ADSP-2104_15 [ADI]

Low Cost DSP Microcomputers;
ADSP-2104_15
型号: ADSP-2104_15
厂家: ADI    ADI
描述:

Low Cost DSP Microcomputers

文件: 总36页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Low Cost DSP Microcomputers  
ADSP-2104/ADSP-2109  
FUNCTIO NAL BLO CK D IAGRAM  
SUMMARY  
16-Bit Fixed-Point DSP Microprocessors w ith  
On-Chip Mem ory  
Enhanced Harvard Architecture for Three-Bus  
Perform ance: Instruction Bus & Dual Data Buses  
Independent Com putation Units: ALU, Multiplier/  
Accum ulator, and Shifter  
MEMORY  
DATA ADDRESS  
GENERATORS  
PROGRAM  
SEQUENCER  
PROGRAM  
MEMORY  
DATA  
MEMORY  
DAG 2  
DAG 1  
EXTERNAL  
ADDRESS  
BUS  
PROGRAM MEMORY ADDRESS  
Single-Cycle Instruction Execution & Multifunction  
Instructions  
DATA MEMORY ADDRESS  
On-Chip Program Mem ory RAM or ROM  
& Data Mem ory RAM  
Integrated I/ O Peripherals: Serial Ports and Tim er  
PROGRAM MEMORY DATA  
DATA MEMORY DATA  
EXTERNAL  
DATA  
BUS  
FEATURES  
20 MIPS, 50 ns Maxim um Instruction Rate  
Separate On-Chip Buses for Program and Data Mem ory  
Program Mem ory Stores Both Instructions and Data  
(Three-Bus Perform ance)  
TIMER  
ARITHMETIC UNITS  
MAC SHIFTER  
SERIAL PORTS  
SPORT 0 SPORT 1  
ALU  
ADSP-2100 CORE  
Dual Data Address Generators w ith Modulo and  
Bit-Reverse Addressing  
Efficient Program Sequencing w ith Zero-Overhead  
Looping: Single-Cycle Loop Setup  
Autom atic Booting of On-Chip Program Mem ory from  
Byte-Wide External Mem ory (e.g., EPROM )  
Double-Buffered Serial Ports w ith Com panding Hardw are,  
Autom atic Data Buffering, and Multichannel Operation  
Three Edge- or Level-Sensitive Interrupts  
Low Pow er IDLE Instruction  
T he ADSP-2100 Family’s flexible architecture and compre-  
hensive instruction set support a high degree of parallelism.  
In one cycle the ADSP-2104/ADSP-2109 can perform all  
of the following operations:  
Generate the next program address  
Fetch the next instruction  
Perform one or two data moves  
Update one or two data address pointers  
Perform a computation  
Receive and transmit data via one or two serial ports  
PLCC Package  
GENERAL D ESCRIP TIO N  
T he ADSP-2104 and ADSP-2109 processors are single-chip  
microcomputers optimized for digital signal processing (DSP)  
and other high speed numeric processing applications. T he  
ADSP-2104/ADSP-2109 processors are built upon a common  
core. Each processor combines the core DSP architecture—  
computation units, data address generators, and program  
sequencer—with differentiating features such as on-chip  
program and data memory RAM (ADSP-2109 contains 4K  
words of program ROM), a programmable timer, and two  
serial ports.  
T he ADSP-2104 contains 512 words of program RAM, 256  
words of data RAM, an interval timer, and two serial ports.  
T he ADSP-2104L is a 3.3 volt power supply version of the  
ADSP-2104; it is identical to the ADSP-2104 in all other  
characteristics.  
T he ADSP-2109 contains 4K words of program ROM and  
256 words of data RAM, an interval timer, and two serial ports.  
T he ADSP-2109L is a 3.3 volt power supply version of the  
ADSP-2109; it is identical to the ADSP-2109 in all other  
characteristics.  
Fabricated in a high speed, submicron, double-layer metal  
CMOS process, the ADSP-2104/ADSP-2109 operates at  
20 MIPS with a 50 ns instruction cycle time. T he ADSP-2104L  
and ADSP-2109L are 3.3 volt versions which operate at  
13.824 MIPS with a 72.3 ns instruction cycle time. Every  
instruction can execute in a single cycle. Fabrication in CMOS  
results in low power dissipation.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
ADSP-2104/ADSP-2109  
T he ADSP-2109 is a memory-variant version of the ADSP-  
2104 and contains factory-programmed on-chip ROM program  
memory.  
windowed user interface. A PROM splitter utility generates  
PROM programmer compatible files.  
EZ-ICE® in-circuit emulators allow debugging of ADSP-2104  
systems by providing a full range of emulation functions such as  
modification of memory and register values and execution  
breakpoints. EZ-LAB® demonstration boards are complete DSP  
systems that execute EPROM-based programs.  
The ADSP-2109 eliminates the need for an external boot EPROM  
in your system, and can also eliminate the need for any external  
program memory by fitting the entire application program in  
on-chip ROM. T his device provides an excellent option for  
volume applications where board space and system cost constraints  
are of critical concern.  
T he EZ-Kit Lite is a very low cost evaluation/development  
platform that contains both the hardware and software needed  
to evaluate the ADSP-21xx architecture.  
D evelopm ent Tools  
T he ADSP-2104/ADSP-2109 processors are supported by a  
complete set of tools for system development. T he ADSP-2100  
Family Development Software includes C and assembly  
language tools that allow programmers to write code for any  
ADSP-21xx processor. T he ANSI C compiler generates ADSP-  
21xx assembly source code, while the runtime C library provides  
ANSI-standard and custom DSP library routines. T he ADSP-  
21xx assembler produces object code modules which the linker  
combines into an executable file. The processor simulators provide  
an interactive instruction-level simulation with a reconfigurable,  
Additional details and ordering information is available in the  
ADSP-2100 Family Software & Hardware Development Tools data  
sheet (ADDS-21xx-T OOLS). T his data sheet can be requested  
from any Analog Devices sales office or distributor.  
Additional Infor m ation  
T his data sheet provides a general overview of ADSP-2104/  
ADSP-2109 processor functionality. For detailed design  
information on the architecture and instruction set, refer to the  
ADSP-2100 Family User’s Manual, available from Analog  
Devices.  
EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.  
TABLE O F CO NTENTS  
SPECIFICAT IONS (ADSP-2104L/ADSP-2109L) . . . . . . 16  
Recommended Operating Conditions . . . . . . . . . . . . . . . . 16  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Supply Current & Power . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power Dissipation Example . . . . . . . . . . . . . . . . . . . . . . . . 18  
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Capacitive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
T est Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
GENERAL DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . 1  
Development T ools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
ARCHIT ECT URE OVERVIEW . . . . . . . . . . . . . . . . . . . . 3  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
TIMING PARAMETERS (ADSP-2104/ADSP-2109) . . . . . 20  
SYST EM INT ERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Interrupts & Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Bus Request–Bus Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Program Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Program Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Boot Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Low Power IDLE Instruction . . . . . . . . . . . . . . . . . . . . . . . 8  
ADSP-2109 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ordering Procedure for ADSP-2109 ROM Processors . . . . 9  
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
T IMING PARAMETERS (ADSP-2104L/ADSP-2109L) . . 27  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Interrupts & Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Bus Request–Bus Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SPECIFICAT IONS (ADSP-2104/ADSP-2109) . . . . . . . . 12  
PIN CONFIGURAT IONS  
68-Lead PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PACKAGE OUT LINE DIMENSIONS  
68-Lead PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Recommended Operating Conditions . . . . . . . . . . . . . . . . 12  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Supply Current & Power . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power Dissipation Example . . . . . . . . . . . . . . . . . . . . . . . . 14  
Environmental Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Capacitive Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
T est Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
–2–  
REV. 0  
ADSP-2104/ADSP-2109  
INSTRUCTION  
REGISTER  
PROGRAM  
MEMORY  
DATA  
MEMORY  
BOOT  
ADDRESS  
GENERATOR  
SRAM  
or ROM  
SRAM  
DATA  
ADDRESS  
GENERATOR  
#2  
DATA  
ADDRESS  
GENERATOR  
#1  
TIMER  
PROGRAM  
SEQUENCER  
24  
16  
PMA BUS  
DMA BUS  
14  
PMA BUS  
DMA BUS  
EXTERNAL  
ADDRESS  
BUS  
14  
MUX  
MUX  
14  
PMD BUS  
DMD BUS  
24  
16  
PMD BUS  
24  
EXTERNAL  
DATA  
BUS  
BUS  
EXCHANGE  
DMD BUS  
COMPANDING  
CIRCUITRY  
INPUT REGS  
INPUT REGS  
ALU  
INPUT REGS  
MAC  
SHIFTER  
TRANSMIT REG  
RECEIVE REG  
TRANSMIT REG  
RECEIVE REG  
OUTPUT REGS  
OUTPUT REGS  
OUTPUT REGS  
16  
SERIAL  
PORT 0  
SERIAL  
PORT 1  
R Bus  
5
5
Figure 1. ADSP-2104/ADSP-2109 Block Diagram  
ARCH ITECTURE O VERVIEW  
circular buffers. T he circular buffering feature is also used by  
the serial ports for automatic data transfers to (and from) on-  
chip memory.  
Figure 1 shows a block diagram of the ADSP-2104/ADSP-2109  
architecture. T he processor contains three independent compu-  
tational units: the ALU, the multiplier/accumulator (MAC), and  
the shifter. T he computational units process 16-bit data directly  
