_CTL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[15:0]  
DITH_VAL  
Set Dither Value.  
0x0  
RW  
Rev. 0 | Page 40 of 44  
Data Sheet  
ADRF6720  
Address: 0x45, Reset: 0x0000, Name: VCO_CTL2  
Table 31. Bit Descriptions for VCO_CTL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[9:8]  
VTUNE_CTRL  
Source for VCO VTUNE Pin.  
00 Band Calibration Routine.  
01 SPI.  
0x0  
RW  
7
VCO_BAND_SRC  
BAND  
VCO Band Source  
Band Calibration Routine.  
SPI.  
0x0  
RW  
RW  
0
1
[6:0]  
VCO Band Selection.  
0x00  
Address: 0x49, Reset: 0x16BD, Name: VCO_CTL3  
Table 32. Bit Descriptions for VCO_CTL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[13:9]  
SET_1  
Internal Settings. Refer to the Required PLL/VCO Settings and Register  
Write Sequence section.  
0x0B  
RW  
[8:0]  
SET_0  
Internal Settings. Refer to the Required PLL/VCO Settings and Register  
Write Sequence section.  
0x0BD  
RW  
Rev. 0 | Page 41 of 44  
ADRF6720  
Data Sheet  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
40  
1
30  
0.50  
BSC  
4.55  
4.40 SQ  
4.25  
EXPOSED  
PAD  
10  
21  
11  
20  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 60. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
ADRF6720ACPZ-R7  
ADRF6720-EVALZ  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-40-11  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 42 of 44  
 
 
Data Sheet  
NOTES  
ADRF6720  
Rev. 0 | Page 43 of 44  
ADRF6720  
NOTES  
Data Sheet  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12134-0-4/14(0)  
Rev. 0 | Page 44 of 44  

相关型号:

ADRF6720ACPZ-R7

Wideband (700 MHz to 3 GHz) Quadrature Modulator with Integrated PLL/VCOs and 0.5 V Input Bias
ADI

ADRF6750-EVALZ

950 MHz to 1575 MHz Quadrature Modulator
ADI

ADRF6750ACPZ

IC PLL FREQUENCY SYNTHESIZER, 300 MHz, QCC56, 8 X 8 MM, ROHS COMPLIANT, MO-220VLLD-2, LFCSP-56, PLL or Frequency Synthesis Circuit
ADI

ADRF6750ACPZ-R7

950 MHz to 1575 MHz Quadrature Modulator
ADI

ADRF6755

100 MHz to 2400 MHz I/Q Modulator with Integrated Fractional-N PLL and VCO
ADI

ADRF6755ACPZ

100 MHz to 2400 MHz I/Q Modulator with Integrated Fractional-N PLL and VCO
ADI

ADRF6755ACPZ-R7

100 MHz to 2400 MHz I/Q Modulator with Integrated Fractional-N PLL and VCO
ADI

ADRF6780ACPZN

5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter
ADI

ADRF6780ACPZN-R2

5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter
ADI

ADRF6780ACPZN-R7

5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter
ADI

ADRF6801

750 MHz to 1150 MHz Quadrature Demodulator with Fractional-N PLL and VCO
ADI

ADRF6801ACPZ-R7

750 MHz TO 1150 MHz Quadrature Demodulator with Fractional-N PLL and VCO
ADI