ADSP-21061 [ADI]

ADSP-2106x SHARC DSP Microcomputer Family; ADSP- 2106x SHARC DSP单片机系列
ADSP-21061
型号: ADSP-21061
厂家: ADI    ADI
描述:

ADSP-2106x SHARC DSP Microcomputer Family
ADSP- 2106x SHARC DSP单片机系列

文件: 总47页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ADSP-2106x SHARC  
a
DSP Microcomputer Family  
ADSP-21061/ADSP-21061L  
Pin-Compatible with ADSP-21060 (4 Mbit) and  
ADSP-21062 (2 Mbit)  
SUMMARY  
High Performance Signal Computer for Speech, Sound,  
Graphics and Imaging Applications  
Super Harvard Architecture Computer (SHARC)—  
Four Independent Buses for Dual Data, Instructions,  
and I/O  
32-Bit IEEE Floating-Point Computation Units—  
Multiplier, ALU and Shifter  
1 Megabit On-Chip SRAM Memory and Integrated I/O  
Peripherals—A Complete System-On-A-Chip  
Integrated Multiprocessing Features  
Flexible Data Formats and 40-Bit Extended Precision  
32-Bit Single-Precision and 40-Bit Extended-Precision  
IEEE Floating-Point Data Formats  
32-Bit Fixed-Point Data Format, Integer and Fractional,  
with 80-Bit Accumulators  
Parallel Computations  
Single-Cycle Multiply and ALU Operations in Parallel with  
Dual Memory Read/Writes and Instruction Fetch  
Multiply with Add and Subtract for Accelerated FFT  
Butterfly Computation  
KEY FEATURES  
50 MIPS, 20 ns Instruction Rate, Single-Cycle Instruction  
Execution  
120 MFLOPS Peak, 80 MFLOPS Sustained Performance  
Dual Data Address Generators with Modulo and Bit-  
Reverse Addressing  
Efficient Program Sequencing with Zero-Overhead  
Looping: Single-Cycle Loop Setup  
IEEE JTAG Standard 1149.1 Test Access Port and  
On-Chip Emulation  
1024-Point Complex FFT Benchmark: 0.37 ms (18,221 Cycles)  
1 Megabit Configurable On-Chip SRAM  
Dual-Ported for Independent Access by Core Processor  
and DMA  
Configurable as 32K Words Data Memory (32-Bit), 16K  
Words Program Memory (48-Bit) or Combinations of  
Both Up to 1 Mbit  
Off-Chip Memory Interfacing  
4-Gigawords Addressable (32-Bit Address)  
Programmable Wait State Generation, Page-Mode DRAM  
Support  
240-Lead MQFP Package  
225-Ball Plastic Ball Grid Array (PBGA)  
DUAL-PORTED SRAM  
CORE PROCESSOR  
INSTRUCTION  
TIMER  
JTAG  
TWO INDEPENDENT  
7
CACHE  
DUAL-PORTED BLOCKS  
32 x 48-BIT  
TEST &  
EMULATION  
PROCESSOR PORT  
ADDR DATA  
I/O PORT  
DATA ADDR  
ADDR  
DATA  
DATA  
ADDR  
DAG1  
DAG2  
PROGRAM  
SEQUENCER  
8 x 4 x 32  
8 x 4 x 24  
EXTERNAL  
PORT  
IOD  
48  
IOA  
17  
24  
32  
PM ADDRESS BUS  
32  
48  
ADDR BUS  
MUX  
DM ADDRESS BUS  
MULTIPROCESSOR  
INTERFACE  
PM DATA BUS  
DM DATA BUS  
48  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
40/32  
HOST PORT  
DATA  
REGISTER  
FILE  
4
DMA  
IOP  
REGISTERS  
(MEMORY MAPPED)  
CONTROLLER  
6
6
16 x 40-BIT  
BARREL  
SHIFTER  
MULTIPLIER  
ALU  
SERIAL PORTS  
(2)  
CONTROL,  
STATUS &  
DATA BUFFERS  
I/O PROCESSOR  
Figure 1. ADSP-21061/ADSP-21061L Block Diagram  
SHARC is a registered trademark of Analog Devices, Inc.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADSP-21061/ADSP-21061L  
DMA Controller  
6 DMA Channels  
Multiprocessing  
Glueless Connection for Scalable DSP Multiprocessing  
Architecture  
Distributed On-Chip Bus Arbitration for Parallel Bus  
Connect of Up To Six ADSP-21061s Plus Host  
300 Mbytes/s Transfer Rate Over Parallel Bus  
Background DMA Transfers at 50 MHz, in Parallel with  
Full-Speed Processor Execution  
Performs Transfers Between ADSP-21061 Internal Memory  
and External Memory, External Peripherals, Host  
Processor, or Serial Ports  
Serial Ports  
Host Processor Interface  
Efficient Interface to 16- and 32-Bit Microprocessors  
Host can Directly Read/Write ADSP-21061 Internal Memory  
Two 40 Mbit/s Synchronous Serial Ports  
Independent Transmit and Receive Functions  
3- to 32-Bit Data Word Width  
-Law/A-Law Hardware Companding  
TDM Multichannel Mode  
Multichannel Signaling Protocol  
TABLE OF CONTENTS  
ADSP-21061L EZ-ICE Emulator (Jumpers in Place) . . . 12  
Figure 6. JTAG Scan Path Connections for Multiple  
ADSP-21061/ADSP-21061L Systems . . . . . . . . . . . . . . . 12  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 3  
ADSP-21000 FAMILY CORE ARCHITECTURE . . . . . . . 4  
ADSP-21061 FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ADDITIONAL INFORMATION . . . . . . . . . . . . . . . . . . . . . 8  
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TARGET BOARD CONNECTOR FOR EZ-ICE®  
PROBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
RECOMMENDED OPERATING CONDITIONS (5V) . 14  
ELECTRICAL CHARACTERISTICS (5 V) . . . . . . . . . . . 14  
POWER DISSIPATION ADSP-21061 (5 V) . . . . . . . . . . . . 15  
RECOMMENDED OPERATING CONDITIONS (3.3V) 16  
ELECTRICAL CHARACTERISTICS (3.3 V) . . . . . . . . . . 16  
POWER DISSIPATION ADSP-21061L (3.3 V) . . . . . . . . . 17  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 18  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 18  
Memory Read—Bus Master . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory Write—Bus Master . . . . . . . . . . . . . . . . . . . . . . 22  
Synchronous Read/Write—Bus Master . . . . . . . . . . . . . . 23  
Synchronous Read/Write—Bus Slave . . . . . . . . . . . . . . . . 25  
Multiprocessor Bus Request and Host Bus Request . . . . . 26  
Asynchronous Read/Write—Host to ADSP-21061 . . . . . . 28  
Three-State Timing—Bus Master, Bus Slave,  
HBR, SBTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DMA Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
JTAG Test Access Port and Emulation . . . . . . . . . . . . . . . 37  
OUTPUT DRIVE CURRENTS . . . . . . . . . . . . . . . . . . . . . 38  
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
TEST CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
ENVIRONMENTAL CONDITIONS . . . . . . . . . . . . . . . . 41  
240-LEAD METRIC MQFP PIN CONFIGURATIONS . . 42  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . 43, 44  
ADSP-21061L 225-Ball Plastic Ball Grid Array (PBGA)  
Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
225-Ball Plastic Ball Grid Array (PBGA) Package Pinout . . . . . 46  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 47  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 7. JTAG Clocktree for Multiple ADSP-21061/  
ADSP-21061L Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 8. Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 9. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12. Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Memory Read—Bus Master . . . . . . . . . . . . . . . . 21  
Figure 14. Memory Write—Bus Master . . . . . . . . . . . . . . . 22  
Figure 15. Synchronous Read/Write—Bus Master . . . . . . . 24  
Figure 16. Synchronous Read/Write—Bus Slave . . . . . . . . . 25  
Figure 17. Multiprocessor Bus Request and Host Bus  
Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 18a. Synchronous REDY Timing . . . . . . . . . . . . . . 28  
Figure 18b. Asynchronous Read/Write—Host to  
ADSP-21061/ADSP-21061L . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19a. Three-State Timing (Bus Transition Cycle,  
SBTS Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 19b. Three-State Timing (Host Transition Cycle) . . 31  
Figure 20. DMA Handshake Timing . . . . . . . . . . . . . . . . . 33  
Figure 21. Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 22. External Late Frame Sync . . . . . . . . . . . . . . . . . 36  
Figure 23. JTAG Test Access Port and Emulation . . . . . . . 37  
Figure 24. Output Enable/Disable . . . . . . . . . . . . . . . . . . . 39  
Figure 25. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 26. Voltage Reference Levels for AC Measurements  
(Except Output Enable/Disable) . . . . . . . . . . . . . . . . . . . . 39  
Figure 27. ADSP-2106x Typical Drive Currents  
(VDD = 5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 28. Typical Output Rise Time (10%–90% VDD) vs.  
Load Capacitance (VDD = 5 V) . . . . . . . . . . . . . . . . . . . . 40  
Figure 29. Typical Output Rise Time (0.8 V–2.0 V) vs. Load  
Capacitance (VDD = 5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 30. Typical Output Delay or Hold vs. Load Capacitance  
(at Maximum Case Temperature) (VDD = 5 V) . . . . . . . . 40  
Figure 31. ADSP-2106x Typical Drive Currents  
FIGURES  
(VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 32. Typical Output Rise Time (10%–90% VDD) vs.  
Load Capacitance (VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . 40  
Figure 33. Typical Output Rise Time (0.8 V–2.0 V) vs. Load  
Capacitance (VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 34. Typical Output Delay or Hold vs. Load Capacitance  
(at Maximum Case Temperature) (VDD = 3.3 V) . . . . . . . 41  
Figure 1. ADSP-21061/ADSP-21061L Block Diagram . . . . 1  
Figure 2. ADSP-21061/ADSP-21061L System . . . . . . . . . . . 4  
Figure 3. Multiprocessing System . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. ADSP-21061/ADSP-21061L Memory Map . . . . . 7  
Figure 5. Target Board Connector For ADSP-21061/  
EZ-ICE is a registered trademark of Analog Devices, Inc.  
REV. B  
–2–  
ADSP-21061/ADSP-21061L  
S®  
GENERAL NOTE  
Figure 1 shows a block diagram of the ADSP-21061/ADSP-  
21061L, illustrating the following architectural features:  
This data sheet represents production released specifications  
for the ADSP-21061 5 V and ADSP-21061L 3.3 V proces-  
sors. ADSP-21061 is used throughout this data sheet to refer to  
both devices unless expressly noted.  
Computation Units (ALU, Multiplier and Shifter) with a  
Shared Data Register File  
Data Address Generators (DAG1, DAG2)  
Program Sequencer with Instruction Cache  
Interval Timer  
GENERAL DESCRIPTION  
The ADSP-21061 is a member of the powerful SHARC family  
of floating point processors. The SHARC—Super Harvard  
Architecture Computer—are signal processing microcomputers  
that offer new capabilities and levels of integration and perfor-  
mance. The ADSP-21061 is a 32-bit processor optimized for  
high performance DSP applications. The ADSP-21061 com-  
bines the ADSP-21000 DSP core with a dual-ported on-chip  
SRAM and an I/O processor with a dedicated I/O bus to form a  
complete system-in-a-chip.  
1 Mbit On-Chip SRAM  
External Port for Interfacing to Off-Chip Memory and  
Peripherals  
Host Port & Multiprocessor Interface  
DMA Controller  
Serial Ports  
JTAG Test Access Port  
Figure 2 shows a typical single-processor system. A multi-  
processing system is shown in Figure 3.  
Fabricated in a high-speed, low-power CMOS process, the  
ADSP-21061 has a 20 ns instruction cycle time operating at up  
to 50 MIPS. With its on-chip instruction cache, the processor can  
execute every instruction in a single cycle. Table I shows perfor-  
mance benchmarks for the ADSP-21061/ADSP-21061L.  
Table I. ADSP-21061/ADSP-21061L Benchmarks (@ 50 MHz)  
1024-Pt. Complex FFT  
(Radix 4, with Digit Reverse)  
FIR Filter (per Tap)  
IIR Filter (per Biquad)  
Divide (y/x)  
0.37 ms  
18,221 Cycles  
The ADSP-21061 SHARC combines a high-performance float-  
ing-point DSP core with integrated, on-chip system features,  
including a 1 Mbit SRAM memory, host processor interface,  
DMA controller, serial ports and parallel bus connectivity for  
glueless DSP multiprocessing.  
20 ns  
80 ns  
120 ns  
180 ns  
1 Cycle  
4 Cycles  
6 Cycles  
9 Cycles  
Inverse Square Root (1/x)  
DMA Transfer Rate  
300 Mbytes/s  
REV. B  
–3–  
ADSP-21061/ADSP-21061L  
ADSP-21000 FAMILY CORE ARCHITECTURE  
The ADSP-21061 includes the following architectural features  
of the ADSP-21000 family core. The ADSP-21061 is code and  
function compatible with the ADSP-21060/ADSP-21062 and  
the ADSP-21020.  
Instruction Cache  
The ADSP-21061 includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and two  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
allows full-speed execution of core, looped operations such as  
digital filter multiply-accumulates and FFT butterfly processing.  
Independent, Parallel Computation Units  
The arithmetic/logic unit (ALU), multiplier and shifter all per-  
form single-cycle instructions. The three units are arranged in  
parallel, maximizing computational throughput. Single multi-  
function instructions execute parallel ALU and multiplier op-  
erations. These computation units support IEEE 32-bit single-  
precision floating-point, extended precision 40-bit floating-  
point and 32-bit fixed-point data formats.  
Data Address Generators with Hardware Circular Buffers  
The ADSP-21061’s two data address generators (DAGs) imple-  
ment circular data buffers in hardware. Circular buffers allow  
efficient programming of delay lines and other data structures  
required in digital signal processing, and are commonly used in  
digital filters and Fourier transforms. The ADSP-21061 two  
DAGs contain sufficient registers to allow the creation of up to  
32 circular buffers (16 primary register sets, 16 secondary). The  
DAGs automatically handle address pointer wraparound, reduc-  
ing overhead, increasing performance and simplifying imple-  
mentation. Circular buffers can start and end at any memory  
location.  
ADSP-21061/  
ADSP-21061L  
CS  
1x CLOCK  
TO GND  
CLKIN  
EBOOT  
LBOOT  
BMS  
BOOT  
EPROM  
(OPTIONAL)  
ADDR  
DATA  
3
IRQ  
2-0  
Flexible Instruction Set  
4
ADDR  
FLAG  
31-0  
ADDR  
DATA  
OE  
WE  
ACK  
CS  