and have provisions to support multiprecision computations.  
T he ALU performs a standard set of arithmetic and logic  
operations; division primitives are also supported. T he MAC  
performs single-cycle multiply, multiply/add, and multiply/  
subtract operations. T he shifter performs logical and arithmetic  
shifts, normalization, denormalization, and derive exponent  
operations. The shifter can be used to efficiently implement  
numeric format control including multiword floating-point  
representations.  
Efficient data transfer is achieved with the use of five internal  
buses:  
• Program Memory Address (PMA) Bus  
• Program Memory Data (PMD) Bus  
Data Memory Address (DMA) Bus  
Data Memory Data (DMD) Bus  
• Result (R) Bus  
T he two address buses (PMA, DMA) share a single external  
address bus, allowing memory to be expanded off-chip, and the  
two data buses (PMD, DMD) share a single external data bus.  
T he BMS, DMS, and PMS signals indicate which memory  
space is using the external buses.  
T he internal result (R) bus directly connects the computational  
units so that the output of any unit may be used as the input of  
any unit on the next cycle.  
Program memory can store both instructions and data, permit-  
ting the ADSP-2104/ADSP-2109 to fetch two operands in a  
single cycle, one from program memory and one from data  
memory. T he processor can fetch an operand from on-chip  
program memory and the next instruction in the same cycle.  
A powerful program sequencer and two dedicated data address  
generators ensure efficient use of these computational units.  
T he sequencer supports conditional jumps, subroutine calls,  
and returns in a single cycle. With internal loop counters and  
loop stacks, the ADSP-2104/ADSP-2109 executes looped code  
with zero overhead—no explicit jump instructions are required  
to maintain the loop. Nested loops are also supported.  
T he memory interface supports slow memories and memory-  
mapped peripherals with programmable wait state generation.  
External devices can gain control of the processor’s buses with  
the use of the bus request/grant signals (BR, BG).  
T wo data address generators (DAGs) provide addresses for  
simultaneous dual operand fetches (from data memory and  
program memory). Each DAG maintains and updates four  
address pointers. Whenever the pointer is used to access data  
(indirect addressing), it is post-modified by the value of one of  
four modify registers. A length value may be associated with  
each pointer to implement automatic modulo addressing for  
One bus grant execution mode (GO Mode) allows the ADSP-  
2104/ADSP-2109 to continue running from internal memory.  
A second execution mode requires the processor to halt while  
buses are granted.  
REV. 0  
–3–  
ADSP-2104/ADSP-2109  
T he ADSP-2104/ADSP-2109 can respond to several different  
interrupts. T here can be up to three external interrupts,  
configured as edge- or level-sensitive. Internal interrupts can be  
generated by the timer and serial ports. T here is also a master  
RESET signal.  
Flexible Inter r upt Schem e—Receive and transmit functions  
can generate a unique interrupt upon completion of a data word  
transfer.  
Autobuffer ing with Single-Cycle O ver head—Each SPORT  
can automatically receive or transmit the contents of an entire  
circular data buffer with only one overhead cycle per data word;  
an interrupt is generated after the transfer of the entire buffer is  
completed.  
Booting circuitry provides for loading on-chip program memory  
automatically from byte-wide external memory. After reset,  
three wait states are automatically generated. T his allows, for  
example, the ADSP-2104 to use a 150 ns EPROM as external  
boot memory. Multiple programs can be selected and loaded  
from the EPROM with no additional hardware.  
Multichannel Capability (SP O RT0 O nly)—SPORT 0  
provides a multichannel interface to selectively receive or  
transmit a 24-word or 32-word, time-division multiplexed serial  
bit stream; this feature is especially useful for T 1 or CEPT  
interfaces, or as a network communication scheme for multiple  
processors.  
T he data receive and transmit pins on SPORT 1 (Serial Port 1)  
can be alternatively configured as a general-purpose input flag  
and output flag. You can use these pins for event signalling to  
and from an external device.  
Alter nate Configur ation—SPORT 1 can be alternatively  
configured as two external interrupt inputs (IRQ0, IRQ1) and  
the Flag In and Flag Out signals (FI, FO).  
A programmable interval timer can generate periodic interrupts.  
A 16-bit count register (T COUNT ) is decremented every n  
cycles, where n–1 is a scaling value stored in an 8-bit register  
(T SCALE). When the value of the count register reaches zero,  
an interrupt is generated and the count register is reloaded from  
a 16-bit period register (T PERIOD).  
Inter r upts  
T he interrupt controller lets the processor respond to interrupts  
with a minimum of overhead. Up to three external interrupt  
input pins, IRQ0, IRQ1, and IRQ2, are provided. IRQ2 is  
always available as a dedicated pin; IRQ1 and IRQ0 may be  
alternately configured as part of Serial Port 1. T he ADSP-2104/  
ADSP-2109 also supports internal interrupts from the timer,  
and serial ports. T he interrupts are internally prioritized and  
individually maskable (except for RESET which is nonmaskable).  
The IRQx input pins can be programmed for either level- or  
edge-sensitivity. T he interrupt priorities are shown in T able I.  
Ser ial P or ts  
T he ADSP-2104/ADSP-2109 processor includes two synchro-  
nous serial ports (“SPORT s”) for serial communications and  
multiprocessor communication.  
T he serial ports provide a complete synchronous serial interface  
with optional companding in hardware. A wide variety of  
framed or frameless data transmit and receive modes of opera-  
tion are available. Each SPORT can generate an internal  
programmable serial clock or accept an external serial clock.  
Table I. Interrupt Vector Addresses & P riority  
AD SP -2104/AD SP -2109  
Each serial port has a 5-pin interface consisting of the following  
signals:  
Interrupt  
Source  
Interrupt  
Vector Address  
Signal Nam e  
Function  
RESET Startup  
IRQ2  
0x0000  
0x0004 (High Priority)  
0x0008  
0x000C  
0x0010  
SCLK  
RFS  
T FS  
DR  
Serial Clock (I/O)  
Receive Frame Synchronization (I/O)  
T ransmit Frame Synchronization (I/O)  
Serial Data Receive  
SPORT 0 T ransmit  
SPORT 0 Receive  
SPORT 1 T ransmit or IRQ1  
SPORT 1 Receive or IRQ0  
T imer  
DT  
Serial Data T ransmit  
0x0014  
0x0018 (Low Priority)  
T he serial ports offer the following capabilities:  
Bidir ectional—Each SPORT has a separate, double-buffered  
transmit and receive function.  
T he ADSP-2104/ADSP-2109 uses a vectored interrupt scheme:  
when an interrupt is acknowledged, the processor shifts program  
control to the interrupt vector address corresponding to the  
interrupt received. Interrupts can be optionally nested so that a  
higher priority interrupt can preempt the currently executing  
interrupt service routine. Each interrupt vector location is four  
instructions in length so that simple service routines can be  
coded entirely in this space. Longer service routines require an  
additional JUMP or CALL instruction.  
Flexible Clocking—Each SPORT can use an external serial  
clock or generate its own clock internally.  
Flexible Fr am ing—T he SPORT s have independent framing  
for the transmit and receive functions; each function can run in  
a frameless mode or with frame synchronization signals inter-  
nally generated or externally generated; frame sync signals may  
be active high or inverted, with either of two pulse widths and  
timings.  
Individual interrupt requests are logically ANDed with the bits  
in the IMASK register; the highest-priority unmasked interrupt  
is then selected.  
D iffer ent Wor d Lengths—Each SPORT supports serial data  
word lengths from 3 to 16 bits.  
Com panding in H ar dwar e—Each SPORT provides optional  
A-law and µ-law companding according to CCIT T recommen-  
dation G.711.  
–4–  
REV. 0  
ADSP-2104/ADSP-2109  
T he interrupt control register, ICNT L, allows the external  
interrupts to be set as either edge- or level-sensitive. Depending  
on bit 4 in ICNT L, interrupt service routines can either be  
nested (with higher priority interrupts taking precedence) or be  
processed sequentially (with only one interrupt service active at  
a time).  
Programmable wait-state generation allows the processors to  
easily interface to slow external memories.  
T he ADSP-2104/ADSP-2109 also provides either: one external  
interrupt (IRQ2) and two serial ports (SPORT 0, SPORT 1), or  
three external interrupts (IRQ2, IRQ1, IRQ0) and one serial  
port (SPORT 0).  
The interrupt force and clear register, IFC, is a write-only register  
that contains a force bit and a clear bit for each interrupt.  
Clock Signals  
T he ADSP-2104/ADSP-2109s CLKIN input may be driven by  
a crystal or by a T T L-compatible external clock signal. T he  
CLKIN input may not be halted or changed in frequency during  
operation, nor operated below the specified low frequency limit.  
When responding to an interrupt, the AST AT , MST AT , and  
IMASK status registers are pushed onto the status stack and  
the PC counter is loaded with the appropriate vector address.  
T he status stack is seven levels deep to allow interrupt nesting.  
T he stack is automatically popped when a return from the  
interrupt instruction is executed.  
If an external clock is used, it should be a T T L-compatible  
signal running at the instruction rate. T he signal should be  
connected to the processor’s CLKIN input; in this case, the  
XT AL input must be left unconnected.  
P in D efinitions  
T able II shows pin definitions for the ADSP-2104/ADSP-2109  
Because the processor includes an on-chip oscillator circuit, an  
external crystal may also be used. T he crystal should be con-  
nected across the CLKIN and XT AL pins, with two capacitors  
connected as shown in Figure 2. A parallel-resonant, fundamen-  
tal frequency, microprocessor-grade crystal should be used.  
processors. Any inputs not used must be tied to VDD  
.
SYSTEM INTERFACE  
Figure 3 shows a typical system for the ADSP-2104/ADSP-2109,  
with two serial I/O devices, a boot EPROM, and optional external  
program and data memory. A total of 14.25K words of data  
memory and 14.5K words of program memory is addressable.  
Table II. AD SP -2104/AD SP -2109 P in D efinitions  
P in  
Nam e(s)  
# of  
P ins  
Input /  
O utput  
Function  
Address  
Data1  
14  
24  
O
I/O  
Address outputs for program, data and boot memory.  
Data I/O pins for program and data memories. Input only for  
boot memory, with two MSBs used for boot memory addresses.  
Unused data lines may be left floating.  
Processor Reset Input  
External Interrupt Request # 2  
External Bus Request Input  
External Bus Grant Output  
External Program Memory Select  
External Data Memory Select  
Boot Memory Select  
External Memory Read Enable  
External Memory Write Enable  
Memory Map Select Input  
External Clock or Quartz Crystal Input  
Processor Clock Output  
Power Supply Pins  
RESET  
IRQ2  
1
1
1
1
1
1
1
1
1
1
2
1
I
I
I
O
O
O
O
O
O
I
BR2  
BG  
PMS  
DMS  
BMS  
RD  
WR  
MMAP  
CLKIN, XT AL  
CLKOUT  
VDD  
I
O
GND  
Ground Pins  
SPORT 0  
SPORT 1  
or Interrupts & Flags:  
IRQ0 (RFS1)  
IRQ1 (TFS1)  
FI (DR1)  
FO (DT1)  
5
5
I/O  
I/O  
Serial Port 0 Pins (TFS0, RFS0, DT0, DR0, SCLK0)  
Serial Port 1 Pins (TFS1, RFS1, DT1, DR1, SCLK1)  
1
1
1
1
I
I
I
O
External Interrupt Request # 0  
External Interrupt Request # 1  
Flag Input Pin  
Flag Output Pin  
NOT ES  
1Unused data bus lines may be left floating.  
2BR must be tied high (to VDD) if not used.  
REV. 0  
–5–  
ADSP-2104/ADSP-2109  
T he RESET input resets all internal stack pointers to the empty  
stack condition, masks all interrupts, and clears the MST AT  
register. When RESET is released, the boot loading sequence is  
performed (provided there is no pending bus request and the  
chip is configured for booting, with MMAP = 0). T he first  
instruction is then fetched from internal program memory  
location 0x0000.  
CLKIN  
XTAL  
CLKOUT  
ADSP-2104/  
ADSP-2109  
P r ogr am Mem or y Inter face  
T he on-chip program memory address bus (PMA) and on-chip  
program memory data bus (PMD) are multiplexed with the on-  
chip data memory buses (DMA, DMD), creating a single  
external data bus and a single external address bus. T he external  
data bus is bidirectional and is 24 bits wide to allow instruction  
fetches from external program memory. Program memory may  
contain code and data.  
Figure 2. External Crystal Connections  
A clock output signal (CLKOUT ) is generated by the processor,  
synchronized to the processor’s internal cycles.  
Reset  
The RESET signal initiates a complete reset of the processor.  
T he RESET signal must be asserted when the chip is powered  
up to assure proper initialization. If the RESET signal is applied  
during initial power-up, it must be held long enough to allow  
the processor’s internal clock to stabilize. If RESET is activated  
at any time after power-up and the input clock frequency does  
not change, the processor’s internal clock continues and does  
not require this stabilization time.  
T he external address bus is 14 bits wide.  
T he data lines are bidirectional. T he program memory select  
(PMS) signal indicates accesses to program memory and can be  
used as a chip select signal. T he write (WR) signal indicates a  
write operation and is used as a write strobe. T he read (RD)  
signal indicates a read operation and is used as a read strobe or  
output enable signal.  
T he power-up sequence is defined as the total time required for  
the crystal oscillator circuit to stabilize after a valid VDD is  
applied to the processor and for the internal phase-locked loop  
(PLL) to lock onto the specific crystal frequency. A minimum of  
2000 tCK cycles will ensure that the PLL has locked (this does  
not, however, include the crystal oscillator start-up time).  
During this power-up sequence the RESET signal should be  
held low. On any subsequent resets, the RESET signal must  
T he processor writes data from the 16-bit registers to 24-bit  
program memory using the PX register to provide the lower  
eight bits. When the processor reads 16-bit data from 24-bit  
program memory to a 16-bit data register, the lower eight bits  
are placed in the PX register.  
T he program memory interface can generate 0 to 7 wait states  
for external memory devices; default is to 7 wait states after  
RESET.  
meet the minimum pulse width specification, tRSP  
.
T o generate the RESET signal, use either an RC circuit with an  
external Schmidt trigger or a commercially available reset IC.  
(Do not use only an RC circuit.)  
ADSP-2104  
or ADSP-2109  
A
13-0  
14  
ADDR  
13-0  
BOOT  
MEMORY  
1x CLOCK  
or  
CRYSTAL  
CLKIN  
XTAL  
D
23-22  
ADDR  
e.g. EPROM  
D
24  
15-8  
2764  
27128  
27256  
27512  
CLKOUT  
RESET  
IRQ2  
DATA  
DATA  
OE  
23-0  
BMS  
CS  
BR  
A
D
13-0  
BG  
ADDR  
DATA  
23-0  
MMAP  
PROGRAM  
MEMORY  
RD  
OE  
WE  
CS  
SPORT 1  
SCLK1  
WR  
(OPTIONAL)  
SERIAL  
DEVICE  
RFS1 or IRQ0  
TFS1 or IRQ1  
DT1 or FO  
DR1 or FI  
A
13-0  
(OPTIONAL)  
ADDR  
DATA  
DATA  
MEMORY  
&
D
23-8  
SPORT 0  
SCLK0  
RFS0  
TFS0  
DT0  
PMS  
DMS  
PERIPHERALS  
OE  
WE  
CS  
SERIAL  
DEVICE  
(OPTIONAL)  
(OPTIONAL)  
DR0  
THE TWO MSBs OF THE DATA BUS (D  
) ARE USED TO SUPPLY THE TWO MSBs OF THE  
23-22  
BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.  
Figure 3. ADSP-2104/ADSP-2109 System  
–6–  
REV. 0  
ADSP-2104/ADSP-2109  
P r ogr am Mem or y Maps  
D ata Mem or y Inter face  
Program memory can be mapped in two ways, depending on  
the state of the MMAP pin. Figure 4 shows the ADSP-2104  
program memory maps. Figure 5 shows the program memory  
maps for the ADSP-2109.  
T he data memory address bus (DMA) is 14 bits wide. T he  
bidirectional external data bus is 24 bits wide, with the upper 16  
bits used for data memory data (DMD) transfers.  
T he data memory select (DMS) signal indicates access to data  
memory and can be used as a chip select signal. T he write (WR)  
signal indicates a write operation and can be used as a write  
strobe. T he read (RD) signal indicates a read operation and can  
be used as a read strobe or output enable signal.  
0x0000  
0x0000  
INTERNAL RAM  
512 WORDS  
LOADED FROM  
EXTERNAL  
BOOT MEMORY  
0x01FF  
0x0200  
T he ADSP-2104/ADSP-2109 processors support memory-  
mapped I/O, with the peripherals memory-mapped into the data  
memory address space and accessed by the processor in the  
same manner as data memory.  
EXTERNAL  
14K  
RESERVED  
1.5K  
0x07FF  
0x0800  
D ata Mem or y Map  
AD SP -2104  
0x37FF  
0x3800  
On-chip data memory RAM resides in the 256 words beginning  
at address 0x3800, also shown in Figure 6. Data memory  
locations from 0x3900 to the end of data memory at 0x3FFF  
are reserved. Control and status registers for the system, timer,  
wait-state configuration, and serial port operations are located in  
this region of memory.  
INTERNAL RAM  
512 WORDS  
EXTERNAL  
14K  
0x39FF  
0x3A00  
RESERVED  
1.5K  
0x3FFF  
0x3FFF  
MMAP=0  
MMAP=1  
0x0000  
No Booting  
1K EXTERNAL  
DWAIT0  
0x0400  
Figure 4. ADSP-2104 Program Mem ory Maps  
1K EXTERNAL  
DWAIT1  
0x0000  
0x0000  
0x0800  
2K  
EXTERNAL  
4K  
INTERNAL  
ROM  
0x07FF  
0x0800  
EXTERNAL  
10K EXTERNAL  
2K  
INTERNAL  
ROM  
RAM  
DWAIT2  
0x0FF0  
0x0FF0  
0x3000  
0x3400  
RESERVED  
RESERVED  
1K EXTERNAL  
DWAIT3  
0x0FFF  
0x1000  
0x0FFF  
0x1000  
1K EXTERNAL  
DWAIT4  
10K  
EXTERNAL  
12K  
EXTERNAL  
0x3800  
0x3900  
0x3C00  
256 WORDS  
0x37FF  
0x3800  
2K  
INTERNAL  
ROM  
INTERNAL  
RAM  
0x3FFF  
0x3FFF  
MEMORY-MAPPED  
CONTROL REGISTERS  
& RESERVED  
MMAP=0  
MMAP=1  
0x3FFF  
Figure 5. ADSP-2109 Program Mem ory Maps  
AD SP -2104  
Figure 6. Data Mem ory Map  
When MMAP = 0, on-chip program memory RAM occupies  
512 words beginning at address 0x0000. Off-chip program  
memory uses the remaining 14K words beginning at address  
0x0800. In this configuration–when MMAP = 0–the boot  
loading sequence (described below in “Boot Memory Inter-  
face”) is automatically initiated when RESET is released.  
T he remaining 14K of data memory is located off-chip. T his  
external data memory is divided into five zones, each associated  
with its own wait-state generator. T his allows slower peripherals  
to be memory-mapped into data memory for which wait states  
are specified. By mapping peripherals into different zones, you  
can accommodate peripherals with different wait-state require-  
ments. All zones default to seven wait states after RESET.  