3-0  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the ADSP-  
21061 can conditionally execute a multiply, an add, a subtract  
and a branch, all in a single instruction.  
TIMEXP  
MEMORY  
AND  
PERIPHERALS  
DATA  
47-0  
RD  
WR  
TCLK0  
RCLK0  
TFS0  
RSF0  
DT0  
(OPTIONAL)  
SERIAL  
DEVICE  
(OPTIONAL)  
ACK  
MS  
3-0  
ADSP-21061 FEATURES  
Augmenting the ADSP-21000 family core, the ADSP-21061  
adds the following architectural features:  
PAGE  
SBTS  
SW  
DR0  
DMA DEVICE  
(OPTIONAL)  
DATA  
ADRCLK  
TCLK1  
RCLK1  
TFS1  
RSF1  
DT1  
DMAR  
Dual-Ported On-Chip Memory  
1-2  
SERIAL  
DEVICE  
(OPTIONAL)  
DMAG  
1-2  
The ADSP-21061 contains 1 megabit of on-chip SRAM, orga-  
nized as two banks of 0.5 Mbits each. Each bank has eight 16-  
bit columns with 4K 16-bit words per column. Each memory  
block is dual-ported for single-cycle, independent accesses by  
the core processor and I/O processor or DMA controller. The  
dual-ported memory and separate on-chip buses allow two data  
transfers from the core and one from I/O, all in a single cycle  
(see Figure 4 for the ADSP-21061 Memory Map).  
CS  
HBR  
HOST  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
DR1  
HBG  
REDY  
RPBA  
BR  
ADDR  
DATA  
1-6  
ID  
2-0  
CPA  
RESET JTAG  
7
On the ADSP-21061, the memory can be configured as a maxi-  
mum of 32K words of 32-bit data, 64K words for 16-bit data,  
16K words of 48-bit instructions (and 40-bit data) or combina-  
tions of different word sizes up to 1 megabit. All the memory  
can be accessed as 16-bit, 32-bit or 48-bit.  
Figure 2. ADSP-21061/ADSP-21061L System  
Data Register File  
A general purpose data register file is used for transferring data  
between the computation units and the data buses, and for  
storing intermediate results. This 10-port, 32-register (16 pri-  
mary, 16 secondary) register file, combined with the ADSP-  
21000 Harvard architecture, allows unconstrained data flow  
between computation units and internal memory.  
A 16-bit floating-point storage format is supported that effec-  
tively doubles the amount of data that may be stored on chip.  
Conversion between the 32-bit floating-point and 16-bit floating-  
point formats is done in a single instruction.  
While each memory block can store combinations of code and  
data, accesses are most efficient when one block stores data,  
using the DM bus for transfers, and the other block stores in-  
structions and data, using the PM bus for transfers. Using the  
DM and PM buses in this way, with one dedicated to each  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in the  
cache. Single-cycle execution is also maintained when one of the  
data operands is transferred to or from off-chip, via the ADSP-  
21061’s external port.  
Single-Cycle Fetch of Instruction and Two Operands  
The ADSP-21061 features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 1). With its separate program and data memory  
buses and on-chip instruction cache, the processor can simulta-  
neously fetch two operands and an instruction (from the cache),  
all in a single cycle.  
REV. B  
–4–  
ADSP-21061/ADSP-21061L  
Off-Chip Memory and Peripherals Interface  
Six channels of DMA are available on the ADSP-21061—four  
via the serial ports, and two via the processor’s external port (for  
either host processor, other ADSP-21061s, memory or I/O  
transfers). Programs can be downloaded to the ADSP-21061  
using DMA transfers. Asynchronous off-chip peripherals can  
control two DMA channels using DMA Request/Grant lines  
(DMAR1-2, DMAG1-2). Other DMA features include interrupt  
generation upon completion of DMA transfers and DMA chain-  
ing for automatic linked DMA transfers.  
The ADSP-21061’s external port provides the processor’s inter-  
face to off-chip memory and peripherals. The 4-gigaword off-  
chip address space is included in the ADSP-21061’s unified  
address space. The separate on-chip buses—for program  
memory, data memory and I/O—are multiplexed at the external  
port to create an external system bus with a single 32-bit address  
bus and a single 48-bit (or 32-bit) data bus. The on-chip  
Super Harvard Architecture provides three-bus performance,  
while the off-chip unified address space gives flexibility to the  
designer.  
Serial Ports  
The ADSP-21061 features two synchronous serial ports that  
provide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices. The serial ports can operate at  
the full clock rate of the processor, providing each with a maxi-  
mum data rate of 40 Mbit/s. Independent transmit and receive  
functions provide greater flexibility for serial communications.  
Serial port data can be automatically transferred to and from  
on-chip memory via DMA. Each of the serial ports offers TDM  
multichannel mode.  
Addressing of external memory devices is facilitated by on-chip  
decoding of high order address lines to generate memory bank  
select signals. Separate control lines are also generated for sim-  
plified addressing of page-mode DRAM. The ADSP-21061  
provides programmable memory wait states and external memory  
acknowledge controls to allow interfacing to DRAM and peripher-  
als with variable access, hold and disable time requirements.  
Host Processor Interface  
The ADSP-21061’s host interface allows easy connection to  
standard microprocessor buses, both 16-bit and 32-bit, with  
little additional hardware required. Asynchronous transfers at  
speeds up to the full clock rate of the processor are supported.  
The host interface is accessed through the ADSP-21061’s exter-  
nal port and is memory-mapped into the unified address space.  
Two channels of DMA are available for the host interface; code  
and data transfers are accomplished with low software overhead.  
The serial ports can operate with little-endian or big-endian  
transmission formats, with word lengths selectable from three  
bits to 32 bits. They offer selectable synchronization and trans-  
mit modes as well as optional µ-law or A-law companding.  
Serial port clocks and frame syncs can be internally or externally  
generated. The serial ports also include keyword and keymask  
features to enhance interprocessor communication.  
Multiprocessing  
The host processor requests the ADSP-21061’s external bus  
with the host bus request (HBR), host bus grant (HBG) and  
ready (REDY) signals. The host can directly read and write the  
internal memory of the ADSP-21061, and can access the  
DMA channel setup and mailbox registers. Vector interrupt  
support is provided for efficient execution of host commands.  
The ADSP-21061 offers powerful features tailored to multipro-  
cessing DSP systems. The unified address space allows direct  
interprocessor accesses of each ADSP-21061’s internal memory.  
Distributed bus arbitration logic is included on-chip for simple,  
glueless connection of systems containing up to six ADSP-21061s  
and a host processor. Master processor changeover incurs only  
one cycle of overhead. Bus arbitration is selectable as either  
fixed or rotating priority. Bus lock allows indivisible read-modify-  
write sequences for semaphores. A vector interrupt is provided  
for interprocessor commands. Maximum throughput for inter-  
processor data transfer is 500 Mbytes/sec over the external port.  
Broadcast writes allow simultaneous transmission of data to  
all ADSP-21061s and can be used to implement reflective  
semaphores.  
DMA Controller  
The ADSP-21061’s on-chip DMA controller allows zero-  
overhead, nonintrusive data transfers without processor inter-  
vention. The DMA controller operates independently and  
invisibly to the processor core, allowing DMA operations to  
occur while the core is simultaneously executing its program  
instructions.  
DMA transfers can occur between the ADSP-21061’s internal  
memory and either external memory, external peripherals, or a  
host processor. DMA transfers can also occur between the  
ADSP-21061’s internal memory and its serial ports. DMA  
transfers between external memory and external peripheral  
devices are another option. External bus packing to 16-, 32-  
or 48-bit words is performed during DMA transfers.  
Program Booting  
The internal memory of the ADSP-21061 can be booted at  
system power-up from either an 8-bit EPROM or a host proces-  
sor. Selection of the boot source is controlled by the BMS (Boot  
Memory Select), EBOOT (EPROM Boot), and LBOOT (Host  
Boot) pins. 32-bit and 16-bit host processors can be used for  
booting. See the BMS pin in the Pin Function Descriptions  
section of this data sheet.  
REV. B  
–5–  
ADSP-21061/ADSP-21061L  
ADSP-2106x #6  
ADSP-2106x #5  
ADSP-2106x #4  
ADSP-2106x #3  
ADDR  
CLKIN  
RESET  
RPBA  
31-0  
DATA  
47-0  
3
011  
ID  
2-0  
CONTROL  
CPA  
BR , BR  
5
1-2  
4-6  
BR  
3
ADSP-2106x #2  
ADDR  
CLKIN  
31-0  
DATA  
47-0  
RESET  
RPBA  
3
010  
ID  
2-0  
CONTROL  
CPA  
BR , BR  
5
1
3-6  
BR  
2
ADSP-2106x #1  
1x  
CLOCK  
CLKIN  
ADDR  
DATA  
ADDR  
DATA  
31-0  
GLOBAL  
MEMORY  
RESET  
RESET  
47-0  
AND  
PERIPHERALS  
(OPTIONAL)  
OE  
RD  
WR  
ACK  
RPBA  
WE  
ACK  
CS  
3
001  
ID  
MS  
2-0  
3-0  
CS  
BMS  
PAGE  
SBTS  
SW  
BOOT  
EPROM  
(OPTIONAL)  
ADDR  
CONTROL  
DATA  
ADRCLK  
CS  
HBR  
HBG  
REDY  
HOST  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
ADDR  
DATA  
CPA  
5
BR  
2-6  
BR  
1
Figure 3. Multiprocessing System  
REV. B  
–6–  
ADSP-21061/ADSP-21061L  
0x0000 0000  
0x0002 0000  
0x0040 0000  
IOP REGISTERS  
BANK 0  
INTERNAL  
MEMORY  
SPACE  
MS  
0
NORMAL WORD ADDRESSING  
SHORT WORD ADDRESSING  
DRAM  
(OPTIONAL)  
0x0004 0000  
0x0008 0000  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
BANK 1  
BANK 2  
MS  
1
WITH ID=001  
0x0010 0000  
0x0018 0000  
0x0020 0000  
0x0028 0000  
0x0030 0000  
0x0038 0000  
0x003F FFFF  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=010  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
MS  
MS  
2
WITH ID=011  
EXTERNAL  
MEMORY  
SPACE  
MULTIPROCESSOR  
MEMORY SPACE  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=100  
BANK 3  
3
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=101  
BANK SIZE IS  
SELECTED BY  
MSIZE BIT FIELD OF  
SYSCON  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=110  
REGISTER.  
BROADCAST WRITE  
TO ALL  
NONBANKED  
ADSP-2106xs  
NORMAL WORD ADDRESSING: 32-BIT DATA WORDS  
48-BIT INSTRUCTION WORDS  
SHORT WORD ADDRESSING: 16-BIT DATA WORDS  
0xFFFF FFFF  
Figure 4. ADSP-21061/ADSP-21061L Memory Map  
REV. B  
–7–  
ADSP-21061/ADSP-21061L  
Porting Code from ADSP-21060 or ADSP-21062 to the  
ADSP-21061  
The ADSP-21061 is pin compatible with the ADSP-21060/  
ADSP-21061/ADSP-21062 processors. The ADSP-21061 pins  
that correspond to the Link Port pins of the ADSP-21060/  
ADSP-21062 are no-connects.  
The same EZ-ICE hardware can be used for the ADSP-21060/  
ADSP-21062, to fully emulate the ADSP-21061, with the excep-  
tion of displaying and modifying the two new SPORTS  
registers. The emulator will not display these two registers,  
but your code can use them.  
Analog Devices ADSP-21000 Family Development Software  
includes an easy to use Assembler based on an algebraic syntax,  
Assembly Library/Librarian, Linker, instruction-level Simulator,  
an ANSI C optimizing Compiler, the CBUG™ C Source—  
Level Debugger and a C Runtime Library including DSP and  
mathematical functions. The Optimizing Compiler includes  
Numerical C extensions based on the work of the ANSI Nu-  
merical C Extensions Group. Numerical C provides extensions  
to the C language for array selections, vector math operations,  
complex data types, circular pointers and variably dimensioned  
arrays. The ADSP-21000 Family Development Software is  
available for both the PC and Sun platforms.  
The ADSP-21061 is object code compatible with the ADSP-  
21060/ADSP-21062 except for the following functional  
changes:  
The ADSP-21061 memory is organized into two blocks  
with eight columns that are 4K deep per block. The  
ADSP-21060/ADSP-21062 memory has 16 columns per block.  
Link port functions are not available.  
Handshake external port DMA pins DMAR2 and DMAG2  
are assigned to external port DMA Channel 6 instead of  
Channel 8.  
2-D DMA capability of the SPORT is not available.  
The modify registers in SPORT DMA are not programmable.  
The EZ-ICE Emulator uses the IEEE 1149.1 JTAG test access  
port of the ADSP-21061 processor to monitor and control the  
target board processor during emulation. The EZ-ICE provides  
full-speed emulation, allowing inspection and modification of  
memory, registers, and processor stacks. Nonintrusive in-circuit  
emulation is assured by the use of the processor’s JTAG inter-  
face—the emulator does not affect target system loading or  
timing.  
On the ADSP-21061, Block 0 starts at the beginning of internal  
memory, normal word address 0x0002 0000. Block 1 starts at  
the end of Block 0, with contiguous addresses. The remaining  
addresses in internal memory are divided into blocks that alias  
into Block 1. This allows any code or data stored in Block 1 on  
the ADSP-21062 to retain the same addresses on the ADSP-  
21061—these addresses will alias into the actual Block 1 of each  
processor.  
Further details and ordering information are available in the  
ADSP-21000 Family Hardware and Software Development Tools  
data sheet (ADDS-210xx-TOOLS). This data sheet can be  
requested from any Analog Devices sales office or distributor.  
If you develop your application using the ADSP-21062, but will  
migrate to the ADSP-21061, use only the first eight columns of  
each memory bank. Limit your application to 8K of instructions  
or up to 16K of data in each bank of the ADSP-21062, or any  
combinations of instructions or data that does not exceed the  
memory bank.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC PC plug-in cards multiprocessor  
SHARC VME boards, and daughter and modules with multiple  
SHARCs and additional memory. These modules are based on  
the SHARCPAC™ module specification. Third Party software  
tools include an Ada compiler, DSP libraries, operating systems  
and block diagram design tools.  
DEVELOPMENT TOOLS  
The ADSP-21061 is supported with a complete set of software  
and hardware development tools, including an EZ-ICE In-  
Circuit Emulator, EZ-Kit Lite, and development software. The  
SHARC EZ-Kit Lite (ADDS-2106x-EZ-Lite) is a complete low  
cost package for DSP evaluation and prototyping. The EZ-Kit  
Lite contains an evaluation board with an ADSP-21061 (5 V)  
processor and provides a serial connection to your PC. The EZ-  
Kit Lite also includes an optimizing compiler, assembler, in-  
struction level simulator, run-time libraries, diagnostic utilities  
and a complete set of example programs.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-21061  
architecture and functionality. For detailed information on the  
ADSP-21000 Family core architecture and instruction set, refer to  
the ADSP-2106x SHARC User’s Manual, Second Edition.  
CBUG and SHARCPAC are trademarks of Analog Devices, Inc.  
REV. B  
–8–  
ADSP-21061/ADSP-21061L  
PIN DESCRIPTIONS  
DRx, TCLKx, RCLKx, TMS and TDI)—these pins can be left  
floating. These pins have a logic-level hold circuit that prevents  
the input from floating internally.  
ADSP-21061 pin definitions are listed below. Inputs identified  
as synchronous (S) must meet timing requirements with respect  
to CLKIN (or with respect to TCK for TMS, TDI). Inputs  
identified as asynchronous (A) can be asserted asynchronously  
to CLKIN (or to TCK for TRST).  
I = Input  
(O/D) = Open Drain O = Output  
G = Ground (A/D) = Active Drive  
S = Synchronous  
P = Power Supply  
A = Asynchronous  
Unused inputs should be tied or pulled to IVDD or IGND,  
except for ADDR31-0, DATA47-0, FLAG3-0, SW and inputs that  
have internal pull-up or pull-down resistors (CPA, ACK, DTx,  
T = Three-State (when SBTS is asserted, or when the  
ADSP-2106x is a bus slave)  
PIN FUNCTION DESCRIPTIONS  
Pin  
Type  
Function  
ADDR31-0  
I/O/T  
External Bus Address. The ADSP-21061 outputs addresses for external memory and peripherals  
on these pins. In a multiprocessor system the bus master outputs addresses for read/writes of the  
internal memory or IOP registers of other ADSP-2106xs. The ADSP-21061 inputs addresses when a  
host processor or multiprocessing bus master is reading or writing its internal memory or IOP registers.  
DATA47-0  
I/O/T  
O/T  
External Bus Data. The ADSP-21061 inputs and outputs data and instructions on these pins.  
The external data bus transfers 32-bit single-precision floating-point data and 32-bit fixed-point  
data over Bits 47-16. 40-bit extended-precision floating-point data is transferred over Bits 47-8 of  
the bus. 16-bit short word data is transferred over Bits 31-16 of the bus. Pull-up resistors on un-  
used DATA pins are not necessary.  
Memory Select Lines. These lines are asserted (low) as chip selects for the corresponding banks  
of external memory. Memory bank size must be defined in the ADSP-21061’s system control regis-  
ter (SYSCON). The MS3-0 lines are decoded memory address lines that change at the same time as  
the other address lines. When no external memory access is occurring the MS3-0 lines are inactive;  
they are active, however, when a conditional memory access instruction is executed, whether or not the  
condition is true. MS0 can be used with the PAGE signal to implement a bank of DRAM memory  
(Bank 0). In a multiprocessor system the MS3-0 lines are output by the bus master.  
MS3-0  
RD  
I/O/T  
I/O/T  
O/T  
Memory Read Strobe. This pin is asserted (low) when the ADSP-21061 reads from external  
memory devices or from the internal memory of other ADSP-21061s. External devices (including  
other ADSP-21061s) must assert RD to read from the ADSP-21061’s internal memory. In a multi-  
processor system RD is output by the bus master and is input by all other ADSP-21061s.  
Memory Write Strobe. This pin is asserted (low) when the ADSP-21061 writes to external memory  
devices or to the internal memory of other ADSP-21061s. External devices must assert WR to write to  
the ADSP-21061’s internal memory. In a multiprocessor system WR is output by the bus master and is  
input by all other ADSP-21061s.  
DRAM Page Boundary. The ADSP-21061 asserts this pin to signal that an external DRAM page  
boundary has been crossed. DRAM page size must be defined in the ADSP-21061’s memory con-  
trol register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE  
signal can only be activated for Bank 0 accesses. In a multiprocessor system PAGE is output by the  
bus master.  
WR  
PAGE  
ADRCLK  
O/T  
Address Clock for synchronous external memories. Addresses on ADDR31-0 are valid before the  
rising edge of ADRCLK. In a multiprocessing system ADRCLK is output by the bus master.  
SW  
I/O/T  
Synchronous Write Select. This signal is used to interface the ADSP-2106x to synchronous memory  
devices (including other ADSP-21061s). The ADSP-21061 asserts SW (low) to provide an early indica-  
tion of an impending write cycle, which can be aborted if WR is not later asserted (e.g. in a conditional  
write instruction). In a multiprocessor system, SW is output by the bus master and is input by all other  
ADSP-21061s to determine if the multiprocessor memory access is a read or write. SW is asserted at the  
same time as the address output. A host processor using synchronous writes must assert this pin when  
writing to the ADSP-21061(s).  
ACK  
I/O/S  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an external  
memory access. ACK is used by I/O devices, memory controllers or other peripherals to hold off  
completion of an external memory access. The ADSP-21061 deasserts ACK as an output to add  
wait states to a synchronous access of its internal memory. In a multiprocessor system, a slave  
ADSP-21061 deasserts the bus master’s ACK input to add wait state(s) to an access of its internal  
memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level it  
was last driven to.  
REV. B  
–9–  
ADSP-21061/ADSP-21061L  
Pin  
Type  
Function  
SBTS  
I/S  
Suspend Bus Three-State. External devices can assert SBTS (low) to place the external bus address,  
data, selects, and strobes in a high impedance state for the following cycle. If the ADSP-21061  
attempts to access external memory while SBTS is asserted, the processor will halt and the memory  
access will not be completed until SBTS is deasserted. SBTS should only be used to recover from  
PAGE faults or host processor/ADSP-21061 deadlock.  
IRQ2-0  
I/A  
Interrupt Request Lines. May be either edge-triggered or level-sensitive.  
FLAG3-0  
I/O/A  
Flag Pins. Each is configured via control bits as either an input or an output. As an input, it can be  
tested as a condition. As an output, it can be used to signal external peripherals.  
TIMEXP  
O
Timer Expired. Asserted for four cycles when the timer is enabled and TCOUNT decrements to  
zero.  
HBR  
I/A  
Host Bus Request. Must be asserted by a host processor to request control of the ADSP-21061’s  
external bus. When HBR is asserted in a multiprocessing system, the ADSP-21061 that is bus master  
will relinquish the bus and assert HBG. To relinquish the bus, the ADSP-21061 places the address,  
data, select, and strobe lines in a high impedance state. HBR has priority over all ADSP-21061 bus  
requests (BR6-1) in a multiprocessing system.  
HBG  
I/O  
Host Bus Grant. Acknowledges an HBR bus request, indicating that the host processor may take  
control of the external bus. HBG is asserted (held low) by the ADSP-21061 until HBR is released. In a  
multiprocessing system, HBG is output by the ADSP-21061 bus master and is monitored by all others.  
CS  
I/A  
O
Chip Select. Asserted by host processor to select the ADSP-21061.  
REDY (O/D)  
Host Bus Acknowledge. The ADSP-2106x deasserts REDY (low) to add wait states to an asynchro-  
nous access of its internal memory or IOP registers by a host. Open drain output (O/D) by default; can  
be programmed in ADREDY bit of SYSCON register to be active drive (A/D). REDY will only be  
output if the CS and HBR inputs are asserted.  
DMAR1  
DMAR2  
DMAG1  
DMAG2  
BR6-1  
I/A  
I/A  
O/T  
O/T  
I/O/S  
DMA Request 1 (DMA Channel 7).  
DMA Request 2 (DMA Channel 6).  
DMA Grant 1 (DMA Channel 7).  
DMA Grant 2 (DMA Channel 6).  
Multiprocessing Bus Requests. Used by multiprocessing ADSP-21061s to arbitrate for bus master-  
ship. An ADSP-21061 only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and  
monitors all others. In a multiprocessor system with less than six ADSP-21061s, the unused BRx pins  
should be tied high; the processor’s own BRx line must not be tied high or low because it is an output.  
ID2-0  
I
Multiprocessing ID. Determines which multiprocessing bus request (BR1BR6) is used by ADSP-  
21061. ID = 001 corresponds to BR1, ID = 010 corresponds to BR2, etc. ID = 000 in single-processor  
systems. These lines are a system configuration selection which should be hardwired or only changed at  
reset.  
RPBA  
I/S  
I/O  
Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for multiprocessor  
bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system con-  
figuration selection which must be set to the same value on every ADSP-21061. If the value of RPBA is  
changed during system operation, it must be changed in the same CLKIN cycle on every ADSP-21061.  
Core Priority Access. Asserting its CPA pin allows the core processor of an ADSP-21061 bus slave  
to interrupt background DMA transfers and gain access to the external bus. CPA is an open drain  
output that is connected to all ADSP-2106Ls in the system. The CPA pin has an internal 5 kpull-up  
resistor. If core access priority is not required in a system, the CPA pin should be left unconnected.  
CPA (O/D)  
DTx  
DRx  
TCLKx  
O
I
I/O  
Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 kinternal pull-up resistor.  
Data Receive (Serial Ports 0, 1). Each DR pin has a 50 kinternal pull-up resistor.  
Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 kinternal pull-up resistor.  
RCLKx  
I/O  
Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 kinternal pull-up resistor.  
REV. B  
–10–  
ADSP-21061/ADSP-21061L  
Pin  
Type  
Function  
TFSx  
RFSx  
EBOOT  
I/O  
I/O  
I
Transmit Frame Sync (Serial Ports 0, 1).  
Receive Frame Sync (Serial Ports 0, 1).  
EPROM Boot Select. When EBOOT is high, the ADSP-21061 is configured for booting from an 8-  
bit EPROM. When EBOOT is low, the LBOOT and BMS inputs determine booting mode. See table  
below. This signal is a system configuration selection which should be hardwired.  
LBOOT  
I
Link Boot—Must be tied to GND.  
BMS  
I/O/T*  
Boot Memory Select. Output: Used as chip select for boot EPROM devices (when EBOOT = 1,  
LBOOT = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low, indi-  
cates that no booting will occur and that ADSP-21061 will begin executing instructions from external  
memory. See table below. This input is a system configuration selection which should be hardwired.  
*Three-statable only in EPROM boot mode (when BMS is an output).  
EBOOT  
LBOOT  
BMS  
Booting Mode  
1
0
0
0
0
0
Output  
1 (Input)  
0 (Input)  
EPROM (Connect BMS to EPROM chip select.)  
Host Processor  
No Booting. Processor executes from external memory.  
CLKIN  
I
Clock In. External clock input to the ADSP-21061. The instruction cycle rate is equal to CLKIN.  
CLKIN may not be halted, changed, or operated below the specified frequency.  
RESET  
I/A  
Processor Reset. Resets the ADSP-21061 to a known state and begins execution at the program  
memory location specified by the hardware reset vector address. This input must be asserted (low) at  
power-up.  
TCK  
TMS  
I
I/S  
Test Clock (JTAG). Provides an asynchronous clock for JTAG boundary scan.  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 20 kinternal pull-up  
resistor.  
TDI  
I/S  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 20 kinternal  
pull-up resistor.  
TDO  
O
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
TRST  
I/A  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-  
up or held low for proper operation of the ADSP-21061. TRST has a 20 kinternal pull-up resistor.  
EMU  
ICSA  
VDD  
GND  
NC  
O
O
P
Emulation Status. Must be connected to the ADSP-21061 EZ-ICEtarget board connector only.  
Reserved, leave unconnected.  
Power Supply; nominally +3.3 V dc for ADSP-21061L, +5.0 V dc for ADSP-21061.  
Power Supply Return.  