When MMAP = 1, 14K words of off-chip program memory  
begin at address 0x0000 and on-chip program memory RAM is  
located in the 512 words between addresses 0x3800–0x39FF. In  
this configuration, program memory is not booted although it  
can be written to and read under program control.  
REV. 0  
–7–  
ADSP-2104/ADSP-2109  
Boot Mem or y Inter face  
the number of wait states). T he instruction does not need to be  
completed when the bus is granted; the processor will grant the  
bus in between two memory accesses if an instruction requires  
more than one external memory access.  
Boot memory is an external 16K by 8 space, divided into eight  
separate 2K by 8 pages. T he 8-bit bytes are automatically  
packed into 24-bit instruction words by the processor, for  
loading into on-chip program memory.  
When the BR signal is released, the processor releases the BG  
signal, re-enables the output drivers and continues program  
execution from the point where it stopped.  
T hree bits in the processors’ System Control Register select  
which page is loaded by the boot memory interface. Another bit  
in the System Control Register allows the forcing of a boot  
loading sequence under software control. Boot loading from  
Page 0 after RESET is initiated automatically if MMAP = 0.  
T he bus request feature operates at all times, including when  
the processor is booting and when RESET is active. If this  
feature is not used, the BR input should be tied high (to VDD).  
T he boot memory interface can generate zero to seven wait  
states; it defaults to three wait states after RESET. T his allows  
the ADSP-2104 to boot from a single low cost EPROM such as  
a 27C256. Program memory is booted one byte at a time and  
converted to 24-bit program memory words.  
Low P ower ID LE Instr uction  
T he IDLE instruction places the processor in low power state in  
which it waits for an interrupt. When an interrupt occurs, it is  
serviced and execution continues with instruction following  
IDLE. T ypically this next instruction will be a JUMP back to  
the IDLE instruction. T his implements a low-power standby  
loop.  
T he BMS and RD signals are used to select and to strobe the  
boot memory interface. Only 8-bit data is read over the data  
bus, on pins D8-D15. T o accommodate up to eight pages of  
boot memory, the two MSBs of the data bus are used in the  
boot memory interface as the two MSBs of the boot memory  
address: D23, D22, and A13 supply the boot page number.  
T he IDLE n instruction is a special version of IDLE that slows  
the processor’s internal clock signal to further reduce power  
consumption. T he reduced clock frequency, a programmable  
fraction of the normal clock rate, is specified by a selectable  
divisor, n, given in the IDLE instruction. T he syntax of the  
instruction is:  
T he ADSP-2100 Family Assembler and Linker allow the  
creation of programs and data structures requiring multiple boot  
pages during execution.  
IDLE n;  
T he BR signal is recognized during the booting sequence. T he  
bus is granted after loading the current byte is completed. BR  
during booting may be used to implement booting under control  
of a host processor.  
where n = 16, 32, 64, or 128.  
T he instruction leaves the chip in an idle state, operating at the  
slower rate. While it is in this state, the processor’s other  
internal clock signals, such as SCLK, CLKOUT , and the timer  
clock, are reduced by the same ratio. Upon receipt of an  
enabled interrupt, the processor will stay in the IDLE state for  
up to a maximum of n CLKIN cycles, where n is the divisor  
specified in the instruction, before resuming normal operation.  
Bus Inter face  
T he ADSP-2104/ADSP-2109 can relinquish control of their  
data and address buses to an external device. When the external  
device requires control of the buses, it asserts the bus request  
signal (BR). If the processor is not performing an external  
memory access, it responds to the active BR input in the next  
cycle by:  
When the IDLE n instruction is used, it slows the processor’s  
internal clock and thus its response time to incoming interrupts–  
the 1-cycle response time of the standard IDLE state is in-  
creased by n, the clock divisor. When an enabled interrupt is  
received, the ADSP-21xx will remain in the IDLE state for up  
to a maximum of n CLKIN cycles (where n = 16, 32, 64, or  
128) before resuming normal operation.  
T hree-stating the data and address buses and the PMS,  
DMS, BMS, RD, WR output drivers,  
Asserting the bus grant (BG) signal,  
and halting program execution.  
If the Go mode is set, however, the ADSP-2104/ADSP-2109  
will not halt program execution until it encounters an instruc-  
tion that requires an external memory access.  
When the IDLE n instruction is used in systems that have an  
externally generated serial clock (SCLK), the serial clock rate  
may be faster than the processor’s reduced internal clock rate.  
Under these conditions, interrupts must not be generated at a  
faster rate than can be serviced, due to the additional time the  
processor takes to come out of the IDLE state (a maximum of n  
CLKIN cycles).  
If the processor is performing an external memory access when  
the external device asserts the BR signal, it will not three-state  
the memory interfaces or assert the BG signal until the cycle  
after the access completes (up to eight cycles later depending on  
–8–  
REV. 0  
ADSP-2104/ADSP-2109  
AD SP -2109 P r ototyping  
After this information is received, it is entered into Analog  
Devices’ ROM Manager System which assigns a custom ROM  
model number to the product. T his model number will be  
branded on all prototype and production units manufactured to  
these specifications.  
You can prototype your ADSP-2109 system with the ADSP-  
2104 RAM-based processor. When code is fully developed and  
debugged, it can be submitted to Analog Devices for conversion  
into a ADSP-2109 ROM product.  
T he ADSP-2101 EZ-ICE emulator can be used for develop-  
ment of ADSP-2109 systems. For the 3.3 V ADSP-2109, a  
voltage converter interface board provides 3.3 V emulation.  
T o minimize the risk of code being altered during this process,  
Analog Devices verifies that the .EXE files on both floppy disks  
are identical, and recalculates the checksums for the .EXE file  
entered into the ROM Manager System. T he checksum data, in  
the form of a ROM Memory Map, a hard copy of the .EXE file,  
and a ROM Data Verification form are returned to you for  
inspection.  
Additional overlay memory is used for emulation of ADSP-2109  
systems. It should be noted that due to the use of off-chip  
overlay memory to emulate the ADSP-2109, a performance loss  
may be experienced when both executing instructions and  
fetching program memory data from the off-chip overlay  
memory in the same cycle. T his can be overcome by locating  
program memory data in on-chip memory.  
A signed ROM Verification Form and a purchase order for  
production units are required prior to any product being  
manufactured. Prototype units may be applied toward the  
minimum order quantity.  
O r der ing P r ocedur e for AD SP -2109 RO M P r ocessor  
T o place an order for a custom ROM-coded ADSP-2109, you  
must:  
Upon completion of prototype manufacture, Analog Devices  
will ship prototype units and a delivery schedule update for  
production units. An invoice against your purchase order for the  
NRE charges is issued at this time.  
1. Complete the following forms contained in the ADSP ROM  
Ordering Package, available from your Analog Devices sales  
representative:  
T here is a charge for each ROM mask generated and a mini-  
mum order quantity. Consult your sales representative for  
details. A separate order must be placed for parts of a specific  
package type, temperature range, and speed grade.  
ADSP-2109 ROM Specification Form  
ROM Release Agreement  
ROM NRE Agreement & Minimum Quantity Order (MQO)  
Acceptance Agreement for Pre-Production ROM Products  
2. Return the forms to Analog Devices along with two copies of  
the Memory Image File (.EXE file) of your ROM code. T he  
files must be supplied on two 3.5" or 5.25" floppy disks for  
the IBM PC (DOS 2.01 or higher).  
3. Place a purchase order with Analog Devices for nonrecurring  
engineering changes (NRE) associated with ROM product  
development.  
REV. 0  
–9–  
ADSP-2104/ADSP-2109  
Instr uction Set  
operational parallelism. T here are five basic categories of  
instructions: data move instructions, computational instruc-  
tions, multifunction instructions, program flow control instruc-  
tions and miscellaneous instructions. Multifunction instructions  
perform one or two data moves and a computation.  
The ADSP-2104/ADSP-2109 assembly language uses an algebraic  
syntax for ease of coding and readability. T he sources and  
destinations of computations and data movements are written  
explicitly in each assembly statement, eliminating cryptic  
assembler mnemonics.  
T he instruction set is summarized below. T he ADSP-2100  
Family Users Manual contains a complete reference to the  
instruction set.  
Every instruction assembles into a single 24-bit word and  
executes in a single cycle. T he instructions encompass a wide  
variety of instruction types along with a high degree of  
ALU Instructions  
[IF cond] AR| AF  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
xop + yop [+ C] ;  
xop – yop [+ C– 1] ;  