Do Not Connect. Reserved pins which must be left open and unconnected.  
G
REV. B  
–11–  
ADSP-21061/ADSP-21061L  
TARGET BOARD CONNECTOR FOR EZ-ICE PROBE  
The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1  
JTAG test access port of the ADSP-2106x to monitor and control  
the target board processor during emulation. The EZ-ICE  
probe requires the ADSP-2106x’s CLKIN, TMS, TCK,  
TRST, TDI, TDO, EMU, and GND signals be made acces-  
sible on the target system via a 14-pin connector (a 2 row × 7  
pin strip header) such as that shown in Figure 5. The EZ-ICE  
probe plugs directly onto this connector for chip-on-board  
emulation. You must add this connector to your target board  
design if you intend to use the ADSP-2106x EZ-ICE. The total  
trace length between the EZ-ICE connector and the furthest  
device sharing the EZ-ICE JTAG pins should be limited to 15  
inches maximum for guaranteed operation. This length restric-  
tion must include EZ-ICE JTAG signals that are routed to one  
or more ADSP-2106x devices, or a combination of ADSP-  
2106x devices and other JTAG devices on the chain.  
The 14-pin, 2-row pin strip header is keyed at the Pin 3 location —  
Pin 3 must be removed from the header. The pins must be  
0.025 inch square and at least 0.20 inch in length. Pin spacing  
should be 0.1 × 0.1 inches. Pin strip headers are available from  
vendors such as 3M, McKenzie and Samtec.  
The BTMS, BTCK, BTRST and BTDI signals are provided so  
the test access port can also be used for board-level testing.  
When the connector is not being used for emulation, place  
jumpers between the Bxxx pins and the xxx pins. If the test  
access port will not be used for board testing, tie BTRST to GND  
and tie or pull BTCK up to VDD. The TRST pin must be  
asserted after power-up (through BTRST on the connector) or  
held low for proper operation of the ADSP-2106x. None of the  
Bxxx pins (Pins 5, 7, 9, 11) are connected on the EZ-ICEprobe.  
The JTAG signals are terminated on the EZ-ICE probe as  
follows:  
Signal Termination  
1
3
5
2
4
6
GND  
EMU  
TMS  
TCK  
Driven through 22 Resistor (16 mA Driver)  
Driven at 10 MHz through 22 Resistor (16 mA  
Driver)  
KEY (NO PIN)  
CLKIN (OPTIONAL)  
TRST* Active Low Driven through 22 Resistor (16 mA  
BTMS  
BTCK  
BTRST  
BTDI  
TMS  
TCK  
TRST  
TDI  
Driver) (Pulled Up by On-Chip 20 kResistor)  
TDI  
TDO  
Driven by 22 Resistor (16 mA Driver)  
7
9
8
One TTL Load, Split Termination (160/220)  
CLKIN One TTL Load, Split Termination (160/220)  
10  
12  
EMU  
Active Low 4.7 kPull-Up Resistor, One TTL Load  
(Open-Drain Output from the DSP)  
11  
*TRST is driven low until the EZ-ICE probe is turned on by the emulator at  
software start-up. After software start-up, TRST is driven high.  
13  
14  
GND  
TDO  
Figure 6 shows JTAG scan path connections for systems that  
contain multiple ADSP-2106x processors.  
TOP VIEW  
Figure 5. Target Board Connector For ADSP-21061/ADSP-  
21061L EZ-ICE Emulator (Jumpers in Place)  
JTAG  
ADSP-2106x  
#1  
ADSP-2106x  
#n  
DEVICE  
(OPTIONAL)  
TDO  
TDI  
TDI  
TDI  
TDO  
TDO  
TDI  
EZ-ICE  
JTAG  
CONNECTOR  
OTHER  
JTAG  
CONTROLLER  
TCK  
TMS  
EMU  
TRST  
TDO  
CLKIN  
OPTIONAL  
Figure 6. JTAG Scan Path Connections for Multiple ADSP-21061/ADSP-21061L Systems  
REV. B  
–12–  
ADSP-21061/ADSP-21061L  
Connecting CLKIN to Pin 4 of the EZ-ICEheader is optional.  
The emulator only uses CLKIN when directed to perform op-  
erations such as starting, stopping and single-stepping multiple  
ADSP-2106x in a synchronous manner. If you do not need these  
operations to occur synchronously on the multiple processors,  
simply tie Pin 4 of the EZ-ICE header to ground.  
should be laid out as short as possible on your board. If TCK,  
TMS and CLKIN are driving a large number of ADSP-2106x  
(more than eight) in your system, then treat them as a clock tree  
using multiple drivers to minimize skew. (See Figure 7, JTAG  
Clock Tree, and Clock Distribution in the High Frequency  
Design Considerations section of the ADSP-2106x User’s  
Manual, Second Edition.)  
If synchronous multiprocessor operations are needed and  
CLKIN is connected, clock skew between the multiple ADSP-  
21061x processors and the CLKIN pin on the EZ-ICEheader  
must be minimal. If the skew is too large, synchronous operations  
may be off by one or more cycles between processors. For syn-  
chronous multiprocessor operation TCK, TMS, CLKIN and  
EMU should be treated as critical signals in terms of skew, and  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termina-  
tion on TCK and TMS. TDI, TDO, EMU and TRST are not  
critical signals in terms of skew.  
For complete information on the SHARC EZ-ICE, see the ADSP-  
21000 Family JTAG EZ-ICE User’s Guide and Reference.  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
5k  
*
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
EMU  
5k⍀  
*
TCK  
TMS  
TRST  
TDO  
SYSTEM  
CLKIN  
CLKIN  
EMU  
*
OPEN DRAIN DRIVER OR EQUIVALENT, i.e.,  
Figure 7. JTAG Clocktree for Multiple ADSP-21061/ADSP-21061L Systems  
REV. B  
–13–  
ADSP-21061/ADSP-21061L  
ADSP-21061–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS (5 V)  
K Grade  
Max  
Parameter  
Test Conditions  
Min  
Unit  
VDD  
TCASE  
VIH1  
VIH2  
VIL  
Supply Voltage  
4.75  
0
2.0  
2.2  
–0.5  
5.25  
+85  
VDD + 0.5  
VDD + 0.5  
0.8  
V
°C  
V
V
V
Case Operating Temperature  
High Level Input Voltage1  
High Level Input Voltage2  
Low Level Input Voltage1, 2  
@ VDD = max  
@ VDD = max  
@ VDD = min  
NOTES  
1Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA,  
CPA, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.  
2Applies to input pins: CLKIN, RESET, TRST.  
ELECTRICAL CHARACTERISTICS (5 V)  
Parameter  
Test Conditions  
Min  
Max  
Unit  
VOH  
VOL  
IIH  
IIL  
IILP  
IOZH  
IOZL  
IOZHP  
IOZLC  
IOZLA  
IOZLAR  
IOZLS  
CIN  
High Level Output Voltage1  
Low Level Output Voltage1  
High Level Input Current3, 4  
Low Level Input Current3  
@ VDD = min, IOH = –2.0 mA2  
@ VDD = min, IOL = 4.0 mA2  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 1.5 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
4.1  
V
V
0.4  
10  
10  
150  
10  
10  
350  
1.5  
350  
4.2  
150  
4.7  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
µA  
pF  
Low Level Input Current4  
Three-State Leakage Current5, 6, 7, 8  
Three-State Leakage Current5, 9  
Three-State Leakage Current9  
Three-State Leakage Current7  
Three-State Leakage Current10  
Three-State Leakage Current8  
Three-State Leakage Current6  
Input Capacitance11, 12  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
NOTES  
11Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1,  
DMAG2, BR6-1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.  
12See Output Drive Currents section for typical drive current capabilities.  
13Applies to input pins: ACK SBTS, IRQ2-0, HBR, CS, DMAR1, DMAR2, ID2-0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK. Note that ACK is pulled up  
internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106x is not requesting bus mastership.)  
14Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.  
15Applies to three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, REDY, HBG, DMAG1, DMAG2, BMS, BR6–1  
,
TFSX, RFSX, TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another ADSP-2106x is  
not requesting bus mastership.)  
16Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
17Applies to CPA pin.  
18Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another  
ADSP-21061x is not requesting bus mastership).  
19Applies to three-statable pins with internal pull-downs: LxDAT3-0, LxCLK, LxACK.  
10Applies to ACK pin when keeper latch enabled.  
11Applies to all signal pins.  
12Guaranteed but not tested.  
Specifications subject to change without notice.  
–14–  
REV. B  
ADSP-21061/ADSP-21061L  
POWER DISSIPATION ADSP-21061 (5 V)  
These specifications apply to the internal power portion of VDD only. See the Power Dissipation section of this data sheet for calcula-  
tion of external supply current and total supply current. For a complete discussion of the code used to measure power dissipation, see  
the technical note “SHARC Power Dissipation Measurements.”  
Specifications are based on the following operating scenarios:  
Operation  
Peak Activity (IDDINPEAK  
Multifunction  
)
High Activity (IDDINHIGH  
Multifunction  
)
Low Activity (IDDINLOW  
Single Function  
Internal Memory  
None  
)
Instruction Type  
Instruction Fetch  
Core Memory Access  
Internal Memory DMA  
Cache  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use the following equation where % is the amount of time your program  
spends in that state:  
%PEAK × IDDINPEAK + %HIGH × IDDINHIGH + %LOW × IDDINLOW + %IDLE × IDDIDLE + %IDLE16 × IDDIDLE16 = power consumption  
Parameter  
Test Conditions  
Max  
Unit  
IDDINPEAK  
Supply Current (Internal)1  
Supply Current (Internal)2  
Supply Current (Internal)3  
tCK = 30 ns, VDD = max  
595  
680  
850  
460  
540  
670  
270  
320  
390  
200  
55  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
t
CK = 25 ns, VDD = max  
tCK = 20 ns, VDD = max  
tCK = 30 ns, VDD = max  
IDDINHIGH  
t
CK = 25 ns, VDD = max  
tCK = 20 ns, VDD = max  
tCK = 30 ns, VDD = max  
IDDINLOW  
t
CK = 25 ns, VDD = max  
tCK = 20 ns, VDD = max  
VDD = max  
VDD = max  
IDDIDLE  
IDDIDLE16  
Supply Current (Idle)4  
Supply Current (Idle16)5  
NOTES  
1The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal  
power measurements made using typical applications are less than specified.  
2IDDINHIGH is a composite average based on a range of high activity code.  
3IDDINLOW is a composite average based on a range of low activity code.  
4Idle denotes ADSP-21061 state during execution of IDLE instruction.  
5Idle16 denotes ADSP-21061 state during execution of IDLE16 instruction.  
REV. B  
–15–  
ADSP-21061/ADSP-21061L  
ADSP-21061L–SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS (3.3 V)  
A Grade  
Min  
K Grade  
Parameter  
Test Conditions  
Max  
Min  
Max  
Unit  
VDD  
TCASE  
VIH1  
VIH2  
VIL  
Supply Voltage  
3.15  
–40  
2.0  
2.2  
–0.5  
3.45  
+85  
VDD + 0.5  
VDD + 0.5  
0.8  
3.15  
0
2.0  
2.2  
–0.5  
3.45  
+85  
VDD + 0.5  
VDD + 0.5  
0.8  
V
°C  
V
V
V
Case Operating Temperature  
High Level Input Voltage1  
High Level Input Voltage2  
Low Level Input Voltage1, 2  
@ VDD = max  
@ VDD = max  
@ VDD = min  
NOTES  
1Applies to input and bidirectional pins: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQ2-0, FLAG3-0, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA,  
CPA, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, TMS, TDI, TCK, HBR, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1.  
2Applies to input pins: CLKIN, RESET, TRST.  
ELECTRICAL CHARACTERISTICS (3.3 V)  
Parameter  
Test Conditions  
Min  
Max  
Unit  
VOH  
VOL  
IIH  
IIL  
IILP  
IOZH  
IOZL  
IOZHP  
IOZLC  
IOZLA  
IOZLAR  
IOZLS  
CIN  
High Level Output Voltage1  
Low Level Output Voltage1  
High Level Input Current3, 4  
Low Level Input Current3  
@ VDD = min, IOH = –2.0 mA2  
@ VDD = min, IOL = 4.0 mA2  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 1.5 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
2.4  
V
V
0.4  
10  
10  
150  
10  
10  
350  
1.5  
350  
4.2  
150  
4.7  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
µA  
pF  
Low Level Input Current4  
Three-State Leakage Current5, 6, 7, 8  
Three-State Leakage Current5, 9  
Three-State Leakage Current9  
Three-State Leakage Current7  
Three-State Leakage Current10  
Three-State Leakage Current8  
Three-State Leakage Current6  
Input Capacitance11, 12  
fIN = 1 MHz, TCASE = 25°C, VIN = 2.5 V  
NOTES  
11Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, TIMEXP, HBG, REDY, DMAG1,  
DMAG2, BR6-1, CPA, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS, TDO, EMU, ICSA.  
12See “Output Drive Currents” for typical drive current capabilities.  
13Applies to input pins: ACK SBTS, IRQ2-0, HBR, CS, DMAR1, DMAR2, ID2-0, RPBA, EBOOT, LBOOT, CLKIN, RESET, TCK. Note that ACK is pulled up  
internally with 2 kduring reset in a multiprocessor system, when ID2–0 = 001 and another ADSP-2106x is not requesting bus mastership.)  
14Applies to input pins with internal pull-ups: DR0, DR1, TRST, TMS, TDI.  
15Applies to three-statable pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG3-0, REDY, HBG, DMAG1, DMAG2, BMS, BR6–1  
,
TFSX, RFSX, TDO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another ADSP-2106x is  
not requesting bus mastership.)  
16Applies to three-statable pins with internal pull-ups: DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1.  
17Applies to CPA pin.  
18Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID2-0 = 001 and another  
ADSP-21061L is not requesting bus mastership).  
19Applies to three-statable pins with internal pull-downs: LxDAT3-0, LxCLK, LxACK.  
10Applies to ACK pin when keeper latch enabled.  
11Applies to all signal pins.  
12Guaranteed but not tested.  
Specifications subject to change without notice.  
–16–  
REV. B  
ADSP-21061/ADSP-21061L  
POWER DISSIPATION ADSP-21061L (3.3 V)  
These specifications apply to the internal power portion of VDD only. See the Power Dissipation section of this data sheet for calcula-  