yop – xop [+ C– 1] ;  
xop AND yop ;  
xop OR yop ;  
xop XOR yop ;  
PASS xop ;  
– xop ;  
NOT xop ;  
ABS xop ;  
yop + 1 ;  
Add/Add with Carry  
Subtract X – Y/Subtract X – Y with Borrow  
Subtract Y – X/Subtract Y – X with Borrow  
AND  
OR  
XOR  
Pass, Clear  
Negate  
NOT  
Absolute Value  
Increment  
Decrement  
Divide  
yop – 1 ;  
DIVS yop, xop ;  
DIVQ xop ;  
MAC Instructions  
[IF cond] MR| MF  
=
=
=
=
=
xop yop ;  
*
Multiply  
MR + xop yop ;  
*
Multiply/Accumulate  
Multiply/Subtract  
Transfer MR  
MR – xop yop ;  
*
MR ;  
0 ;  
Clear  
IF MV SAT MR ;  
Conditional MR Saturation  
Shifter Instructions  
[IF cond] SR = [SR OR] ASHIFT xop ;  
[IF cond] SR = [SR OR] LSHIFT xop ;  
SR = [SR OR] ASHIFT xop BY <exp>;  
SR = [SR OR] LSHIFT xop BY <exp>;  
[IF cond] SE = EXP xop ;  
Arithmetic Shift  
Logical Shift  
Arithmetic Shift Immediate  
Logical Shift Immediate  
Derive Exponent  
[IF cond] SB = EXPADJ xop  
;
Block Exponent Adjust  
[IF cond] SR = [SR OR] NORM xop ;  
Normalize  
D ata Move Instructions  
reg = reg ;  
reg = <data> ;  
Register-to-Register Move  
Load Register Immediate  
reg = DM (<addr>) ;  
dreg = DM (Ix , My) ;  
dreg = PM (Ix , My) ;  
DM (<addr>) = reg ;  
DM (Ix , My) = dreg ;  
PM (Ix , My) = dreg ;  
Data Memory Read (Direct Address)  
Data Memory Read (Indirect Address)  
Program Memory Read (Indirect Address)  
Data Memory Write (Direct Address)  
Data Memory Write (Indirect Address)  
Program Memory Write (Indirect Address)  
Multifunction Instructions  
<ALU>| <MAC>| <SHIFT > , dreg = dreg ;  
Computation with Register-to-Register Move  
<ALU>| <MAC>| <SHIFT > , dreg = DM (Ix , My) ;  
<ALU>| <MAC>| <SHIFT > , dreg = PM (Ix , My) ;  
DM (Ix , My) = dreg , <ALU>| <MAC>| <SHIFT > ;  
PM (Ix , My) = dreg , <ALU>| <MAC>| <SHIFT > ;  
dreg = DM (Ix , My) , dreg = PM (Ix , My) ;  
Computation with Memory Read  
Computation with Memory Read  
Computation with Memory Write  
Computation with Memory Write  
Data & Program Memory Read  
<ALU>| <MAC> , dreg = DM (Ix , My) , dreg = PM (Ix , My) ;  
ALU/MAC with Data & Program Memory Read  
–10–  
REV. 0  
ADSP-2104/ADSP-2109  
P rogram Flow Instructions  
DO <addr> [UNT IL term] ;  
[IF cond] JUMP (Ix) ;  
Do Until Loop  
Jump  
[IF cond] JUMP <addr>;  
[IF cond] CALL (Ix) ;  
Call Subroutine  
[IF cond] CALL <addr>;  
IF [NOT ] FLAG_IN  
IF [NOT ] FLAG_IN  
[IF cond] SET | RESET | T OGGLE  
JUMP <addr>;  
CALL <addr>;  
Jump/Call on Flag In Pin  
FLAG_OUT [, ...] ;  
Modify Flag Out Pin  
[IF cond] RT S ;  
[IF cond] RT I ;  
IDLE [(n)] ;  
Return from Subroutine  
Return from Interrupt Service Routine  
Idle  
Miscellaneous Instructions  
NOP ;  
No Operation  
MODIFY (Ix , My);  
[PUSH ST S] [, POP CNT R] [, POP PC] [, POP LOOP] ;  
Modify Address Register  
Stack Control  
ENA| DIS  
SEC_REG [, ...] ;  
Mode Control  
BIT _REV  
AV_LAT CH  
AR_SAT  
M_MODE  
T IMER  
G_MODE  
Notation Conventions  
Ix  
Index registers for indirect addressing  
My  
Modify registers for indirect addressing  
Immediate data value  
Immediate address value  
Exponent (shift value) in shift immediate instructions (8-bit signed number)  
Any ALU instruction (except divide)  
Any multiply-accumulate instruction  
Any shift instruction (except shift immediate)  
Condition code for conditional instruction  
T ermination code for DO UNT IL loop  
Data register (of ALU, MAC, or Shifter)  
Any register (including dregs)  
<data>  
<addr>  
<exp>  
<ALU>  
<MAC>  
<SHIFT >  
cond  
term  
dreg  
reg  
;
,
[
A semicolon terminates the instruction  
Commas separate multiple operations of a single instruction  
Optional part of instruction  
]
[, ...]  
option1 | option2  
Optional, multiple operations of an instruction  
List of options; choose one.  
Assem bly Code Exam ple  
T he following example is a code fragment that performs the filter tap update for an adaptive filter based on a least-mean-squared  
algorithm. Notice that the computations in the instructions are written like algebraic equations.  
MF=MX0 MY1(RND), MX0=DM(I2,M1);  
{MF=error beta}  
*
*
MR=MX0 MF(RND), AY0=PM(I6,M5);  
*
DO adapt UNTIL CE;  
AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);  
adapt:  
PM(I6,M6)=AR, MR=MX0 MF(RND);  
*
MODIFY(I2,M3);  
MODIFY(I6,M7);  
{Point to oldest data}  
{Point to start of data}  
REV. 0  
–11–  
ADSP-2104/ADSP-2109–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
P aram eter  
Min  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
4.50  
0
5.50  
+70  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
VOH  
Hi-Level Input Voltage3, 5  
Hi-Level CLKIN Voltage  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage2, 3, 7  
@ VDD = max  
@ VDD = max  
@ VDD = min  
@ VDD = min, IOH = –0.5 mA  
@ VDD = min, IOH = –100 µA8  
@ VDD = min, IOL = 2 mA  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max6  
@ VDD = max, VIN = 0 V6  
2.0  
2.2  
V
V
V
V
V
V
µA  
µA  
µA  
µA  
pF  
pF  
0.8  
2.4  
VDD – 0.3  
VOL  
IIH  
IIL  
IOZH  
IOZL  
CI  
Lo-Level Output Voltage2, 3, 7  
Hi-Level Input Current1  
0.4  
10  
10  
10  
10  
8
Lo-Level Input Current1  
T hree-State Leakage Current4  
T hree-State Leakage Current4  
Input Pin Capacitance1, 8, 9  
Output Pin Capacitance4, 8, 9, 10  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOT ES  
1Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0.  
2Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT , DT 1, DT 0.  
3Bidirectional pins: D0–D23, SCLK1, RFS1, T FS1, SCLK0, RFS0, T FS0.  
4T hree-state pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT 1, SCLK1, RSF1, T FS1, DT 0, SCLK0, RFS0, T FS0.  
5Input-only pins: RESET, IRQ2, BR, MMAP, DR1, DR0.  
60 V on BR, CLKIN Active (to force three-state condition).  
7Although specified for T T L outputs, all ADSP-2104/ADSP-2109 outputs are CMOS-compatible and will drive to V DD and GND, assuming no dc loads.  
8Guaranteed but not tested.  
9Applies to PGA, PLCC, PQFP package types.  
10Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS  
*
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . –55ºC to +125°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +125°C  
Lead T emperature (10 sec) PGA . . . . . . . . . . . . . . . . . +300°C  
Lead T emperature (5 sec) PLCC, PQFP, T QFP . . . . +280°C  
*Stresses greater than those listed above may cause permanent damage to the  
device. T hese are stress ratings only, and functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-2104/ADSP-2109 processor features proprietary ESD protection circuitry to dissipate  
high energy electrostatic discharges (H uman Body Model), permanent damage may occur to devices  
subjected to such discharges. T herefore, proper ESD precautions are recommended to avoid  
performance degradation or loss of functionality. Unused devices must be stored in conductive foam  
or shunts, and the foam should be discharged to the destination socket before the devices are  
removed. Per method 3015 of MIL-ST D-883, the ADSP-2104/ADSP-2109 processor has been  
classified as Class 1 device.  
WARNING!  
ESD SENSITIVE DEVICE  
–12–  
REV. 0  
ADSP-2104/ADSP-2109  
SPECIFICATIONS (ADSP-2104/ADSP-2109)  
SUPPLY CURRENT & POWER  
P aram eter  
IDD  
Supply Current (Dynamic)1  
Supply Current (Idle)1, 3  
Test Conditions  
Min  
Max  
Unit  
@ VDD = max, tCK = 50 ns2  
@ VDD = max, tCK = 72.3 ns2  
@ VDD = max, tCK = 50 ns  
@ VDD = max, tCK = 72.3 ns  
31  
24  
11  
10  
mA  
mA  
mA  
mA  
IDD  
NOT ES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-2104/ADSP-2109 state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND.  
For typical supply current (internal power dissipation) figures, see Figure 7.  
1
IDD DYNAMIC  
220  
200  
180  
170mW  
= 5.5V  
160  
V
V
DD  
128mW  
140  
129mW  
120  
100  
80  
= 5.0V  
95mW  
= 4.5V  
DD  
100mW  
74mW  
V
DD  
60  
10.00  
13.83  
20.00  
25.00  
30.00  
FREQUENCY – MHz  
1, 2  
3
IDD IDLE  
IDD IDLE n MODES  
70  
60  
65  
60  
60mW  
= 5.5V  
60mW  
55mW  
V
IDD IDLE  
DD  
50  
40  
55  
55mW  
42mW  
= 5.0V  
50  
V
V
DD  
31mW  
= 4.5V  
38mW  
28mW  
IDLE 16  
30  
20  
10  
0
45  
40  
35  
30  
42mW  
41mW  
DD  
41mW  
40mW  
IDLE 128  
10.00  
13.83  
20.00  
25.00 30.00  
10.00  
13.83  
20.00  
25.00 30.00  
FREQUENCY – MHz  
FREQUENCY – MHz  
1
2
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
IDLE REFERS TO ADSP-2104/ADSP-2109 OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
MAXIMUM POWER DISSIPATION AT V = 5.5V DURING EXECUTION OF IDLE n INSTRUCTION.  
3
DD  
Figure 7. ADSP-2104/ADSP-2109 Power (Typical) vs. Frequency  
REV. 0  
–13–  
ADSP-2104/ADSP-2109  
CAP ACITIVE LO AD ING  
Figures 8 and 9 show capacitive loading characteristics.  
SPECIFICATIONS (ADSP-2104/ADSP-2109)  
P O WER D ISSIP ATIO N EXAMP LE  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
8
7
2
C × VDD × f  
V
= 4.5V  
DD  
6
5
4
C = load capacitance, f = output switching frequency.  
Exam ple:  
In an ADSP-2104 application where external data memory is  
used and no other outputs are active, power dissipation is  
calculated as follows:  
3
2
1
Assumptions:  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
0
0
25  
50  
75  
100 125 150 175  
– pF  
C
L
External data memory writes occur every other cycle with  
50% of the data pins switching.  
Figure 8. Typical Output Rise Tim e vs. Load Capacitance, CL  
(at Maxim um Am bient Operating Tem perature)  
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 5.0 V and tCK = 50 ns.  
2