tion of external supply current and total supply current. For a complete discussion of the code used to measure power dissipation,  
see the technical note “SHARC Power Dissipation Measurements.”  
Specifications are based on the following operating scenarios:  
Operation  
Peak Activity (IDDINPEAK  
Multifunction  
)
High Activity (IDDINHIGH  
Multifunction  
)
Low Activity (IDDINLOW  
Single Function  
Internal Memory  
None  
)
Instruction Type  
Instruction Fetch  
Core Memory Access  
Internal Memory DMA  
Cache  
Internal Memory  
1 per Cycle (DM)  
1 per 2 Cycles  
2 per Cycle (DM and PM)  
1 per Cycle  
1 per 2 Cycles  
To estimate power consumption for a specific application, use the following equation where % is the amount of time your program  
spends in that state:  
%PEAK × IDDINPEAK + %HIGH × IDDINHIGH + %LOW × IDDINLOW + %IDLE × IDDIDLE + %IDLE16 × IDDIDLE16 = power consumption  
Parameter  
Test Conditions  
Max  
Unit  
IDDINPEAK  
Supply Current (Internal)1  
Supply Current (Internal)2  
Supply Current (Internal)3  
tCK = 25 ns, VDD = max  
480  
535  
380  
425  
220  
245  
180  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
t
CK = 22.5 ns, VDD = max  
tCK = 25 ns, VDD = max  
CK = 22.5 ns, VDD = max  
IDDINHIGH  
IDDINLOW  
t
tCK = 25 ns, VDD = max  
tCK = 22.5 ns, VDD = max  
VDD = max  
IDDIDLE  
IDDIDLE16  
Supply Current (Idle)4  
Supply Current (Idle16)5  
VDD = max  
NOTES  
1The test program used to measure IDDINPEAK represents worst case processor operation and is not sustainable under normal application conditions. Actual internal  
power measurements made using typical applications are less than specified.  
2IDDINHIGH is a composite average based on a range of high activity code.  
3IDDINLOW is a composite average based on a range of low activity code.  
4Idle denotes ADSP-21061L state during execution of IDLE instruction.  
5Idle16 denotes ADSP-21061L state during execution of IDLE16 instruction.  
REV. B  
–17–  
ADSP-21061/ADSP-21061L  
ABSOLUTE MAXIMUM RATINGS (5 V DEVICE)*  
ABSOLUTE MAXIMUM RATINGS (3.3 V DEVICE)*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction Temperature Under Bias . . . . . . . . . . . . . . . . 130°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (5 seconds) . . . . . . . . . . . . . . . . . +280°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction Temperature Under Bias . . . . . . . . . . . . . . . . 130°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (5 seconds) . . . . . . . . . . . . . . . . . +280°C  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only; functional operation of the device at these or  
any other conditions greater than those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
*Stresses greater than those listed above may cause permanent damage to the  
device. These are stress ratings only; functional operation of the device at these or  
any other conditions greater than those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-2106x features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use switch-  
ing characteristics to ensure that any timing requirement of a de-  
vice connected to the processor (such as memory) is satisfied.  
TIMING SPECIFICATIONS  
GENERAL NOTES  
The following timing specifications are target specifications and  
are based on device simulation only.  
The timing specifications shown are based on a CLKIN frequency  
of 40 MHz (tCK = 25 ns). The DT derating allows specifications  
at other CLKIN frequencies (within the min–max range of the  
tCK specification; see Clock Input below). DT is the differ-  
ence between the actual CLKIN period and a CLKIN period  
of 25 ns:  
Timing Requirements apply to signals that are controlled by  
circuitry external to the processor, such as the data input for a  
read operation. Timing requirements guarantee that the proces-  
sor operates correctly with other devices.  
DT = tCK – 25 ns  
(O/D) = Open Drain  
(A/D) = Active Drive  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
See Figure 26 under Test Conditions for voltage reference  
levels.  
REV. B  
–18–  
ADSP-21061/ADSP-21061L  
ADSP-21061 (5 V)  
40 MHz  
Min  
33 MHz  
Max  
50 MHz  
Min  
Parameter  
Min  
Max  
Max  
Unit  
Clock Input  
Timing Requirements:  
tCK  
CLKIN Period  
30  
7
5
100  
3
25  
7
5
100  
3
20  
7
5
100  
3
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V–2.0 V)  
ADSP-21061L (3.3 V)  
40 MHz  
44 MHz  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Clock Input  
Timing Requirements:  
tCK  
CLKIN Period  
25  
7
5
100  
3
22.5  
7
5
100  
3
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V–2.0 V)  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 8. Clock Input  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Reset  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tWRST  
RESET Pulsewidth Low1  
tSRST  
RESET Setup before CLKIN High2  
4tCK  
14 + DT/2  
4tCK  
14 + DT/2  
ns  
ns  
tCK  
tCK  
NOTES  
1Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is  
low, assuming stable VDD and CLKIN (not including start-up time of external clock oscillator).  
2Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIMD system). Not required  
for multiple ADSP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic automatically synchronizes itself after reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 9. Reset  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Interrupts  
Timing Requirements:  
tSIR  
tHIR  
tIPW  
IRQ2-0 Setup before CLKIN High1  
18 + 3DT/4  
2 + tCK  
18 + 3DT/4  
2 + tCK  
ns  
ns  
ns  
IRQ2-0 Hold before CLKIN High1  
IRQ2-0 Pulsewidth2  
12 + 3DT/4  
12 + 3DT/4  
NOTES  
1Only required for IRQx recognition in the following cycle.  
2Applies only if tSIR and tHIR requirements are not met.  
REV. B  
–19–  
ADSP-21061/ADSP-21061L  
CLKIN  
tSIR  
tHIR  
IRQ2-0  
tIPW  
Figure 10. Interrupts  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timer  
Switching Characteristics:  
tDTEX  
CLKIN High to TIMEXP  
15  
15  
ns  
CLKIN  
tDTEX  
tDTEX  
TIMEXP  
Figure 11. Timer  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tSFI  
FLAG3-0IN Setup before CLKIN High1  
8 + 5DT/16  
0 – 5DT/16  
8 + 5DT/16  
0 – 5DT/16  
ns  
ns  
ns  
ns  
tHFI  
FLAG3-0IN Hold after CLKIN High1  
FLAG3-0IN Delay after RD/WR Low1  
FLAG3-0IN Hold after RD/WR Deasserted1  
tDWRFI  
5 + 7DT/16  
5 + 7DT/16  
tHFIWR  
0
0
Switching Characteristics:  
tDFO  
FLAG3-0OUT Delay after CLKIN High  
16  
14  
16  
14  
ns  
ns  
ns  
ns  
tHFO  
tDFOE  
tDFOD  
FLAG3-0OUT Hold after CLKIN High  
CLKIN High to FLAG3-0OUT Enable  
CLKIN High to FLAG3-0OUT Disable  
4
3
4
3
NOTE  
1Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.  
CLKIN  
tDFOE  
tDFO  
tDFO  
tDFOD  
tHFO  
FLAG3-0  
OUT  
FLAG OUTPUT  
CLKIN  
tHFI  
tSFI  
FLAG3-0  
IN  
tHFIWR  
tDWRFI  
RD, WR  
FLAG INPUT  
Figure 12. Flags  
–20–  
REV. B  
ADSP-21061/ADSP-21061L  
Memory Read—Bus Master  
characteristics also apply for bus master synchronous read/write  
timing (see Synchronous Read/Write—Bus Master). If these  
timing requirements are met, the synchronous read/write timing  
can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-21061 is  
the bus master accessing external memory space. These switching  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements:  
tDAD  
tDRLD  
tHDA  
tHDRH  
tDAAK  
tDSAK  
Address, Selects Delay to Data Valid1, 2  
18 + DT + W  
12 + 5DT/8 + W  
18 + DT + W  
12 + 5DT/8 + W  
ns  
ns  
ns  
ns  
ns  
ns  
RD Low to Data Valid1  
Data Hold from Address, Selects3  
Data Hold from RD High3  
0.5  
2.0  
0.5  
2.0  
ACK Delay from Address, Selects2, 4  
ACK Delay from RD Low4  
15 + 7DT/8 + W  
8 + DT/2 + W  
15 + 7DT/8 + W  
8 + DT/2 + W  
Switching Characteristics:  
tDRHA  
tDARL  
tRW  
Address, Selects Hold after RD High  
0 + H  
2 + 3DT/8  
12.5 + 5DT/8 + W  
8 + 3DT/8 + HI  
0 + H  
2 + 3DT/8  
12.5 + 5DT/8 + W  
8 + 3DT/8 + HI  
ns  
ns  
ns  
ns  
Address, Selects to RD Low2  
RD Pulsewidth  
tRWR  
RD High to WR, RD, DMAGx Low  
tSADADC Address, Selects Setup before  
ADRCLK High2  
0 + DT/4  
.
0 + DT/4  
ns  
W = (number of wait states specified in WAIT register) × tCK  
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
NOTES  
1Data Delay/Setup: User must meet tDAD or tDRLD or synchronous specification tSSDATI  
.
2The falling edge of MSx, SW, and BMS is referenced.  
3Data Hold: User must meet tHDA or tHDRH or synchronous specification tHSDATI. See System Hold Time Calculation under Test Conditions for the calculation of hold  
times given capacitive and dc loads.  
4ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (Low), all three specifications must be met for asser-  
tion of ACK (High).  
ADDRESS  
MSx, SW  
BMS  
tDARL  
tDRHA  
tRW  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 13. Memory Read—Bus Master  
REV. B  
–21–  
ADSP-21061/ADSP-21061L  
Memory Write—Bus Master  
characteristics also apply for bus master synchronous read/write  
timing (see Synchronous Read/Write—Bus Master). If these  
timing requirements are met, the synchronous read/write timing  
can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. These specifications apply when the ADSP-21061 is  
the bus master accessing external memory space. These switching  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements:  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
15 + 7DT/8 + W  
8 + DT/2 + W  
15 + 7DT/8 + W  
8 + DT/2 + W  
ns  
ns  
ACK Delay from WR Low1  
Switching Characteristics:  
tDAWH  
tDAWL  
tWW  
tDDWH  
tDWHA  
Address, Selects to WR Deasserted2  
17 + 15DT/16 + W  
3 + 3DT/8  
17 + 15DT/16 + W  
3 + 3DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, Selects to WR Low2  
WR Pulsewidth  
13 + 9DT/16 + W  
7 + DT/2 + W  
1 + DT/16 + H  
1 + DT/16 + H  
8 + 7DT/16 + H  
5 + 3DT/8 + I  
–1 + DT/16  
13 + 9DT/16 + W  
7 + DT/2 + W  
0.5 + DT/16 + H  
1 + DT/16 + H  
8 + 7DT/16 + H  
5 + 3DT/8 + I  
–1 + DT/16  
Data Setup before WR High  
Address Hold after WR Deasserted  
tDATRWH Data Disable after WR Deasserted3  
6 + DT/16 + H  
6 + DT/16 + H  
tWWR  
tDDWR  
tWDE  
WR High to WR, RD, DMAGx Low  
Data Disable before WR or RD Low  
WR Low to Data Enabled  
tSADADC Address, Selects to ADRCLK High2  
0 + DT/4  
0 + DT/4  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
NOTES  
1ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (Low), all three specifications must be met for asser-  
tion of ACK (High)  
2The falling edge of MSx, SW, and BMS is referenced.  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx , SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 14. Memory Write—Bus Master  
REV. B  
–22–  
ADSP-21061/ADSP-21061L  
Synchronous Read/Write—Bus Master  
When accessing a slave ADSP-2106x, these switching character-  
istics must meet the slave’s timing requirements for synchronous  
read/writes (see Synchronous Read/Write—Bus Slave). The  
slave ADSP-21061 must also meet these (bus master) timing  
requirements for data and acknowledge setup and hold times.  
Use these specifications for interfacing to external memory  
systems that require CLKIN—relative timing or for accessing a  
slave ADSP-21061 (in multiprocessor memory space). These  
synchronous switching characteristics are also valid during  
asynchronous memory reads and writes (see Memory Read—  
Bus Master and Memory Write—Bus Master).  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements:  
tSSDATI  
Data Setup before CLKIN  
2 + DT/8  
2 + DT/8  
ns  
tSSDATI (50 MHz) Data Setup before CLKIN,  
tCK = 20 ns1  
1.5 + DT/8  
3.5 – DT/8  
ns  
ns  
tHSDATI  
tDAAK  
Data Hold after CLKIN  
ACK Delay after Address, MSx,  
SW, BMS2, 3  
3.5 – DT/8  
15 + 7 DT/8 + W  
6.5 – DT/8  
15 + 7 DT/8 + W  
6.5 – DT/8  
ns  
ns  
ns  
tSACKC  
tHACK  
ACK Setup before CLKIN2  
ACK Hold after CLKIN  
6.5 + DT/4  
–1 – DT/4  
6.5 + DT/4  
–1 – DT/4  
Switching Characteristics:  
tDADRO  
Address, MSx, BMS, SW Delay  
after CLKIN2  
ns  
tHADRO  
Address, MSx, BMS, SW Hold  
after CLKIN  
–1 – DT/8  
9 + DT/8  
–1.5 – DT/8  
–2.5 – 3DT/16  
–1 – DT/8  
9 + DT/8  
–1.5 – DT/8  
–2.5 – 3DT/16  
ns  
ns  
ns  
ns  
tDPGC  
tDRDO  
tDWRO  
PAGE Delay after CLKIN  
RD High Delay after CLKIN  
WR High Delay after CLKIN  
16 + DT/8  
4 – DT/8  
4 – 3DT/16  
16 + DT/8  
4 – DT/8  
4 – 3DT/16  
tDWRO (50 MHz) WR High Delay after CLKIN,  
tCK = 20 ns1  
RD/WR Low Delay after CLKIN 8 + DT/4  
Data Delay after CLKIN  
Data Disable after CLKIN4  
ADRCLK Delay after CLKIN  
ADRCLK Period  
–1.5 – 3DT/16  
4 – 3DT/16  
12 + DT/4  
19 + 5DT/16  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDRWL  
8 + DT/4  
12 + DT/4  
19 + 5DT/16  
7 – DT/8  
tSDDATO  
tDATTR  
tDADCCK  
tADRCK  
tADRCKH  
tADRCKL  
0 – DT/8  
4 + DT/8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
0 – DT/8  
4 + DT/8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
10 + DT/8  
10 + DT/8  
ADRCLK Width High  
ADRCLK Width Low  
W = (number of Wait states specified in WAIT register) × tCK  
.
NOTES  
1This specification applies to the ADSP-21061KS-200 (5 V, 50 MHz) operating at tCK < 25 ns. For all other devices, use the preceding timing specification of the  
same name.  
2ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC for deassertion of ACK (Low), all three specifications must be met for assertion  
of ACK (High).  
3Data Hold: User must meet tHDA or tHDRH or synchronous specification tHDATI. See System Hold Time Calculation under Test Conditions for the calculation of hold  
times given capacitive and dc loads.  
4See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. B  
–23–  
ADSP-21061/ADSP-21061L  
CLKIN  
tADRCK  
tADRCKL  
tADRCKH  
tDADCCK  
ADRCLK  
tHADRO  
tDAAK  
tDADRO  
ADDRESS  
SW  
tDPGC  
PAGE  
tHACK  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA  
(IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tSDDATO  
DATA  
(OUT)  
Figure 15. Synchronous Read/Write—Bus Master  
REV. B  
–24–  
ADSP-21061/ADSP-21061L  
Synchronous Read/Write—Bus Slave  
Use these specifications for ADSP-21061 bus master accesses of  
a slave’s IOP registers or internal memory (in multiprocessor  
memory space). The bus master must meet these (bus slave)  
timing requirements.  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tSADRI  
tHADRI  
tSRWLI  
tHRWLI  
tHRWLI  
Address, SW Setup before CLKIN  
14 + DT/2  
14 + DT/2  
ns  
ns  
ns  
ns  
Address, SW Hold before CLKIN  
RD/WR Low Setup before CLKIN1  
RD/WR Low Hold after CLKIN  
RD/WR Low Hold after CLKIN  
44 MHz/50 MHz2  
RD/WR Pulse High  
Data Setup before WR High  
Data Hold after WR High  
5 + DT/2  
5 + DT/2  
8.5 + 5DT/16  
–4 – 5DT/16  
8.5 + 5DT/16  
–4 – 5DT/16  
8 + 7DT/16  
8 + 7DT/16  
8 + 7DT/16  
8 + 7DT/16  
–3.5 – 5DT/16  
–3.5 – 5DT/16  
ns  
ns  
ns  
ns  
tRWHPI  
tSDATWH  
tHDATWH  
3
3
1
3
3
1
Switching Characteristics:  
tSDDATO  
tDATTR  
tDACKAD  
tACKTR  
Data Delay after CLKIN  
19 + 5DT/16  
7 – DT/8  
8
19 + 5DT/16  
7 – DT/8  
8
ns  
ns  
ns  
ns  
Data Disable after CLKIN3  
ACK Delay after Address, SW4  
ACK Disable after CLKIN4  
0 – DT/8  
0 – DT/8  
–1 – DT/8  
6 – DT/8  
–1 – DT/8  
6 – DT/8  
NOTES  
1tSRWLI (min) = 9.5 + 5DT/16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, t SRWLI (min)  
= 4 + DT/8.  
2This specification applies to the ADSP-21061LKS-176 (3.3 V, 44 MHz) and the ADSP-21061KS-200 (5 V, 50 MHz), o perating at tCK <25 ns. For all other devices,  
use the preceding timing specification of the same name.  
3See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
4tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10 + DT/8 and less than 19 + 3DT/4. If the address and SW inputs have  
setup times greater than 19 + 3DT/4, then ACK is valid 15.5 + DT/4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK  
regardless of the state of MMSWS or strobes. A slave will three-state ACK every cycle with tACKTR  
.
CLKIN  
tSADRI  
tHADRI  
ADDRESS  
SW  
tDACKAD  
tACKTR  
ACK  
READ ACCESS  
tSRWLI  
tHRWLI  
tRWHPI  
RD  
tSDDATO  
tDATTR  
DATA  
(OUT)  
WRITE ACCESS  
tRWHPI  
tSRWLI  
tHRWLI  
WR  
tHDATWH  
tSDATWH  
DATA  
(IN)  
REV. B  
–25–  
ADSP-21061/ADSP-21061L  
Multiprocessor Bus Request and Host Bus Request  
Use these specifications for passing of bus mastership between  
multiprocessing ADSP-21061s (BRx) or a host processor  
(HBR, HBG).  
ADSP-21061 (5 V)  
Max  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements:  
tHBGRCSV  
tSHBRI  
tHHBRI  
tSHBGI  
tHHBGI  
tSBRI  
tHBRI  
tSRPBAI  
tHRPBAI  
HBG Low to RD/WR/CS Valid1  
20+ 5DT/4  
14 + 3DT/4  
6 + DT/2  
20 + 5DT/4  
14 + 3DT/4  
6 + DT/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HBR Setup before CLKIN2  
HBR Hold before CLKIN2  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
20 + 3DT/4  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
20 + 3DT/4  
HBG Setup before CLKIN  
HBG Hold before CLKIN High  
BRx, CPA Setup before CLKIN3  
BRx, CPA Hold before CLKIN High  
RPBA Setup before CLKIN  
RPBA Hold before CLKIN  
6 + DT/2  
6 + DT/2  
12 + 3DT/4  
12 + 3DT/4  
Switching Characteristics:  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay after CLKIN  
7 – DT/8  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
HBG Hold after CLKIN  
BRx Delay after CLKIN  
BRx Hold after CLKIN  
CPA Low Delay after CLKIN  
CPA Disable after CLKIN  
REDY (O/D) or (A/D) Low from  
CS and HBR Low4  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
–2 – DT/8  
5.5 – DT/8  
5.5 – DT/8  
tHBRO  
tDCPAO  
tTRCPA  
tDRDYCS  
6.5 – DT/8  
4.5 – DT/8  
8.5 – DT/8  
4.5 – DT/8  
8
12  
ns  
ns  
ns  
tTRDYHG  
tARDYTR  
REDY (O/D) Disable or REDY (A/D)  
High from HBG4  
44 + 27DT/16  
40 + 27DT/16  
REDY (A/D) Disable from CS or  
HBR High4  
10  
10  
NOTES  
1For first asynchronous access after HBR and CS asserted, ADDR31-0 must be a non-MMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes  
low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the Host Processor Control of the ADSP-2106x section in the  
ADSP-2106x SHARC User’s Manual, Second Edition.  
2Only required for recognition in the current cycle.  
3CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4(O/D) = open drain, (A/D) = active drive.  
REV. B  
–26–  
ADSP-21061/ADSP-21061L  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG  
(OUT)  
tDBRO  
tHBRO  
BRx  
(OUT)  
tDCPAO  
tTRCPA  
CPA (OUT)  
(O/D)  
tSHBGI  
tHHBGI  
HBG (IN)  
tSBRI  
tHBRI  
BRx (IN)  
CPA (IN) (O/D)  
tSRPBAI  
tHRPBAI  
RPBA  
HBR  
CS  
tTRDYHG  
tDRDYCS  
REDY (O/D)  
REDY (A/D)  
HBG (OUT)  
tARDYTR  
tHBGRCSV  
RD  
WR  
CS  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 17. Multiprocessor Bus Request and Host Bus Request  
REV. B  
–27–  
ADSP-21061/ADSP-21061L  
Asynchronous Read/Write—Host to ADSP-21061  
drive the RD and WR pins to access the ADSP-21061’s internal  
memory or IOP registers. HBR and HBG are assumed low for  
this timing.  
Use these specifications for asynchronous host processor accesses  
of an ADSP-21061, after the host has asserted CS and HBR  
(low). After HBG is returned by the ADSP-21061, the host can  
ADSP-21061 (5 V)  
Max  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Min  
Max  
Unit  
Read Cycle  
Timing Requirements:  
tSADRDL  
tHADRDH  
tWRWH  
Address Setup/CS Low before RD Low1  
Address Hold/CS Hold Low after RD  
RD/WR High Width  
0
0
6
0
0
0
0
6
0
0
ns  
ns  
ns  
ns  
ns  
tDRDHRDY  
tDRDHRDY  
RD High Delay after REDY (O/D) Disable  
RD High Delay after REDY (A/D) Disable  
Switching Characteristics:  
tSDATRDY  
tDRDYRDL  
tRDYPRD  
Data Valid before REDY Disable from Low  
2
2
ns  
ns  
ns  
ns  
REDY (O/D) or (A/D) Low Delay after RD Low  
REDY (O/D) or (A/D) Low Pulsewidth for Read  
Data Disable after RD High  
10  
13.5  
8
45 + DT  
2
45 + DT  
2
tHDARWH  
8
Write Cycle  
Timing Requirements:  
tSCSWRL  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
tWRWH  
tDWRHRDY  
CS Low Setup before WR Low  
CS Low Hold after WR High  
Address Setup before WR High  
Address Hold after WR High  
WR Low Width  
RD/WR High Width  
WR High Delay after REDY (O/D) or (A/D) Disable  
Data Setup before WR High  
0
0
5
2
8
6
0
3
0
0
5
2
8
6
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSDATWH  
tSDATWH (50 MHz) Data Setup before WR High, tCK = 20 ns2  
2.5  
1
tHDATWH  
Data Hold after WR High  
1
Switching Characteristics:  
tDRDYWRL  
tRDYPWR  
tSRDYCK  
REDY (O/D) or (A/D) Low Delay after WR/CS Low  
REDY (O/D) or (A/D) Low Pulsewidth for Write  
REDY (O/D) or (A/D) Disable to CLKIN  
11  
13.5  
ns  
ns  
15  
15  
1 + 7DT/16  
8 + 7DT/16 1 + 7DT/16  
8 + 7DT/16 ns  
NOTES  
1Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR31-0 must be a non-MMS value 1/2 tCLK before RD  
or WR goes low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. See the Host Proces-  
sor Control of the ADSP-2106x section in the ADSP-2106x SHARC User’s Manual, Second Edition.  
2This specification applies to the ADSP-21061KS-200 (5 V, 50 MHz) operating at tCK < 25 ns. For all other devices, use the preceding timing specification of the  
same name.  
CLKIN  
tSRDYCK  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 18a. Synchronous REDY Timing  
REV. B  
–28–  
ADSP-21061/ADSP-21061L  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tSADRDL  
tWRWH  
RD  
tHDARWH  
DATA (OUT)  
tDRDHRDY  
tSDATRDY  
tRDYPRD  
tDRDYRDL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADWRH  
tHCSWRH  
tSCSWRL  
CS  
tWWRL  
tWRWH  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDWRHRDY  
tDRDYWRL  
tRDYPWR  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 18b. Asynchronous Read/Write—Host to ADSP-2106x  
REV. B  
–29–  
ADSP-21061/ADSP-21061L  
Three-State Timing—Bus Master, Bus Slave, HBR, SBTS  
These specifications show how the memory interface is disabled  
(stops driving) or enabled (resumes driving) relative to CLKIN  
and the SBTS pin. This timing is applicable to bus master tran-  
sition cycles (BTC) and host transition cycles (HTC) as well as  
the SBTS pin.  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tSTSCK  
tHTSCK  
SBTS Setup before CLKIN  
SBTS Hold before CLKIN  
12 + DT/2  
12 + DT/2  
ns  
ns  
6 + DT/2  
6 + DT/2  
Switching Characteristics:  
tMIENA  
tMIENS  
tMIENHG  
tMITRA  
Address/Select Enable after CLKIN  
–1 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
–1 – DT/8  
–1.5 – DT/8  
–1.5 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Strobes Enable after CLKIN1  
HBG Enable after CLKIN  
Address/Select Disable after CLKIN  
Strobes Disable after CLKIN1  
HBG Disable after CLKIN  
0 – DT/4  
1.5 – DT/4  
2 – DT/4  
0 – DT/4  
1.5 – DT/4  
2 – DT/4  
tMITRS  
tMITRHG  
tDATEN  
tDATTR  
tACKEN  
tACKTR  
tADCEN  
tADCTR  
tMTRHBG  
tMENHBG  
Data Enable after CLKIN2  
9 + 5DT/16  
0 – DT/8  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
9 + 5DT/16  
0 – DT/8  
7.5 + DT/4  
–1 – DT/8  
–2 – DT/8  
Data Disable after CLKIN2  
7 – DT/8  
6 – DT/8  
8 – DT/4  
7 – DT/8  
6 – DT/8  
8 – DT/4  
ACK Enable after CLKIN2  
ACK Disable after CLKIN2  
ADRCLK Enable after CLKIN  
ADRCLK Disable after CLKIN  
Memory Interface Disable before HBG Low3  
Memory Interface Enable after HBG High3  
0 + DT/8  
19 + DT  
0 + DT/8  
19 + DT  
NOTES  
1Strobes = RD, WR, MSx, SW, PAGE, DMAG, BMS.  
2In addition to bus master transition cycles, these specifications also apply to bus master and bus slave synchronous read/write.  
3Memory Interface = Address, RD, WR, MSx, SW, HBG, PAGE, DMAGx, BMS (in EPROM boot mode).  
REV. B  
–30–  
ADSP-21061/ADSP-21061L  
CLKIN  
SBTS  
tSTSCK  
tHTSCK  
tMITRA, tMITRS, tMITRHG  
tMIEN  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
tACKTR  
tACKEN  
ACK  
tADCEN  
tADCTR  
ADRCLK  
Figure 19a. Three-State Timing (Bus Transition Cycle, SBTS Assertion)  
HBG  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 19b. Three-State Timing (Host Transition Cycle)  
REV. B  
–31–  
ADSP-21061/ADSP-21061L  
DMA Handshake  
transfer is controlled by ADDR31-0, RD, WR, MS3-0 and ACK  
(not DMAG). For Paced Master mode, the Memory Read–Bus  
Master, Memory Write–Bus Master, and Synchronous Read/  
Write–Bus Master timing specifications for ADDR31-0, RD,  
WR, MS3-0, SW, PAGE, DATA47-0 and ACK also apply.  
These specifications describe the three DMA handshake modes.  
In all three modes DMAR is used to initiate transfers. For hand-  
shake mode, DMAG controls the latching or enabling of data  
externally. For external handshake mode, the data transfer is  
controlled by the ADDR31-0, RD, WR, SW, PAGE, MS3-0  
,
ACK and DMAG signals. For Paced Master mode, the data  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tSDRLC  
tSDRHC  
tWDR  
DMARx Low Setup before CLKIN1  
5
5
6
5
5
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DMARx High Setup before CLKIN1  
DMARx Width Low (Nonsynchronous)  
tSDATDGL Data Setup after DMAGx Low2  
tHDATIDG Data Hold after DMAGx High  
10 + 5DT/8  
16 + 7DT/8  
10 + 5DT/8  
16 + 7DT/8  
2
2
tDATDRH  
tDMARLL  
tDMARH  
Data Valid after DMARx High2  
DMAGx Low Edge to Low Edge  
DMAGx Width High  
23 + 7DT/8  
6
23.5 + 7DT/8  
6
Switching Characteristics:  
tDDGL  
DMAGx Low Delay after CLKIN  
DMAGx High Width  
DMAGx Low Width  
DMAGx High Delay after CLKIN  
Address Select Valid to DMAGx High  
Address Select Hold to DMAGx High  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
17 + DT  
–0.5  
8 + 9DT/16  
0
0
10 + 5DT/8 + W  
1 + DT/16  
0
11 + 9DT/16 + W  
0
15 + DT/4  
6 – DT/8  
9 + DT/4  
6 + 3DT/8  
12 + 5DT/8  
–2 – DT/8  
17 + DT  
–1.0  
8 + 9DT/16  
0
0
10 + 5DT/8 + W  
1 + DT/16  
0
11 + 9DT/16 + W  
0
15 + DT/4  
6 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWDGH  
tWDGL  
tHDGC  
tDADGH  
tDDGHA  
tVDATDGH Data Valid before DMAGx High3  
tDATRDGH Data Disable after DMAGx High4  
7
2
7
2
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
WR Low before DMAGx Low  
DMAGx Low before WR High  
WR High before DMAGx High  
RD Low before DMAGx Low  
RD Low before DMAGx High  
RD High before DMAGx High  
DMAGx High to WR, RD, DMAGx Low  
3 + DT/16  
2
3 + DT/16  
2
3
3
5 + 3DT/8 + HI  
5 + 3DT/8 + HI  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
NOTES  
1Only required for recognition in the current cycle.  
2tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the  
data can be driven tDATDRH after DMARx is brought high.  
3tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = 8 + 9DT/16 + (n × tCK) where  
n equals the number of extra cycles that the access is prolonged.  
4See System Hold Time Calculation under Test Conditions for calculation of hold times given capacitive and dc loads.  