Total Power Dissipation = PINT + (C × VDD × f )  
PINT = internal power dissipation (from Figure 7).  
5
4
2
(C × VDD × f ) is calculated for each output:  
V
= 4.5V  
DD  
3
2
# of  
P ins 
؋
 C  
2
O utput  
؋
 VD D × f  
1
0
Address, DMS 8  
Data, WR  
RD  
× 10 pF × 52 V × 20 MHz = 40.0 mW  
× 10 pF × 52 V × 10 MHz = 22.5 mW  
× 10 pF × 52 V × 10 MHz = 2.5 mW  
× 10 pF × 52 V × 20 MHz = 5.0 mW  
9
1
1
–1  
–2  
CLKOUT  
70.0 mW  
–3  
0
25  
50  
75 100 125  
– pF  
150 175  
T otal power dissipation for this example = PINT + 70.0 mW.  
C
L
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
Figure 9. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating Tem perature)  
TAMB = T CASE – (PD × θC A  
)
TCASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
P ackage  
JC  
CA  
JA  
PLCC  
27°C/W  
16°C/W  
11°C/W  
–14–  
REV. 0  
ADSP-2104/ADSP-2109  
T he decay time, tDECAY, is dependent on the capacitative load,  
CL , and the current load, iL , on the output pin. It can be  
approximated by the following equation:  
SPECIFICATIONS (ADSP-2104/ADSP-2109)  
TEST CO ND ITIO NS  
Figure 10 shows voltage reference levels for ac measurements.  
CL × 0.5 V  
tDECAY  
=
3.0V  
iL  
INPUT  
1.5V  
0.0V  
from which  
tDIS = tMEASURED tDECAY  
2.0V  
1.5V  
0.8V  
OUTPUT  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
Figure 10. Voltage Reference Levels for AC Measurem ents  
(Except Output Enable/Disable)  
O utput Enable Tim e  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. T he output enable time (t E NA) is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output has reached a specified high or low trip point,  
as shown in Figure 11. If multiple pins (such as the data bus)  
are enabled, the measurement value is that of the first pin to  
start driving.  
O utput D isable Tim e  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. T he  
output disable time (tDIS) is the difference of tMEASURED and  
t
DECAY, as shown in Figure 11. T he time tMEASURED is the  
interval from when a reference signal reaches a high or low  
voltage level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage.  
REFERENCE  
SIGNAL  
tMEASURED  
tDIS  
tENA  
V
V
(MEASURED)  
(MEASURED)  
V
V
(MEASURED)  
(MEASURED)  
OH  
OH  
2.0V  
1.0V  
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
OH  
OUTPUT  
V
OL  
OL  
OL  
tDECAY  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE  
APPROXIMATELY 1.5V.  
Figure 11. Output Enable/Disable  
I
OL  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
I
OH  
Figure 12. Equivalent Device Loading for AC Measurem ents  
(Except Output Enable/Disable)  
REV. 0  
–15–  
ADSP-2104L/ADSP-2109LSPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
P aram eter  
Min  
Max  
Unit  
VDD  
T AMB  
Supply Voltage  
Ambient Operating T emperature  
3.00  
0
3.60  
+70  
V
°C  
See “Environmental Conditions” for information on thermal specifications.  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIL  
VOH  
VOL  
IIH  
Hi-Level Input Voltage1, 3  
@ VDD = max  
@ VDD = min  
2.0  
2.4  
V
V
V
V
µA  
µA  
µA  
µA  
pF  
pF  
Lo-Level Input Voltage1, 3  
Hi-Level Output Voltage2, 3, 6  
Lo-Level Output Voltage2, 3, 6  
Hi-Level Input Current1  
0.4  
@ VDD = min, IOH = –0.5 mA6  
@ VDD = min, IOL = 2 mA6  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max5  
@ VDD = max, VIN = 0 V5  
0.4  
10  
10  
10  
10  
8
IIL  
Lo-Level Input Current1  
IOZH  
IOZL  
CI  
T hree-State Leakage Current4  
T hree-State Leakage Current4  
Input Pin Capacitance1, 7, 8  
Output Pin Capacitance4, 7, 8, 9  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
@ VIN = 2.5 V, fIN = 1.0 MHz, TAMB = 25°C  
CO  
8
NOT ES  
1Input-only pins: CLKIN, RESET, IRQ2, BR, MMAP, DR1, DR0.  
2  
Output pins: BG, PMS, DMS, BMS, RD, WR, A0–A13, CLKOUT, DT1, DT0.  
Bidirectional pins: D0–D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.  
3  
4  
Three-stateable pins: A0–A13, D0–D23, PMS, DMS, BMS, RD, WR, DT1, SCLK1, RSF1, TFS1, DT0, SCLK0, RFS0, TFS0.  
0 V on BR, CLKIN Active (to force three-state condition).  
All outputs are CMOS and will drive to VDD and GND with no dc loads.  
Guaranteed but not tested.  
5  
6  
7  
8  
Applies to PLCC package type.  
9Output pin capacitance is the capacitive load for any three-stated output pin.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.5 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Voltage Swing . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating T emperature Range (Ambient) . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (5 sec) PLCC . . . . . . . . . . . . . . . . +280°C  
*Stresses greater than those listed above may cause permanent damage to the  
device. T hese are stress ratings only, and functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
REV. 0  
–16–  
ADSP-2104/ADSP-2109  
SPECIFICATIONS (ADSP-2104L/ADSP-2109L)  
SUPPLY CURRENT & POWER (ADSP-2104L/ADSP-2109L)  
P aram eter  
Test Conditions  
Min  
Max  
Unit  
IDD  
IDD  
Supply Current (Dynamic)1  
Supply Current (Idle)1, 3  
@ VDD = max, tCK = 72.3 ns2  
@ VDD = max, tCK = 72.3 ns  
14  
4
mA  
mA  
NOT ES  
1Current reflects device operating with no output loads.  
2VIN = 0.4 V and 2.4 V.  
3Idle refers to ADSP-2104L/ADSP-2109L state of operation during execution of IDLE instruction. Deasserted pins are driven to either V DD or GND.  
For typical supply current (internal power dissipation) figures, see Figure 13.  
1,2  
IDLE DYNAMIC  
50  
48mW  
45  
V
= 3.30V  
37mW  
40  
35  
30  
25  
20  
DD  
V
= 3.6V  
DD  
29mW  
24mW  
19mW  
15mW  
V
= 3.0V  
DD  
15  
10  
5
0
5.00  
7.00  
10.00  
13.83  
15.00  
FREQUENCY – MHz  
3
1
IDD IDLE n MODES  
IDD IDLE  
14  
14  
12  
10  
13mW  
13mW  
10mW  
12  
10  
IDD IDLE  
V
= 3.6V  
DD  
9mW  
= 3.30V  
9mW  
8
8
6
V
DD  
8mW  
7mW  
6mW  
IDLE 16  
6mW  
5mW  
6
4
V
= 3.0V  
5mW  
4mW  
DD  
IDLE 128  
4
2
0
2
0
5.00  
7.00  
10.00  
13.83  
15.00  
5.00  
7.00  
10.00  
13.83  
15.00  
FREQUENCY – MHz  
FREQUENCY – MHz  
1
2
POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.  
IDLE REFERS TO ADSP-2104L/ADSP-2109L OPERATION DURING EXECUTION OF IDLE INSTRUCTION.  
DEASSERTED PINS ARE DRIVEN TO EITHER V OR GND.  
DD  
MAXIMUM POWER DISSIPATION AT V = 3.6V DURING EXECUTION OF IDLE n INSTRUCTION.  
3
DD  
Figure 13. ADSP-2104L/ADSP-2109L Power (Typical) vs. Frequency  
REV. 0  
–17–  
ADSP-2104/ADSP-2109  
SPECIFICATIONS (ADSP-2104L/ADSP-2109L)  
P O WER D ISSIP ATIO N EXAMP LE  
CAP ACITIVE LO AD ING  
T o determine total power dissipation in a specific application,  
the following equation should be applied for each output:  
Figures 14 and 15 show capacitive loading characteristics.  
2
C × VDD × f  
30  
25  
C = load capacitance, f = output switching frequency.  
Exam ple:  
V
DD  
= 3.0V  
20  
15  
In an ADSP-2104L application where external data memory is  
used and no other outputs are active, power dissipation is  
calculated as follows:  
10  
5
Assumptions:  
External data memory is accessed every cycle with 50% of the  
address pins switching.  
25  
50  
75  
100 125 150  
– pF  
C
L
External data memory writes occur every other cycle with  
50% of the data pins switching.  
Each address and data pin has a 10 pF total load at the pin.  
T he application operates at VDD = 3.3 V and tCK = 100 ns.  
Figure 14. Typical Output Rise Tim e vs. Load Capacitance, CL  
(at Maxim um Am bient Operating Tem perature)  
2
Total Power Dissipation = PINT + (C × VDD × f )  
PINT = internal power dissipation (from Figure 13).  
+8  
+6  
2
(C × VDD × f ) is calculated for each output:  
+4  
# of  
P ins × C  
V
DD  
= 3.0V  
2
O utput  
؋
 VD D 
؋
 f  
+2  
× 10 pF × 3.32 V × 10 MHz = 8.71 mW  
× 10 pF × 3.32 V × 5 MHz = 4.90 mW  
× 10 pF × 3.32 V × 5 MHz = 0.55 mW  
× 10 pF × 3.32 V × 10 MHz = 1.09 mW  
NOMINAL  
–2  
Address, DMS 8  
Data, WR  
RD  
9
1
1
25  
50  
75  
C
100 125 150  
– pF  
CLKOUT  
L
15.25 mW  
T otal power dissipation for this example = PINT + 15.25 mW.  
Figure 15. Typical Output Valid Delay or Hold vs. Load  
Capacitance, CL (at Maxim um Am bient Operating Tem perature)  
ENVIRO NMENTAL CO ND ITIO NS  
Ambient T emperature Rating:  
TAMB = T CASE – (PD × θC A  
)
TCASE = Case T emperature in °C  
PD = Power Dissipation in W  
θC A = T hermal Resistance (Case-to-Ambient)  
θJA = T hermal Resistance (Junction-to-Ambient)  
θJC = T hermal Resistance (Junction-to-Case)  
P ackage  
JC  
CA  
JA  
PLCC  
27°C/W  
16°C/W  
11°C/W  
–18–  
REV. 0  
ADSP-2104/ADSP-2109  
SPECIFICATIONS (ADSP-2104L/ADSP-2109L)  
TEST CO ND ITIO NS  
Figure 16 shows voltage reference levels for ac measurements.  
The decay time, tDECAY, is dependent on the capacitative load,  
CL, and the current load, iL, on the output pin. It can be  
approximated by the following equation:  
V
DD  
2
INPUT  
CL × 0.5 V  
tDECAY  
=
iL  
from which  
V
DD  
OUTPUT  
2
tDIS = tMEASURED tDECAY  
is calculated. If multiple pins (such as the data bus) are dis-  
abled, the measurement value is that of the last pin to stop  
driving.  
Figure 16. Voltage Reference Levels for AC Measurem ents  
(Except Output Enable/Disable)  
O utput D isable Tim e  
O utput Enable Tim e  
Output pins are considered to be disabled when they have  
stopped driving and started a transition from the measured  
output high or low voltage to a high impedance state. T he  
output disable time (tDIS) is the difference of tMEASURED and  
Output pins are considered to be enabled when they have made  
a transition from a high-impedance state to when they start  
driving. T he output enable time (t E NA) is the interval from  
when a reference signal reaches a high or low voltage level to  
when the output has reached a specified high or low trip point,  
as shown in Figure 17. If multiple pins (such as the data bus)  
are enabled, the measurement value is that of the first pin to  
start driving.  
t
DECAY, as shown in Figure 17. T he time tMEASURED is the  
interval from when a reference signal reaches a high or low  
voltage level to when the output voltages have changed by 0.5 V  
from the measured output high or low voltage.  
REFERENCE  
SIGNAL  
tMEASURED  
tDIS  
tENA  
V
V
(MEASURED)  
(MEASURED)  
V
V
(MEASURED)  
(MEASURED)  
OH  
OH  
2.0V  
1.0V  
V
(MEASURED) – 0.5V  
(MEASURED) +0.5V  
OH  
OUTPUT  
V
OL  
OL  
OL  
tDECAY  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE LEVEL TO BE  
APPROXIMATELY 1.5V.  
Figure 17. Output Enable/Disable  
I
OL  
TO  
OUTPUT  
PIN  
V
DD  
2
50pF  
I
OH  
Figure 18. Equivalent Device Loading for AC Measurem ents  
(Except Output Enable/Disable)  
REV. 0  
–19–  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
GENERAL NO TES  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
Timing requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for a  
read operation. T iming requirements guarantee that the  
processor operates correctly with other devices.  
TIMING NO TES  
MEMO RY REQ UIREMENTS  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
T he table below shows common memory device specifications  
and the corresponding ADSP-2104/ADSP-2109 timing  
parameters, for your convenience.  
Mem ory  
AD SP -2104/AD SP -2109  
Tim ing  
D evice  
Specification  
Tim ing  
P aram eter  
P aram eter  
D efinition  
Address Setup to Write Start  
Address Setup to Write End  
Address Hold Time  
Data Setup Time  
tASW  
tAW  
tWRA  
tDW  
tDH  
A0–A13, DMS, PMS Setup before WR Low  
A0–A13, DMS, PMS Setup before WR Deasserted  
A0–A13, DMS, PMS Hold after WR Deasserted  
Data Setup before WR High  
Data Hold Time  
Data Hold after WR High  
OE to Data Valid  
Address Access Time  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, DMS, PMS, BMS to Data Valid  
–20–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
CLO CK SIGNALS & RESET  
Frequency  
20 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tCK  
CLKIN Period  
50  
20  
20  
250  
150  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tRSP  
CLKIN Width Low  
CLKIN Width High  
RESET Width Low  
20  
20  
5tCK  
1
Switching Characteristic:  
tCPL  
tCPH  
tCKOH  
CLKOUT Width Low  
CLKOUT Width High  
CLKIN High to CLKOUT High  
15  
15  
0
0.5tCK – 10  
0.5tCK – 10  
ns  
ns  
ns  
20  
NOT E  
1Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal  
oscillator startup time).  
tCK  
tCKH  
CLKIN  
tCKL  
tCKOH  
tCPH  
CLKOUT  
tCPL  
Figure 19. Clock Signals  
REV. 0  
–21–  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
INTERRUP TS & FLAGS  
Frequency  
20 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tIFS  
IRQx1  or FI Setup before  
27.5  
0.25tCK + 15  
0.25tCK  
ns  
ns  
CLKOUT Low2, 3  
IRQx1 or FI Hold after CLKOUT  
High2, 3  
tIFH  
12.5  
Switching Characteristic:  
tFOH FO Hold after CLKOUT High  
tFOD FO Delay from CLKOUT High  
0
0
ns  
ns  
15  
NOTES  
1IRQx=IRQ0, IRQ1, and IRQ2.  
2If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle;  otherwise they will be recognized  
during the following cycle. (Refer to the “Interrupt Controller” section in Chapter 3,  Program Control, of the  ADSP-2100 Family User’s Manual for further  
information on interrupt servicing.)  
3Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUT(S)  
tIFH  
 IRQx  
FI  
tIFS  
Figure 20. Interrupts & Flags  
–22–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
BUS REQ UEST/GRANT  
Frequency  
20 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tBH  
tBS  
BR Hold after CLKOUT High1  
17.5  
32.5  
0.25tCK + 5  
0.25tCK + 20  
ns  
ns  
BR Setup before CLKOUT Low1  
Switching Characteristic:  
tSD  
CLKOUT High to DMS,  
32.5  
0.25tCK + 20 ns  
PMS, BMS, RD, WR Disable  
DMS, PMS, BMS, RD, WR  
Disable to BG Low  
BG High to DMS, PMS,  
BMS, RD, WR Enable  
tSDB  
tSE  
0
0
ns  
ns  
ns  
0
0
tSEC  
DMS, PMS, BMS, RD, WR  
Enable to CLKOUT High  
2.5  
0.25tCK – 10  
NOTES  
1If BR meets the tBS and tBH setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle.  BR requires  
a pulse width greater than 10 ns.  
Note: BG is asserted in the cycle after BR is recognized. No external synchronization circuit is needed when BR is generated as an asynchronous signal.  
tBH  
CLKOUT  
 BR  
tBS  
CLKOUT  
 PMS,  DMS  
 BMS,  RD  
tSD  
tSEC  
 WR  
 BG  
tSDB  
tSE  
Figure 21. Bus Request/Grant  
REV. 0  
–23–  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
MEMO RY READ  
20 MH z  
P aram eter  
Min  
Max  
Unit  
Timing Requirement:  
tRDD  
tAA  
tRDH  
RD Low to Data Valid  
A0–A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
12  
19.5  
ns  
ns  
0
Switching Characteristic:  
tRP  
tCRD  
tASR  
RD Pulse Width  
17  
7.5  
2.5  
ns  
ns  
ns  
CLKOUT High to RD Low  
A0–A13, PMS, DMS, BMS Setup before  
RD Low  
22.5  
tRDA  
tRWR  
A0–A13, PMS, DMS, BMS Hold after RD  
Deasserted  
RD High to RD or WR Low  
3.5  
20  
ns  
ns  
Frequency D ependency  
(CLKIN 20 MH z)  
P aram eter  
Min  
Max  
Unit  
Timing Requirement:  
tRDD RD Low to Data Valid  
0.5tCK – 13 + w  
0.75tCK – 18 + w  
ns  
ns  
tAA  
A0–A13, PMS, DMS, BMS to Data Valid  
tRDH Data Hold from RD High  
0
Switching Characteristic:  
tRP  
RD Pulse Width  
0.5tCK – 8 + w  
0.25tCK – 5  
ns  
ns  
tCRD CLKOUT High to RD Low  
tASR A0–A13, PMS, DMS, BMS Setup before  
RD Low  
0.25tCK + 10  
0.25tCK – 10  
ns  
tRDA A0–A13, PMS, DMS, BMS Hold after RD  
Deasserted  
tRWR RD High to RD or WR Low  
0.25tCK – 9  
0.5tCK – 5  
ns  
ns  
NOT E  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
 DMS,  PMS  
 BMS  
tRDA  
 RD  
D
tASR  
tCRD  
tRP  
tRWR  
tRDD  
tRDH  
tAA  
 WR  
Figure 22. Mem ory Read  
–24–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
MEMO RY WRITE  
20 MH z  
P aram eter  
Min  
Max  
Unit  
Switching Characteristic:  
tDW  
tDH  
tWP  
tWDE  
tASW  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
WR Low to Data Enabled  
A0–A13, DMS, PMS Setup before  
WR Low  
12  
2.5  
17  
0
ns  
ns  
ns  
ns  
ns  
2.5  
tDDR  
tCWR  
tAW  
Data Disable before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup before WR  
Deasserted  
2.5  
7.5  
15.5  
ns  
ns  
ns  
22.5  
tWRA  
A0–A13, DMS, PMS Hold after WR  
Deasserted  
WR High to RD or WR Low  
3.5  
20  
ns  
ns  
tWWR  
Frequency D ependency  
(CLKIN 20 MH z)  
P aram eter  
Min  
Max  
Unit  
Switching Characteristic:  
tDW Data Setup before WR High  
0.5tCK – 13 + w  
0.25tCK – 10  
0.5tCK – 8 + w  
0
ns  
ns  
ns  
tDH  
tWP  
Data Hold after WR High  
WR Pulse Width  
tWDE WR Low to Data Enabled  
tASW A0–A13, DMS, PMS Setup before WR Low  
tDDR Data Disable before WR or RD Low  
tCWR CLKOUT High to WR Low  
0.25tCK – 10  
0.25tCK – 10  
0.25tCK – 5  
ns  
ns  
ns  
0.25tCK + 10  
tAW  
A0–A13, DMS, PMS, Setup before WR  
Deasserted  
0.75tCK – 22 + w  
ns  
tWRA A0–A13, DMS, PMS Hold after WR  
Deasserted  
tWWR WR High to RD or WR Low  
0.25tCK – 9  
0.5tCK – 5  
ns  
ns  
CLKOUT  
A0 – A13  
 DMS,  PMS  
tWRA  
 WR  
tASW  
tCWR  
tWP  
tWWR  
tAW  
tDH  
tDDR  
D
tDW  
tWDE  
 RD  
Figure 23. Mem ory Write  
–25–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104/ADSP-2109)  
SERIAL P O RTS  
Frequency  
13.824 MH z*  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
72.3  
8
10  
28  
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKIN Width  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKOUT  
18.1  
0
33.1  
20  
0.25tCK  
0.25tCK + 15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE SCLK High to DT Enable  
tSCDV SCLK High to DT Valid  
tRH  
tRD  
tSCDH DT Hold after SCLK High  
tT DE T FS (Alt) to DT Enable  
tT DV T FS (Alt) to DT Valid  
tSCDD SCLK High to DT Disable  
tRDV RFS (Multichannel, Frame Delay Zero)  
to DT Valid  
T FS/RFSOUT Hold after SCLK High  
T FS/RFSOUT Delay from SCLK High  
20  
18  
25  
20  
*Maximum serial port operating frequency is 13.824 MHz.  
CLKOUT  
SCLK  
tCC  
tCC  
tSCK  
tSCP  
tSCS tSCH  
tSCP  
DR  
RFSIN  
TFSIN  
tRD  
tRH  
RFSOUT  
TFSOUT  
tSCDD  
tSCDV  
tSCDE  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
( ALTERNATE  
FRAME MODE )  
tRDV  
RFS  
( MULTICHANNEL MODE,  
FRAME DELAY 0 {MFD = 0} )  
Figure 24. Serial Ports  
–26–  
REV. 0  
ADSP-2104/ADSP-2109  
Timing requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for a  
read operation. T iming requirements guarantee that the  
processor operates correctly with other devices.  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
GENERAL NO TES  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
MEMO RY REQ UIREMENTS  
T he table below shows common memory device specifications  
and the corresponding ADSP-2104L/ADSP-2109L timing  
parameters, for your convenience.  
TIMING NO TES  
Switching characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
AD SP -2104L/AD SP -2109L  
Mem ory Specification  
Tim ing P aram eter  
Tim ing P aram eter D efinition  
Address Setup to Write Start  
Address Setup to Write End  
Address Hold Time  
Data Setup Time  
tASW  
tAW  