REV. B  
–32–  
ADSP-21061/ADSP-21061L  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA (FROM  
ADSP-2106x TO  
EXTERNAL DRIVE)  
tDATDRH  
tHDATIDG  
tSDATDGL  
DATA (FROM  
EXTERNAL DRIVE  
TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
tDGWRH  
tDGWRR  
WR  
(EXTERNAL DEVICE  
TO EXTERNAL  
MEMORY)  
tDGRDR  
tDGRDL  
RD  
(EXTERNAL  
MEMORY TO  
EXTERNAL DEVICE)  
tDRDGH  
tDDGHA  
tDADGH  
ADDRESS  
SW, MSx  
*
“MEMORY READ – BUS MASTER,” “MEMORY WRITE – BUS MASTER” AND “SYNCHRONOUS READ/WRITE – BUS MASTER”  
TIMING SPECIFICATIONS FOR ADDR , RD, WR, SW, MS AND ACK ALSO APPLY HERE.  
31-0 3-0  
Figure 20. DMA Handshake Timing  
REV. B  
–33–  
ADSP-21061/ADSP-21061L  
Serial Ports  
ADSP-21061 (5 V)  
Max  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Min  
Max  
Unit  
External Clock  
Timing Requirements:  
tSFSE  
TFS/RFS Setup before TCLK/RCLK1  
TFS/RFS Hold after TCLK/RCLK1, 2  
Receive Data Setup before RCLK1  
Receive Data Hold after RCLK1  
TCLK/RCLK Width  
3.5  
4
1.5  
4
9
3.5  
4
1.5  
4
9
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
TCLK/RCLK Period  
tCK  
tCK  
Internal Clock  
Timing Requirements:  
tSFSI  
TFS Setup before TCLK1; RFS Setup before RCLK1  
8
1
3
3
8
1
3
3
ns  
ns  
ns  
ns  
tHFSI  
tSDRI  
tHDRI  
TFS/RFS Hold after TCLK/RCLK1, 2  
Receive Data Setup before RCLK1  
Receive Data Hold after RCLK1  
External or Internal Clock  
Switching Characteristics:  
tDFSE  
tHOFSE  
RFS Delay after RCLK (Internally Generated RFS)3  
13  
13  
ns  
ns  
RFS Hold after RCLK (Internally Generated RFS)3  
3
3
External Clock  
Switching Characteristics:  
tDFSE  
TFS Delay after TCLK (Internally Generated TFS)3  
13  
16  
13  
16  
ns  
ns  
ns  
ns  
tHOFSE  
tDDTE  
tHODTE  
TFS Hold after TCLK (Internally Generated TFS)3  
Transmit Data Delay after TCLK3  
3
5
3
5
Transmit Data Hold after TCLK3  
Internal Clock  
Switching Characteristics:  
tDFSI  
TFS Delay after TCLK (Internally Generated TFS)3  
4.5  
7.5  
4.5  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
tHDTI  
TFS Hold after TCLK (Internally Generated TFS)3  
Transmit Data Delay after TCLK3  
–1.5  
0
–1.5  
7.5  
Transmit Data Hold after TCLK3  
0
tSCLKIW TCLK/RCLK Width  
(tSCLK/2) – 2.5  
(tSCLK/2) + 2.5  
(tSCLK/2) – 2.5  
(tSCLK/2) + 2.5  
Enable and Three-State  
Switching Characteristics:  
tDDTEN  
tDDTTE  
tDDTIN  
tDDTTI  
tDCLK  
Data Enable from External TCLK3  
4.5  
0
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
Data Disable from External TCLK3  
Data Enable from Internal TCLK3  
Data Disable from Internal TCLK3  
TCLK/RCLK Delay from CLKIN  
SPORT Disable after CLKIN  
10.5  
10.5  
–0.5  
3
3
22 + 3DT/8  
17  
22 + 3DT/8  
17  
tDPTR  
External Late Frame Sync  
Switching Characteristics:  
tDDTLFSE Data Delay from Late External TFS or  
External RFS with MCE = 1, MFD = 04  
tDDTENFS Data Enable from late FS or MCE = 1, MFD = 04  
12  
12  
ns  
ns  
3.5  
3.5  
To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame  
sync setup and hold, 2) data delay and data setup and hold, and 3) SCLK width.  
NOTES  
1Referenced to sample edge.  
2RFS hold after RCK when MCE = 1, MFD = 0 is 0 ns minimum from drive edge. TFS hold after TCK for late external. TFS is 0 ns minimum from drive edge.  
3Referenced to drive edge.  
4MCE = 1, TFS enable and TFS valid follow tDDTLFSE and tDDTENFS  
.
REV. B  
–34–  
ADSP-21061/ADSP-21061L  
DATA RECEIVE– INTERNAL CLOCK  
DATA RECEIVE– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
RCLK  
RCLK  
tDFSE  
tHOFSE  
tDFSE  
tHOFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
RFS  
DR  
RFS  
DR  
tSDRE  
tHDRE  
tSDRI  
tHDRI  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT– INTERNAL CLOCK  
DATA TRANSMIT– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
tDFSI  
tHOFSI  
tDFSE  
tHOFSE  
tSFSI  
tHFSI  
tHFSE  
tSFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK (EXT)  
TFS ("LATE" EXT)  
TCLK / RCLK  
tDDTEN  
tDDTTE  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK (INT)  
TFS ("LATE", INT)  
TCLK / RCLK  
tDDTIN  
tDDTTI  
DT  
CLKIN  
tDPTR  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
TFS, RFS, DT  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
IS TWO CYCLES  
tDCLK  
TCLK (INT)  
RCLK (INT)  
LOW TO HIGH ONLY  
Figure 21. Serial Ports  
REV. B  
–35–  
ADSP-21061/ADSP-21061L  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RCLK  
RFS  
tSFSE/I  
tHFSE/I  
*
tDDTE/I  
tHDTE/I  
tDDTENFS  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TFS  
SAMPLE  
DRIVE  
DRIVE  
TCLK  
tSFSE/I  
*
tHFSE/I  
TFS  
tDDTE/I  
tHDTE/I  
tDDTENFS  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
*RFS HOLD AFTER RCK WHEN MCE = 1, MFD = 0 IS 0ns MINIMUM FROM DRIVE EDGE.  
TFS HOLD AFTER TCK FOR LATE EXTERNAL. TFS IS 0ns MINIMUM FROM DRIVE EDGE.  
Figure 22. External Late Frame Sync  
REV. B  
–36–  
ADSP-21061/ADSP-21061L  
JTAG Test Access Port and Emulation  
ADSP-21061 (5 V)  
ADSP-21061L (3.3 V)  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements:  
tTCK  
TCK Period  
tCK  
tCK  
6
7
18  
tCK  
tCK  
6
7
18  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
TDI, TMS Setup before TCK High  
TDI, TMS Hold after TCK High  
System Inputs Setup before TCK Low1  
System Inputs Hold after TCK Low1  
tTRSTW TRST Pulsewidth  
4tCK  
4tCK  
Switching Characteristics:  
tDTDO  
tDSYS  
TDO Delay from TCK Low  
13  
18.5  
13  
18.5  
ns  
ns  
System Outputs Delay after TCK Low2  
NOTES  
1System Inputs = DATA47-0, ADDR31-0, RD, WR, ACK, SBTS, SW, HBR, HBG, CS, DMAR1, DMAR2, BR6-1, ID2-0, RPBA, IRQ2-0, FLAG3-0, DR0, DR1,  
TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, EBOOT, LBOOT, BMS, CLKIN, RESET.  
2System Outputs = DATA47-0, ADDR31-0, MS3-0, RD, WR, ACK, PAGE, ADRCLK, SW, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, FLAG3-0, TIMEXP, DT0,  
DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 23. JTAG Test Access Port and Emulation  
REV. B  
–37–  
ADSP-21061/ADSP-21061L  
OUTPUT DRIVE CURRENTS  
Table III. External Power Calculations (3.3 V Device)  
Figure 27 shows typical I-V characteristics for the output drivers  
of the ADSP-2106x. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
Pin  
Type  
# of  
%
2
Pins Switching 
؋
 C  
؋
 f  
؋
 VDD = PEXT  
Address  
MS0  
WR  
Data  
ADDRCLK  
15  
1
1
32  
1
50  
0
50  
× 44.7 pF × 10 MHz × 10.9 V = 0.037 W  
× 44.7 pF × 10 MHz × 10.9 V = 0.000 W  
× 44.7 pF × 20 MHz × 10.9 V = 0.010 W  
× 14.7 pF × 10 MHz × 10.9 V = 0.026 W  
× 4.7 pF × 20 MHz × 10.9 V = 0.001 W  
POWER DISSIPATION  
Total power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved. Inter-  
nal power dissipation is calculated in the following way:  
PEXT = 0.074 W  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
PINT = IDDIN × VDD  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
P
TOTAL = PEXT + (IDDIN2 × 5.0 V )  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT. Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Note also that it is not common for an application to  
have 100% or even 50% of the outputs switching simultaneously.  
– the number of output pins that switch during each cycle (O)  
– the maximum frequency at which they can switch (f)  
– their load capacitance (C)  
– their voltage swing (VDD  
)
and is calculated by:  
TEST CONDITIONS  
Output Disable Time  
P
EXT = O × C × VDD2 × f  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from  
their output high or low voltage. The time for the voltage on the  
bus to decay by V is dependent on the capacitive load, CL and  
the load current, IL. This decay time can be approximated by  
the following equation:  
The load capacitance should include the processor’s package  
capacitance (CIN). The switching frequency includes driving the  
load high and then back low. Address and data pins can drive  
high and low at a maximum rate of 1/(2tCK). The write strobe  
can switch every cycle at a frequency of 1/tCK. Select pins switch  
at 1/(2tCK), but selects can switch on each cycle.  
C
V  
Example:  
L
t
=
DECAY  
I
L
Estimate PEXT with the following assumptions:  
The output disable time tDIS is the difference between tMEASURED  
and tDECAY as shown in Figure 24. The time tMEASURED is the  
interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and  
IL, and with V equal to 0.5 V.  
–A system with one bank of external data memory RAM (32-bit)  
–Four 128K × 8 RAM chips are used, each with a load of 10 pF  
–External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
–The instruction cycle rate is 40 MHz (tCK = 25 ns).  
The PEXT equation is calculated for each class of pins that can  
drive:  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start  
driving. The output enable time tENA is the interval from when a  
reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram (Figure 24). If multiple  
pins (such as the data bus) are enabled, the measurement value  
is that of the first pin to start driving.  
Table II. External Power Calculations (5 V Device)  
Pin  
Type  
# of  
%
2
Pins Switching 
؋
 C  
؋
 f  
؋
 VDD = PEXT  
Address  
MS0  
15  
1
1
32  
1
50  
0
50  
× 44.7 pF × 10 MHz × 25 V = 0.084 W  
× 44.7 pF × 10 MHz × 25 V = 0.000 W  
× 44.7 pF × 20 MHz × 25 V = 0.022 W  
× 14.7 pF × 10 MHz × 25 V = 0.059 W  
× 4.7 pF × 20 MHz × 25 V = 0.002 W  
WR  
Data  
ADDRCLK  
P
EXT = 0.167 W  
REV. B  
–38–  
ADSP-21061/ADSP-21061L  
Capacitive Loading  
Example System Hold Time Calculation  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins (see Figure 25). The delay and hold specifica-  
tions given should be derated by a factor of 1.5 ns/50 pF for  
loads other than the nominal value of 50 pF. Figures 28–29,  
32–33 show how output rise time varies with capacitance. Fig-  
ures 30, 34 show graphically how output delays and holds vary  
with load capacitance. (Note that this graph or derating does  
not apply to output disable delays; see the previous section  
Output Disable Time under Test Conditions.) The graphs of  
Figures 28, 29 and 30 may not be linear outside the ranges  
shown.  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-2106x’s output voltage  
and the input threshold for the device requiring the hold time. A  
typical V will be 0.4 V. CL is the total bus capacitance (per  
data line), and IL is the total leakage or three-state current (per  
data line). The hold time will be tDECAY plus the minimum  
disable time (i.e., tDATRWH for the write cycle).  
REFERENCE  
SIGNAL  
INPUT OR  
OUTPUT  
tMEASURED  
1.5V  
1.5V  
tENA  
tDIS  
V
Figure 26. Voltage Reference Levels for AC Measure-  
ments (Except Output Enable/Disable)  
OH (MEASURED)  
V
V
OH (MEASURED)  
V
V
V  
+ V  
2.0V  
1.0V  
OH (MEASURED)  
OUTPUT  
OL (MEASURED)  
V
OL (MEASURED)  
OL (MEASURED)  
tDECAY  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
APPROXIMATELY 1.5V  
Figure 24. Output Enable/Disable  
I
OL  
TO  
OUTPUT  
PIN  
+1.5V  
50pF  
I
OH  
Figure 25. Equivalent Device Loading for AC Measure-  
ments (Includes All Fixtures)  
REV. B  
–39–  
ADSP-21061/ADSP-21061L  
100  
5
4
3
2
1
75  
50  
25  
5.25V, 40؇C  
0
5.0V, +25؇C  
Y = 0.03X 1.45  
4.75V, +85؇C  
25  
50  
4.75V, +85  
؇C  
75  
100  
125  
5.0V, +25  
؇
C
5.25V, 40؇C  
150  
175  
200  
NOMINAL  
1  
0
0.75  
1.50  
2.25  
3.00  
3.75  
4.50  
5.25  
25  
50  
75  
100  
125  
150  
175  
200  
SOURCE VOLTAGE V  
LOAD CAPACITANCE pF  
Figure 27. ADSP-2106x Typical Drive Currents (VDD = 5 V)  
Figure 30. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maximum Case Temperature) (VDD = 5 V)  
16.0  
14.0  
12.0  
120  
100  
80  
3.6V 40؇C  
3.3V +25؇C  
3.0V +85؇C  
60  
40  
RISE TIME  
10.0  
V
20  
OH  
Y = 0.005X + 3.7  
8.0  
0
FALL TIME  
20  
40  
60  
80  
100  
120  
6.0  
3.0V +85؇C  
4.0  
3.3V +25؇C  
3.6V 40؇C  
2.0  
0
Y = 0.0031X + 1.1  
V
OL  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
0.5  
1
1.5  
2
2.5  
3
3.6  
LOAD CAPACITANCE pF  
SOURCE VOLTAGE Volts  
Figure 28. Typical Output Rise Time (10%–90% VDD) vs.  
Load Capacitance (VDD = 5 V)  
Figure 31. ADSP-2106x Typical Drive Currents (VDD = 3.3 V)  
18  
16  
3.5  
3.0  
2.5  
14  
Y = 0.0796X + 1.17  
12  
RISE TIME  
10  
2.0  
Y = 0.009X + 1.1  
RISE TIME  
8
1.5  
6
4
2
0
Y = 0.0467X + 0.55  
FALL TIME  
1.0  
FALL TIME  
Y = 0.005X + 0.6  
0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
LOAD CAPACITANCE pF  
LOAD CAPACITANCE pF  
Figure 29. Typical Output Rise Time (0.8 V–2.0 V) vs.  
Load Capacitance (VDD = 5 V)  
Figure 32. Typical Output Rise Time (10%–90% VDD) vs.  
Load Capacitance (VDD = 3.3 V)  
REV. B  
–40–  
ADSP-21061/ADSP-21061L  
ENVIRONMENTAL CONDITIONS  
9
8
Thermal Characteristics  
The ADSP-21061KS (5 V) device is packaged in a 240-lead  
thermally enhanced MQFP. The top surface of the package  
contains a copper slug from which most of the die heat is dissi-  
pated. The slug is flush with the top surface of the package.  
Note that the copper slug is internally connected to GND  
through the device substrate. The ADSP-21061LKS is packaged  
in a 240-lead MQFP without a copper heat slug. The ADSP-  
21061L is also available in a 225-Ball PBGA package. The  
PBGA has a θJC of 1.7°C/W. The ADSP-2106x is specified for a  
case temperature (TCASE). To ensure that the TCASE data sheet  