tWRA  
tDW  
tDH  
A0–A13, DMS, PMS Setup before WR Low  
A0–A13, DMS, PMS Setup before WR Deasserted  
A0–A13, DMS, PMS Hold after WR Deasserted  
Data Setup before WR High  
Data Hold Time  
Data Hold after WR High  
OE to Data Valid  
Address Access Time  
tRDD  
tAA  
RD Low to Data Valid  
A0–A13, DMS, PMS, BMS to Data Valid  
REV. 0  
–27–  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
CLO CK SIGNALS & RESET  
Frequency  
13.824 MH z  
Min Max  
D ependency  
P aram eter  
Min  
Max  
Unit  
Timing Requirement:  
tCK  
CLKIN Period  
72.3  
20  
20  
361.5  
150  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tRSP  
CLKIN Width Low  
CLKIN Width High  
RESET Width Low  
20  
20  
5tCK  
1
Switching Characteristic:  
tCPL  
tCPH  
tCKOH  
CLKOUT Width Low  
CLKOUT Width High  
CLKIN High to CLKOUT High  
26.2  
26.2  
0
0.5tCK – 10  
0.5tCK – 10  
ns  
ns  
ns  
20  
NOTE  
1Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal  
oscillator startup time).  
tCK  
tCKH  
CLKIN  
tCKL  
tCKOH  
tCPH  
CLKOUT  
tCPL  
Figure 25. Clock Signals  
–28–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
INTERRUP TS & FLAGS  
Frequency  
13.824 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tIFS  
tIFH  
IRQx1 or FI Setup before CLKOUT Low2, 3  
33.1  
18.1  
0.25tCK + 15  
0.25tCK  
ns  
ns  
IRQx1 or FI Hold after CLKOUT High2, 3  
Switching Characteristic:  
tFOH FO Hold after CLKOUT High  
tFOD FO Delay from CLKOUT High  
0
ns  
ns  
15  
NOTES  
1IRQx=IRQ0, IRQ1, and IRQ2.  
2If IRQx and FI inputs meet tIFS and tIFH setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the  
 following cycle. (Refer to the “Interrupt Controller” section in Chapter 3, Program Control, of the  ADSP-2100 Family User’s Manual for further information on  
interrupt servicing.)  
3Edge-sensitive interrupts require pulse widths greater than 10 ns. Level-sensitive interrupts must be held low until serviced.  
CLKOUT  
tFOD  
tFOH  
FLAG  
OUTPUT(S)  
tIFH  
 IRQx  
FI  
tIFS  
Figure 26. Interrupts & Flags  
REV. 0  
–29–  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
BUS REQ UEST/GRANT  
Frequency  
13.824 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tBH  
tBS  
BR Hold after CLKOUT High1  
23.1  
38.1  
0.25tCK + 5  
0.25tCK + 20  
ns  
ns  
BR Setup before CLKOUT Low1  
Switching Characteristic:  
tSD  
tSDB  
tSE  
CLKOUT High to DMS, PMS, BMS, RD, WR Disable  
DMS, PMS, BMS, RD, WR  Disable to BG Low  
BG High to DMS, PMS, BMS, RD, WR Enable  
38.1  
0.25tCK + 20  
ns  
ns  
ns  
ns  
0
0
0
0
tSEC  
DMS, PMS, BMS, RD, WR  Enable to CLKOUT High 8.1  
0.25tCK – 10  
NOTES  
1If BR meets the tBS and tBH setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle.  BR  
 requires a pulse width greater than 10 ns.  
Note: BG is asserted in the cycle after BR is recognized. No external synchronization circuit is needed when BR is generated as an asynchronous signal.  
tBH  
CLKOUT  
 BR  
tBS  
CLKOUT  
 PMS,  DMS  
 BMS,  RD  
tSD  
tSEC  
 WR  
 BG  
tSDB  
tSE  
Figure 27. Bus Request/Grant  
–30–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
MEMO RY READ  
Frequency  
13.824 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tRDD  
tAA  
tRDH  
RD Low to Data Valid  
A0–A13, PMS, DMS, BMS to Data Valid  
Data Hold from RD High  
23.2  
36.2  
0.5tCK – 13 + w  
0.75tCK – 18 + w  
ns  
ns  
ns  
0
0
Switching Characteristic:  
tRP  
RD Pulse Width  
CLKOUT High to RD Low  
A0–A13, PMS, DMS, BMS Setup before RD Low  
A0–A13, PMS, DMS, BMS Hold after RD Deasserted  
RD High to RD or WR Low  
28.2  
13.1  
8.1  
9.1  
31.2  
0.5tCK – 8 + w  
0.25tCK – 5  
0.25tCK – 10  
0.25tCK – 9  
0.5tCK – 5  
ns  
ns  
ns  
ns  
ns  
tCRD  
tASR  
tRDA  
tRWR  
28.1  
0.25tCK + 10  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
 DMS,  PMS  
 BMS  
tRDA  
 RD  
D
tASR  
tCRD  
tRP  
tRWR  
tRDD  
tRDH  
tAA  
 WR  
Figure 28. Mem ory Read  
REV. 0  
–31–  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
MEMO RY WRITE  
Frequency  
13.824 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Switching Characteristic:  
tDW  
tDH  
tWP  
tWDE  
tASW  
tDDR  
tCWR  
tAW  
Data Setup before WR High  
Data Hold after WR High  
WR Pulse Width  
WR Low to Data Enabled  
A0–A13, DMS, PMS Setup before WR Low  
Data Disable before WR or RD Low  
CLKOUT High to WR Low  
A0–A13, DMS, PMS, Setup before WR Deasserted  
A0–A13, DMS, PMS Hold After WR Deasserted  
WR High to RD or WR Low  
23.2  
8.1  
28.2  
0
8.1  
8.1  
13.1  
32.2  
9.1  
0.5tCK – 13 + w  
0.25tCK – 10  
0.5tCK – 8 + w  
ns  
ns  
ns  
0.25tCK – 10  
0.25tCK – 10  
0.25tCK – 5  
0.75tCK – 22 + w  
0.25tCK – 9  
ns  
ns  
ns  
ns  
ns  
ns  
28.1  
0.25tCK + 10  
tWRA  
tWWR  
31.2  
0.5tCK – 5  
w = wait states × tCK.  
CLKOUT  
A0 – A13  
 DMS,  PMS  
tWRA  
 WR  
tASW  
tCWR  
tWP  
tWWR  
tAW  
tDH  
tDDR  
D
tDW  
tWDE  
 RD  
Figure 29. Mem ory Write  
–32–  
REV. 0  
ADSP-2104/ADSP-2109  
TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)  
SERIAL P O RTS  
Frequency  
13.824 MH z  
D ependency  
P aram eter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirement:  
tSCK  
tSCS  
tSCH  
tSCP  
SCLK Period  
72.3  
8
10  
28  
ns  
ns  
ns  
ns  
DR/T FS/RFS Setup before SCLK Low  
DR/T FS/RFS Hold after SCLK Low  
SCLKin Width  
Switching Characteristic:  
tCC  
CLKOUT High to SCLKout  
SCLK High to DT Enable  
SCLK High to DT Valid  
T FS/RFSout Hold after SCLK High  
T FS/RFSout Delay from SCLK High  
DT Hold after SCLK High  
T FS (alt) to DT Enable  
18.1  
0
33.1  
20  
0.25tCK  
0.25tCK + 15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCDE  
tSCDV  
tRH  
0
tRD  
20  
tSCDH  
tT DE  
tT DV  
tSCDD  
tRDV  
0
0
T FS (alt) to DT Valid  
18  
25  
20  
SCLK High to DT Disable  
RFS (Multichannel, Frame Delay Zero)  
to DT Valid  
CLKOUT  
SCLK  
tCC  
tCC  
tSCK  
tSCP  
tSCS tSCH  
tSCP  
DR  
RFSIN  
TFSIN  
tRD  
tRH  
RFSOUT  
TFSOUT  
tSCDD  
tSCDV  
tSCDE  
tSCDH  
DT  
tTDE  
tTDV  
TFS  
( ALTERNATE  
FRAME MODE )  
tRDV  
RFS  
( MULTICHANNEL MODE,  
FRAME DELAY 0 {MFD = 0} )  
Figure 30. Serial Ports  
REV. 0  
–33–  
ADSP-2104/ADSP-2109  
P IN CO NFIGURATIO NS  
68-Lead P LCC  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
GND  
D19  
D20  
D21  
D22  
D23  
PIN 1  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
D2  
D1  
D0  
IDENTIFIER  
V
DD  
SCLK1  
FI (DR1)  
IRQ0 (RFS1)  
IRQ1 (TFS1)  
FO (DT1)  
SCLK0  
DR0  
ADSP-2104  
ADSP-2104L  
ADSP-2109  
ADSP-2109L  
V
DD  
MMAP  
BR  
TOP VIEW  
(PINS DOWN)  
IRQ2  
RESET  
A0  
GND  
A1  
RFS0  
A2  
TFS0  
A3  
DT0  
A4  
RD  
V
WR  
DD  
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38  
P LCC  
P in  
P LCC  
P in  
P LCC  
P in  
P LCC  
P in  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
Num ber Nam e  
1
2
3
4
5
6
7
8
D11  
GND  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
GND  
D19  
D20  
D21  
D22  
D23  
VDD  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
BR  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
FO  
(DT1)  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
A12  
A13  
IRQ2  
RESET  
A0  
A1  
A2  
A3  
A4  
VDD  
A5  
A6  
GND  
A7  
A8  
A9  
A10  
A11  
IRQ1 (TFS1)  
IRQ0 (RFS1)  
FI  
SCLK1  
VDD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
PMS  
DMS  
BMS  
BG  
XT AL  
CLKIN  
CLKOUT  
WR  
RD  
(DR1)  
9
10  
11  
12  
13  
14  
15  
16  
17  
DT 0  
T FS0  
RFS0  
GND  
DR0  
MMAP  
SCLK0  
–34–  
REV. 0  
ADSP-2104/ADSP-2109  
O UTLINE D IMENSIO NS  
AD SP -2104/AD SP -2109  
68-Lead P lastic Leaded Chip Car r ier (P LCC)  
9
61  
e
PIN 1 IDENTIFIER  
D
2
b
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
b
1
D
1
A
1
D
A
INCHES  
TYP  
MILLIMETERS  
SYMBOL MIN  
MAX  
MIN  
TYP  
MAX  
A
0.169 0.172 0.175  
0.104  
4.29 14.37  
12.64  
4.45  
A1  
b
0.017 0.018 0.019  
0.027 0.028 0.029  
0.985 0.990 0.995  
0.950 0.952 0.954  
0.895 0.910 0.925  
0.050  
0.43 10.46  
0.69 10.71  
0.48  
0.74  
b1  
D
25.02 25.15 25.27  
24.13 24.18 24.23  
22.73 23.11 23.50  
11.27  
D1  
D2  
e
0.004  
10.10  
REV. 0  
–35–  
ADSP-2104/ADSP-2109  
O RD ERING GUID E  
Am bient  
Tem perature  
Range  
Instruction  
Rate  
P ackage  
D escription  
P ackage  
O ption  
P art Num ber*  
ADSP-2104KP-80  
ADSP-2109KP-80  
0°C to +70°C  
0°C to +70°C  
20.0 MHz  
20.0 MHz  
68-Lead PLCC  
68-Lead PLCC  
P-68A  
P-68A  
ADSP-2104LKP-55  
ADSP-2109LKP-55  
0°C to +70°C  
0°C to +70°C  
13.824 MHz  
13.824 MHz  
68-Lead PLCC  
68-Lead PLCC  
P-68A  
P-68A  
*K = Commercial T emperature Range (0°C to +70°C).  
*P = PLCC (Plastic Leaded Chip Carrier).  
–36–  
REV. 0  

相关型号:

ADSP-2105

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2105BP-40

IC 24-BIT, 10.24 MHz, OTHER DSP, PQCC68, PLASTIC, LCC-68, Digital Signal Processor
ADI

ADSP-2105BP-55

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2105BP-55

Digital Signal Processor, CMOS,
ROCHESTER

ADSP-2105BP-80

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2105BP-80

Digital Signal Processor, CMOS,
ROCHESTER

ADSP-2105BP-80REEL

24-BIT, 20 MHz, OTHER DSP, PQCC68, PLASTIC, LCC-68
ROCHESTER

ADSP-2105BPZ-80

Single-Chip Microcomputers: 16-Bit, 20 MIPS, 5v, 1 Serial Port
ADI

ADSP-2105KP-40

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2105KP-55

ADSP-2100 Family DSP Microcomputers
ADI

ADSP-2105KP-55REEL

IC 24-BIT, 13.824 MHz, OTHER DSP, PQCC68, PLASTIC, LCC-68, Digital Signal Processor
ADI

ADSP-2105KP-80

ADSP-2100 Family DSP Microcomputers
ADI