specification is not exceeded, a heatsink and/or an air flow  
source may be used. A heatsink should be attached with a ther-  
mal adhesive.  
7
6
Y = 0.0391X + 0.36  
5
4
RISE TIME  
Y = 0.0305X + 0.24  
3
2
1
0
FALL TIME  
0
20  
40  
60  
80 100 120 140 160 180 200  
LOAD CAPACITANCE pF  
TCASE = TAMB + ( PD × θCA  
)
Figure 33. Typical Output Rise Time (0.8 V–2.0 V) vs.  
Load Capacitance (VDD = 3.3 V)  
T
PD =  
CASE = Case temperature (measured on top surface of package)  
Power dissipation in W (this value depends upon the  
specific application; a method for calculating PD is  
shown under Power Dissipation).  
5
θCA  
=
Value from tables below.  
4
3
2
1
Y = 0.0329X 1.65  
ADSP-21061 (5 V MQFP Package)  
JC = 0.3؇C/W  
Airflow  
(Linear Ft./Min.)  
0
100  
200  
400  
600  
θCA (°C/W)  
10  
9
8
7
6
NOTES  
This represents thermal resistance at total power of 5 W.  
NOMINAL  
With air flow, no variance is seen in θCA with power.  
θCA at 0 LFM varies with power: at 2W, θCA = 14°C/W, at 3W θCA = 11°C/W.  
1  
25  
50  
75  
100  
125  
150  
175  
200  
ADSP-21061L (3.3 V MQFP Package)  
LOAD CAPACITANCE pF  
Figure 34. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maximum Case Temperature) (VDD = 3.3 V)  
JC = 6.3؇C/W  
Airflow  
(Linear Ft./Min.)  
0
100  
200  
400  
600  
θCA (°C/W)  
19.6  
17.6  
15.6  
13.9  
12.2  
NOTE  
With air flow, no variance is seen in θCA with power.  
ADSP-21061L (3.3 V PBGA Package)  
JC = 1.7؇C/W  
Airflow  
(Linear Ft./Min.)  
0
200  
400  
11.2  
θCA (°C/W)  
19.0  
13.6  
NOTE  
With air flow, no variance is seen in θCA with power.  
REV. B  
–41–  
ADSP-21061/ADSP-21061L  
240-LEAD METRIC MQFP PIN CONFIGURATIONS  
240  
181  
1
180  
TOP VIEW  
60  
121  
61  
120  
Pin Pin  
Pin Pin  
No. Name  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
Pin Pin  
No. Name  
1
2
3
4
5
6
7
8
TDI  
TRST  
VDD  
TDO  
TIMEXP  
EMU  
ICSA  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
ADDR20  
ADDR21  
GND  
ADDR22  
ADDR23  
ADDR24  
VDD  
GND  
VDD  
ADDR25  
ADDR26  
ADDR27  
GND  
MS3  
MS2  
MS1  
MS0  
SW  
BMS  
ADDR28  
GND  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
TCLK0  
TFS0  
DR0  
201 NC  
202 NC  
203 NC  
204 NC  
205 VDD  
206 NC  
207 NC  
208 NC  
209 NC  
210 NC  
211 NC  
212 GND  
213 NC  
214 NC  
215 NC  
216 NC  
217 NC  
218 NC  
219 VDD  
220 GND  
221 VDD  
222 NC  
223 NC  
224 NC  
225 NC  
226 NC  
227 NC  
228 GND  
229 ID2  
230 ID1  
231 ID0  
232 LBOOT  
233 RPBA  
234 RESET  
235 EBOOT  
236 IRQ2  
237 IRQ1  
238 IRQ0  
239 TCK  
240 TMS  
161 DATA14  
162 DATA13  
163 DATA12  
164 GND  
165 DATA11  
166 DATA10  
167 DATA9  
168 VDD  
169 DATA8  
170 DATA7  
171 DATA6  
172 GND  
173 DATA5  
174 DATA4  
175 DATA3  
176 VDD  
177 DATA2  
178 DATA1  
179 DATA0  
180 GND  
181 GND  
182 NC  
183 NC  
184 NC  
185 NC  
186 NC  
187 NC  
188 VDD  
189 NC  
190 NC  
191 NC  
121 DATA41  
122 DATA40  
123 DATA39  
124 VDD  
125 DATA38  
126 DATA37  
127 DATA36  
128 GND  
RCLK0  
RFS0  
VDD  
VDD  
GND  
ADRCLK  
REDY  
HBG  
CS  
FLAG3  
FLAG2  
FLAG1  
FLAG0  
GND  
ADDR0  
ADDR1  
VDD  
ADDR2  
ADDR3  
ADDR4  
GND  
ADDR5  
ADDR6  
ADDR7  
VDD  
ADDR8  
ADDR9  
ADDR10  
GND  
ADDR11  
ADDR12  
ADDR13  
VDD  
ADDR14  
ADDR15  
GND  
ADDR16  
ADDR17  
ADDR18  
VDD  
9
129 NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
130 DATA35  
131 DATA34  
132 DATA33  
133 VDD  
134 VDD  
135 GND  
136 DATA32  
137 DATA31  
138 DATA30  
139 GND  
140 DATA29  
141 DATA28  
142 DATA27  
143 VDD  
RD  
WR  
GND  
VDD  
GND  
CLKIN  
ACK  
100 DMAG2  
101 DMAG1  
102 PAGE  
103 VDD  
104 BR6  
105 BR5  
106 BR4  
107 BR3  
108 BR2  
109 BR1  
110 GND  
111 VDD  
112 GND  
113 DATA47  
114 DATA46  
115 DATA45  
116 VDD  
117 DATA44  
118 DATA43  
119 DATA42  
120 GND  
VDD  
VDD  
ADDR29  
ADDR30  
ADDR31  
GND  
144 VDD  
145 DATA26  
146 DATA25  
147 DATA24  
148 GND  
149 DATA23  
150 DATA22  
151 DATA21  
152 VDD  
153 DATA20  
154 DATA19  
155 DATA18  
156 GND  
157 DATA17  
158 DATA16  
159 DATA15  
160 VDD  
SBTS  
DMAR2  
DMAR1  
HBR  
DT1  
TCLK1  
TFS1  
DR1  
RCLK1  
RFS1  
GND  
CPA  
192 NC  
193 NC  
194 NC  
195 GND  
196 GND  
197 VDD  
198 NC  
199 NC  
200 NC  
VDD  
ADDR19  
DT0  
REV. B  
–42–  
ADSP-21061/ADSP-21061L  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
240-Lead Metric Thermally Enhanced MQFP (5 V Device Only)  
1.372 (34.85)  
1.362 (34.60) TYP SQ  
1.352 (34.35)  
1.264 (32.10)  
1.260 (32.00) TYP SQ  
0.161 (4.10)  
MAX  
1.256 (31.90)  
1.161 (29.50) BSC SQ  
0.030 (0.75)  
0.024 (0.60) TYP  
0.020 (0.50)  
240  
181  
180  
1
240 LEAD METRIC MQFP  
TOP VIEW (PINS DOWN)  
SEATING  
PLANE  
LEAD PITCH  
0.01969 (0.50)  
TYP  
HEAT  
SLUG  
LEAD WIDTH  
0.011 (0.27)  
0.009 (0.22) TYP  
0.007 (0.17)  
GND  
INCHES (MILLIMETERS)  
60  
121  
120  
0.003 (0.08)  
MAX  
61  
0.010 (0.25)  
MIN  
THE THERMALLY ENHANCED MQFP PACKAGE CONTAINS A  
COPPER HEAT SLUG FLUSH WITH ITS TOP SURFACE; THE  
SLUG IS EITHER CONNECTED TO GROUND OR FLOATING.  
0.138 (3.50)  
0.134 (3.40) TYP THE HEAT SLUG DIAMETER IS 24.1 (0.949) mm.  
0.130 (3.30)  
NOTE:  
THE ACTUAL POSITION OF EACH LEAD IS WITHIN (0.08)  
0.0032 FROM ITS IDEAL POSITION WHEN MEASURED IN THE  
LATERAL DIRECTION.  
CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
REV. B  
–43–  
ADSP-21061/ADSP-21061L  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
240-Lead Metric MQFP (3.3 V Device Only)  
1.372 (34.85)  
1.362 (34.60) TYP SQ  
1.352 (34.35)  
1.264 (32.10)  
1.260 (32.00) TYP SQ  
0.161 (4.10)  
MAX  
1.256 (31.90)  
1.161 (29.50) BSC SQ  
0.030 (0.75)  
0.024 (0.60) TYP  
0.020 (0.50)  
240  
181  
180  
1
240 LEAD METRIC MQFP  
TOP VIEW (PINS DOWN)  
SEATING  
PLANE  
LEAD PITCH  
0.01969 (0.50)  
TYP  
LEAD WIDTH  
0.011 (0.27)  
0.009 (0.22) TYP  
0.007 (0.17)  
INCHES (MILLIMETERS)  
60  
121  
120  
0.003 (0.08)  
MAX  
61  
0.010 (0.25)  
MIN  
NOTE:  
THE ACTUAL POSITION OF EACH LEAD IS WITHIN (0.08)  
0.0032 FROM ITS IDEAL POSITION WHEN MEASURED IN THE  
LATERAL DIRECTION.  
0.138 (3.50)  
0.134 (3.40) TYP  
0.130 (3.30)  
CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
REV. B  
–44–  
ADSP-21061/ADSP-21061L  
ADSP-21061L 225-Ball Plastic Ball Grid Array (PBGA) Package Pinout  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
Ball #  
Name  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
BMS  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
ADDR25  
ADDR26  
MS2  
ADDR29  
DMAR1  
TFS1  
CPA  
HBG  
DMAG2  
BR5  
BR1  
G01  
G02  
G03  
G04  
G05  
G06  
G07  
G08  
G09  
G10  
G11  
G12  
G13  
G14  
G15  
ADDR14  
ADDR15  
ADDR16  
ADDR19  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
DATA22  
DATA25  
DATA24  
DATA23  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
K14  
K15  
ADDR6  
ADDR5  
ADDR3  
ADDR0  
ICSA  
GND  
VDD  
VDD  
VDD  
GND  
GND  
DATA8  
DATA11  
DATA13  
DATA14  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
N14  
N15  
EMU  
TDO  
IRQ0  
IRQ1  
ID2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DATA1  
DATA3  
ADDR30  
DMAR2  
DT1  
RCLK1  
TCLK0  
RCLK0  
ADRCLK  
CS  
CLKIN  
PAGE  
BR3  
DATA47  
DATA44  
DATA42  
DATA40  
DATA37  
DATA35  
DATA34  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
MS0  
SW  
ADDR31  
HBR  
DR1  
DT0  
DR0  
REDY  
RD  
ACK  
BR6  
BR2  
DATA45  
DATA43  
DATA39  
E01  
E02  
E03  
E04  
E05  
E06  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E15  
ADDR21  
ADDR22  
ADDR24  
ADDR27  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
H01  
H02  
H03  
H04  
H05  
H06  
H07  
H08  
H09  
H10  
H11  
H12  
H13  
H14  
H15  
ADDR12  
ADDR11  
ADDR13  
ADDR10  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
L11  
L12  
L13  
L14  
L15  
ADDR2  
ADDR1  
FLAG0  
FLAG3  
RPBA  
GND  
GND  
GND  
GND  
GND  
NC  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
TRST  
TMS  
EBOOT  
ID0  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DATA33  
DATA30  
DATA32  
DATA31  
DATA18  
DATA19  
DATA21  
DATA20  
DATA4  
DATA7  
DATA9  
DATA10  
DATA0  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
MS3  
MS1  
ADDR28  
SBTS  
TCLK1  
RFS1  
TFS0  
RFS0  
WR  
DMAG1  
BR4  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
ADDR17  
ADDR18  
ADDR20  
ADDR23  
GND  
GND  
VDD  
VDD  
VDD  
GND  
GND  
DATA29  
DATA26  
DATA28  
DATA27  
J01  
J02  
J03  
J04  
J05  
J06  
J07  
J08  
J09  
J10  
J11  
J12  
J13  
J14  
J15  
ADDR9  
ADDR8  
ADDR7  
ADDR4  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
DATA12  
DATA15  
DATA16  
DATA17  
M01  
M02  
M03  
M04  
M05  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
M14  
M15  
FLAG1  
FLAG2  
TIMEXP  
TDI  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DATA2  
DATA5  
DATA6  
R01  
R02  
R03  
R04  
R05  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R15  
TCK  
IRQ2  
RESET  
ID1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DATA46  
DATA41  
DATA38  
DATA36  
REV. B  
–45–  
ADSP-21061/ADSP-21061L  
225-Ball Plastic Ball Grid Array (PBGA) Package Pinout  
Bottom View  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
DATA42 DATA44 DATA47  
BR3  
PAGE  
CLKIN  
CS  
ADRCLK RCLK0  
TCLK0  
RCLK1  
DT1  
DMAR2 ADDR30  
BMS  
DATA39 DATA43 DATA45  
BR2  
BR6  
BR4  
BR1  
NC  
ACK  
DMAG1  
BR5  
RD  
WR  
REDY  
RFS0  
HBG  
DR0  
TFS0  
CPA  
GND  
DT0  
RFS1  
TFS1  
GND  
DR1  
HBR  
ADDR31  
ADDR28  
MS2  
SW  
MS0  
MS3  
DATA36 DATA38 DATA41 DATA46  
DATA34 DATA35 DATA37 DATA40  
DATA31 DATA32 DATA30 DATA33  
TCLK1  
SBTS  
MS1  
DMAG2  
GND  
DMAR1 ADDR29  
ADDR26 ADDR25  
GND  
GND  
GND  
ADDR27 ADDR24 ADDR22 ADDR21  
DATA27 DATA28 DATA26 DATA29  
DATA23 DATA24 DATA25 DATA22  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
VDD  
GND  
GND  
ADDR23 ADDR20 ADDR18 ADDR17  
ADDR19 ADDR16 ADDR15 ADDR14  
G
H
J
DATA20 DATA21 DATA19 DATA18  
DATA17 DATA16 DATA15 DATA12  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
GND  
ADDR10 ADDR13 ADDR11 ADDR12  
GND  
GND  
NC  
VDD  
GND  
GND  
VDD  
VDD  
GND  
VDD  
VDD  
GND  
VDD  
VDD  
GND  
VDD  
GND  
GND  
GND  
ICSA  
RPBA  
ADDR4  
ADDR0  
FLAG3  
ADDR7  
ADDR3  
FLAG0  
ADDR8  
ADDR5  
ADDR1  
ADDR9  
ADDR6  
ADDR2  
DATA14 DATA13 DATA11  
DATA8  
DATA4  
K
L
DATA10  
DATA6  
DATA9  
DATA5  
DATA7  
DATA2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
TDI  
TIMEXP  
FLAG2  
FLAG1  
M
N
P
R
DATA3  
DATA0  
NC  
DATA1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ID2  
NC  
NC  
IRQ1  
ID0  
IRQ0  
TDO  
TMS  
IRQ2  
EMU  
TRST  
TCK  
EBOOT  
RESET  
NC  
ID1  
NC = NO CONNECT  
REV. B  
–46–  
ADSP-21061/ADSP-21061L  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Plastic Ball Grid Array (PBGA)  
0.913 (23.20)  
0.906 (23.00)  
0.898 (22.80)  
15141312 1110 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
0.700  
(17.78)  
0.791 (20.10)  
0.787 (20.00)  
0.783 (19.90)  
0.913 (23.20)  
0.906 (23.00)  
0.898 (22.80)  
BSC  
TOP VIEW  
0.050  
(1.27)  
BSC  
0.791 (20.10)  
0.787 (20.00)  
0.783 (19.90)  
0.050 (1.27) BSC  
0.700 (17.78) BSC  
DETAIL A  
DETAIL A  
0.051 (1.30)  
0.047 (1.20)  
0.043 (1.10)  
0.101 (2.57)  
0.091 (2.32)  
0.081 (2.06)  
0.026 (0.65)  
0.024 (0.61)  
0.022 (0.57)  
0.006 (0.15) MAX  
SEATING  
PLANE  
0.035 (0.90)  
0.030 (0.75)  
NOTE  
THE ACTUAL POSITION OF THE BALL GRID IS WITHIN  
0.012 (0.30) OF ITS IDEAL POSITION RELATIVE TO THE PACKAGE  
EDGES. THE ACTUAL POSITION OF EACH BALL IS WITHIN 0.004 (0.10)  
OF ITS IDEAL POSITION RELATIVE TO THE BALL GRID.  
0.024 (0.60)  
BALL DIAMETER  
ORDERING GUIDE  
Case Temperature  
On-Chip  
SRAM  
Operating  
Voltage  
Package  
Option  
Part Number  
Range  
Instruction Rate  
ADSP-21061KS-133  
ADSP-21061KS-160  
ADSP-21061KS-200  
ADSP-21061LKS-160  
ADSP-21061LKS-176  
ADSP-21061LAS-160  
ADSP-21061LAS-176  
ADSP-21061LKB-160  
ADSP-21061LKB-176  
0°C to +85°C  
33 MHz  
40 MHz  
50 MHz  
40 MHz  
44 MHz  
40 MHz  
44 MHz  
40 MHz  
44 MHz  
1 Mbit  
1 Mbit  
1 Mbit  
1 Mbit  
1 Mbit  
1 Mbit  
1 Mbit  
1 Mbit  
1 Mbit  
5 V  
5 V  
5 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
MQFP  
MQFP  
MQFP  
MQFP  
MQFP  
MQFP  
MQFP  
PBGA  
PBGA  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
0°C to +85°C  
–40°C Case to +85°C Case  
–40°C Case to +85°C Case  
0°C to +85°C  
0°C to +85°C  
The package options are as follows: the ADSP-21061 (5 V) is available in the 240-lead thermally enhanced package and the ADSP-21061L (3.3 V) is available in the  
240-lead standard (no heat slug) package, and 225-Ball PBGA.  
REV. B  
–47–  

相关型号:

ADSP-21061KS-133

ADSP-2106x SHARC DSP Microcomputer Family
ADI

ADSP-21061KS-160

ADSP-2106x SHARC DSP Microcomputer Family
ADI

ADSP-21061KS-200

ADSP-2106x SHARC DSP Microcomputer Family
ADI

ADSP-21061KS-200X

32-Bit Digital Signal Processor
ETC

ADSP-21061KSZ-133

Commercial Grade SHARC DSP Microcomputer
ADI

ADSP-21061KSZ-160

Commercial Grade SHARC DSP Microcomputer
ADI

ADSP-21061KSZ-200

Commercial Grade SHARC DSP Microcomputer
ADI

ADSP-21061L

ADSP-2106x SHARC DSP Microcomputer Family
ADI

ADSP-21061LAS-160

ADSP-2106x SHARC DSP Microcomputer Family
ADI

ADSP-21061LAS-176

ADSP-2106x SHARC DSP Microcomputer Family
ADI

ADSP-21061LASZ-176

Commercial Grade SHARC DSP Microcomputer
ADI

ADSP-21061LKB-160

ADSP-2106x SHARC DSP Microcomputer Family
ADI